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Abstract. In this note we settle some technical questions concerning finite
rank quasi-free Hilbert modules and develop some useful machinery. In par-
ticular, we provide a method for determining when two such modules are uni-
tarily equivalent. Along the way we obtain representations for module maps
and study how to determine the underlying holomorphic structure on such
modules.
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0. Introduction

One approach to multivariate operator theory is via the study of Hilbert modules,
which are Hilbert spaces that are acted upon by a natural algebra of functions
holomorphic on some bounded domain in complex n-space Cn, (cf. [13], [5]). In
this setting, concepts and techniques from commutative algebra as well as from
algebraic and complex geometry can be used. In particular, general Hilbert modules
can be studied using resolutions by simpler or more basic Hilbert modules. Such
an approach generalizes the dilation theory studied in the one variable or single
operator setting (cf. [13]). In [11] the existence of resolutions for a large class of
Hilbert modules was established with the class of quasi-free Hilbert modules forming
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the building blocks. Such modules are defined as the Hilbert space completion of
a space of vector-valued holomorphic functions that possesses a kernel function. It
then follows that a natural Hermitian holomorphic bundle is determined by such a
module. However, for a given algebra there are many distinct, inequivalent Hilbert
space completions, which raises the question of determining the relation between
two such modules.

In this note, we consider this question by examining more carefully the bundle
associated with a quasi-free module and introduce a non-negative matrix-valued
modulus function for any pair of finite rank quasi-free Hilbert modules. We show
that a necessary condition for the modules to be unitarily equivalent is for the
modulus to be the absolute value of a holomorphic matrix-valued function. More-
over, if the domain is starlike or bounded, strongly pseudo-convex, we show that
this condition is also sufficient. The Hermitian holomorphic vector bundle over
Ω associated with a quasi-free Hilbert module possesses a natural connection and
curvature. To prove our results we rely upon the localization characterization of
unitary equivalence obtained in [13]. In the rank one case, we have line bundles and
we show that the difference of the two curvatures is equal to the complex two-form-
valued Laplacian of the logarithm of the modulus function. This identity enables
one to reduce the question of unitary equivalence of two rank one quasi-free Hilbert
modules to showing that the latter function vanishes identically.

Along the way we examine closely how one obtains the holomorphic structure
on the vector bundle defined by a quasi-free Hilbert module. To accomplish this we
introduce the notion of kernel functions dual to a generating set and study concrete
representations for module maps between two quasi-free Hilbert modules. These
dual kernel functions are closely related to the usual two-variable kernel function.
We also raise some related questions for more general Hilbert modules.

In our earlier work, we have assumed the algebra of functions is complete in the
supremum norm and hence that it is a commutative Banach algebra. While we
continue to make that assumption in this note, we will point out along the way
that much weaker assumptions are sufficient for many of the results. In particular,
when the domain is the unit ball, it is enough for the polynomial algebra to act on
the Hilbert space so that the coordinate functions define contraction operators.

Acknowledgment. We want to thank Harold Boas and Mihai Putinar for some
useful comments on the contents of this paper.

1. The Modulus for Quasi-Free Hilbert Modules

We use kernel Hilbert spaces over bounded domains in Cn, which are also con-
tractive Hilbert modules for the natural function algebra over the domain. More
precisely, we use the kind of Hilbert module introduced in [11] for the study of
module resolutions. We first recall the necessary terminology.

For Ω a bounded domain in Cn, let A(Ω) be the function algebra obtained as
the completion of the set of functions that are holomorphic in some neighborhood
of the closure of Ω. For Ω the unit ball Bn or the polydisk Dn in Cn, we obtain the
familiar ball and polydisk algebras, A(Bn) and A(Dn), respectively. The Hilbert
space M is said to be a contractive Hilbert module over A(Ω) if M is a unital
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module over A(Ω) with module map A(Ω)×M→M such that

‖ϕf‖M ≤ ‖ϕ‖A(Ω)‖f‖M for ϕ in A(Ω) and f in M.

The space R is said to be a quasi-free Hilbert module of rank m over A(Ω), 1 ≤
m ≤ ∞, if it is obtained as the completion of the algebraic tensor product A(Ω)⊗`2m
relative to an inner product such that

1) evalzzz : A(Ω)⊗ `2m → `2m is bounded for zzz in Ω and locally uniformly bounded
on Ω;

2) ‖ϕ(Σθi⊗xi)‖ = ‖Σϕθi⊗xi‖R ≤ ‖ϕ‖A(Ω)‖Σθi⊗xi‖R for ϕ, {θi} in A(Ω) and
{xi} in `2m; and

3) for {Fi} a sequence in A(Ω) ⊗ `2m that is Cauchy in the R-norm, it follows
that evalzzz(Fi) → 0 for all zzz in Ω iff ‖Fi‖R → 0.

Here, `2m is the m-dimensional Hilbert space.
Actually, condition 2) can be replaced in this paper by:

2′) ‖ϕ(Σθi⊗xi)‖ ≤ K‖ϕ‖A(Ω)‖Σθi⊗xi‖R for ϕ, {θi} in A(Ω) and {xi} in `2m for
some K > 0.

Also, note that condition 3) already occurs in the fundamental paper of Aron-
szajn [2] in which it is used to conclude that the abstract completion of a space of
functions on some domain is again a space of functions.

There is another equivalent definition of quasi-free Hilbert module in terms of a
generating set. The contractive Hilbert module R over A(Ω) is said to be quasi-free
relative to the vectors {f1, . . . , fm} if the set generates R and {fi ⊗A 1z}m

i=1 forms
a basis for R⊗ACz for zzz in Ω. The set of vectors {fi} is called a generating set for
R. One must also assume that the evaluation functions obtained are locally uni-
formly bounded and that property 3) holds. In [11], this characterization and other
properties of quasi-free Hilbert modules are given. This concept is closely related
to the notions of sharp and generalized Bergman kernels studied by Curto and Sali-
nas [7], Agrawal and Salinas [1], and Salinas [19]. In fact, a matrix-valued kernel
function K(zzz,ωωω) on Ω defines a finite rank quasi-free Hilbert module over A(Ω) if
we assume that K(zzz,zzz) is positive definite for zzz in Ω and the corresponding Hilbert
space of vector-valued holomorphic functions on Ω is a contractive Hilbert module
over A(Ω). The proof used the uniform boundedness principle and arguments in
[12, p. 286]. We’ll say more about this relationship later.

Note that there is a significant difference between the notion of quasi-freeness
and membership in the class Bn(Ω) introduced in [6] and [7]. For example, letM be
the contractive Hilbert module over A(Γ) defined by the analytic Toeplitz operator
Tp on the Hardy space H2(D) for some polynomial p(z), where the closure of p(D)
equals the closure of Γ. Then M is in Bk(Γ′) for Γ′ any domain in Γ disjoint from
p(T), where k is the winding number of the curve p(T) around Γ′. However, M is
a rank k quasi-free Hilbert module relative to an algebra A(Γ′) iff p(T) equals the
boundary of Γ, in which case Γ′ = Γ and k is again the winding number.

We should mention that other authors have investigated the proper notion of
freeness for topological modules over Frechet algebras (cf. pp. 76, 123 [14]). Since
one allows modules that are the direct sum of finitely many copies of the algebra
or the topological tensor product of the algebra with a Frechet space, there can be
a closer parallel with what is done in algebra.
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Let R and R′ each be a rank m (1 ≤ m < ∞) quasi-free Hilbert module over
A(Ω) for the generating sets of vectors {fi} and {gi}, respectively. Then {fi(zzz)}
and {gi(zzz)} each forms a basis for `2m for zzz on Ω and R is the closure of the
span of {ϕfi | ϕ ∈ A(Ω), 1 ≤ i ≤ m} while R′ is the closure of the span of
{ϕgi | ϕ ∈ A(Ω), 1 ≤ i ≤ m}. Consider the subspace ∆ of R ⊕ R′ which is the
closure of the linear span of {ϕfi ⊕ ϕgi | ϕ ∈ A(Ω), 1 ≤ i ≤ m} in R ⊕ R′. Let
Holm(Ω) be the space of all holomorphic L(`2m)-valued functions on Ω.

Lemma 1. The subspace ∆ is the graph of a closed, densely defined, one-to-one
transformation δ = δ(R,R′) having dense range. Moreover, the domain and range
of δ are invariant under the module action and δ is a module transformation.

Proof. Since ∆ is closed and the domain and range of δ, if it is well-defined, will
contain the linear spans of {ϕfi | ϕ ∈ A(Ω), 1 ≤ i ≤ m} and {ϕgi | ϕ ∈ A(Ω), 1 ≤
i ≤ m}, respectively, the only thing needing proof is that h⊕0 or 0⊕k in ∆ implies
h = 0 and k = 0. For 0 ⊕ k in ∆ we have sequences {ϕ(n)

i }, 1 ≤ i ≤ m, such that
Σϕ(n)

i fi → 0, while Σϕ(n)
i gi → k. Since evaluation at zzz in Ω is continuous in the

norm of R, we have that Σϕ(n)
i (zzz)fi(zzz) → 0 for zzz in Ω. Since {fi(zzz)} is a fixed

basis for `2m, it follows that ϕ(n)
i (zzz) → 0 for 1 ≤ i ≤ m. Hence, it follows that

k(zzz)= lim
n

Σϕ(n)
i (zzz)gi(zzz) = 0 and since k(zzz) = 0 for zzz in Ω, we have k = 0 by 3).

The same argument works to show h⊕ 0 in ∆ implies that h = 0. ¤

Although the definition of δ is given in terms of its graph for technical reasons,
one should note that δ merely takes the given generating set for R to the given
generating set for R′.

To consider the infinite rank case, we would need to know more about the re-
lationship as bases between the sets of values of the generating sets {fi(zzz)} and
{gi(zzz)} in `2m for the preceding argument to succeed (cf. [11]).

Note that the graph ∆ can also be interpreted as a rank m quasi-free Hilbert
module over A(Ω) relative to the generating set {fi⊕gi}. Moreover, if we repeat the
above construction relative to the pairs {∆,R} and {∆,R′}, the transformations
δ(∆,R) and δ(∆,R′) are bounded. Finally, since δ(R,R′) = δ(∆,R′)−1δ(∆,R),
many calculations for δ(R,R′) can be reduced to the analogous calculations for a
bounded module map composed with the inverse of a bounded module map.

If evaluation on R and R′ are both continuous, the lemma holds if we replace
A(Ω) by any algebra of holomorphic functions A so long as A is norm dense in
A(Ω). For example, if Ω is the unit ball Bn or the polydisk Dn, one could take A
to be the algebra of all polynomials C[zzz] or the algebra of functions holomorphic
on some fixed neighborhood of the closure of Ω.

Now recall that for zzz in Ω, one defines the module Czzz over A(Ω), where Czzz is the
one-dimensional Hilbert space C, such that ϕ× λ = ϕ(zzz)λ for ϕ in A(Ω) and λ in
Czzz. Note that R⊗A(Ω) Czzz

∼= Czzz ⊗ `2m for R any rank m quasi-free Hilbert module.
Localization of a Hilbert module M at zzz in Ω is defined to be the module tensor
product M ⊗A(Ω) Czzz (cf. [13]), which is canonically isomorphic to the quotient
module M/Mzzz, where Mzzz is the closure of A(Ω)zzzM and A(Ω)zzz = {ϕ ∈ A(Ω) |
ϕ(zzz) = 0}. (Again, we can define this construction for an algebra A, as above, so
long as the set of functions in A that vanish at a fixed point zzz in Ω is dense in
A(Ω)zzz.)
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In addition to localizing Hilbert modules, one can localize module maps. While
localization of bounded module maps is straightforward, here we need to localize δ
which is possibly unbounded and hence we must be somewhat careful.

Lemma 2. For zzz in Ω, the map δ ⊗A(Ω) 1zzz : R ⊗A(Ω) Czzz −→ R′ ⊗A(Ω) Czzz is
well-defined. Moreover, δ ⊗A(Ω) 1zzz is an invertible operator on the m-dimensional
Hilbert space Czzz ⊗ `2m.

Proof. Since for zzz in Ω, A(Ω)zzzfi is contained in the domain of δ for 1 ≤ i ≤ m and
δ(A(Ω)zzzfi) is contained in the linear span of {A(Ω)zzzgi}, 1 ≤ i ≤ m, we see that
one can define δ from R/Rzzz to R′/R′zzz as a densely defined, module transformation
having dense range. Both R/Rzzz and R′/R′zzz are m-dimensional since they are
isomorphic to R⊗A(Ω) Czzz and R′ ⊗A(Ω) Czzz, respectively. Since δ has dense range,
it follows that δ⊗A(Ω) 1zzz is onto and thus invertible. Therefore, the final statement
holds. ¤

Localization as defined above is used implicitly in the work of Arveson and
others. Consider, for example, the recent paper [3] involving free covers. Since the
defect space is simply F ⊗C[z] C0, the assumption in Definition 2.2 of [3] is that
the localization map A ⊗C[z] Iz = Ȧ is unitary. While this observation doesn’t
add anything per se, it does raise the question about the meaning of localization
at other zzz, not just at the origin. We’ll say more about this matter later in this
note. A similar question can be raised in the work of Davidson [8] who uses the
trace which is just the localization map from a module M to M⊗A C0. Does
consideration of localization at other zzz add anything? Since the algebra in this
case is non-commutative, this question would likely take one into the realm of non-
commutative algebraic geometry such as considered by Kontsevich and Rosenberg
[18].

The modulus µ = µ(R,R′) of R and R′ is defined to be the absolute value
of δ ⊗A(Ω) 1zzz. For m > 1, there are two possibilities: the square root of (δ ⊗A(Ω)

1zzz)∗(δ⊗A(Ω)1zzz) and the square root of (δ⊗A(Ω)1zzz)(δ⊗A(Ω)1zzz)∗. The first operator,
which we’ll denote by µ(R,R′), is defined on R ⊗A(Ω) Czzz while the second one,
which corresponds to µ′(R,R′), is defined on R′ ⊗A(Ω) Czzz. In either case, µ is an
invertible positive m×m matrix function which is distinct from the absolute value
of δ(R′,R) = δ(R,R′)−1.

Next we need to know more about the adjoint transformation δ∗ : R′ → R.
Recall we know from von Neumann’s fundamental results [20], that δ∗ exists and
its graph is given by the orthogonal complement of ∆, the graph of δ, in R ⊕ R′
after reversing the roles of R and R′ and introducing a minus sign. In particular,
the graph ∆∗ of δ∗ is equal to {h⊕ k ∈ R′ ⊕R | −k ⊕ h ⊥ ∆}.

For zzz in Ω, let {ki
zzz} and {k′izzz} be elements in R and R′, respectively, such that

〈h(zzz), gi(zzz)〉`2m = 〈h, k′izzz〉R′ and 〈k(zzz), fi(zzz)〉`2m = 〈k, ki
zzz〉R for h and k in R′ and R,

respectively. Note that the sets {ki
zzz} and {k′izzz} span the orthogonal complements of

Rzzz and R′zzz, respectively. We will refer to the sets {ki
zzz} and {k′izzz}, as the dual sets

of kernel functions for the generating sets {fi} for R and {gi} for R′, respectively.
Finally, for zzz in Ω let Xij(zzz) be the matrix in L(`2m) that satisfies〈∑

j

Xij(zzz)fj(zzz), f`(zzz)

〉

`2m

= 〈gi(zzz), g`(zzz)〉`2m for 1 ≤ i, ` ≤ m.
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In other words, {Xij} effects the change of basis from {fi} for R to {gi} for R′.
If we define Y (zzz) : `2m → `2m so that Y (zzz)fi(zzz) = gi(zzz) for 1 ≤ i ≤ m, then
Y (zzz) is invertible and {Xij(zzz)} is the matrix defining the operator Y (zzz)∗Y (zzz) on
`2m. Moreover, since the generating sets {fi(zzz)} and {gi(zzz)} are holomorphic, the
matrix-function Xij(zzz) is real-analytic.

Lemma 3. The domain of δ∗ contains the finite linear span of {k′izzz | zzz ∈ Ω, 1 ≤
i ≤ m}. Moreover,

δ∗k′izzz =
∑

j

Xij(zzz)kj
zzz.

Proof. Since the span of {ϕfi ⊕ ϕgi | ϕ ∈ A(Ω), 1 ≤ i ≤ m} is dense in ∆, it is
enough to show that〈(

−
∑

j

Xij(zzz)kj
zzz

)
⊕ k′izzz, ϕf` ⊕ ϕg`

〉
= 0

for ϕ in A(Ω) and 1 ≤ ` ≤ m. But
〈(−

∑

j

Xij(zzz)kj
zzz

)⊕ k′izzz, ϕf` ⊕ ϕg`

〉
R⊕R′

=
〈−

∑

j

Xij(zzz)kj
zzz, ϕf`

〉
R + 〈k′izzz, ϕg`〉R′

= −
∑

j

Xij(zzz)ϕ(zzz)〈kj
zzz, f`〉R + ϕ(zzz)〈k′izzz, g`〉R′

= ϕ(zzz)
(〈

−
∑

j

Xij(zzz)fj(zzz), f`(zzz)
〉

`2m

+ 〈gi(zzz), g`(zzz)〉`2m
)

= 0

by the definition of {Xij(zzz)} and thus the result is proved. ¤

Before we proceed, the notion of the dual set of kernel functions can be used to es-
tablish the first notion of holomorphicity, or in fact in this case, anti-holomorphicity,
of a quasi-free Hilbert module.

Suppose R is the completion of A(Ω) ⊗alg `
2
m and we consider the generating

set {1 ⊗ ei} for R with the dual set of kernel functions {ki
zzz}. As we pointed out

above, {ki
zzz}m

i=1 spans the orthonormal complement of Rzzz in R for zzz in Ω. For h
in R we have 〈ki

zzz, h〉R = 〈h(zzz), ei〉`2m which is an anti-holomorphic function on Ω.
Thus ki

zzz is a weakly anti-holomorphic function and therefore zzz −→ ki
zzz is strongly

anti-holomorphic. Finally, since the functions {ki
zzz} span R⊥zzz for zzz in Ω, we see that⋃

zzz∈Ω

R⊥zzz is an anti-holomorphic Hermitian rank m vector bundle over Ω.

We record this result as

Lemma 4. For R a finite rank m quasi-free Hilbert module,
⋃

zzz∈Ω

R⊥zzz is a Hermitian

rank m anti-holomorphic vector bundle over Ω.

With the additional assumption of a “closedness of range” condition, this result is
established in [7]. Also, the above proof can be rephrased in terms of the ordinary
notion of kernel function and rests on the holomorphicity of the functions in R.
Note that we have assumed the local uniformed boundedness of evaluation to reach
the conclusion of Lemma 4. On the other hand, as mentioned earlier, if the space
is known to consist of holomorphic functions, then this property follows from the
uniform boundedness principle. It would be of interest to understand better the
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relation of this notion to that of the closedness of range condition. In particular,
one knows that the latter property does not always hold.

There is one final question concerning the relationship of these concepts. Does
there exist a finite matrix-valued kernel function defining a Hilbert space satisfying
2) and 3) of the definition of quasi-free Hilbert module but which is not holomorphic
in the first variable and anti-holomorphic in the second? Evaluation could not be
locally uniformly bounded for such an example, which would probably be only a
curiosity for the theory developed in this paper.

2. Representations of Module Maps

Next we state a result familiar in settings such as the one provided by that of
quasi-free Hilbert modules, which we essentially used in the preceding section to
define δ∗.

Lemma 5. If R and R′ are finite rank quasi-free Hilbert modules over A(Ω) relative
to the generating sets {fi}m

i=1 and {gi}m
i=1, 1 ≤ m < ∞, and X is a module map

from R to R′, then there exists Ψ = {ψij} in Holm(Ω) such that

Xfi =
m∑

j=1

ψijgj , for 1 ≤ i ≤ m.

Proof. For zzz in Ω, both {fi(zzz)}m
i=1 and {gi(zzz)}m

i=1 are bases for `2m and hence there
exists a unique matrix {ψij(zzz)}m

i,j=1 such that

(Xfi)(zzz) =
m∑

j=1

ψij(zzz)gj(zzz) for i = 1, 2, . . . ,m.

Since the functions {(Xfi)(zzz)}m
i=1 and {gi(zzz)}m

i=1 are all holomorphic, it follows
from Cramer’s rule that Ψ = {ψij}m

i,j=1 is in Holm(Ω) which completes the proof.
¤

Although we obtain a holomorphic matrix function defining a module map be-
tween distinct quasi-free Hilbert modules, this function is not very useful unless the
modules and the generating sets are the same. That is because the matrix repre-
senting a linear transformation relative to different bases captures little information
about the norm of it or the eigenvalues of its absolute value.

Before continuing, we want to show that the multiplier representation for a
module map also extends to its localization.

Lemma 6. If R and R′ are rank m quasi-free Hilbert modules with generating sets
{fi} and {gi}, respectively, and X : R → R′ is the module map from R to R′
represented by Ψ = {ψij} in Holm(Ω), then

(X ⊗A 1Czzz )(fi ⊗A 1zzz) =
m∑

j=1

ψij(zzz)(gj ⊗A 1zzz) for zzz in Ω.

Proof. Let {k′izzz} be the set of kernel functions dual to the generating set {gi}.
Then for a fixed zzz the span of the set {k′izzz}m

i=1 is the orthogonal complement
of [AzzzR′] and we can identify R′ ⊗A Czzz with the quotient module R′/[AzzzR′].
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Calculating we see that the vector Xfi −
m∑

i=1

ψji(zzz)gj is orthogonal to each k′izzz,

1 ≤ ` ≤ m, and hence is in [AzzzR′]. Therefore, we have that

(X ⊗A 1Czzz )(fi ⊗A 1zzz) = (Xfi)⊗A 1zzz =
m∑

j=1

ψij(z)(gj ⊗A 1zzz) for 1 ≤ i ≤ m,

which completes the proof. ¤

Note that this result also holds for the localization of δ. Also, if the ranks of R
and R′ are finite integers m and m′ but not equal, then we obtain the same result
for a holomorphic m′ ×m matrix-valued function.

Although, as we mentioned above, this representation has limited value, it does
enable us to investigate the nature of the sets of constancy for the local rank of a
module map X between two quasi-free Hilbert modules R and R′. The previous
lemma shows that, this local behavior is the same as that of a holomorphic matrix-
valued function. In particular, each singular set Σk of X ⊗A 1zzz, that is, the subset
of Ω on which the rank of X ⊗A 1zzz is k, is an analytic subvariety of Ω. Thus we
have established

Theorem 1. If R and R′ are finite rank quasi-free Hilbert modules and X is
a module map X : R → R′, then the singular sets Σk of X ⊗A 1zzz are analytic
subvarieties of Ω.

We intend to use this fact to relate our work to that of Harvey–Lawson [15] in
the future. In particular, we expect their formulas for singular connections to be
useful in obtaining invariants from resolutions such as those exhibited in [11].

3. Holomorphic Structure

Recall that the spectral sheaf of a Hilbert module M over A(Ω) is defined to
be Sp(M) =

⋃
zzz∈Ω

M⊗A Czzz with the collection of sections {f ⊗A 1zzz | f ∈ M}. A

priori the fibers of Sp(M) are isomorphic to the Hilbert modules Czzz ⊗ `2mzzz
, where

the dimension mzzz can vary from point to point and 0 ≤ mzzz ≤ ∞. If R is a
quasi-free rank m Hilbert module, then mzzz = m for all zzz, but we would like more.
Namely, we would like to define a canonical structure on Sp(R) making it into
a holomorphic vector bundle relative to which the sections are holomorphic. We
would also like to understand better the relation between the spectral sheaf Sp(R)
and the anti-holomorphic vector bundle

⋃
zzz∈Ω

R⊥zzz .

Although it might seem straightforward that the spectral sheaf Sp(R) =
⋃

zzz∈Ω

R⊗A

Czzz, for a finite rank quasi-free Hilbert module R, is a Hermitian holomorphic vector
bundle, it is worth considering how one exhibits such structure and shows that it
is well-defined.

Let {fi}n
i=1 be a subset of R relative to which R is quasi-free and define the map

F (zzz) from R⊗A Czzz to `2m such that F (zzz)
(

n∑
i=1

λi(fi ⊗A 1zzz)
)

=
n∑

i=1

λifi(zzz). By the

quasi-freeness of R relative to the generating set {fi}m
i=1, it follows that this map

is well-defined, one-to-one and onto. Its inverse F−1 defines a map from the trivial
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vector bundle Ω× `2m to the spectral sheaf Sp(R) of R which can be used to make
Sp(R) into a holomorphic vector bundle. It is clear that the sections fi ⊗A(Ω) 1zzz

are holomorphic relative to this structure. We see later that the same is true for
all k in R. The only issue now is whether the intrinsic norm on the fibers of Sp(R)
yields a real-analytic metric on this bundle, which is necessary for Sp(R) to be a
Hermitian holomorphic vector bundle.

To show that, consider F (z)−1 : `2m → R ⊗A Czzz. We need to know that the
function zzz → 〈F (z)−1x, F (z)−1y〉R⊗ACzzz

is real-analytic for vectors x and y in `2m.
Since the functions {fi(zzz)} are holomorphic, the map from a fixed basis {ei} in
`2m to `2m defined by ei → fi(zzz) is holomorphic. Hence, the question rests on the
behavior of the Grammian {〈fi⊗A1zzz, fj⊗A1zzz〉R⊗ACzzz}. Using the dual set of kernel
functions {k`

zzz}m
`=1 for the generating set {fi}, we see that fi⊗A1zzz, viewed as a vector

in R, is the projection of fi onto R⊥zzz , the span of the {k`
zzz}m

`=1. Now consider the
identity involving the inner products 〈fi, k

`
zzz〉R = 〈fi(zzz), f`(zzz)〉`2m obtained using the

defining property of the dual set {k`
zzz}. We see that zzz → 〈fi, k

`
zzz〉R is real-analytic.

Therefore, inner products of the projections of fi and fj onto the span of the {k`
zzz}m

i=1

are also real-analytic which completes the proof. (Because of linear independence,
the expressions can’t vanish.)

Now we must consider what happens if we use a different generating set {gi}n
i=1

relative to which R is quasi-free. Using Lemma 5, we see that the map which
sends fi to gi, i = 1, 2, . . . ,m, is defined by a holomorphic m ×m matrix-valued

function Ψ(zzz) in Holm(Ω). That is, we have gi(zzz) =
m∑

j=1

ψij(zzz)fj(zzz) for zzz in Ω and

hence Ψ(zzz) defines a holomorphic bundle map which intertwines the holomorphic
structures defined by the generating sets {fi}n

i=1 and {gi}n
i=1. Thus, we have proved:

Theorem 2. For R a finite rank quasi-free Hilbert module over A(Ω), there is a
unique, well-defined holomorphic structure on Sp(R) relative to which the functions
zzz → k ⊗A 1zzz are holomorphic sections for each k in R.

Proof. The only part requiring proof is the last statement. Clearly, this is true for
any fi in a generating set {fi}m

i=1 for R. Similarly, it follows for any linear com-

bination
m∑

i=1

ϕifi for {ϕi} ⊂ A(Ω), that we obtain a holomorphic section. Finally,

the R-norm limit of such a sequence will converge uniformly locally and hence to
a holomorphic section of Sp(R) which completes the proof. ¤

There is another approach to the holomorphic structure on Sp(R) which was
essentially used in [6], [7]. If the space AzzzR is closed and the rank of R is finite,
then the projection onto [AzzzR]⊥ can be shown to define an anti-holomorphic map
and hence the quotient R/[AzzzR] is holomorphic. Since R/[AzzzR] ∼= R⊗A Czzz, this
is another way of establishing a holomorphic structure on Sp(R). The smoothness
of sections is straightforward in this case. However, the proof of Theorem 2 is
valid without the assumption of “closed range” but does require the local uniform
boundedness of evaluation or equivalently, that the module consists of holomorphic
functions.

This identification of a holomorphic structure on the spectral sheaf of a finite
rank quasi-free Hilbert module raises a series of questions regarding the situation
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for the spectral sheaf of a general Hilbert module. In particular, although we have
called Sp(M) =

⋃
zzz∈Ω

M⊗A Czzz a sheaf, is it?

Although we can adopt the preceding approach to attempt to identify
⋃

zzz∈Γ

M⊗A

Czzz with the trivial bundle Γ × Cm on an open subset Γ of Ω on which the fiber
dimension is constant, the utility of this identification depends on being able to
show that the transition functions on an overlap Γ1 ∩ Γ2 are holomorphic. This
would show that Sp(M) is a holomorphic bundle for the “easy case,” that is, a
Hilbert module M for which the fiber dimension of M⊗ACzzz is constant and finite
on all of Ω. Until that case is decided, it is pointless to speculate about the general
case of an M with finite but different dimensional fibers.

There is additional information about the behavior of the Grammian for the
{fi ⊗A 1zzz} that we can obtain from a modification of the preceding arguments.
Let {fi} be a generating set for the finite rank quasi-free Hilbert module R. We
introduce a related notion of dual generating set which we will denote by {gi

zzz} so
that 〈h, gi

zzz〉R = 〈h ⊗A 1zzz, fi ⊗A 1zzz〉R⊗ACzzz
for all i and zzz in Ω and h in R. If Pzzz

denotes the orthogonal projection of R onto R⊥zzz , then one sees that gi
zzz = Pzzzfi

for all i and zzz in Ω since we can identify fi ⊗A 1zzz with Pzzzfi. Since
⋃

zzz∈Ω

R⊥zzz is an

anti-holomorphic Hermitian rank m vector bundle, we see that the {gi
zzz} form an

anti-holomorphic frame for it. Moreover, we have

〈fi ⊗A 1zzz, fj ⊗A 1zzz〉R⊗ACzzz = 〈Pzzzfi, Pzzzfj〉R = 〈gi
zzz, g

j
zzz〉R

or that the Grammian for the localization at zzz in Ω of the generating set {fi} agrees
with that of the anti-holomorphic frame {gi

zzz} for the anti-holomorphic Hermitian
rank m vector bundle

⋃
zzz∈Ω

R⊥zzz . This allows us to obtain the following result which

will be used in the next section.

Theorem 3. If R and R′ are finite rank quasi-free Hilbert modules for the gener-
ating sets {fi} and {f ′i} so that the Grammians {〈fi ⊗A 1zzz, fj ⊗A 1zzz〉R⊗ACzzz} and
{〈f ′i ⊗A 1zzz, f

′
j ⊗A 1zzz〉R′⊗ACzzz} are equal, then δ(R,R′) is an isometric module map

and R and R′ are unitary equivalent.

Proof. Proceeding as above we obtain anti-holomorphic frames {gi
zzz} and {g′izzz}

for
⋃

zzz∈Ω

R⊥zzz and
⋃

zzz∈Ω

R′⊥zzz , respectively. The mapping taking one anti-holomorphic

frame to the other defines an anti-holomorphic unitary bundle map, call it Ψ, and
hence the bundles are equivalent. Appealing to the Rigidity Theorem in [6], we
obtain a unitary operator U : R → R′ which agrees with the bundle map, that is,
Ψ(zzz) = P ′zzzU |R⊥zzz for zzz in Ω. Moreover, since the action of M∗

ϕ on R⊥zzz and R′⊥zzz is
multiplication by ϕ(zzz), where Mϕ denotes the module actions of ϕ on R and R′,
respectively, we see that U∗ is a module map from R′ to R and hence U = (U∗)−1

is a module map, which concludes the proof. ¤

4. Equivalence of Quasi-Free Hilbert Modules

We now state our first result about equivalence and the modulus.
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Theorem 4. If the finite rank quasi-free Hilbert modules R and R′ over A(Ω) are
unitarily equivalent, then the modulus µ(R,R′) is the absolute value of a function
Ψ in Holm(Ω).

Proof. Let V : R′ →R be a unitary module map. We consider localization of the
triangle

R⊗A(Ω) Czzz

(V δ)⊗A(Ω)1zzz−−−−−−−→ R⊗A(Ω) Czzz

δ ⊗A(Ω) 1zzz

−−−→ −−−
→V ⊗A(Ω) 1zzz

R′ ⊗A(Ω) Czzz

which yields (V δ) ⊗A(Ω) 1zzz = (V ⊗A(Ω) 1zzz)(δ ⊗A(Ω) 1zzz). Since (V δ) ⊗A(Ω) 1zzz is in
Holm(Ω) by Lemmas 5 and 6, it is sufficient to show that V ⊗A(Ω) 1zzz is unitary.

Again, by considering the factorization IR⊗A(Ω)1zzz = (V −1⊗A(Ω)1zzz)(V ⊗A(Ω)1zzz)
and in view of the fact that both ‖V −1⊗A(Ω) 1zzz‖ ≤ ‖V −1‖ = 1 and ‖V ⊗A(Ω) 1zzz‖ ≤
‖V ‖ = 1, we see that V ⊗A(Ω) 1zzz is unitary and the result is proved since µ(R,R′)
is the absolute value of δ(R,R′). ¤

Note that if we use V −1 from R to R′ we see that the other square root, µ(R′,R)
is also the modulus of a holomorphic function in Holm(Ω).

The argument in this theorem raises a question about a bounded module map V
between finite rank quasi-free Hilbert module R′ and R such that the localization
V ⊗A(Ω) 1zzz is unitary for zzz in Ω. We see by Theorem 3 that such a map must
be unitary if it has dense range by choosing a generating set {fi} for R′ and the
generating set {V fi} for R. If θ is a singular inner function, then the module map
from the Hardy module H2(D) to itself defined by multiplication by θ is locally one
to one but does not have dense range. However, it is not locally a unitary map. It
would seem likely that maps that are locally unitary must have dense range but we
have been unable to prove this. Some of these issues would also seem to be related
to the proof of Theorem 2.4 in [3]. This is the reference we made earlier to the use
in this work of localization at zzz in addition to the origin.

What about the converse to the theorem? Suppose there exists a function Ψ in
Holm(Ω) such that Ψ(zzz)∗Ψ(zzz) = µ(zzz)2 = (δ ⊗A(Ω) 1zzz)∗(δ ⊗A(Ω) 1zzz). Since µ(zzz) is
invertible, we see that Ψ(zzz)−1 exists. Multiplying on the left by (Ψ(zzz)−1)∗ and on
the right by Ψ(zzz)−1, we obtain

I = [(δ ⊗A(Ω) 1zzz)Ψ(zzz)−1]∗ = [(δ ⊗A(Ω) 1zzz)Ψ(zzz)−1].

Thus the function (δ ⊗A(Ω) 1zzz)Ψ(zzz)−1 = U(zzz) is unitary-valued. We would like
to show under these circumstances that R and R′ are unitarily equivalent. The
obvious approach is to consider the operator on R defined to be multiplication by
Ψ−1 followed by δ. Unfortunately, we know little about the growth of Ψ−1 as a
function of zzz and hence we don’t know if the operator defined by multiplication by
Ψ is densely defined.

Suppose we assume that Ω is starlike relative to the point ωωω0 in Ω, that is, the
line segment {tωωω0 +(1− t)ωωω | 0 ≤ t ≤ 1} is contained in Ω for each ωωω in Ω. Without
loss of generality, we can assume that ωωω0 = 000. Then we can define the function
Ψ−1

t : Ω → L(`2m) for 0 < t ≤ 1 by Ψ−1
t (zzz) = Ψ−1(tzzz) for zzz in Ω. Now the family

{Ψ−1
t } converge uniformly to Ψ−1 on compact subsets of Ω. (Actually, not only

do the functions, which comprise the matrix entries, converge but so do all of their
partial derivatives converge on compact subsets of Ω.) Moreover, the matrix entries
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for {Ψ−1
t } for 0 < t < 1 are in A(Ω) and thus we can define multiplication by Ψ−1

t

on R and also δΨ−1
t . Moreover, δΨ−1

t is a closed module transformation which has
the same domain and range as δ.

Theorem 5. If Ω is starlike and the modulus µ(R,R′) for two finite rank quasi-free
Hilbert modules over A(Ω) is the absolute value of a function in Holm(Ω), then R
and R′ are unitarily equivalent.

Proof. By Lemma 2 the localizations of both δ and δΨ−1
t are well-defined and can

be evaluated using the identifications of R⊗A(Ω) Czzz and R′ ⊗A(Ω) Czzz with R/Rzzz

and R′/R′zzz, respectively. For Φ a function in Holm(Ω) with entries from A(Ω), the
operator MΦ in L(R) defined to be multiplication by Φ, using generating sets for
R and R′, is well-defined and MΦ ⊗A(Ω) 1zzz = Φ(zzz) for zzz in Ω. Next we consider
the localization of the factorization of δΨ−1

t to obtain

(δΨ−1
t )⊗A(Ω) 1zzz = (δ ⊗A(Ω) 1zzz)(Ψ−1

t ⊗A(Ω) 1zzz)

= (δ ⊗A(Ω) 1zzz)Ψ−1
t (zzz)

= U(zzz)[Ψ(zzz)Ψ−1
t (zzz)].

Since U(zzz) = (δ ⊗A(Ω) 1zzz)Ψ−1(zzz) is unitary, we see that the map (δΨ−1
t )⊗A(Ω) 1zzz,

which acts between the local modules R ⊗A(Ω) Czzz and R′ ⊗A(Ω) Czzz, is almost a
unitary module map. Since lim

t→1
[Ψ(zzz)Ψ−1

t (zzz)] = I`2m , we see that the two local
modules are unitarily equivalent. But for m > 1 this is not enough.

For M a Hilbert module and n a positive integer, let Mn
zzz denote the closure

of (A(Ω)n
zzz )M, where A(Ω)n

zzz is the ideal of A(Ω) generated by the products of n
functions in A(Ω)zzz. (The quotient M/Mn

zzz can also be identified as the module
tensor product of M with some finite dimensional module with support at zzz. It is
not straightforward, however, to identify the correct norm on the local module.) In
Theorem 3.12 [4], X. Chen and the first author established that a class of Hilbert
modules, which includes the finite rank quasi-free Hilbert modules, are determined
up to unitary equivalence by the collection of local modules M/Mn

zzz for zzz in Ω,
where n depends on the rank of R. To apply this result to R and R′ we require
the unitary equivalence of the higher order local modules R/Rn

zzz and R′/R′nzzz . This
is accomplished by noting that the localization of [Ψ(zzz)Ψ−1

t (zzz)] to R′/R′nzzz depends
on the values of the partial derivatives of the entries of this matrix function up to
some fixed order depending on n. Since the latter functions all converge to the
appropriate entries for the identity matrix on R′/R′nzzz , we conclude that R/Rn

zzz and
R′/R′nzzz are unitarily equivalent as A(Ω)-modules. Thus, we conclude that R and
R′ are unitarily equivalent as A(Ω)-modules. ¤

Arguments such as the preceding one are familiar in several complex variables.
An early instance of it using starlike domains occurs in Douady’s thesis [9]. Actually
Ω being starlike is not necessary. What is required for the preceding argument
to work is that one can approximate the function Ψ by matrix functions with
entries from A(Ω) in a very strong sense. That is, one must be able to control
not only the convergence of the function entries but also the convergence of their
partial derivatives and their inverses. By Montel’s Theorem uniform convergence
on compact subsets of Ω is sufficient. One can show using various techniques (cf.
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[17] and Thm. 3.5.1 in [16]) that such approximation is possible for Ω a bounded
strongly pseudo-convex domain which allows us to state:

Corollary 6. If Ω is a bounded strongly pseudo-convex domain in Cm and the
modulus µ(R,R′) for two finite rank quasi-free Hilbert modules over A(Ω) is the
absolute value of a function in Holm(Ω), then R and R′ are unitarily equivalent.

If we actually know that the mapping δΨ−1 is densely defined, we can use Theo-
rem 3 which means appealing to the Rigidity Theorem of [6] rather than involving
curvature and its partial derivatives.

Now one knows that a non-negative real-valued function h(zzz) on as simply con-
nected domain Ω is the absolute value of a function holomorphic on Ω if and only
if the two-form-valued Laplacian of the logarithm of it vanishes identically on Ω.
Hence, we could restate Theorems 4 and 5 for the rank one case using this fact.
However, we can go even further.

Recall we saw in Theorem 2 that a rank m quasi-free Hilbert module R deter-
mines a Hermitian holomorphic rank m vector bundle ER =

⋃
zzz∈Ω

R⊗A(Ω)Czzz over Ω.

Moreover, on such a bundle there is a canonical connection and hence a curvature
which is a two-form valued matrix function on Ω (cf. [6]). In the rank one case, we
obtain a line bundle and if γ(zzz) is the holomorphic section f ⊗A(Ω) 1zzz of it, then
the curvature KR can be calculated so that

KR(zzz) = −1
2

∑

i,j

∂2

∂zi∂z̄j
log ‖γ(zzz)‖dzi ∧ dz̄j .

Now let us return to the case of two rank one quasi-free Hilbert modules over
Ω. If γ′(zzz) is the holomorphic section g ⊗A(Ω) 1zzz for ER′ , then (δγ)(zzz) is the
holomorphic section γ′(zzz) for R′ ⊗A(Ω) Czzz. Moreover, a calculation shows that

‖γ′(zzz)‖ = ‖(δγ)(zzz)‖ = |(δ ⊗A(Ω) 1zzz)|‖γ(zzz)‖.
Theorem 7. If R and R′ are rank one quasi-free Hilbert modules and µ is the
modulus, µ(R,R′), then

−1
2

∑

i,j

∂2

∂zi∂z̄j
µ(zzz)dzi ∧ dz̄j = KR −KR′ .

Proof. If γ(zzz) and γ′(zzz) are the holomorphic sections of ER and ER′ given above,
then we have

KR = −1
2

∑

i,j

∂2

∂zi∂z̄j
log ‖γ(zzz)‖dzi ∧ dz̄j and

KR′ = −1
2

∑

i,j

∂2

∂zi∂z̄j
log |δ ⊗A(Ω) 1zzz|‖γ(zzz)‖dzi ∧ dz̄j .

The proof is completed by using Lemma 5 to conclude that µ(zzz) = |(δ ⊗A(Ω) 1zzz)|
for zzz in Ω. ¤

Formulas such as this one appeared first for specific examples in [13] and for
general quotient modules in [10] where they are used to obtain invariants for the
quotient module. Here, of course, there is no quotient module involved.
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Finally, one can rephrase this result to state that for rank one quasi-free Hilbert
modules the modulus is the square of the absolute value of a holomorphic function
if and only if their respective curvatures coincide.
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