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Abstract. The notion of a quasi-free Hilbert module over a function algebra
A consisting of holomorphic functions on a bounded domain Ω in complex m
space is introduced. It is shown that quasi-free Hilbert modules correspond to
the completion of the direct sum of a certain number of copies of the algebra
A. A Hilbert module is said to be weakly regular (respectively, regular) if there
exists a module map from a quasi-free module with dense range (respectively,
onto). A Hilbert moduleM is said to be compactly supported if there exists a
constant β satisfying ‖ϕf‖ ≤ β‖ϕ‖X‖f‖ for some compact subset X of Ω and
ϕ in A, f in M. It is shown that if a Hilbert module is compactly supported
then it is weakly regular. The paper identifies several other classes of Hilbert
modules which are weakly regular. In addition, this result is extended to yield
topologically exact resolutions of such modules by quasi-free ones.
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1. Introduction

While the study of linear operators on Hilbert space goes back more than a hundred
years, attempts at understanding more than one operator are of more recent origin.
Rings of operators were investigated in the celebrated series of papers by Murray
and von Neumann [30], [31], [32], [34] in the thirties, but that study led to the
development of operator algebras. This subject is somewhat different than operator
theory, and most recently has led to noncommutative geometry [10]. Also, there
have been several approaches to non-selfadjoint multivariate operator theory. For
example, there is the study of non-selfadjoint operator algebras which was initiated
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by Kadison and Singer [29] and has been developed by many authors over the years
(cf. [14]). In [4], [5], Arveson extended results on function algebras, especially the
disk algebra, to non-selfadjoint subalgebras of C∗-algebras. There is the study of
operators in various concrete settings, usually defined on spaces of holomorphic
functions such as the Hardy and Bergman spaces (cf. [7], [36]). Generalizations
of operators on Hardy space have been undertaken by several authors recently
including Arveson [6], Popescu [38], and Davidson [15]. Finally, there is the module
approach (cf. [24]), in which an algebraic point of view is emphasized and the
extension of techniques from algebraic and complex geometry is the key. This note
makes a contribution to the latter program.

In commutative algebra a principal object of study is the collection of modules
over a given ring. While in most instances the collection has additional structure
and forms a semigroup, a group or even a ring, one way to study individual mod-
ules is by relating them to simpler ones. If the ring is Noetherian, then one uses
projective modules which can be characterized in this context as submodules of
free modules. The latter are the direct sum of copies of the ring. Otherwise, one
uses a different class of modules as building blocks. The techniques for studying
general modules in terms of the simpler ones is via a resolution.

In this paper we propose the class of “quasi-free Hilbert modules” as the
building blocks for the general ones. We discuss the Sz.-Nagy–Foias model [33]
in terms of resolutions recalling that this interpretation was a key motivation for
the module approach to multivariate operator theory. Then we show under rea-
sonably general hypotheses, involving the support of the module in some sense,
the existence of a topologically exact resolution by quasi-free Hilbert modules. We
discuss various characterizations of the class of modules possessing such resolu-
tions. Finally, we describe some uses of resolutions, that is, how one can extract
information and invariants for a Hilbert module from resolutions.

1.1. Hilbert Modules

Let Ω be a bounded domain in Cm. Examples are the unit ball, Bm, the polydisk,
Dm, or any strongly pseudo-convex domain Ω in Cm. Of course, there are also many
examples for which the boundary, ∂Ω, is not nice. Nonetheless, we will consider
the natural function algebra A(Ω) obtained from the closure in the supremum
norm on Ω of all functions holomoprhic in some neighborhood of the closure of Ω.
If ∂Ω is not nice, there may be other natural algebras, perhaps generated by the
polynomials or rational functions with poles outside the closure of Ω. For more
refined results, one will probably need to make additional assumptions about the
boundary but we will not need to do that in this paper. For Ω = Bm or Dm, one
obtains the familiar ball algebra or the poly-disk algebra.

A Hilbert module M over A(Ω) is a Hilbert space with a multiplication
A(Ω) × M → M making M into a unital module over A(Ω) and such that
multiplication is continuous. Using the closed graph theorem one can show the
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existence of a constant α such that

‖ϕf‖M ≤ α‖ϕ‖A(Ω)‖f‖M.

One says thatM is a contractive Hilbert module if α = 1. Classical examples
of contractive Hilbert modules are

(i) the Hardy module H2(Dm) (over the algebra A(Dm)) which is the closure
of the polynomials, C[z], in L2(∂Dm) and

(ii) the Bergman module, B2(Ω) (over the algebra A(Ω)) which is the closure
of A(Ω) in L2(Ω) with volume measure on Ω.

The simplest family of modules over A(Ω) corresponds to evaluation at a
point in the closure of Ω. For z in the closure of Ω, we make the one-dimensional
Hilbert space C into the Hilbert module Cz, by setting ϕv = ϕ(z)v for ϕ ∈ A(Ω)
and v ∈ C. If M and N are Hilbert modules over A(Ω), then there are two
obvious ways to make the Hilbert space tensor product M⊗ N into a module
over A(Ω). One obtains the module tensor product,M⊗A(Ω)N , by requiring that
the multiplication onM and the multiplication on N are equal, that is, one takes
the closed submodule S of M⊗N generated by the elements ϕf ⊗ g − f ⊗ ϕg,
for f ∈ M, g ∈ N , and ϕ ∈ A(Ω) and defines M⊗A(Ω) N to be the quotient
M⊗N/S on which the two multiplications agree.

We use the module tensor product to accomplish localization of a Hilbert
module M over A(Ω) by considering M ⊗A(Ω) Cz which is isomorphic to the
direct sum of k copies of Cz, where k can be any cardinal number from zero to the
module rank ofM. Not only do we consider these tensor products at each point of
the closure of Ω, but together they form the spectral sheaf, Sp(M), of the module
M. We will let Spz(M) denote M⊗A(Ω) Cz. The spectral sheaf Sp(M) can be
the zero sheaf but, in general, it consists of the direct sum of a number of copies
of Cz over each point z in the closure of Ω. If the spectral sheaf Sp(M) defines
a holomorphic hermitian bundle over Ω, then we say that M is locally free. The
spectral sheaf of the Hardy or Bergman modules is a hermitian holomorphic line
bundle over Ω.

There have been two main lines of research concerning Hilbert modules, one
studying submodules and the other quotient modules. Using the classical theorem
of Beurling [8] on invariant subspaces of the unilateral shift operator, one can show
that all nontrivial submodules of the Hardy module H2(D) over the disk algebra
A(D) are isometrically isomorphic. The Rigidity Theorem ([24], [25]) shows that
the situation in higher dimensions is very different. Two submodules defined by
taking the closure of ideals in C[z] in the Hardy or Bergman modules (and other
more general modules), which satisfy certain hypotheses, are similar or even quasi-
similar if and only if the ideals are the same. Thus the rigidity, the closures cannot
be equivalent in any reasonable sense unless the ideals are equal. The hypotheses
eliminate principal ideals and insure that the zero sets of the associated primary
ideals intersect Ω. The result demonstrates that there is a great variety of non
equivalent Hilbert modules in the higher dimensional setting. The proof relies
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on a higher order generalization of the spectral sheaf and rests on results from
commutative algebra.

The work on quotient modules concerns relating properties of a quotient
module with those of the submodule in cases where the latter consists of functions
that vanish to some order in the normal direction to a hypersurface. Again subject
to mild hypotheses, one characterizes (cf. [22], [21]) the quotient module in terms of
the local geometry of the hypersurface and the spectral sheaf of the larger module.

1.2. Sz.-Nagy–Foias Model

One powerful approach to the study of contraction operators on a complex Hilbert
space is the model theory of Sz.-Nagy and Foias [33]. To understand the interpre-
tation of their model in the module context, we must first recall the theorem of
von Neumann [35] which states for a contraction operator T on a Hilbert space
H and a polynomial p we have ‖p(T )‖ ≤ ‖p‖A(D). This inequality enables one to
make H into a contractive Hilbert module over A(D). Thus, contraction operators
on Hilbert space and contractive Hilbert modules are two ways of looking at the
same thing.

The co-isometric form of the Sz.-Nagy–Foias model for contraction operators
yields an isometry W on a Hilbert space K = H⊕G with W (G) ⊆ G and such that
T = PHW|H. This can also be written 0 ← H ← K ← G ← 0, where the arrows
are module maps with the map from K to H being the orthogonal projection and
the map from G to K being inclusion. This is an example of a resolution of Hilbert
modules. Moreover, one has that G is unitarily equivalent to some vector-valued
Hardy module H2

E∗(D) and K is unitarily equivalent to H2
E(D)⊕U , where W is the

shift operator on H2
E(D) and is a unitary operator on U . Further, one shows that

U = {0} if and only if T ∗k → 0 in the strong operator topology. Such contractions
are said to belong to class C.0 by Sz.-Nagy and Foias and in this case the resolution
has the simpler form 0 ← H ← H2

E(D) ← H2
E∗(D) ← 0. The modules appearing

in such a resolution are the direct sum of copies of the Hardy module and all the
module maps are partial isometries which makes the resolution especially nice.

No analogous results are known for the bounded case unless the module
is completely bounded and hence similar to a contractive one [37]. Here we are
interested in the question of when resolutions exist, not just over A(D) but for the
multivariate case which we take up in the next section.

2. Quasi-Free Modules

As we indicated in the introduction, a most important issue in considering resolu-
tions of Hilbert modules is just what collection of modules to use as the building
blocks. A second issue concerns the nature of the module maps. In the case of
class C.0 contractive Hilbert modules over the disk algebra, the modules used are
direct sums of copies of the Hardy module and the maps are partial isometries.
Moreover, the existence of such a resolution is based on the existence of a unitary
or co-isometric dilation. Most of the early consideration of resolutions ([17], [19])
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followed this lead and, for example, the notion of Silov module was introduced for
this reason. Now, however, constructing resolutions via such dilations seems to be
the wrong approach1, at least for Hilbert modules over A(Ω), when Ω lies in Cm

with m > 1. To illustrate, we consider a simple example.
If we consider C0 over A(D2), then we have that C0 is unitarily equivalent

to H2(D2)/H2
0 (D2), where H2

0 (D2) = {f ∈ H2(D2) : f(0) = 0}. Hence, H2(D2)
provides a co-isometric dilation of C0 and L2(∂D2) is a unitary dilation of C0

a la Ando [3]. However, H2(D2) and H2
0 (D2) are not unitarily equivalent. More

important, if we consider their spectral sheaves, then

Spz(H
2(D2)) = H2(D2)⊗A Cz

∼= Cz, z ∈ D2

and

Spz(H
2
0 (D2)) = H2

0 (D2)⊗A Cz
∼=

{
Cz z 6= 0
C0 ⊕ C0 z = 0

This shows, in particular, that H2(D2) and H2
0 (D2) are not similar but also

that Sp(H2
0 (D2)) is not a vector bundle. Therefore, H2

0 (D2) is not locally free.
However, the resolution:

0←− C0 ←− H2(D2) X←− H2(D2)⊕H2(D2) Y←− H2(D2)←− 0,

where (X(f⊕g))(z) = z2f(z)−z1g(z) and Y (f)(z) = (z1f⊕z2f)(z), demonstrates
that C0 has a locally free resolution.

Now, we introduce the notion of a quasi-free Hilbert module which will be
the “nice modules” we will use for building blocks. This concept is a refinement
of the notions of sharp kernel and kernel Hilbert space introduced by Curto and
Salinas [13], Agrawal and Salinas [2].

Let k, 1 ≤ k ≤ ∞, be an arbitrary cardinal number and `2k denote the k -
dimensional Hilbert space. LetM be a Hilbert module of rank k over the algebra
A(Ω) relative to the generating set {f1, f2, . . .} ⊆ A(Ω) for which {fi ⊗A 1z : 1 ≤
i ≤ k} is linearly independent for z ∈ Ω. Since module multiplication by a function
ϕ on the module tensor productM⊗A(Ω) Cz is just multiplication by ϕ(z), we see
it must be isomorphic to the Hilbert space tensor product Cz⊗ `2k. Define the map
Γ : A(Ω) ⊗alg `

2
k →M by Γ(

∑
ϕi ⊗ ei) =

∑
ϕifi, where {ei}ki=1 is the standard

orthonormal basis in `2k. We claim that Γ is well defined, one-to-one and has dense
range. Given the uniqueness of expressing an element φ =

∑
ϕi ⊗ ei as a finite

sum, we have that Γ is well defined. If Γ(φ) = 0, then we have for z ∈ Ω that∑
ϕi(z)

(
fi ⊗A 1z

)
=

( ∑
ϕifi

)
⊗A 1z = Γ(φ)⊗A 1z = 0. Since the fi are linearly

independent, it follows that each ϕi = 0 and hence φ = 0. Finally, the range of Γ
is dense since the fi’s form a generating set forM. Now define the inner product
〈 , 〉 on A(Ω) ⊗alg `

2
k such that 〈φ, ψ〉 = 〈Γφ,Γψ〉M. We complete A(Ω) ⊗alg `

2
k

1In [6], Arveson reaches the same conclusion, but he shows that dilations of a different nature
seem to work well in his context.
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using this inner product to obtain a Hilbert module isometrically isomorphic to
M. Let ez : A(Ω)⊗alg `

2
k → `2k be the evaluation map at z ∈ Ω.

Let Xz :M⊗A Cz → Cz ⊗ `2k be the map defined by Xz(fi⊗A 1z) = 1z ⊗ ei,
and extend linearly to finite linear sums.

Lemma 2.1. The map Xz is bounded if the evaluation map ez is bounded. Further-
more, ‖Xz‖ = ‖ez‖, for z ∈ Ω.

Proof. Let φ =
∑
ϕiei be any arbitrary element of A(Ω)⊗alg `

2
k. In the following,

‖φ‖M denotes the norm induced on A(Ω) ⊗alg `
2
k via the map Γ. First, let us

compute the norm of the operator ez : A(Ω)⊗alg `
2
k → `2k as follows:

‖ez‖ = sup
φ
‖φ(z)‖`2k/‖φ‖M

= sup
φ
‖

∑
ϕi(z)ei‖`2k/‖Γφ‖M

= sup
φ
‖

∑
ϕi(z)ei‖`2k/‖

∑
ϕifi‖M

= sup
φ,Ψ
‖

∑
ϕi(z)ei‖`2k/‖

∑
(ϕi + ψi)fi‖M

= sup
φ
‖

∑
ϕi(z)ei‖`2k/ inf

Ψ
‖

∑
(ϕi + ψi)fi‖M,

where Ψ = {ψ1, . . . , ψn} is a set of finitely many non-zero elements in A(Ω) that
vanish at z ∈ Ω. Note that,

∑
1≤i≤n ψifi is a collection of elements dense in AzM,

where Az is the ideal of functions in A(Ω) that vanish at z. Therefore, we see that

inf
Ψ
‖

∑
(ϕi + ψi)fi‖M = ‖(

∑
ϕifi)⊗A 1z‖M⊗ACz.

Consequently,

‖ez‖ = sup ‖
∑

φ

ϕi(z)ei‖`2k/‖(
∑

ϕifi)⊗A 1z‖M⊗ACz.

Since ‖
∑
ϕi(z)ei‖`2k = ‖(

∑
ϕi(z)ei) ⊗ 1z‖`2k⊗Cz

is by definition the norm of the
operator Xz, it follows that ‖ez‖ = ‖Xz‖ as claimed. �

This Lemma prompts the following Definition.

Definition 2.2. A Hilbert module R over A(Ω) is said to be quasi-free of rank k
relative to the generating set {f1, f2, . . .} for 1 ≤ k ≤ ∞, if

(i) f1 ⊗A 1z, f2 ⊗A 1z, . . . forms a basis for the fiber Spz(R) for z ∈ Ω,
(ii) the map Xz is locally uniformly bounded in norm, and
(iii) for f in R, f ⊗A 1z = 0 for every z ∈ Ω if and only if f = 0 in R.

When k is finite, the combination of the requirements that Spz(R) is k -
dimensional and the localization of the generating set has cardinality k has strong
implications. For k = ∞, there are many different ways in which a set can be
a basis. Clearly, we don’t want to assume the set forms an orthonormal or even
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an orthogonal basis. But we may want to assume that the set of vectors {f1 ⊗A
1z, f2⊗A1z, · · · } forms a basis in Spz(R) equivalent to the standard basis. However,
in this paper we assume only that the set is linearly independent and spans.

There is another description which demonstrates the sense in which a quasi-
free Hilbert module is “almost free”. In commutative algebra, the statement that
a module is free means that it is isomorphic to a direct sum of copies of the
ring which in our case would be A(Ω). But this can’t happen, since the direct
sum of copies of A(Ω) can’t be isomorphic to a Hilbert space unless A(Ω) = C
which is impossible. Hence, we do the next best thing. Since we are interested
in modules with a Hilbert space structure, we will begin with the “free module”
A(Ω)⊗alg `

2
k which is the algebraic tensor product of A(Ω) with the Hilbert space

`2k, 1 ≤ k ≤ ∞, and then complete it to obtain a Hilbert space.
A moduleR over A(Ω), quasi–free relative to {f1, f2, . . .}, is the Hilbert space

completion of the free module A(Ω)⊗alg `
2
k via the map Γ. Moreover, the following

statement is an abstract characterization of such completions of A(Ω)⊗alg `
2
k. The

technique used in its proof is closely related to the proof of [24, Theorem 5.14].

Proposition 2.3. A Hilbert module R for A(Ω) is quasi-free of rank k for 1 ≤
k ≤ ∞, relative to a generating set {f1, f2, . . .} if and only if it is isometrically
isomorphic to the completion of A(Ω) ⊗alg `

2
k with respect to a norm associated

with an inner product such that

(a) evaluation of functions in A(Ω) ⊗alg `
2
k at each point z in Ω is locally

uniformly bounded,
(b) module multiplication on A(Ω)⊗alg `

2
k by functions in A(Ω) is continuous,

and
(c) for {φn} contained in A(Ω) ⊗alg `

2
k which is Cauchy in norm, we have

‖φn(z)‖`2k → 0 for all z ∈ Ω if and only if ‖φn‖ → 0.

Proof. We first show that the inner product introduced on A(Ω) ⊗ `2k using the
map Γ satisfies conditions (a), (b) and (c). Let R be a quasi-free module. Then the
local uniform boundedness of the map Xz together with the equality ‖Xz‖ = ‖ez‖,
for z ∈ Ω establishes the condition (a). For the proof of (b), consider the function
ψ in A(Ω) and observe that ‖ψ

∑
ϕi⊗ei‖ = ‖

∑
ψϕi⊗ei‖ = ‖Γ(

∑
ψϕi⊗ei)‖R =

‖ψΓ(
∑
ϕi ⊗ ei)‖R ≤ C1‖ψ‖‖Γ(

∑
ϕ ⊗ ei)‖R ≤ C1‖ψ‖‖

∑
(ϕi ⊗ ei)‖. Finally, let

φn =
∑
ϕ

(n)
i ⊗ ei be a sequence in A(Ω)⊗alg `

2
k, which is Cauchy in norm. Then

Γ(φn) → g for some g ∈ R. Since Γ is continuous, it follows that ez(φn) →
0 if and only if ez(Γ(φn)) → 0. Or, in other words, φn(z) → 0 if and only if∑
ϕn(z)fi⊗A1z → 0. Hence, the assumption that φn(z)→ 0 implies that g(z) = 0

and hence g = 0 by (iii) of Definition 2.2. This shows that the condition (c) holds
which completes the proof in the first direction.

For the converse, assume thatR is the completion of A(Ω)⊗alg`
2
k with respect

to an inner product that satisfies (a), (b), and (c) of the Proposition. We must
verify that the conditions of Defintion 1 hold. Fix z ∈ Ω and consider the map
Fz : A(Ω)⊗alg `

2
k → `2k defined by Fz(

∑
ϕi ⊗ ei) =

∑
ϕi(z)ei. By condition (a) of
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the Proposition, it follows that F extends to a map from R to `2k. We use Fz to
define a map F ′z : R⊗Cz → Cz⊗ `2k such that F ′z

(
(
∑
ϕi⊗ei

)
⊗a =

∑
ϕi(z)ei⊗a.

The kernel of this map is spanned by the vectors ϕ ⊗ ei ⊗ a − 1 ⊗ ei ⊗ ϕ(z)a
for ϕi ∈ A(Ω) and a ∈ Cz, which is the submodule used to define the module
tensor product R⊗A Cz. Hence, we see that evaluation of

∑
ϕi ⊗ ei at z matches∑

ϕi(z)ei in Cz ⊗ `2k which establishes (i) in Definition 2.2. The condition (ii) of
the Definition is clearly the same as condition (a) of the Proposition. Also, this
matchup shows that condition (c) of the proposition implies (iii) of Defintiion 1,
which completes the proof. �

Observe that no assumption of holomorphicity is made in the definition of a
quasi-free Hilbert module R. However, identification of R with the completion of
A(Ω)⊗alg `

2
k in the finite rank case makes the spectral sheaf Sp(R) into a hermitian

holomorphic vector bundle of rank k with holomorphic frame z → {fi ⊗A 1z : 1 ≤
i ≤ k}. Moreover, using the identification of R with the completion of A(Ω)⊗alg `

2
k,

we see that R can be realized as a space of `2k - valued holomorphic functions on
Ω which forms a kernel Hilbert space.

Obviously, the Hardy and Bergman modules are quasi-free. While submod-
ules of quasi-free modules are not quasi-free in general, principal submodules are,
since one can view them as being obtained merely from a change of norm. Quo-
tient modules of quasi-free Hilbert modules are seldom quasi-free. However, it can
happen. The relationship here is analogous to the situation of holomorphic subbun-
dles of holomorphic bundles; sometimes there is a holomorphic complement. The
following statement should be true in our context and would clarify the relation
between the notions of free and projective.

Conjecture 1. Let R be a quasi-free Hilbert module of rank k, 1 ≤ k <∞, over
A(Ω) and R1 and R2 be submodules of R such that R is the algebraic direct sum
of R1 and R2. Then R1 and R2 are quasi-free of ranks k1 and k2, respectively,
and k = k1 + k2.

Something analogous should be true in the case k = ∞ but would probably
require more explicit hypotheses on the angle between the two submodules.

3. Regular Modules

As indicated earlier, a resolution of the Hilbert moduleM is a sequence of modules
{Ri}, either of finite or infinite length, with module map X0 : R1 → M and
module maps Xi : Ri+1 → Ri for i ≥ 1, such that the sequence

0←−M X0←− R1
X1←− R2

X2←− · · ·
is exact in the sense that X0 is onto and kerXi = ranXi+1 for i ≥ 1. If the
sequence is of finite length, then we must have the final Ri = 0. One speaks of
a weak resolution if it is only topologically exact or, equivalently, if one assumes
that X0 has dense range and kerXi = clos ranXi+1 for i ≥ 1. We are assuming
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in all cases that the modules {Ri} are quasi-free over A(Ω). One can also put
an additional restriction on the module maps by requiring that they are partial
isometries in which case we will speak of a strong resolution.

The resolution obtained from the Sz.-Nagy–Foias model is a strong resolu-
tion, while the second one constructed for the Hilbert module C0 over A(D2) is a
resolution but not a strong one. Although one seeks resolutions as nice as possible,
and closely related to M, one often faces tradeoffs. For example, the inclusion
map of the Hardy module H2(D) into the Bergman module B2(D) defines a weak
resolution with just one term since the map has dense range and trivial kernel.
However, it is not clear just what this resolution can tell us about the Bergman
module in terms of the Hardy module. On the other hand, while the resolution
of the Bergman module given by the Sz.-Nagy–Foias model is a strong one, it is
obtained at the price of having to deal with Hardy modules of infinite multiplicity.
Still we show in section 5 that all resolutions, even weak ones, contain information
about the module. Finally, in that section we will also compare the existence ques-
tions for the various kinds of resolutions. But first we want to investigate existence
in general.

If one is given a Hilbert moduleM, the first task in constructing a resolution
of M by quasi-free Hilbert modules is to obtain a quasi-free Hilbert module R
and module map X : R → M with dense range. We introduce the following
definitions to capture the kinds of behavior possible with regard to the construction
of resolutions.

Definition 3.1. A Hilbert module over A(Ω) is said to be
1. weakly regular if there exists a quasi-free Hilbert module R over A(Ω) and

a module map X : R →M with dense range,
2. regular if the map X can be taken to be onto,
3. strongly regular if the map X can be taken to be a co-isometry, and
4. singular if the only module map X : R → M from a quasi-free Hilbert

module R toM is the zero map.

It is relatively straight forward to see that not all Hilbert modules are weakly
regular. In particular, we will see that for the Hilbert module C1 over A(D), the
only module map X : R → C1 for R a quasi-free Hilbert module, is the zero map.
Toward that end, we recall an extension of a notion of Sz.-Nagy and Foias [33] to
the context of Hilbert modules (cf. [1]).

Definition 3.2. A Hilbert moduleM over A(Ω) is said to belong to class C·0 if for
every sequence {ϕn}n∈N in the unit ball of A(Ω) satisfying ϕn(z) → 0 for z in Ω
it follow that M∗

ϕn
→ 0 in the strong operator topology.

One could also assume that the ϕn converge uniformly to zero on compact
subsets of Ω. In many situations, these two notions seem to coincide but it is not
clear if they do for general Hilbert modules.

Proposition 3.3. A regular Hilbert module over A(Ω) belongs to class C·0.
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Proof. Let M be a regular Hilbert module with R a quasi-free Hilbert module
and X : R → M an onto module map. If kz in R is a common eigenvector for
the adjoint of module multiplication on R, then M∗

ϕn
kz = ϕn(z)kz and hence

‖M∗
ϕn
kz‖ → 0. Since the vectors {kz}, z ∈ D span R and ‖M∗

ϕn
‖ ≤ α‖ϕn‖ ≤ α,

it follows that M∗
ϕn
→ 0 in the strong operator topology. Then, X∗N∗

ϕ = M∗
ϕX

∗,
where Nϕ denotes the operator defined by module multiplication on M. Since X
is onto, it follows that X∗ is bounded below and hence N∗

ϕ → 0 in the strong
operator topology. Thus M belongs to class C·0. �

Taking X to be the identity map, this result yields a property of quasi-free
Hilbert modules.

Corollary 3.4. All quasi-free Hilbert modules belong to class C·0.

Proposition 3.5. The Hilbert module C1 over A(D) does not belong to class C·0.

Proof. There exists a sequence {ϕn}n∈N ∈ A(D) satisfying ϕn(1) = 1, ‖ϕn‖ = 1,
and ϕn(z) → 0 for z ∈ D. For example, one can take ϕn(z) = 1/n(1 + 1/n − z).
Then for λ in C1 we see that M∗

ϕn
λ = ϕn(1)λ = λ does not converge to zero which

completes the proof. �

We have been unable to show either that weakly regular implies class C·0 or
that class C·0 implies weak regularity. However, the first conclusion would seem to
be likely.

Although we have been unable to obtain an intrinsic characterization of weak
regularity, we can provide two properties each of which implies it, both relating to
the notion that the module is supported on the interior of Ω.

Definition 3.6. Let R be a quasi-free Hilbert module of rank one over A(Ω) for
the generating vector g and let M be a Hilbert module over A(Ω). Then M is
said to be smooth relative to R and g if the map S :M→M⊗A(Ω)R defined by
Sf = f ⊗A(Ω) g is one-to-one.

Smooth modules in this sense are not always in class C·0. Consider the con-
tractive Hilbert module overA(D) defined by a function θ inH∞(D) with |θ(eit)| <
1 on a set of positive measure. It has the form H = H2(D)⊕L2(∆)/{θf⊕∆f : f ∈
H2(D)}, where ∆(eit) = (1− |θ(eit)|2)1/2 and ∆ is the characteristic function for
the support of ∆. The map S : H2(D)⊕L2(∆T)→ (H2(D)⊕L2(∆T))⊗A(D)H

2(D)
reduces to S(f ⊕ g) = f ⊗A(D) 1 since L2(D) ⊗A(D) H

2(D) = {0}. Since the map
from H2(D) to H2(D) ⊗A(D) H

2(D) is one-to-one, we see that S(h ⊕ k) = 0 im-
plies h = 0. For such a vector to be in H, it must be orthogonal to the subspace
{θf ⊕∆f : f ∈ H2(D)}. We can choose θ so that this subspace is dense in L2(∆T)
in which case H is H2(D)-smooth. One can show that such a Hilbert module does
not belong to the class C·0.

In general, the question of whether H is H2(D)-smooth depends on the den-
sity of {∆f} in L2(∆T) and that happens when the associated contraction on H
has no co-isometric part. That relationship seems to hold for general contractive
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Hilbert modules although a precise result would depend on an analysis of how
the notion of smoothness depends on the quasi-free Hilbert module R and the
generating vector used to define the S-map. In particular, although we presume
the class to be independent of both R and g, we have been unable to prove that.

Definition 3.7. A Hilbert module is said to belong to the class (SM) if it is smooth
for some quasi-free Hilbert module R and generating vector g.

Although the notion of smoothness is conceptually appealing, it is not always
easy to verify. We introduce a subclass, whose membership is more closely related
to operator theoretic ideas which we recall first.

Definition 3.8. If M is a Hilbert module over A(Ω), then a vector h ∈ M is said
to be a common generalized eigenvector for the adjoint of module multiplication
if h lies in the kernel of (Mϕ − ϕ(z)I)∗n for all ϕ in A(Ω) and some fixed positive
integer n.

The subclass of the class (SM) we want to define involves the assumption
that common generalized eigenvectors span.

Definition 3.9. A Hilbert module is said to belong to the class (PS) ifM is spanned
by the generalized eigenvectors for the adjoint of module multiplication.

Another characterization of class (PS) is possible using the notion of higher
order localization. We will not discuss this notion in complete detail here but
see [21]. Consider a point z in Ω and let Iz be the ideal of polynomials in C[z]
that vanish at z and In

z the ideal generated by the products of n elements in Iz.
The quotient Qn

z = C[z]/In
z with the Hilbert space structure in which the set

of mononials in the quotient form an orthonormal basis, is a Hilbert module over
A(Ω) of dimension mn in which module multiplication by a function ϕ depends on
the values at z of ϕ and its partial derivatives of order less than n. Let e denote the
element of Qn

z corresponding to the monomial 1. Using elementary calculations,
one can show that the following proposition provides another characterization of
the class (PS).

Proposition 3.10. A Hilbert moduleM over A(Ω) belongs to class (PS) if and only
if for every nonzero vector f ∈ M, there exists z ∈ Ω and n such that the image
f ⊗A e inM⊗AQn

z of f is not 0. Equivalently, the intersection of the closures of
the submodules M(z1, n1; z2, n2; . . . ; zk, nk) is {0}, where M(z1, n1; . . . ; zk, nk) is
the closure of the product In1

z1
· · · Ink

zk
acting onM for every finite subset z1, . . . , zk

of Ω and positive integers n1, . . . , nk.

Proof. The equivalence of the two statements is an easy exercise involving the
relation of the submodule which defines the tensor product of M with Qn

z and
the closure of the range of Iz acting on M (cf. [24, Theorem 5.14]). Similarly,
by considering the relation of the kernel of the adjoint action of the nth power of
a function ϕ which vanishes at z and the latter space, one shows the equivalence
withM belonging to class (PS). �
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It is not true that the modules belonging to class (PS) are just those de-
termined by their spectral sheaves which are, of course, in class (PS); the higher
multiplicity examples in [21] show otherwise. However, quasi-free Hilbert modules
are determined by their spectral sheaves and there are relationships between the
classes C·0 and (PS).

Corollary 3.11. A quasi-free Hilbert module for A(Ω) belongs to class (PS).

Proposition 3.12. A Hilbert module in class (PS) belongs to class C·0.

The proof is essentially the same as that of Proposition 3.3. The converse
to the proposition is false, that is, Hilbert modules of class C·0 do not necessarily
belong to class (PS). For example, let θ be a singular inner function on the unit
disk and M be the quotient Hilbert module H2(D)/θH2(D). Then the quotient
map from the quasi-free Hilbert module H2(D) onto M shows that it is C·0 but
there are no common eigenvectors in D for the adjoint of module multiplication
since the spectrum ofM is the closed support of the singular measure that defines
θ and hence a subset of ∂D.

Proposition 3.13. A Hilbert module in class (PS) is in class (SM).

Proof. Let M be in class (PS) and let R be a quasi-free Hilbert module of rank
one over A(Ω) with generating vector g and S be the map S :M→M⊗A(Ω) R
defined by Sk = k ⊗A(Ω) g for k ∈ M. For f a vector in M, there exists a point
z ∈ Ω and an integer n such that f⊗A(Ω)e 6= 0 inM⊗A(Ω)Q, where the module Q
stands for Qn

z and the e as defined above. Let X be the map fromM toM⊗A(Ω)Q
defined by Xh = h⊗A(Ω) e and consider the diagram

M S1−−−−→ M⊗A(Ω) R

X

y yX⊗A(Ω)IQ

M⊗A(Ω) R −−−−→
S2

M⊗A(Ω) Q⊗A(Ω) R

Then, (X ⊗A(Ω) IQ)S1f = S2Xf = S2(f ⊗A(Ω) e) 6= 0 since Q → Q⊗A(Ω)R is an
isomorphism. Hence, S1f 6= 0 andM is smooth for R and g which completes the
proof. �

Proposition 3.14. If M is a Hilbert module over A(Ω) and M0 is a submodule of
M, then M in class C·0 implies M0 is in class C·0 and M in class (PS) implies
M0 is in class (PS) and M in class (SM) implies M0 is in class (SM).

These results follow using similar arguments as before.

Corollary 3.15. A submodule of a quasi-free Hilbert module over A(Ω) belongs to
classes C·0, (PS) and (SM).

We show in the next section that Hilbert modules of class (PS) and (SM) are
weakly regular. With this result and the above corollary which we can use to show
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that every weakly regular Hilbert module has a weak resolution, we will conclude
that Hilbert modules in class (PS) and (SM) have weak resolutions.

There is another class of Hilbert modules, which includes those in class (PS),
for which we can also establish the existence of weak resolutions.

Definition 3.16. A Hilbert moduleM over A(Ω) is said to be compactly supported
on a vector f inM if there is a compact subset X of Ω and a constant β such that

‖ϕf‖M ≤ β‖ϕ‖X‖f‖M for ϕ ∈ A(Ω),

where ‖ϕ‖X denotes the supremum norm of ϕ taken on X. The moduleM is said
to be compactly supported if there is a compact set X and a constant β which
works for all vectors f inM. Finally, the moduleM is said to be almost compactly
supported if M is the span of the compactly supported vectors in M, where the
compact set and constant can depend on a vector.

4. Construction of Resolution

We now introduce our basic construction for establishing weak regularity. Let M
be a Hilbert module over A(Ω) with a set of k generators {fi ∈ M : 1 ≤ i ≤ k},
and let R be any quasi-free rank k Hilbert module over A(Ω) relative to {gi ∈ R :
1 ≤ i ≤ k}, 1 ≤ k ≤ ∞. Let RM be the closed submodule of M⊕R spanned by
the vectors

{ϕifi ⊕ ϕigi : ϕi ∈ A(Ω), 1 ≤ i ≤ k}
and let P and Q be the module maps from RM toM and R, respectively, defined
by P (ϕifi ⊕ ϕigi) = ϕifi and Q(ϕifi ⊕ ϕigi) = ϕigi, respectively. Since a dense
set of vectors in RM has the form Φ =

∑
ϕifi ⊕ ϕigi, where at most finitely

many of the ϕi are non-zero, we see that ‖PΦ‖ = ‖
∑
ϕifi‖ ≤ (‖

∑
ϕifi‖2 +

‖
∑
ϕigi‖2)1/2 = ‖Φ‖ and similarly, ‖QΦ‖ ≤ ‖Φ‖. Thus both P and Q are well-

defined, contractive and have dense range. If RM is quasi-free, then it will follow
that M is weakly regular.

Consider the operator ez : A(Ω)⊗alg `
2
k → `2k of evaluation at z in Ω. For the

function φ =
∑
ϕ⊗ ei in A(Ω)⊗alg `

2
k we have ez(φ) =

∑
ϕi(z)ei, and hence

‖ez‖ = sup
{
‖ez(φ)‖/‖φ‖ : φ ∈ A(Ω)⊗alg `

2
k

}
,

= sup
{
‖

∑
ϕi(z)ei‖/‖φ‖ : φ ∈ A(Ω)⊗alg `

2
k

}
.

Now, consider the evaluation, first on R and then on RM, at z. Recall that
A(Ω)⊗alg `

2
k is a dense spanning set in both R and RM. It is clear that

‖ez‖R→`2k
= sup

{
‖

∑
ϕi(z)ei‖/‖φ‖ : φ ∈ A(Ω)⊗alg `

2
k

}
.

However,

‖ez‖RM→`2k
= sup

{
‖ez(φ)‖/‖Γ(φ)‖ : φ ∈ A(Ω)⊗alg `

2
k

}
,

= sup
{
‖

∑
ϕi(z)ei‖/‖

∑
ϕi(fi ⊕ (1⊗ ei))‖ : φ ∈ A(Ω)⊗alg `

2
k

}
,
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where Γ : A(Ω)⊗alg `
2
k → RM is the map defined by Γ(φ) =

∑
ϕi(fi ⊕ (1⊗ ei)).

So, it follows that the norm of the evaluation operator on R dominates that of
RM at z.

Lemma 4.1. The Hilbert module RM over A(Ω) is quasi-free of rank k relative to
the generating set {fi ⊕ gi} if kerQ = {0}.

Proof. We will establish the three properties for a module to be quasi-free given
in Definition 2.2. First, the norm of the evaluation operator ‖ez‖R→`2k

is locally
uniformly bounded. Since ‖ez‖RM→`2k

≤ ‖ez‖R→`2k
, it follows that the norm of the

evaluation operator ‖ez‖RM is locally uniformly bounded as well, which establishes
(ii).

Now, for z in Ω and 1 ≤ i ≤ k, we consider the set {(fi⊕gi)⊗A1z} in RM⊗A
Cz. Since the set {fi ⊕ gi} generates RM, it follows that the set (fi ⊕ gi)⊗A 1z

generatesRM⊗ACz as a module overA(Ω). However, from the fact thatRM⊗ACz

is isomorphic to a direct sum of copies of Cz, it follows that a generating set over
A(Ω) is the same as a generating set over C or as a Hilbert space. Further, since
the set of vectors {gi ⊗A 1z} is linearly independent in R ⊗A Cz, it follows that
the set {(fi⊕ gi)⊗A 1z} is linearly independent in RM⊗A Cz, which is condition
(i).

Thus, whether RM is quasi-free comes down to whether or not condition (iii)
holds. Suppose h is a vector in RM such that h⊗A 1z = 0 for every z ∈ Ω. Then
we have

(Qh)⊗A 1z = (Q⊗A 1z)(h⊗A 1z) = 0
and, since Qh is in R which is quasi-free, we have Qh = 0. If kerQ = {0}, then
RM is quasi-free which completes the proof. �

A reasonable question that arises is whether kerQ = {0} always holds. To
see that is not the case, consider R = H2(D) and M = C1 over A(D). One can
either repeat the arguments from the last section or observe that if kerQ = {0}
in this case, it would follow from the lemma and later results in this section that
C1 is weakly regular. Since C1 is finite dimensional, we have that C1 is regular
which would imply that C1 is in class C·0 by Proposition 3.3, a contradiction.
There is another conclusion one can draw from this example, namely that the
third condition in the definition of quasi-free does not follow automatically from
the first two. In particular, if one considers the function 1 as a generator for H2(D)
and the scalar 1 as a generator for C1, the RM space in this case is H2(D)⊕ C1

and the conditions (i) and (ii) are satisfied. However, the nonzero vector f = 1⊕0
is in H2(D)⊕ C1 but f ⊗A 1z = 0 for z ∈ D.

Another question is whether kerQ = {0} is necessary for RM to be quasi-
free. However, to establish that one would need to exhibit a nonzero vector h in
RM satisfying h ⊗A 1z = 0 for every z in Ω assuming kerQ 6= {0}. If h is a
nonzero vector in kerQ, then (Q ⊗A 1z)(h ⊗A 1z) = (Qh) ⊗A 1z = 0. The proof
would be completed by showing that ker(Q ⊗A 1z) = {0} for each z ∈ Ω, where
Q⊗A 1z : RM ⊗A Cz → R⊗ Cz. The module map Q⊗A 1z is defined by taking
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the generating set {(fi ⊕ gi)⊗A 1z} termwise to the generating set {gi ⊗A 1z}. If
k <∞, then both of the spaces RM ⊗A Cz and R⊗A Cz are k - dimensional and
the map Q⊗A 1z is onto. Therefore, the kernel is trivial and the converse is seen
to hold. For k =∞, we are unable to conclude that the maps Q⊗A 11z have trivial
kernels. To proceed further in the k = ∞ case, one would need more information
on the nature of the bases defined by the {fi} and the {gi} and their relationship
to each other.

One would like to show that kerQ = {0} if M belongs to class C·0 and a
proof would seem almost at hand. However, what the argument seems to requires
is assuming that the module M satisfies a stronger condition than that of mem-
bership in the class C·0. One can complete the proof if in the definition of class C·0
the uniform bound on the supremum norm for the sequence in A(Ω) is replaced by
a uniform bound on the Hilbert module norm in the quasi-free module, but that
would seem to be asking too much. Thus it is not clear just what is the relationship
between the notions of class C·0 and weakly regular.

Now we come to our principal result, the existence of resolutions.

Theorem 4.2. Every Hilbert module in class (PS) possesses a weak resolution by
quasi-free Hilbert modules.

Proof. Let us first consider the finitely generated case. It is enough to show for
M in class (PS) that the kernel of the module map Q : RM → M is trivial for
R quasi-free. If L is a finite dimensional Hilbert module supported at a point z
in Ω, then module multiplication by ϕ on L depends only on the values of ϕ and
a fixed finite set of partial derivatives of ϕ at z. Now suppose Q(k ⊕ 0) = 0 for
some vector k ⊕ 0 in RM, which is the form a vector must have in kerQ. Then
there exists a sequence of functions {ϕ(n)

i } such that
∑
ϕ

(n)
i fi ⊕ ϕ(n)

i gi → k ⊕ 0.
By the definition of the norm onM⊕R, and the fact that Q(k⊕0) = 0, it follows
that

∑
ϕ

(n)
i fi → k in M and

∑
ϕ

(n)
i gi → 0 in R. Since R is quasi-free, it follows

that
∑
ϕ

(n)
i gi → 0 implies ϕ(n)

i (z) → 0 and the same is true for evaluation at z
of the partial derivatives of ϕ(n)

i , all of which follows by localizing R with respect
to the modules Qn

z . This, of course, implies that the image
∑
ϕ

(n)
i gi⊗A x→ 0 for

x ∈ L since
∑
ϕ

(n)
i gi ⊗A x =

∑
gi ⊗A ϕ(n)

i (z)x and the module action of ϕ(n)
i (z)

on the vector x in L depends only on a fixed number of partial derivatives of the
functions at z. But this implies that the image of k is zero in R⊗A L and hence
by assumption, k ⊕ 0 is zero or kerQ = {0}.

Now suppose M has infinite rank with generators {fi}i∈N and let R be a
rank one quasi-free Hilbert module over A(Ω) with generator g. Let Mi be the
submodule of M generated by fi for i ≥ 1. We can construct a module RMi

for
each i ≥ 1 with contractive module map Xi : RMi → M having range dense
in Mi ⊆ M. Since each Mi is a submodule of M, it follows that Mi belongs
to class (PS) and hence each RMi

is quasi-free over A(Ω) for the basis {g ⊕ fi}.
Moreover, since the bounds for evaluation at z on all RMi

are dominated by the
bound on evaluation at z on R, this implies that RM̃ = ⊕RMi

is quasi free
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over A(Ω) for the basis {g ⊕ fi : i ≥ 1}. If we define X : RM̃ → M such that
X(

∑
ki) =

∑
1
2iXiki, then X is well-defined and bounded since ‖X(

∑
ki)‖ =

‖
∑

1
2iXiki‖ ≤

∑
1
2i ‖Xiki‖ ≤

∑
1
2i ‖ki‖ ≤ ‖

∑
ki‖. This completes the proof of

weak regularity in the case of infinite rank.
Given X : R1 → M with R1 = RM or RM̃, the kernel of X0 = X is a

submodule of a quasi-free Hilbert module and hence belongs to class (PS). Thus
we can repeat the construction using kerX0 in place ofM and continue to obtain
X1 : R2 → R1. We continue the process using kerXi with the process terminating
if kerXi is a quasi-free Hilbert module. In that case one takes the last Ri to be
the zero module. Otherwise, one continues the process indefinitely obtaining an
infinite resolution. �

Note that ifM is finitely generated, then the module R0 can be taken to be
finitely generated as well. However, unless one can conclude that the kernels of the
Xi are finitely generated, we can say nothing about the existence of a resolution by
finitely generated, quasi-free Hilbert modules. The purpose in proving this result
for the class (PS) was to obtain this finiteness result. We could have proved the
following result directly which includes Theorem 4.2.

Theorem 4.3. Every Hilbert module in class (SM) has a weak resolution by quasi-
free Hilbert modules.

Proof. The argument for the infinitely generated case given in the proof of the
preceding theorem can be used, once we know that a singly generated Hilbert
module in class (SM) is weakly regular. Hence, assume thatM is a singly generated
Hilbert module over A(Ω) in class (SM) with generating vector f , and that R is a
singly generated Hilbert module over A(Ω) with generating vector g. We need to
show that kerQ = {0}, where Q : RM → R. A vector in the kernel of Q must have
the form k⊕ 0 inM⊕R. Moreover, there exists a sequence ϕn ∈ A(Ω) such that
ϕnf ⊕ ϕng converges to k ⊕ 0, and hence ϕnf converges to k and ϕng converges
to 0.

Now consider the vector Sk = limS(ϕnf) = lim(ϕnf⊗A(Ω) g) = lim(f⊗A(Ω)

ϕng) = f ⊗A(Ω) (limϕng) = 0.
Therefore, the assumption that M is smooth for R and g implies k = 0 or

kerQ = {0} which completes the proof. �

We can also show that almost compactly supported Hilbert modules have
weak resolutions.

Theorem 4.4. Every almost compactly supported Hilbert module over A(Ω) has a
weak resolution by quasi-free Hilbert modules.

Proof. As before, it is sufficient to show that an almost compactly supported
Hilbert module is weakly regular. Let {fi}i∈N be a set of compactly supported
vectors inM that spansM, and letMi be the submodule ofM generated by fi.
Let R be the Bergman module for Ω with the function 1 as a basis and let RMi

be the module constructed from R andMi. Further, let Xi be the map from RMi
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to M with range dense in Mi. If we can show that each RMi
is quasi-free, then

we can complete the proof as we did for theorem 1. Fix an i ≥ 1. If k ⊕ 0 is in
the kernels of the corresponding Qi from RMi to R, then there is a sequence of
functions ϕn ∈ A(Ω) such that ϕnfi⊕ϕn1 converges to k⊕0. In the Bergman space,
it follows that this implies the sequence {ϕn}n∈N converges uniformly to zero on
compact subsets of Ω. But since the vector fi is compactly supported, there exists
a compact subset X of Ω and a constant β such that ‖ϕnfi‖M ≤ β‖ϕn‖X‖fi‖M
and hence k = limϕnfi = 0. Thus kerQi = {0} which completes the proof. �

The purpose of this paper is to establish the existence of weak resolutions un-
der hypotheses as general as possible. Unfortunately, the present theorems are not
completely satisfactory in that they do not provide an intrinsic characterization of
those Hilbert modules for which weak resolutions exist. In discussing this matter
further, let us focus on the question of when a Hilbert module is weakly regular.
As the proofs indicate, weak regularity rests on the module being supported in
some sense on the open set Ω. Further consideration of the module obtained as
the quotient of the Hardy module over A(D) by a submodule determined by a sin-
gular inner function shows that weak regularity does not imply almost compactly
supported. Also, this example shows that while almost compactly supported im-
plies class C·0, the converse is false. Thus weak regularity lies somewhere between
almost compactly supported and class C·0, and perhaps coincides with the latter.

Another question is to determine the class of modules for which exact reso-
lutions exist. The construction presented above seems unlikely to yield resolutions
since that would mean showing that the module map P : RM → M is onto.
Clearly that depends on having greater control on comparisons between the norms
of the vectors of the form

∑
ϕifi and

∑
ϕigi. Although one could take R to be

the Bergman space, as we have at various junctures above, the inequalities one
would need are not available, in general. A different construction, based on the
one given in (Chapter 5, [24]) might be used to show that a compactly supported
M is regular but the details are not all clear. Recall that we do know that a regular
Hilbert module lies in class C·0 but, unfortunately, not the converse. Understand-
ing whether class C·0 implies that a Hilbert module is weakly regular or regular
are extremely important in continuing this approach.

Given that we know so little about regularity, it would seem almost pre-
sumptuous to even introduce the notion of strong regularity and a modicum of
experience would suggest that it hardly ever happens. However, the resolution
provided by the Sz.-Nagy-Foias model is strongly regular. Moreover, if one were to
consider this question without appealing to the model theory, we believe it might
be hard to make the right guess. For example, it would seem unlikely for there
to be a strong resolution of the Bergman module over the disk by a direct sum
of Hardy modules, but there is, albeit one of infinite multiplicity. In a different
direction, consider the second resolution of C0 given in section 2. While the maps
are onto, they are not partial isometries. We presented this resolution in the form
given there because that is the most natural way. However, with minor changes in
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the norms on the resolving modules, one obtains a strong resolution. Here are the
details.

Recall one maps the Hardy module H2(D2) over the bi-disk algebra A(D2)
onto C0 which is a partially isometric map. Then one maps the direct sum of two
copies of H2(D2) to H2(D2) by the map X(f ⊕ g) = z2f − z1g which is not a
partial isometry. However, suppose one changes the norms on the Hardy modules
so that on the first one, if ai,j are the Taylor coefficients of f , then we multiply the
ai,0 by a factor

√
1/2 and on the second one, if bi,j are the Taylor coefficients of g,

then we multiply the b0,j by a factor
√

1/2. The resulting Hilbert modules are still
quasi-free over A(D2) since both changes yield equivalent norms. However, now
X is a partial isometry. Now, the last non-zero term in the resolution is a copy of
H2(D2) with the map Y defined by Y f = z1f ⊕ z2f . Here, one wants to multiply
all the Taylor coefficients of a vector f in H2(D2) by a factor

√
1/2 to obtain an

equivalent Hilbert module which is quasi-free and which makes Y into a partial
isometry. Thus, C0 has a strong resolution.

The question of whether or not resolutions or strong resolutions exist is not
merely academic for the following reason. If a Hilbert module M is regular, then
there exists a quasi-free Hilbert module R and a module map X from R onto
M. If kerX = {0}, then M is similar to the quasi-free module R and hence,
R is itself quasi-free. Otherwise, we may assume there is a nontrivial kernel. If a
full resolution exists, then there are nontrivial kernels and we can continue or the
resolution stops and has finite length. This is the situation in commutative algebra
and one should expect in such a case to be able to extract information about M
from the resolution using the extension of techniques from commutative algebra.

There is another issue which it is convenient to raise at this time, namely, are
resolutions finite? In general, the answer must be negative. However, one would
expect that there is a large class of Hilbert modules for which that is the case. A
related question is whether the kernel of a module map X : R → M is finitely
generated. Again, one would assume that this is the case for a large class of Hilbert
modules when bothM andR are finitely generated, but results seem to be difficult
[39]. The questions we are raising here, of course, concern coherence-like properties
of the spectral sheaf Sp(M). If one replaces Hilbert modules by Frechet modules,
then there is a lot of work on these questions (cf. [27]). Connecting the two ap-
proaches, where Hilbert spaces are used on the one hand or Frechet spaces on the
other, seems difficult. Our point of view has been that the appropriate domain for
multivariate operator theory is Hilbert space but any final assessment must rest
on the results obtained and their utility.

5. Usefulness of Resolutions

This paper has been devoted to showing the existence of quasi-free resolutions of
Hilbert modules. There would be little point in constructing such resolutions if
they were not useful in studying the original modules. In this section we want to
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sketch some ways in which resolutions have been useful and could be useful in the
general study of Hilbert modules.

As we have indicated, one can re-interpret the model of Sz.-Nagy and Foias as
a resolution. Thus, in principle, one could argue that all of model theory could be
taken over to the context of resolutions but that would be an exaggeration. Much
of the theory depends on the rich interplay of function theory, functional analysis,
and Fourier analysis which come together on the unit disk with boundary the unit
circle. Also, some of the theory depends on the fact one has a strong resolution
in our language rather than just a resolution or even a weak resolution. Still the
characterization of at least one basic notion carries over, that of the spectrum.

Recall that the resolution for a contractive Hilbert module H of class C·0 has
the form:

0←− H ←− H2
E(D) X←− H2

E∗(D)←− 0,

where X is an isometric module map. If one localizes X by Cz, one can show that
X ⊗A(D) 1z = Θ(z), where Θ is the characteristic operator function of Sz.-Nagy
and Foias. In general model theory, one knows that Θ is an operator-valued inner
function, that is, it has radial limits a. e. on the circle which are unitary operators
from E∗ to E . Our interest is in the connection of Θ with the spectrum which one
knows is the union of the set of points in D at which Θ(z) fails to be invertible plus
the closed subset of the boundary on which Θ fails to have an analytic continuation.
One can show directly from the exactness of the resolution that the spectrum inside
D consists of the points at which the localization X ⊗A(D) 1z fails to be invertible
and, indeed, that the nature of the spectrum of the operator defined by module
multiplication by z is that same as that of Θ(z). The details of this calculation are
given in [24].

Now suppose we have a weak resolution of a Hilbert module M over A(Ω).
One can calculate the spectrum of the module which is defined using the Taylor
spectrum (cf. [24]), in terms of the resolution. Moreover, one can determine the
nature of the spectrum, that is, the nature of the lack of exactness of the Koszul
complex a la Taylor. One should compare a recent paper by D. Greene [26] in which
he does something similar for modules over an algebra of holomorphic functions
but one which is not a function algebra. In both cases, the behavior of the Hilbert
module on the boundary would have to be investigated using different techniques.
As we indicated above, on the disk the determination of the full spectrum involves
the notion of analytic continuation. Although, there are other characterizations,
none involve strictly algebraic notions.

There is another class of invariants for Hilbert modules of a very different
nature, associated with complex geometry. In the late seventies, M. Cowen and the
first author introduced a class of operators which have a hermitian holomorphic
bundle associated with them. Moreover, they showed that the geometric invariants
of the bundle form a complete set of unitary invariants for the operator. This
approach was extended by Curto and Salinas [13] to the case of commuting n-
tuples of operators, and by X. Chen and the first author [9] to certain classes of
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Hilbert modules. The latter class includes the quasi-free ones and the associated
spectral sheaves are the corresponding hermitian holomorphic vector bundles. Thus
quasi-free Hilbert modules can be characterized up to unitary equivalence by the
curvature and a finite set of partial derivatives of curvature over Ω. In a series
of papers [20], [22], [21], [23], the authors along with Verughese, have related the
geometrical invariants for Hilbert modules in a resolution. In particular, one shows
for the quotient module defined by the functions in a quasi-free module R that
vanish to some order along a hypersurface, that the geometric invariants for the
spectral sheaf for the quotient are determined by those for the quasi-free sheaf in
the form of longitudinal curvature, transverse curvature and a second fundamental
form involving an appropriate jet bundle.

One can formulate relations such as the above for weak resolutions although
the formulas and proofs will involve, ultimately, an extension of techniques related
to the work of Harvey-Lawson [28] as well as to that of Demailley [16]. Some very
simple cases have been established but there is much to do and the possibility
for relating unitary invariants for a module to those of a weak resolution seem
promising.
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