Home | Welcome!


  • [1] D. N. Clark and G. Misra, Curvature and similarity, Mich. Math. J., 30(1983), 361 - 367.

  • [2] G. Misra, Curvature inequalities and extremal properties of bundle shifts , J. Operator Theory, 11(1984), 305 - 317.

  • [3] G. Misra, Curvature and the backward shift operator, Proc. Amer. Math. Soc., 91(1984),105 - 107.

  • [4] D. N. Clark and G. Misra, On weighted shifts, curvature and similarity, J. London Math. Soc.,(2) 31(1985), 357 - 368.

  • [5] D. N. Clark and G. Misra, The curvature function and similarity of operators, Math. Vesnic, 37 (1985), 21 - 32.

  • [6] G. Misra, Curvature and Discrete series representation of SL2(IR), J. Int. Eqns and Operator Theory, 9 (1986), 452-459.

  • [7] R. G. Douglas and G. Misra, Some calculations for Hilbert modules, J. Orissa Math. Soc., 12-15 (1993-96), 75 - 85.

  • [8] G. Misra and N. S. N. Sastry, Contractive modules, extremal problems and curvature inequalities, J. Funct. Anal., 88 (1990), 118 - 134.

  • [9] G. Misra and N. S. N. Sastry, Homogeneous tuples of operators and holomorphic discrete series representation of some classical groups, J. Operator Th., 24 (1990), 23 - 32.

  • [10] G. Misra and N. S. N. Sastry, Completely contractive modules and associated extremal problems, J. Funct. Anal., 91 (1990), 213 - 220.

  • [11] G. Misra, Completely contractive modules and Parrott's example, Acta. Math. Hungarica, 63(1994), 291 - 303.

  • [12] G. Misra, Pick-Nevanlinna interpolation theorem and multiplication operators on functional Hilbert spaces, J. Int. Eqns. Operator Th., 14(1991), 825 - 836.

  • [13] G. Misra, Notes on the Brown-Douglas-Fillmore Theorem, Inst. Conf. on Operator Alg., ISI-Bangalore, 1990.

  • These notes have been considerably expanded, modified and corrected, thanks to Sameer Chavan. The revised version has been published in the IISc-Cambridge Lectures Notes Series (ICLNS):

  • Sameer Chavan and Gadadhar Misra, Notes on the Brown, Douglas and Fillmore Theorem, Cambridge University Press, 2021.

  • [14] D. N. Clark and G. Misra, On homogeneous contractionsand unitary representations of SU(1, 1), J. Operator Th., 30(1993), 109 - 122.

  • [15] G. Misra and V. Pati, Contractive and completely contractive modules, matricial tangent vectors and distance decreasing metrics, J. Operator Th., 30(1993), 353 - 380.

  • [16] B. Bagchi and G. Misra, Contractive homomorphisms and tensor product norms, J. Int. Eqns. Operator Th., 21(1995), 255 - 269.

  • [17] B. Bagchi and G. Misra, Homogeneous tuples of operators and systems of imprimitivity, Contemporary Mathematics, 185(1995), 67 - 76.

  • [18] B. Bagchi and G. Misra, Homogeneous operator tuples on twisted Bergman spaces, J. Funct. Anal., 136(1996), 171 - 213.

  • [19] B. Bagchi and G. Misra, On Grothendieck constants, preprint.

  • [20] R. G. Douglas and G. Misra, Geometric invaraiants for resolutions of Hilbert modules, In Operator Theory: Advances and Applications, 104(1998), 83 - 112, Birkhauser.

  • [21] B. Bagchi and G. Misra, Constant characteristic functions and homogeneous operators, J. Operator Th., 37(1997), 51 - 65.

  • [22] R. G. Douglas, G. Misra and C. Varughese, On quotient modules - the case of arbitrary multiplicity, J. Funct. Anal. 174 (2000), 364 - 398.

  • [23] B. Bagchi and G. Misra, A note on the multipliers and projective representations of semi-simple Lie groups, Sankhya (ser. A), Special Issue on Ergodic Theory and Harmonic Analysis, 62 (2000), 425 - 432.

  • [24] B. Bagchi and G. Misra, Homogeneous operators and projective representations of the Mobius group: a survey, Proc. Ind. Acad. Sc.(Math. Sci.), 111 (2001), 415 - 437.

  • [25] B. Bagchi and G. Misra, Scalar perturbations of the Nagy-Foias characteristic function, IN Operator Theory : Advances and Application, special volume dedicated to the memory of Bela Sz.-Nagy, 127 (2001), 97 - 112.

  • [26] R. G. Douglas and G. Misra, On quotient modules, In Operator Theory : Advances and Applications, special volume dedicated to the memory of Bela Sz.- Nagy, 127 (2001), 203 - 209.

  • [27] B. Bagchi and G. Misra, The homogeneous shifts, J. Funct. Anal., 204 (2003), 293 - 319.

  • [28] R. G. Douglas, G. Misra and Varughese, Geometric invariants for quotient modules from resolutions of Hilbert modules, IN Operator Theory : Advances and Application, 129 (2001), 241 - 270.

  • [29] B. Bagchi, G. Misra and T. Bhattacharyya, Some thoughts on Ando's Theorem and Parrott's example, Lin. Alg. and Apln., 341 (2002), 357 - 367.

  • [30] R. G. Douglas and G. Misra, Equivalence of quotient Hilbert modules, Proc. Ind. Acad. Sc.(Math. Sci.), 113 (2003), 281 - 292.

  • [31] R. G. Douglas and G. Misra, Characterizing quotient Hilbert modules, International Workshop on Linear Algebra, Numerical Functional Analysis and Wavelet Analysis, 79 - 88, Allied Publishers Pvt. Ltd., 2003.

  • [32] R. G. Douglas and G. Misra, Quasi-free resolutions of Hilbert modules, J. Int. Eqns. Operator Th., 47 (2003), 435 - 456.

  • [33] R.G. Douglas and G. Misra, On quasi-free Hilbert modules, New York J. Math., 11 (2005), 547 - 561.

  • [34] T. Bhattacharyya and G. Misra, Contractive and completely contractive homomorphisms of planar algebras, Illinois J. Math., 49 (2005), 1181-1201.

  • [35] A. Koranyi and G. Misra, New construction of some homogeneous operators, C. R. Acad. Sci. Paris, ser. I 342 (2006), 933 - 936.

  • [36] G. Misra and S. S. Roy, On the irreducibility of a class of homogeneous operators, Operator Theory: Advances and Apllications, 176 (2007), 165 - 198, Birkhauser Verlag.

  • [37] R.G. Douglas and G. Misra, Equivalence of quotient modules-II, Trans. Amer. Math. Soc., 360 (2008), 2229 - 2264.

  • [38] A. Koranyi and G. Misra, Homogeneous operators on Hilbert spaces of holomorphic functions, J. Func. Anal., 254 (2008), 2419 - 2436.

  • [39] I. Biswas and G. Misra, -- homogeneous vector bundles, Int. J. Math., 19 (2008), 1 - 19.

  • [40] I. Biswas, G. Misra and C. Varughese, Some geometric invariants from resolutions of Hilbert modules along a multi dimensional grid, Hot topics in operator theory, Theta series in advanced mathematics, 2008, 13 - 21.

  • [41] A. Koranyi and G. Misra, Multiplicity free homogeneous operators in the Cowen-Douglas class, Chap 5, pp. 83 - 101, Perspectives in Mathematical Sciences II, World Scientific Press, 2009.

  • [42] G. Misra and S. S. Roy, The curvature invariant for a class of Homogeneous operators, Proc. London Math.Soc.,99 (2009), 557 - 584.

  • [43] A. Koranyi and G. Misra, A classification of homogeneous operators in the Cowen - Douglas class, Integral Equations and Operator Theory, 63 (2009), 595 – 599.

  • [44] S. Biswas and G. Misra, A sheaf theoretic model for analytic Hilbert modules, Mathematisches Forschungsinstitut Oberwolfach, DOI: 10.4171/OWR/2009/20.

  • [45] G. Misra, The Bergman Kernel function, INSA Platinum Jubilee special issue of Indian Journal of Pure and Applied Mathematics, 41 (2010), 189 - 197.

  • [46] R. G. Douglas, G. Misra and J. Sarkar, Contractive Hilbert modules and their dilations over the polydisk algebra, Israel J Math., 187 (2012), 141 - 165.

  • [47] S. Biswas, G. Misra and M. Putinar, Unitary invariants for Hilbert modules of finite rank, J. Reine Angew. Math. 662 (2012), 165 - 204.

  • [48] A. Koranyi and G. Misra, A classification of homogeneous operators in the Cowen-Douglas class, Adv. Math., 226 (2011) 5338 - 5360.

  • [49] S. Biswas and G. Misra, Resolution Of singularities for a class of Hilbert modules,, Indiana Univ. Math. J., 61 (2012), 1019 - 1050.

  • [50] G. Misra, S. Shyam Roy and G. Zhang Reproducing kernel for a class of weighted Bergman spaces on the symmetrized polydisc, Proc Amer Math Soc, 141 (2013), 2361 - 2370.

  • [51] S. Biswas, D. K. Keshari and G. Misra, Infinitely divisible metrics and curvature inequalities for operators in the Cowen-Douglas class, J. London Math. Soc., 88 (2013), 941 - 956.

  • [52] K. Ji, C. Jiang, D. K. Keshari and G. Misra, Flag structure for operators in the Cowen-Douglas class, C. R. Math. Acad. Sci. Paris, 352 (2014), 511 - 514.

  • [53] A. Koranyi and G. Misra, Homogeneous bundles and operators in the Cowen-Douglas class, C. R. Math. Acad. Sci. Paris, 354 (2016), 291- 295.

  • [54] G. Misra and H. Upmeier, Homogeenous vector bundles and intertwining operators for symmetric domains, Adv. Math., 303 (2016) 1077 - 1121.

  • [55] K. Ji, C. Jiang, D. K. Keshari and G. Misra, Rigidity of the flag structure for a class of Cowen-Douglas operators, J. Func. Anal., 272 (2017), no. 7, 2899–2932.

  • [56] K. Ji, C. Jiang and G. Misra, Classification of quasi-homogeneou holomorphic curves and operators in the Cowen-Douglas class, J. Func. Anal., 273 (2017), 2870 - 2915.

  • [57] G. Misra and A. Pal, Contractivity, complete contractivity and curvature inequalities, Journal d'Analyse Mathematique, 136 (2018), 31-54.

  • [88] A. Pal, G. Misra and C. Varughese, Contractivity and complete contractivity for finite dimensional Banach spaces, J. Operator Theory 82 (2019), 23 - 47.

  • [59] S. Biswas, G. Ghosh, G. Misra and S. Shyam Roy On Reducing sub-modules of Hilbert modules with $\mathfrak S_n$-invariant Kernels, J. Fun Anal., 276 (2019), 751-784.

  • [60] G. Misra and Md. Ramiz Reza Curvature inequalities and extremal operators, Illinois J. Math. 63 (2019), 193 - 217.

  • [61] A. Koranyi and G. Misra Homogeneous Hermitian holomorphic vector bundles and the Cowen-Douglas class over bounded symmetric domains, Adv. Math. 351 (2019), 1105 - 1138.

  • [62] G. Misra Operators in the Cowen-Douglas class and related topics, 87 - 137, CRC Press/Chapman Hall Handb. Math. Ser., CRC Press, Boca Raton, FL, 2019. 47-02.

  • [63] R. Gupta and G. Misra Caratheodory-Fejer interpolation problem for the polydisc, Studia Math., 254 (2020), 265-293.

  • [64] G. Misra and H. Upmeier, Singular Hilbert modules on Jordan-Kepler varieties, In: Curto R.E., Helton W., Lin H., Tang X., Yang R., Yu G. (eds) Operator Theory, Operator Algebras and Their Interactions with Geometry and Topology. Operator Theory: Advances and Applications, 278 (2020), 425 - 453, Birkhäuser.

  • [65] S. Ghara and G. Misra, Decomposition of the tensor product of two Hilbert modules, In: Curto R.E., Helton W., Lin H., Tang X., Yang R., Yu G. (eds) Operator Theory, Operator Algebras and Their Interactions with Geometry and Topology. Operator Theory: Advances and Applications, 278 (2020), 221 - 265, Birkhäuser.

  • [66] G. Misra and H. Upmeier, Toeplitz C*-Algebras on boundary orbits of symmetric domains, In: Bauer W., Duduchava R., Grudsky S., Kaashoek M. (eds) Operator Algebras, Toeplitz Operators and Related Topics. Operator Theory: Advances and Applications, 279 (2020), 307 - 341, Birkhäuser.

  • [67] G. Misra, P. Pramanick and K. B. Sinha, A trace inequality for commuting tuple of operators, Integr. Equ. Oper. Theory, 94 (2022), Paper No. 16, 37 pp.

  • [68] S. Biswas, G. Misra, S. Sen, Geometric invariants for a class of submodules of analytic Hilbert modules via the sheaf model, to appear, Complex Analysis and Oper. Theory.

  • [69] S. Ghara and G. Misra, The relationship of the Gaussian curvature with the curvature of a Cowen-Douglas operator, to appear.

  • [70] B. Bagchi, S. Hazra and G. Misra, A product formula for homogeneous characteristic functions, Preprint.

  • [71] S. Ghara, S. Kumar, G. Misra and P. Pramanick, Commuting tuple of multiplication operators homogeneous under the unitary group, Preprint.



  • Latest from Math

            "ArXiv"