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Abstract. For any open, connected and bounded set Ω ⊆ Cm, let A be a natural function

algebra consisting of functions holomorphic on Ω. Let M be a Hilbert module over the algebra

A and M0 ⊆ M be the submodule of functions vanishing to order k on a hypersurface Z ⊆ Ω.

Recently the authors have obtained an explicit complete set of unitary invariants for the quotient

module Q = M ªM0 in the case of k = 2. In this paper, we relate these invariants to familiar

notions from complex geometry. We also find a complete set of unitary invariants for the general

case. We discuss many concrete examples in this setting. As an application of our equivalence

results, we characterise homogeneous modules over the bi-disc algebra.

1. Introduction

One source of fascination in the study of operator theory is the wide variety of connections
made with other branches of mathematics. Techniques from algebra, topology, geometry and
analysis are used to understand bounded linear operators on Hilbert space. And, in many
instances, the behavior and properties of the operators can be used to illustrate critical features
and aspects of the other fields. This is particularly true in the case of multivariate operator
theory, that is, when several operators or an algebra of operators is studied. Here the setting and
results from these other areas can be quite sophisticated and the techniques used to understand
multivariate operator theory often require additional development. Such is the focus of this
paper.

Although the spectral theorem is a key tool in the study of self-adjoint and normal operators,
there are large and important classes of naturally occurring operators to which this theory doesn’t
apply. Examples illustrating such phenomena can be obtained by considering multiplication
operators on spaces of holomorphic functions on some domain in Cm. For domains in C, one is
in the realm of single operator theory while it is multivariate operator theory for m > 1. If one
considers the unit ball Bm in Cm and the Bergman space A2(Bm) for it, one obtains a module
over the polynomial algebra C[z], where z = (z1, . . . , zm).

Techniques from complex geometry were shown in [6], [7], and [8] to be useful in studying
such Hilbert modules. Closed submodules related to polynomial ideals were shown to reflect
properties of the ideals and results in a rigidity phenomenon for such submodules [16]. In [10],
it was shown that the study of quotient modules, determined by polynomial ideals, could also
be reduced to the earlier work involving complex geometry if the ideal is principal and prime.
As might be expected, the non-prime case is more complicated (cf. [14]) and some real technical
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difficulties arise in the complex geometry needed to handle its study. Overcoming these problems
by developing new results and techniques in complex geometry is the main goal of this paper.

In a basic construction, Hilbert modules, such as A2(Bm), can be shown to yield a hermitian
holomorphic vector bundle over the domain and this bundle characterizes the module up to
unitary equivalence. For quotient modules by multiplicity-free principal ideals, a bundle still
exists but over the intersection of the domain with the zero variety of the ideal. In [14] it
was shown that for quotient modules obtained using submodules of higher multiplicity, there
is still a higher rank hermitian holomorphic bundle but it’s bundle structure is not enough to
characterize the quotient module. One must also involve the flag structure in the bundle defined
by the module action which now involves nilpotents. But even that is not enough. In particular,
we must consider the nilpotent structure itself. Classifying such objects requires introducing new
ideas and techniques extending older ones from complex geometry which involve jet bundles and
moving frames.

In the case of multiplicity two, earlier, somewhat ad hoc, results for classification were obtained
in [11] but the treatment here is not only more conceptual, it works for all multiplicities, not just
the case of multiplicity two. Moreover, we are able to reinterpret the third invariant obtained
in [11] for the latter case, using the second fundamental form. However, the invariants for k > 2
seem to involve completely new ideas in complex geometry. Other possible interpretations of
these results involve connections with integrability theorems and Chern -Moser theory and will
be described in more detail in the final section of the paper.

1.1. Terminology and Setting. For any bounded open connected subset Ω of Cm, let A(Ω)
be the completion, with respect to the supremum norm on the closure Ω of the domain Ω, of
functions holomorphic in a neighbourhood of Ω. The Hilbert space M is said to be a Hilbert
module over A(Ω) if M is a module over A(Ω) with module map A(Ω) ×M → M defined by
pointwise multiplication such that

‖f · h‖M ≤ C‖f‖A(Ω)‖h‖M for f ∈ A(Ω) and h ∈M,

for some positive constant C independent of f and h. It is said to be contractive if we also have
C ≤ 1.

The most natural example of a Hilbert module over an algebra A(Ω) is a Hilbert space M

which (a) consists of holomorphic functions on Ω, (b) possesses a reproducing kernel K and (c)
is closed under multiplication by A(Ω). The crucial property of such a Hilbert space is that the
evaluation functionals for points in Ω are continuous in the Hilbert space norm.

The Hardy spaces and the Bergman spaces over bounded domains Ω in Cm form natural
families of examples over A(Ω). Other natural examples are obtained by considering submodules
of such kernel Hilbert modules. Specifically, we recall Beurling’s characterisation of a submodule
M0 of the Hardy module M = H2(D) which states that the submodule M0 must be of the form
θM, where θ is an inner function. It is then not hard to see, using the von Neumann - Wold
decomposition for isometries, that all of these submodules of the Hardy module are isomorphic.
Never the less, the quotient modules M ªM0, M0 ⊆ M, are not all isomorphic. Indeed, one
way of describing the model theory of Sz.-Nagy and Foias (cf. [25]) is to say that there is a large
class of contractive modules that are isomorphic to such a quotient module. It is then natural
to ask when two of these quotient modules are isomorphic and seek a complete set of unitary
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invariants. This is done in the work of Sz.-Nagy and Foias in the context of contractive modules
over the disc algebra. In contrast to what happens in the case of the Hardy module for the
disc, a great profusion of different examples of submodules of the Hardy module of the poly-disc
Dm as well as the Euclidian ball Bm are obtained in this manner as the rigidity phenomenon
demonstrates [16].

In a recent paper [13], we pointed out that much of what we proved there was valid for modules
over algebras of holomorphic functions that are not complete; for example, C[z] or the functions
holomorphic on the closure of the domain. This continues to be the case in this paper as well.
However, we are actually forced to consider modules over non-complete algebras and module
actions which are not even bounded in the supremum norm. In particular, we must localize
some of our computations to smaller open subsets of the domain Ω. However, we will continue
to state our principal results for Hilbert modules over the complete function algebra A(Ω) even
though a more general statement would be possible.

We will study quotient modules for a special class of Hilbert modules which includes the
Hardy and Bergman modules. Recall that M is said to be a quasi-free Hilbert module of rank n,
1 ≤ n < ∞, for A(Ω), if it is a Hilbert space completion of A(Ω) ⊗alg Cn (the algebraic tensor
product) such that

(1) evaluation ew, ew(f) = f(w), is locally uniformly bounded for w ∈ Ω,
(2) pointwise multiplication by functions in A(Ω) defines a bounded operator on M, and
(3) a sequence {fi} contained in A(Ω)⊗alg Cn, that is Cauchy in the norm of M, converges

to 0 in the norm of M if and only if {ew(fi)} converges to 0 in Cn for all w in Ω (cf. [12],
[13]).

These assumptions ensure, among other things, via the Riesz representation theorem, that
there is a unique vector K(·, w) ∈M satisfying the reproducing property, that is,

h(w) = 〈h,K(·, w)〉, h ∈M, w ∈ Ω.

Clearly, the map w 7→ ew, which is defined on Ω and takes values in M, is weakly holomorphic.
Hence, ew is locally uniformly bounded in norm and K(w,w) = 〈ew, ew〉 is locally uniformly
bounded.

1.2. We are interested in submodules M0 contained in M which consist of all functions in M

that vanish to some fixed order k on a hypersurface Z contained in Ω. Before we can make this
notion precise, however, we need some definitions.

Definition 1.1 ([21, Definition 8, p. 17]).

(1) A hypersurface is a complex sub-manifold of complex dimension m − 1, that is, a subset
Z ⊆ Ω is a hypersurface if for any fixed z ∈ Z, there exists a neighbourhood U ⊆ Ω of z and a
local defining function ϕ for U ∩ Z.

(2) A local defining function ϕ is a holomorphic map ϕ : U → C such that U ∩ Z = {z ∈ U :
ϕ(z) = 0} and f

ϕ is holomorphic on U whenever f|U∩Z = 0. In particular, this implies that the
gradient of ϕ doesn’t vanish on Z and that any two defining functions for Z must differ by a
unit.
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(3) We say that the function f vanishes to order k on the hypersurface Z if f = ϕng for some
n ≥ k, a holomorphic function g on U and a defining function ϕ of Z. The order of vanishing
on Z of a holomorphic function f : Ω → C does not depend on the choice of the local defining
function. This definition can also be framed in terms of the partial derivatives normal to Z.

It is clear that if there exists a global defining function ϕ for the hypersurface Z, then a
valid choice of a normal direction is the gradient of the function ϕ, which is defined on all of
Ω. In general, it may not be possible to find a global defining function for the hypersurface
Z. However, if the second Cousin problem is solvable for Ω, then there exists a global defining
function ( which we will again denote by ϕ ) for the hypersurface Z. This is pointed out in the
remark preceding Corollary 3 in [21, p. 34].

Even if we don’t impose the condition of “solvability of the second Cousin problem” on Ω, we
may restrict the holomorphic functions in the algebra A(Ω) and the module M to the open set
U without loss of generality. We will have more to say about this mattter in Section 3.1.

1.3. Standing Assumption. For any fixed but arbitrary u ∈ Ω, we may pick a small enough
open neighborhood U ⊆ Ω of u such that U ∩Z admits a defining function, say ϕ, with gradient
of ϕ not zero on U ∩ Z. Since U is open in Ω, it follows that the module M and the submodule
M0 ⊆ M are isomorphic to the module M|res U and the submodule (M0)|res U ⊆ M|res U of
functions in M|res U which vanish on U ∩ Z, respectively. Consequently, if we choose to work
with the later pair of modules, then the corresponding quotient module M|res U ª (M0)|res U

is isomorphic to the quotient module M ªM0. Therefore we may cut down, if necessary, the
domain Ω to a suitable small open subset U ⊆ Ω and work with the smaller open set U and the
hypersurface U ∩ Z ⊆ U without loss of generality.

1.4. Now fix a hypersurface Z ⊆ Ω and let M0 ⊆ M be the submodule of the quasi-free
Hilbert module M of rank 1 consisting of those functions in M which vanish to order k on the
hypersurface Z. The quotient Q = M ªM0 is a Hilbert module over A(Ω), where the module
action is naturally defined as f · (h+ M0) = f · h+ M0 (cf. [15, Definition 2.2]. In other words,

(1.1) 0←− Q ´ M←↩ M0 ←− 0,

is an exact sequence of Hilbert modules over A(Ω), where ´ is the quotient map and ←↩ is the
inclusion map. It is then possible to obtain geometric invariants for the quotient module Q using
M ´ M0 (cf. [10, Theorem 1.4]).

In [10] the Hilbert module M is assumed to be in the class B1(Ω∗) (see section 2.1), where
Ω∗ = {w ∈ Cm : w̄ ∈ Ω}. The submodule M0 is taken to be the maximal set of functions
vanishing on an analytic hypersurface Z ⊆ Ω. This ensures that there is a reproducing kernel
for M which in turn defines a holomorphic hermitian line bundle E on the domain Ω∗. The
equivalence class of the bundle E and that of the module M determine each other which is
one of the main results in [6]. Two descriptions are then provided for the quotient module
Q = M ªM0. The first approach characterizes it as the reproducing kernel Hilbert space of
holomorphic functions obtained by restricting the functions on Ω to the hypersurface Z. In the
second approach, a hermitian holomorphic line bundle on Z∗ is associated with the quotient
module – this is the restriction of the bundle E to the hypersurface Z∗. A complete unitary
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invariant for the quotient module is then the curvature of this line bundle which is easily seen
to be the restriction and projection of the curvature for E to Z∗.

The submodule M0 in [14] is taken to be the (maximal) set of functions which vanish to some
given order k on the hypersurface Z. As in the previous case, two descriptions are provided for
the quotient module. A matrix – valued kernel function must now be used and, in the vector
bundle picture, we have a rank k hermitian, anti-holomorphic vector bundle over Z∗. Some
invariants for the quotient module (though not a complete set) are described in [14].

Finally, in the paper [11], a complete set of unitary invariants is obtained for the particular
case where M0 consists of functions vanishing to order 2 on the hypersurface. While two of the
three invariants obtained there consist of coefficients of the curvature form for the jet bundle for
E, the third, which we called the “angle”, seemed to be not so familiar. In this note, we show
that the angle invariant can be replaced by the second fundamental form corresponding to the
inclusion of the bundle E in the jet bundle J (2)E.

One of our main goals is to obtain invariants that are complete, computable and natural in
complex geometry – for general k, not just in the case k = 2. The fundamental class of the
variety Z is one such invariant. In [10, Theorem 1.4], the fundamental class of the hypersurface
Z was expressed using the curvatures of the pair of modules M and the submodule M0 and the
localization of the inclusion map M0 ↪→ M. Here we give a complete set of invariants for the
equivalence of the quotient modules. We provide a number of applications of our results to the
context of homogeneous operators. Moreover, we discuss various aspects of global versus local
differences in connection with the jet bundle construction. Finally, we describe some relations
between the new invariants we introduce and several other topics relating to the moving frames
of Cartan and integrability conditions in Chern-Moser theory.

2. Reproducing kernels and the multivariate class Bk

2.1. Let L(F) be the Banach space of all linear transformations on a Hilbert space F of dimen-
sion n for some n ∈ N. Let H be a Hilbert space of functions from Ω to F. For w ∈ Ω, let
ew : H → F be defined by ew(f) = f(w). The Hilbert space H is called a (vector-valued) func-
tional Hilbert space if ew is bounded for each w ∈ Ω. In this case, the function K : Ω×Ω→ L(F)
defined by K(z, w) = eze

∗
w, z, w ∈ Ω, is called the reproducing kernel of H. We recall some of

the basic properties of a reproducing kernel following [1].

First, the kernel K has the reproducing property:

(2.1) 〈f,K(·, w)η〉H = 〈f(w), η〉F for η ∈ F, w ∈ Ω, f ∈ H.

In particular, taking f = K(·, w)ζ for w ∈ Ω, ζ ∈ F, we see that K satisfies

(2.2) 〈K(·, w)ζ,K(·, z)η〉 = 〈K(z, w)ζ, η〉 for ζ, η ∈ F, z, w ∈ Ω.

This shows for p ≥ 1, w1, . . . , wp ∈ Ω that the block operator
((
K(wi, wj)

))
1≤i,j≤p

on F⊕ · · · ⊕ F
(p copies) is positive. Conversely, if K : Ω × Ω → L(F) satisfies this positivity requirement for
all p - tuples in Ω , one can see that there is a unique functional Hilbert space with reproducing
kernel K. (It is the completion of the linear span of the functions K(·, z)η for z ∈ Ω, η ∈ F, with
inner product given by (2.2).)
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For 1 ≤ i ≤ m, suppose that the operators Mi : H → H defined by (Mif)(z) = zif(z),
z ∈ Ω, f ∈ H are bounded. Then it is easy to verify that for each fixed w ∈ Ω, and 1 ≤ i ≤ m,

(2.3) M∗
i K(·, w)η = w̄iK(·, w)η for η ∈ F.

Differentiating (2.1) we also obtain the following extension of the reproducing property:

(2.4) 〈(∂j
i f)(w), η〉 = 〈f, ∂̄j

iK(·, w)η〉 for 1 ≤ i ≤ m, j ≥ 0, w ∈ Ω, η ∈ F, f ∈ H.

Let M denote this commuting m-tuple of multiplication operators defined by the coordinate
functions z1, . . . , zm and M∗ be the m-tuple (M∗

1 , . . . ,M
∗
m). It then follows from (2.3) that the

joint eigenspace of the m-tuple M∗ at w ∈ Ω∗ ⊆ Cm, where as before, Ω∗ = {w ∈ Cm : w̄ ∈ Ω},
contains the n-dimensional subspace ranK(·, w̄) ⊆ H.

Suppose K is the reproducing kernel of a Hilbert space H consisting of F - valued analytic
functions on Ω. Then K is analytic in the first argument (and hence co-analytic in the second
argument). We now obtain a holomorphic vector bundle E on the base space Ω∗ by requiring
that {K(·, w)v : v ∈ B} ⊆ H, where B is an orthonormal basis for F, be a frame at w̄ ∈ Ω∗. We
will also assume that K(w,w) is an invertible operator for each w ∈ Ω. Then K(w,w) defines
a hermitian metric for the bundle E. The assumption that K(w,w) is invertible is automatic if
H is a quasi-free Hilbert module of finite rank n.

Before proceeding any further, we recall the class Bk(Ω) for Ω ⊂ C and k ∈ N, which was
introduced in [6]. It consists of those operators T on a Hilbert space H for which each w ∈
Ω is an eigenvalue of uniform multiplicity k, the eigenvectors span the Hilbert space H and
ran(T − wIH) = H for w ∈ Ω. Later the definition was adapted to the case of an m - tuple of
commuting operators T acting on a Hilbert space H, first in the paper [7] and then in the paper
[9] from a slightly different point of view which emphasized the role of the reproducing kernel.

For w ∈ Ω ⊆ Cm, the m-tuple T is in Bk(Ω) if

(1) ran DT−w is closed for all w ∈ Ω, where DT : H → H ⊗ Ck is defined by DTh =
(T1h, . . . , Tmh), h ∈ H;

(2) span {kerDT−w : w ∈ Ω} is dense in H and
(3) dim kerDT∗−w = k for all w ∈ Ω.

It was then shown that each of these operator m - tuples T determines a hermitian holomorphic
vector bundle E of rank k on Ω and that two m - tuples of operators in Bk(Ω) are unitarily
equivalent if and only if the corresponding bundles are locally equivalent. In the case k = 1, this
is a question of equivalence of hermitian holomorphic line bundles. It is, of course, well-known
that two such line bundles are equivalent if and only if their curvatures are equal. However, no
such simple characterization is available if rankE = k > 1. We explain this difference in section
2.3 below.

We now recall that for the module M over the algebra A(Ω), the coordinate functions define
an m-tuple of bounded multiplication operators M. We have already observed in (2.3), that the
joint eigenspace of M∗ at w̄, w ∈ Ω includes the subspace {K(·, w)ζ : w ∈ Ω, ζ ∈ Cm} ⊆ H.
Consequently, the dimension of the joint eigenspace of M∗ at w̄, w ∈ Ω, is at least k and together
all the eigenspaces span the Hilbert space M. Moreover, if M is a quasi-free Hilbert module of
rank k, then the joint eigenspaces have dimension k for w ∈ Ω. Finally, the latter statement
in the definition of quasi-free, however, implies that the span of the ranges of the operators
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D(M−w)∗ is dense for w ∈ Ω. All of these facts don’t ensure that the m - tuple M∗ lies in the
class Bk(Ω∗) since we don’t know the range of D(M−w) is closed. This issue is discussed in a
recent paper [13] where the notion of a quasi-free module was introduced. While most of our
examples lie in the class Bk(Ω), our methods work even if we make the weaker hypothesis that
the modules we consider are quasi-free of rank k over the algebra A(Ω).

2.2. We recall some basic notions from complex geometry following Wells [26, Chapter III]. If E
is a hermitian holomorphic vector bundle, then there is a canonical connection D on the bundle
E which is compatible with both the holomorphic and hermitian structures. The curvature K

of the bundle E is then simply defined to be D ◦D. Let us provide some more details.

Let E be a hermitian holomorphic vector bundle of rank k over a complex manifold M and
C∞p (M,E) be the space of smooth p - forms on M whose coefficients are smooth sections of E.
A connection on the bundle E is a differential operator D : C∞p (M,E) → C∞p+1(M,E) of order
1 satisfying

(2.5) D(f ∧ s) = df ∧ s+ (−1)pf ∧Ds
for any f ∈ C∞p (M,C) and s ∈ C∞p (M,E), where df stands for the usual exterior derivative of
f .

Assume that θ : E|U → U × Ck is a trivialization of E over some open subset U of M . Let
(s1, . . . , sk) be the corresponding frame of E|U . Then any s ∈ C∞p (M,E) can be written uniquely
as

s =
∑

j

σj ⊗ sj , σj ∈ C∞p (U,C), 1 ≤ j ≤ k.

Using the hermitian structure h of E, we can define a natural sesqui-linear map

C∞p (M,E)× C∞q (M,E)→ C∞p+q(M,C)

(s1, s2) 7→ {s1, s2}
combining the wedge product of forms with the hermitian metric on E. If s =

∑
j σj ⊗ sj and

s̃ =
∑

j σ̃j ⊗ sj , then

{s, s̃} =
∑

j,`

σj ∧ ¯̃σ`h(sj , s`).

The curvature tensor K associated with the canonical connection D is in C∞1,1(M,herm(E,E)).
(Here C∞p,q represents the space of forms of degree p in the holomorphic differentials and q in the
anti-holomorphic ones.) Moreover, if h is a local representation of the metric in some open set,
then K = ∂̄(h−1∂h) [26, page 82].

2.3. We digress a little to explain the difference between the equivalence of line bundles and
bundles of rank k > 1 in our context. Suppose that E is a holomorphic line bundle over the
domain Ω ⊆ Cm with a hermitian metric g(w) = 〈γw, γw〉, where γ is a holomorphic frame. The
curvature KE is given by the formula KE(w) = ( ∂2

∂w∂w̄ log g)(w), for w ∈ Ω (see (2.6)). Clearly,
in this case, K(w) ≡ 0 on Ω is the same as saying that log g is harmonic on Ω. Let F be a second
line bundle over the same domain Ω with the metric h with respect to a holomorphic frame
η. Suppose that the two curvatures KE and KF are equal. It then follows that u = log(g/h)
is harmonic on Ω and thus there exists a harmonic conjugate v of u on any simply connected
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open subset Ω0 of Ω. For w ∈ Ω0, define η̃w = e(u(w)+iv(w))/2ηw. Then clearly, η̃w is a new
holomorphic frame for F , which we can use without loss of generality. Consequently, we have
the metric h(w) = 〈η̃w, η̃w〉 for F and we see that

h(w) = 〈η̃w, η̃w〉
= 〈e(u(w)+iv(w))/2ηw, e

(u(w)+iv(w))/2ηw〉
= eu(w)〈ηw, ηw〉
= g(w).

This calculation shows that the map ηw 7→ γw defines an isometric holomorphic bundle map
between E and F .

Now, if the bundles arise from Hilbert modules, then they are defined as pullbacks from
Grassmanians. Thus the Rigidity Theorem [6, Theorem 2.2] ensures that it extends to a unitary
map of the corresponding Hilbert spaces which yields an isometric isomorphism of the Hilbert
modules. Conversely, if the Hilbert modules are equivalent by means of a unitary module map
V and γ is a frame for the first one, then V γ defines a holomorphic frame for the second one.
Since the corresponding metrics are equal, the curvatures agree also.

In case the rank of the bundle E is k > 1, the curvature KE is given by the formula (2.6), that
is, K = ∂̄{%−1∂%}, where %(w) =

(( 〈γj(w), γi(w)〉 ))k

i,j=1
is the matrix of the metric with respect

to the holomorphic frame {γ1(w), . . . , γk(w)} for w in some open subset Ω0 of Ω. In this case, if
the two bundles E and F are equivalent then it is not hard to see that the coefficient matrices((
(KE)ij(z)

))
and

((
(KF )ij(z)

))
for dzi ∧ dz̄j of the corresponding curvatures are similar, that is,((

(KE)ij(z)
))

= L−1
((
(KF )ij(z)

))
L for some invertible k × k matrix L. However, the converse

question is more complicated and is discussed in the papers [6, Theorem 3.17] and [8, Theorem
II, page 76].

2.4. To study quotient Hilbert modules, we must consider the behavior of the holomorphic
tangent bundle to Ω relative to an analytic hypersurface. The holomorphic tangent bundle
TΩ|res Z naturally splits as TZ+̇NZ, where NZ is the normal bundle. It can be identified with
the quotient TΩ|res Z/TZ. The co-normal bundle N∗Z is the dual of NZ; it is the sub-bundle of
T ∗Ω|res Z consisting of cotangent vectors that vanish on TZ ⊆ TΩ|res Z. Indeed, there is an easy
formula for the co-normal bundle of a smooth hypersurface which we describe now following [20,
page 145].

Suppose Z is given by local defining functions ϕz on Uz ⊆ Ω, z ∈ Ω, as in Definition 1.1. The
line bundle [Z] defined on Ω is then given by transition functions {ψzw = ϕz

ϕw
: z, w ∈ Ω} on

Uz ∩ Uw. By definition, ϕz ≡ 0 on Uz ∩ Z. It follows that the differential dϕz is a section of the
co-normal bundle N∗Z. Besides, dϕz is holomorphic and nonzero everywhere. On Uz ∩ Uw ∩ Z,
we have dϕz = ψzwdϕw, that is, dϕz defines a nonzero global section of the bundle N∗Z ⊗ [Z].
Thus N∗Z ⊗ [Z] is the trivial bundle which gives the formula N∗Z = [−Z]|res Z, where [−Z] is
the inverse of the line bundle [Z]. This is the Adjunction Formula I [20, page 146].

In the following calculation, we assume that Z = {z1 = 0}. We show in subsection 3.1 that
there is no loss of generality in doing so. Let P1 : T ∗Ω|res Z → N∗Z be the bundle map which is
the projection onto N∗Z and P2 = (1− P1) : T ∗Ω|res Z → T ∗Z be the bundle map which is the
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projection onto T ∗Z. Now, we have a splitting of the (1, 1) forms as follows:

∧(1,1)T ∗Ω|res Z =
2∑

i,j=1

Pi

( ∧(1,0) T ∗Ω|res Z

) ∧ Pj

( ∧(0,1) T ∗Ω|res Z

)
.

Accordingly, we have the component of the curvature along the transverse direction to Z which
we denote by Ktrans. Clearly, Ktrans = (P1 ⊗ I)K|res Z. Similarly, let the component of the
curvature along tangential directions to Z be Ktan. Again, Ktan = (P2 ⊗ I)K|res Z. (Here I is
the identity map on the vector space herm(E,E).) In local coordinates, the curvature of E at
w ∈ Ω∗ is given by

K(w) = −
m∑

i,j=1

∂̄i

(
K(w,w)−1∂jK(w,w)

)
dw̄i ∧ dwj

= K11(w)dw̄1 ∧ dw1 +
m∑

j=2

K1j(w)dw̄1 ∧ dwj

+
m∑

i=2

Ki1(w)dw̄i ∧ dw1 +
m∑

i,j=2

Kij(w)dw̄i ∧ dwj

=
(

Ktan(w) S(w)
−S(w) Ktrans(w)

) (
dw̄′

dw̄1

)
∧

(
dw′

dw1

)
,(2.6)

where ∂i = ∂
∂wi

, ∂̄j = ∂
∂w̄j

and dw′ =

(
dwm

...
dw2

)
. Also, we let S(w), which appears in the (1, 2)

position of the decomposition for the curvature, denote the (1, 1) form
∑m

j=2 K1j(w)dw̄1 ∧ dwj .

2.5. Earlier, we showed how for the case of line bundles we could calculate the curvature
from the modulus of a section and hence determine the line bundle up to equivalence. For
quotient modules obtained from multiplicity-free submodules, we are interested in the line bundle
restricted to the hypersurface. The approach needed here, while related to the earlier one, is
somewhat different. Let us describe it briefly here. A generalization of it will be investigated
later.

Recall that if (KE)ij(w) = (KF )ij(w) for w ∈ Z and 2 ≤ i, j ≤ m, then the restrictions of the
two bundles E and F to the hypersurface Z are equivalent [10, Theorem 1.3]. In other words,
g(w) = |u(w)|2h(w) for some holomorphic function u on Z and w ∈ Z. Let Q be the quotient
module, as in (1.1), corresponding to the submodule M0 consisting of all those functions in M

which vanish on the hypersurface Z. We showed in [10] that the restriction of just the tangential
curvature Ktan to the hypersurface Z determines the quotient module up to unitary equivalence.
If we make the stronger assumption of equality of all coefficients of the curvature on Z, then the
quotient modules can again be shown to be equivalent in the case of k = 2 as is pointed out in
Remark 5.1 below. (This is a key step in the reformulation of our earlier equivalence result for
this case.) In this paper, we generalize this result to the case k > 2 by introducing a certain k×k
matrix Dk of partial differential operators so that the restriction of Dk log % to Z determines the
equivalence of the corresponding quotient modules. However, at this point we have no standard
complex geometric interpretation of this characterization.
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3. Jet bundles relative to a hypersurface

3.1. We now consider in some detail the construction of the jet bundles needed to characterize
quotient modules of higher multiplicity.

Suppose, to begin with, we have a quasi-free Hilbert module M of finite rank k over A(Ω)
with kernel function K on Ω and corresponding hermitian holomorphic vector bundle EM. It is
easy to see that if U is any open set in Ω and A|res U(Ω) = {f|res U : f ∈ A(Ω)} is the restriction
algebra, then M|res U, the restriction of the functions in the module M to the open set U , is
naturally a module over the algebra A|res U(Ω) and this module is isomorphic to M. (Note, in
general, A|res U(Ω) is not a function algebra since it may not be complete.) So we can restrict
all our discussion, without loss of generality, to any open subset U of Ω. In particular, we don’t
need to take the domain to be as large as possible. Thus our treatment will be local. In Section
7 we will discuss some of the global aspects of our treatment of jet bundles.

The jet bundle construction introduced in [14] involves the kernel function K and differenti-
ation along the normal to the hypersurface Z ⊆ Ω. We will attempt to recall the essential ideas
involved as succinctly as possible but still our description of the jet bundle will require us to
repeat substantial material from the earlier paper.

Let us construct the jet bundle J (k)E over some open subset U of Ω which intersects Z. Here
we assume that M is rank one and make essential use of the fact that the line bundle E is given
as a pullback from the Grassmanian defined by M. In particular, this means that a holomorphic
section for E over Ω can be viewed as arising from a holomorphic function from Ω to M. Now
one takes U so small that U ∩ Z equals the zero set of a holomorphic function ϕ on U and the
gradient of ϕ doesn’t vanish on U .

A normal direction to Z in U ∩ Z is then given by the gradient of ϕ. By choosing to reorder
the coordinates and possibly cutting down the size of U , we can assume that ∂

∂z1
ϕ 6= 0 on U . It

then follows that λ1 = ϕ(z), λ2 = z2, . . . , λm = zm for z ∈ Z defines a local coordinate system
for U . As pointed out in [14, p. 368 - 369], ∂`f

∂z`
1
(z) = 0 for z ∈ U ∩ Z, 0 ≤ ` ≤ k − 1 if and only

if ∂`f
∂λ`

1
(λ) = 0 for λ ∈ V ∩ φ(Z), 0 ≤ ` ≤ k − 1, where φ(z) = (ϕ(z), z2, . . . , zm) and V = φ(U).

Then the submodule M0 (cf. [14, (1.5)]) consisting of those functions in M which vanish to order
k on the hypersurface Z may be described as

M0 = {f ∈M :
∂`f

∂z`
1

(z) = 0, z ∈ U ∩ Z, 0 ≤ ` ≤ k − 1}.

In the new coordinate system φ(z) = (ϕ(z), z2, . . . , zm), differentiation along the normal to the
hypersurface coincides with ∂1 = ∂

∂z1
. To construct the jet bundle J (k)E on U , let us take a

frame for E, that is, a non-zero holomorphic section s for the line bundle E on U . Thus we can
assume without loss of generality, that s is defined and non-zero on all of U . (Recall we can
view s as a holomorphic function from U to M.) The jet bundle J (k)E over U is now simply the
bundle determined by the holomorphic frame {s, ∂1s, . . . , ∂

k−1
1 s} on the open set U . (Here, the

section s is viewed as a holomorphic function from U to M and the differentiation of s is the
usual differentiation of the holomorphic function s.)

It is clear that the normal direction we pick in this manner is not unique. Thus the construction
of the jet bundle J (k)E, even on an open subset U of Ω, depends on the choice of a normal
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direction, and hence on the defining function. It follows that the normal directions obtained
from the different defining functions for U ∩ Z give rise to distinct jet bundles. However, [14,
Proposition 2.4] shows that these bundles coincide on U ∩ Z modulo holomorphic hermitian
equivalence. Hence, we may proceed by assuming, without loss of generality, that the normal
direction to the hypersurface Z is z1 by making a holomorphic change of coordinates mapping
the set U ∩ Z to {z1 = 0} ⊆ V ∩ Ω for some open subset V ⊆ Ω. Now on U , and using ϕ, we
can define a kernel function

JK(z, w) = ((〈(∂i
1s)(z), (∂

j
1s)(w)〉M))k−1

i,j=0

on U . However, the kernel function J (k)K depends on the choice of U and ϕ, but the relationship
between the kernel functions obtained for different choices of sub-domains and defining functions
is particularly simple on Z. Further, if we restrict JK to Z, or actually the intersection of this set
with U , then we obtain a kernel function which defines a Hilbert space canonically isomorphic
to the quotient space Q. In Section 7, we will discuss further the global versus local nature of
the jet bundle.

3.2. In this subsection, we first recall the “change of variable formula” for the jet bundle. We
then define an action of the algebra A(Ω) on the holomorphic sections of the jet bundle. We
use the hermitian structure of the jet bundle to define an inner product on the linear space of
holomorphic sections of the jet bundle. This is then identified as a positive definite kernel on
Ω. We then discuss a notion of equivalence of the jet bundles along with a similar notion of
equivalence for the corresponding module of holomorphic sections.

Let us examine more closely the relationship between the jet bundle defined by different
choices of defining function on an open set U . First, We recall (cf. [14]) the construction of the
jet bundle J (k)E starting with a holomorphic hermitian line bundle E over U . Let s0 and s1 be
holomorphic frames for E on the coordinate patches Uz ⊆ U and Uw ⊆ U , respectively. That
is, s0(respectively s1) is a non-vanishing holomorphic section of E on Uz(respectively Uw) .
Then there is a non-vanishing holomorphic function g on Uz ∩Uw such that s0 = gs1 there. Let

εp, p = 1, . . . , k be the standard basis vectors for Ck. For ` = 0, 1, we let J(s`) =
∑k−1

j=0
∂j
1s`

∂1wj εj+1.
An easy computation shows that Js0 and Js1 transform on Uz∩Uw by the rule J(s0) = (Jg)J(s1),
where J is the lower triangular operator matrix

(3.1) J =




1 . . . . . . . . . . . . 0

∂1 1
...

...
. . .

...
...

(
l
j

)
∂`−j

1 1
...

...
. . . 0

∂k−1
1 . . . . . . . . . . . . 1




with 0 ≤ `, j ≤ k − 1.

The components of Js, that is, s, ∂1s, . . . , ∂
k−1
1 s, determine a frame for a rank k holomorphic

vector bundle J (k)E on U . The transition function with respect to this frame is represented
by the matrix (Jg)tr, which is just the transpose of the matrix (Jg). We will refer to this
bundle J (k)E over U as the kth order jet bundle of the bundle E. The hermitian metric %(w) =
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〈s(w), s(w)〉E on E with respect to the frame s on E induces a hermitian metric J% on J (k)E

such that with respect to the frame Js,

(3.2) (J%)(w) =




%(w) . . . (∂k−1%)(w)

...

. . .
(∂`

1∂̄
m
1 %)(w)

. . .

...

(∂̄k−1
1 %)(w) . . . (∂k−1

1 ∂̄k−1
1 %)(w)



.

Now, for any Hilbert module M over the function algebra A(Ω) and h ∈M|U , let

h =
k−1∑

`=0

∂`
1h⊗ ε`+1

and J(M|U ) = {h : h ∈ M|U} ⊆ M ⊗ Ck. Consider the map J : M|U → M ⊗ Ck defined by
Jh = h, for h ∈M|U . Let J (k)M denote the module J(M|U ). Since J is injective, we can define
an inner product on J (k)M

〈J(g), J(h)〉J(M) = 〈g, h〉M
so as to make J unitary. We point out that the module action on J (k)M is no longer pointwise
multiplication but the one that ensures J is a module map.

Proposition 3.1 ([14, page 378]). The reproducing kernel JK : U ×U →Mk(C) for the Hilbert
space J (k)M is given by the formula:

(JK)`,j(z, w) =
(
∂`

1∂̄
j
1K

)
(z, w), , z, w ∈ U, 0 ≤ `, j ≤ k − 1,

where ∂̄1 = ∂
∂w̄1

and ∂1 = ∂
∂z1

as before.

To complete the description of the Hilbert module J (k)M, we will have to transport the action
of the algebra A(Ω) from M to J (k)M via the map J . The resultant action is described in [14,
Lemma 3.2] which we recall now.

Lemma 3.2. Let M be a Hilbert module of holomorphic functions on Ω over the algebra A(Ω)
with reproducing kernel K. Let J (k)M be the associated module of jets with reproducing kernel
JK. The adjoint of the module action Jf on JK(·, w)x, x ∈ Ck, is given by

J∗fJK(·, w) · x = JK(·, w)(Jf)(w)∗ · x, f ∈ A(U), w ∈ U.

The module J (k)M may be thought of as the kth order jet module of the given module M

relative to the hypersurface Z. For w ∈ U and 1 ≤ ` ≤ k, let s`(w) = K(·, w)ε`. The vectors
s`(w) span the range Ew of K(·, w) : Ck →M. The holomorphic frame w → {s1(w̄), . . . , sk(w̄)}
determines a holomorphically trivial vector bundle E over U∗. The fiber of E over w is Ew =
span{K(·, w̄)ε` : 1 ≤ ` ≤ k}, w ∈ U∗. An arbitrary section of this bundle is of the form
s =

∑k
`=1 a`s`, where a`, ` = 1, . . . , k, are holomorphic functions on U∗. The norm at w ∈ U∗ is

determined by

(3.3) ‖s(w)‖2 = 〈
k∑

`=1

a`(w)s`(w),
k∑

`=1

a`(w)s`(w)〉M = 〈K(w,w)tra(w), a(w)〉Ck ,
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where a(w) =
∑k

`=1 a`(w)ε` and K(w,w)tr denotes the transpose of the matrix K(w,w). Since
K(w,w) is positive definite and w 7→ K(w,w) is real analytic, it follows that K(w,w) determines
a hermitian metric for the vector bundle E. It is easy to verify that if the module M is quasi-
free and E is the corresponding bundle whose hermitian structure is determined by the kernel
function K, then the bundle E along with the hermitian structure induced by the kernel JK is
the one we would have obtained by applying the jet construction to the bundle E.

Suppose M is a Hilbert module over the function algebra A(Ω) which is in B1(Ω). Then
one may identify the Hilbert space M with a space of holomorphic functions on Ω possessing
a complex-valued reproducing kernel K. This determines a line bundle EM on Ω∗ whose fiber
at w̄ ∈ Ω∗ is spanned by the vector K(·, w). The jet bundle of rank k is determined by the
holomorphic frame {K(·, w), ∂̄1K(·, w), . . . , ∂̄k−1

1 K(·, w)}. The metric for the bundle with respect
to this frame is given by the formula (compare (3.2) ):

〈
k−1∑

j=0

aj∂
j
1K(·, w),

k−1∑

j=0

aj∂
j
1K(·, w)〉 =

k−1∑

j,`=0

aj ā`〈∂j
1K(·, w), ∂`

1K(·, w)〉.

Clearly, the action of the algebra A(Ω) on the module J (k)M given in Lemma 3.2 defines a
holomorphic bundle map θf on the holomorphic frame {JK(·, w) · εi : 1 ≤ i ≤ k, w ∈ Ω}, of the
jet bundle J (k)EM for each f ∈ A(Ω). Hence the algebra A(Ω) acts on the holomorphic sections
of the jet bundle J (k)EM as well making it into a module equivalent to the module J (k)M. This
is the jet bundle J (k)EM associated with EM.

On the other hand, the Hilbert space J (k)M together with its kernel function JK defined in
Proposition 3.1 defines a rank k hermitian holomorphic bundle on Ω∗ (see discussion preceding
equation (3.3)). That these two constructions yield equivalent hermitian holomorphic bundles
is a consequence of the fact that J is a unitary map from M onto J (k)M.

Remark 3.1. Therefore we see that the question of determining the equivalence class of the
module J (k)M is the same as determining the equivalence class of the jet bundle J (k)EM assuming
that the map implementing the equivalence is also a module map on holomorphic sections. Thus
it is natural to make the following Definition.

Definition 3.1. Two jet bundles are said to be equivalent if there is an isometric holomorphic
bundle map which induces a module isomorphism of the holomorphic sections.

4. The main result for jet bundles

4.1. Let E be a holomorphic line bundle over Ω∗ equipped with a hermitian metric G. For
Z∗ ⊆ Ω∗, let us expand the real analytic function G using the coordinates (z1, z′) ∈ Ω∗ with
z′ = (z2, . . . , zm) ∈ Z∗ :

G(z1, z′) =
∞∑

m,n=0

Gm,n(z′)zm
1 z̄

n
1 .

(Note that G and Gm,n are merely real analytic functions. Therefore, they depend on the
variables we have indicated along with their conjugates.)

Suppose we start with a resolution of the form (1.1). Then we have at our disposal the
domain Ω ⊆ Cm and the hypersurface Z ⊆ Ω. We recall from [14, Theorem 3.4] that the
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quotient module Q can be identified with the module J (k)M|res Z. The module action Jf on the
quotient J (k)M|res Z, for f ∈ A(Ω), is defined via the restriction of the map

(4.1) (J∗f s`)(w) = JK(·, w)(Jf)(w)∗ε`

to Z and J is defined in equation (3.1).

Let ϕ be a local defining function for Z, that is, for some open subset U ⊆ Ω, we have
Z ∩ U = {z ∈ U : ϕ(z) = 0}. If necessary, by restricting to a smaller open subset of U , which
we continue to denote by U , we may assume that ϕ is in A(U). We recall that we may assume
Ω = U and Z = Z ∩U without loss of generality. Now, we see that ϕ induces a nilpotent action
on each fiber of the jet bundle J (k)E|res Z via the restriction of the map J∗ϕ to Z.

Therefore in this picture, with the assumptions we have made along the way, we see that the
quotient modules Q satisfies the requirement listed in (i) – (iii) of the following Definition.

Definition 4.1 ([11], pp. 284). We will say that the module Q over the algebra A(Ω) is a
quotient module in the class Bk(Ω,Z) if

(i) there exists a resolution of the module Q as in equation (1.1), where the module M

appearing in the resolution is quasi-free of rank 1 over the algebra A(Ω);
(ii) for f ∈ A(Ω), the restriction of the map Jf to the hypersurface Z defines the module

action on J (k)M|res Z which is an isomorphic copy of Q; and
(iii) the quotient module Q is quasi-free of rank k over the algebra A|res Z(Ω).

Our main theorem is easily stated using the k × k array of differential operators:

(4.2) Dk =




∂̄′∂′ ∂̄′∂1 ∂̄′∂2
1 . . . ∂̄′∂k−1

1

∂̄1∂
′ ∂̄1∂1 ∂̄1∂

2
1 . . . ∂̄1∂

k−1
1

∂̄2
1∂
′ ∂̄2

1∂1 ∂̄2
1∂

2
1 . . . ∂̄2

1∂
k−1
1

...
...

...
. . .

...
∂̄k−1

1 ∂′ ∂̄k−1
1 ∂1 ∂̄k−1

1 ∂2
1 . . . ∂̄k−1

1 ∂k−1
1



,

where ∂′ denotes the differential operator (∂m, . . . , ∂2) and ∂̄′ =



∂̄m
...
∂̄2


 . We point out that the

(1, 1) position of the matrix Dk consists of a m − 1 ×m − 1 block and that each entry of the
first row (respectively column) is a column (respectively, row) vector of size m− 1.

Definition 4.2. Let % and %̃ be two positive real analytic functions on a domain Ω. We say
that the % and %̃ are equivalent to order k on Z if Dk

(
log %̃

%

)
= 0 on Z.

Theorem 1. Suppose that Q = MªM0 and Q̃ = M̃ªM̃0 is a pair of quotient of Hilbert modules
over the algebra A(Ω) that are in the class Bk(Ω,Z). Then the quotient module Q and Q̃ are
isomorphic if and only if %̃ and % are equivalent to order k, where %̃ and % are the hermitian
metrics for the line bundles corresponding to the two modules M and M̃ respectively.

We begin the proof of the theorem after proving a couple of results of a general nature. Indeed,
the lemma below is a function theoretic result and the proposition which follows is algebraic in
nature. These two results, more or less, yield immediately a proof of the theorem.
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Definition 4.3. Let r be a positive real analytic function defined on Ω. Let

r(z1, z′) =
∞∑

`,m=0

r`,m(z′)z`
1z̄

m
1

be the expansion of r in the variables z1, z̄1 around a small neighborhood of (0, 0). We will
say that r is holomorphic to order k along Z if the coefficients r`,0, ` ≤ k are holomorphic and
r0,m = r̄m,0, m ≤ k are anti-holomorphic while all the coefficients r`,m = 0 for 0 < `,m ≤ k then
we say that r is holomorphic to order k along Z.

Since D2

(
log %̃

%

)
= 0 on all of Ω is the same as saying that

m∑

i,j=1

∂̄i∂j log
%̃

%
dz̄i ∧ dzj = 0

on all of Ω, it follows that %̃ = |ψ|2% for some holomorphic function ψ on Ω. The following
Lemma is a generalization of this statement in two directions. On the one hand, we allow higher
order differentiation and on the other hand, we require equality only on Z.

Lemma 4.1. Two positive real analytic functions % and %̃ on Ω are equivalent to order k on Z if
and only if %̃ = |ψ|2%, where ψ is some real analytic function for which log |ψ|2 is holomorphic
to order k along Z.

Proof. Since %̃
% is a positive real analytic function on Ω, it follows that we may write %̃

% = |ψ|2
for some real analytic function ψ : Ω → C. Let us expand the real analytic function log |ψ|2 in
the variables z1 and z̄1

log |ψ|2(z1, z′) =
∞∑

`,m=0

ψ`,m(z′)z`
1z̄

m
1 ,

where the coefficients ψ`,m are real analytic functions of z′ ∈ Z for `,m ≥ 0. (Strictly speaking,
we should have said (0, z′) is in Z and not z′ ∈ Z.)

For k = 1, to say that D1

(
log %̃

%

)
= 0 on Z is the same as saying ∂′∂̄′ log %̃

% = 0 on Z. This,
in turn, is equivalent to ∂′∂̄′

(
log %̃

%

)
|Z = 0. As is well-known, ∂′∂̄′

(
log %̃

%

)
|Z = 0 if and only if

%̃ = |ψ0|2% for some holomorphic function ψ on Z. This proves the Lemma for k = 1.

The proof in the forward direction is by induction. We have already verified the statement for
k = 1. Now, assume that it is valid for k, that is, ψ`,0 is holomorphic for ` ≤ k− 1, ψ0,m = ψ̄m,0

for m ≤ k − 1 and ψ`,m = 0 for all 0 < `,m ≤ k − 1. We will show that the same conditions are
forced on the coefficients even when we replace k − 1 by k as long as we assume Dk log |ψ|2 = 0
on Z. Thus we have that ∂̄′∂k

1 log |ψ|2|Z = 0 which forces ∂̄′ψk,0 = 0 on Z. Similarly, ∂′ψ0,k = 0 on
Z making ψ0,k anti-holomorphic on Z. The condition that ∂̄`

1∂
k
1 log |ψ|2|Z = 0 is clearly equivalent

to ψ`,k = 0 for ` ≤ k. Again, we have ∂̄k
1∂

m
1 log |ψ|2|Z = 0 is clearly equivalent to ψk,m = 0 for

m ≤ k. Since |ψ|2 = 1
2

(|ψ|2 + |ψ|2), we see that ψ`,0 = 1
2

(
ψ`,0 + ψ̄0,`

)
and ψ0,` = ψ̄`,0.

The proof in the other direction is a straightforward verification – Dk log |ψ|2 = 0 on Z

assuming that ψ`,0, ` ≤ k are holomorphic, ψ0,m = ψ̄m,0, m ≤ k are anti-holomorphic and the
coefficients ψ`,m = 0 for 0 < `,m ≤ k. ¤
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Let Ck×k be the algebra of all k × k complex matrices and Tk×k ⊆ Ck×k be the sub-algebra
of lower triangular Toeplitz matrices, that is, those lower triangular matrices A for which A(`+
p, `) = A(p) for 0 ≤ `, p ≤ k, `+ p ≤ k.

In the proof of the following Proposition we use the fact that if |ψ|2 is holomorphic to order
k along Z, then the coefficient function α`,0, in the expansion |ψ|2(z′) =

∑∞
`,m=0 α`,m(z′)z`

1z̄
m
1 ,

is a holomorphic function for ` ≤ k.
Proposition 4.2. Suppose %̃, % are two positive real analytic functions on Ω with %̃ = |ψ|2%.
Then the function log |ψ|2, which is necessarily real analytic, is holomorphic to order k along Z

if and only if there exists some holomorphic function Ψ : Z→ Tk+1×k+1 with ψp at the (`+ p, `)
position. satisfying

(J%̃)(z′) = Ψ(z′)(J%)(z′)Ψ(z′)∗, z′ ∈ Z.

Proof. Assume that %̃ = |ψ|2% and |ψ|2 is holomorphic to order k along Z. Let us compute the
derivatives

∂̄i
1∂

j
1%̃ = ∂̄i

1

(
ψ̄

j∑

n1=0

(
j

n2

)
ψ(n2)%(j−n2)

)

=
i∑

n1=0

j∑

n1=0

(
i

n1

)(
j

n2

)
ψ(n1)ψ(n2)%(j−n2,i−n1),

where %(j−n2,i−n1) = ∂j−n2
1 ∂̄i−n1

1 %. If we restrict this equation to Z, we see that

%̃j,i =
i∑

n1=0

j∑

n1=0

ψ̄n1ψn2%j−n2,i−n1 ,

where %̃j,i, %j−n2,i−n1 and ψn2 , ψn1 are the coefficients in the expansion of the respective real
analytic functions around z

(0)
1 = 0 in the variable z1. However, this says that J%̃ = Ψ(J%)Ψ∗,

where Ψ is the lower triangular matrix with the holomorphic function ψp at the (`+p, p) position.

Conversely, suppose (J%̃)(z′) = Ψk(z′)(J%)(z′)Ψk(z′)∗, z′ ∈ Z, for some holomorphic function
Ψ : Z→ T(k+1)×(k+1). We have to show that %̃ = |ψ|2% for some real analytic function |ψ|2 which
is holomorphic to order k along Z. Clearly, on the hypersurface Z, we have

%̃j,i =
i∑

n1=0

j∑

n2=0

ψ̄n1ψn2%j−n2,i−n1 ,

where ψn1 is the holomorphic function on Z which occurs in the n1 sub-diagonal of the function
Ψ. Now, we apply the preceding Lemma to infer that %̃ and % are equivalent to order k on Z

completing the proof. ¤

Corollary 4.3. Let (E, %) and (Ẽ, %̃) be two hermitian holomorphic line bundles on Ω ⊆ Cm.
Let J (k)E and J (k)Ẽ be the jet bundles of E and Ẽ, respectively, equipped with the natural action
of the algebra A(Ω), that is, f 7→ (Jf) ·s, f ∈ A(Ω), for a holomorphic section s. The restriction
to the hypersurface Z of the two jet bundles J (k)E and J (k)Ẽ are equivalent if and only if % and
%̃ are equivalent to order k on Z.
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Proof. The equivalence of the two jet bundles in the sense of Definition 3.1 amounts to the
existence of a holomorphic map Ψ : Z → Tk×k which intertwines the module action, that is,
ΨJf = JfΨ. This intertwining property is easily verified –

Ψ∗(Jf)∗(i, j) =
(
0, . . . , 0, ψ0, . . . , ψk−1−i

)(
∂jf, . . . , f, 0, . . . , 0

)tr

=
(
j

i

)
∂j−iψ0 + · · ·+ ψj−if

= ψj−if + · · ·+
(
j

i

)
∂j−iψ0

=
(
0, . . . , 0, f, . . . , ∂k−1−if

)(
ψj , . . . , ψ0, 0, . . . , 0

)tr

= (Jf)∗Ψ∗(i, j)

completing the proof of the Corollary. ¤

Proof of Theorem 1. We have pointed out in Remark 3.1 that the equivalence of the jet bundles
in the sense of Definition 3.1 is the same as that of the corresponding modules. Therefore, the
Corollary given above completes the proof of the Theorem 1. ¤

5. The second fundamental form

We let M0 ⊆M be the submodule of all functions which vanish to order 2 on the hypersurface
Z. As before, let {s, ∂1s} be a frame for the jet bundle J (2)E of rank 2 corresponding to the
module M. In this case, under some mild hypothesis on the quotient module Q, we know [11,
pp. 289] that Ktrans,Ktan and the angle 〈∂s, s〉 restricted to the hypersurface Z determine the
unitary equivalence class of Q. Let us explain the nature of this hypothesis.

In subsection 5.2, we show that the angle invariant, which together with the transverse and
the tangential curvatures forms a complete set of unitary invariants for the quotient module Q

can be replaced by the second fundamental form I for the inclusion E ⊆ J (2)E. In view of the
equation (5.10), we have stated the theorem in terms of the restriction of the curvature. One of
the disadvantages in using the angle as an invariant for the isomorphism class of the quotient
module is that for it to make sense we must introduce normalized reproducing kernels (cf. [9,
Remark 4.7 (b)]). To avoid this ad hoc normalization, we replace it with the second fundamental
form which is a more natural geometric invariant.

5.1. Let Ω be an open connected and bounded subset of Cm and Z ⊆ Ω be a hypersurface, that
is, a complex sub-manifold of co-dimension 1. Let ∂1 denote differentiation along the normal
direction to Z. Let E be a hermitian holomorphic line bundle on Ω. Let s be a holomorphic
frame for E and h be the hermitian metric. One sees that {s, ∂1s} is a holomorphic frame for
the jet bundle J (2)E of rank 2 in the normal direction to Z. Then

(5.1)
(
J (2)h

)
(w) =

(
h(w) (∂1h)(w)

(∂̄1h)(w) (∂̄1∂1h)(w)

)
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defines a metric for the jet bundle J (2)E. One obtains an orthonormal frame, say {e1, e2} from
the holomorphic frame by the usual Gram-Schmidt process:

e1 = h−1/2s,

e2 =
∂1s− 〈∂1s, e1〉e1
‖∂1s− 〈∂1s, e1〉e1‖

=
∂1s− 〈∂1s, e1〉e1
h1/2(∂1∂̄1 log h)1/2

,(5.2)

where we see that ‖∂1s− 〈∂1s, e1〉e1‖ = h1/2(∂1∂̄1 log h)1/2 as in [6, 1.17.1]. Let D be the
canonical connection and ∂̄ be the operator ∂̄f =

∑m
1 ∂̄jfd̄zj . Since s is holomorphic, ∂̄s = 0

and it follows that

(5.3) ∂̄e1 = −1
2
h−3/2∂̄h · s = −1

2
h−1∂̄h · e1 = −1

2
∂̄(log h) · e1.

Similarly, differentiating (5.2), we have

∂̄e2 = ∂̄
( 1
h1/2(∂1∂̄1 log h)1/2

)
(∂1s− 〈∂1s, e1〉e1) +

∂̄(∂1s− 〈∂1s, e1〉e1)
h1/2(∂1∂̄1 log h)1/2

= −1
2
∂̄
(
h∂1∂̄1 log h

)

(h∂1∂̄1 log h)3/2
· (∂1s− 〈∂1s, e1〉e1) +

−∂̄(h−1∂1h) · s
(h∂1∂̄1 log h)1/2

= −1
2
∂̄(h(∂1∂̄1 log h))
h∂1∂̄1 log h

· e2 − ∂̄(∂1 log h)
(∂1∂̄1 log h)1/2

e1(5.4)

Let us calculate the canonical hermitian holomorphic connection D in J (2)(E) with respect
to the metric (5.1). We have

De1 = D1,0e1 +D0,1e1

= α11e1 + α21e2 + ∂̄e1

= (α11 − 1/2∂̄ log h)e1 + α21e2 by (5.3)

= θ11e1 + θ21e2,(5.5)

where α11, α21 is a pair of (1, 0) forms. Similarly, we have

De2 = D1,0e1 +D0,1e2

= α12e1 + α22e2 + ∂̄e2

=
(
α12 − ∂̄∂1 log h

(∂1∂̄1 log h)1/2

)
e1 +

(
α22 − 1

2
∂̄
(
h∂1∂̄1 log h

)

h∂1∂̄1 log h

)
e2 by (5.4)

= θ12e1 + θ22e2,(5.6)

where α12, α22 is another pair of (1, 0) forms. Since we are working with an orthonormal frame,
the compatibility with the metric (2.5) amounts to the requirement

{Dei, ej}+ {ei, Dej} = θji + θ̄ij

= 0 for 1 ≤ i, j ≤ 2.(5.7)

For 1 ≤ i, j ≤ 2, equating (1, 0) and (0, 1) forms separately to zero in the equations θij + θ̄ij = 0,

we obtain α11 = 1
2∂ log h, α12 = 0, α21 =

∂
(
∂̄1 log h

)
(∂1∂̄1 log h)1/2 and α22 = 1

2

∂
(
h∂1∂̄1 log h

)
h∂1∂̄1 log h

. It therefore
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follows that

(5.8) θ =




1
2(∂ − ∂̄) log h − ∂̄(∂1 log h)

(∂1∂̄1 log h)1/2

∂(∂̄1 log h)

(∂1∂̄1 log h)1/2
1
2

(∂−∂̄)(h∂1∂̄1 log h)

h(∂1∂̄1 log h)




is the matrix representation of the canonical connection D on J (2)E with respect to the or-
thonormal frame {e1, e2}. Thus the second fundamental form I for the inclusion E ⊆ J (2)E

is

(5.9) 〈De2, e1〉 = θ12 = − ∂̄(∂1 log h)
(∂1∂̄1 log h)1/2

.

Let E be a holomorphic hermitian vector bundle over Ω. We can easily express the second
fundamental form I on Z in terms of the coefficients of the full curvature (2.6) on Z:

(5.10) I(z) = (I1(z)dz1, . . . , Im(z)dzm) = (Ktrans(z))−1/2
(
Ktrans(z) S(z)

) ·
(
dz̄1 ∧ dz1
dz̄′ ∧ dz′

)

for z = (z1, z′) ∈ Ω.

Remark 5.1. It follows that if we fix the transverse curvature Ktrans of a line bundle E, then
the second fundamental form I for the inclusion E ⊆ J (2)

1 E and the coefficient S of the curvature
KE determine each other. Consequently, the restriction to the hypersurface Z of Ktrans, Ktan

and the second fundamental form I of two holomorphic hermitian bundles are equal if and only
if the restriction to the hypersurface Z of all the coefficients of the curvature K are equal.

5.2. In case k = 2, we may restate the Theorem 1 in terms of the tangential and the transverse
curvatures along with the second fundamental form. The validity of such a statement will follow
from Theorem 1 which holds for an arbitrary k. We consider the case of k = 2 separately
for comparison with our previous result which was limited to this case only. In the statement
of the theorem below, we use the invariants tan and trans which stand for the tangential and
transverse curvatures. These invariants occurred in [11, Theorem, page 289]. We emphasize
that the third invariant that appears in the theorem below is the second fundamental form.
Therefore, this theorem is different from that of [11]. We provide an independent proof using
explicit computations.

Theorem 2. Suppose that Q = MªM0 and Q̃ = M̃ªM̃0 is a pair of quotient modules of Hilbert
modules over the algebra A(Ω) and that they are both in the class B2(Ω,Z). Then the quotient
modules Q and Q̃ are isomorphic if and only if the restriction of the corresponding curvatures to
the hypersurface Z coincide, that is,

tan: Ktan = K̃tan

trans: Ktrans = K̃trans

angle: S = S̃

are equal on Z.

The proof of the theorem is facilitated by the following Lemma. We let K(z) denote the (1, 1)
form

∑m
i,j=1 ∂̄i∂j(log h)(z)dz̄i∧dzj , z = (z1, . . . , zm) ∈ Ω, for some positive real analytic function

h on the domain Ω.
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Lemma 5.1. Let h and h̃ be two positive real analytic functions on a domain Ω. The restrictions
to the hypersurface Z ⊆ Ω of the corresponding (1, 1) forms K and K̃ are equal if and only if
there exist holomorphic functions α, β on the hypersurface Z such that

h̃00 = |α|2h00

h̃10 = h10 + β|α|2h00

h̃01 = h01 + β̄|α|2h00

h̃11 = |α|2h11 + β|α|2h01 + β̄|α|2h10 + |β|2|α|2h00,

where h(z1, z′) =
∑∞

i,j=0 hij(z′)zi
1z̄

j
1 and h̃(z1, z′) =

∑∞
i,j=0 h̃ij(z′)zi

1z̄
j
1 are the power series ex-

pansions of the real analytic functions h and h̃.

Proof. Let us put γ = h̃/h and Γ = log γ. Let us expand Γ in a power series:

(5.11) Γ(z1, z′) = Γ00(z′) + z1Γ10(z′) + z̄1Γ01(z′) + · · · ,
where (z1, z′) ∈ Ω. (We will suppress the dependence of the coefficients on z′ whenever there is
no possibility of confusion.) Recall that ∂′ = (∂2, . . . , ∂m). The assumption that the restrictions
to the hypersurface Z ⊆ Ω of K and K̃ are equal amounts to saying that ∂̄∂Γ = 0. We split this
condition into four separate ones. The first of these is the requirement that (∂̄′∂′Γ)|Z = 0. The
second and the third are similar: (∂1∂̄

′Γ)|Z = 0 and (∂̄1∂
′Γ)|Z = 0. The final one is (∂̄1∂1Γ)|Z = 0.

In view of the expansion (5.11), the first condition is clearly the same as the requirement that
∂̄′∂′Γ00 = 0. Therefore it follows that Γ00 = α1+ᾱ2 for some holomorphic functions α1, α2 on the
hypersurface Z. Since Γ00 is positive, we also have Γ00 = ᾱ1 + α2. Hence Γ00 = α1+α2

2 + α1+α2
2 .

Consequently, γ|Z = exp(Γ|Z) = |α|2, where α = exp (α1+α2
2 ), is a holomorphic function defined

on the hypersurface Z.

The second condition (∂1∂̄
′Γ)|Z = 0 can be restated using the power series expansion (5.11)

which is ∂̄′Γ10 = 0. Hence Γ10 is holomorphic on Z. Similarly, Γ01 is easily seen to be anti-
holomorphic on Z.

Finally, the condition (∂̄1∂1Γ)|Z is clearly equivalent to the vanishing of the coefficient Γ11 in
the expansion (5.11), that is, Γ11 = 0.

Now, we put all of the above together and modify the expansion (5.11)

(5.12) Γ(z1, z′) = α1 + β1z1 + η1z
2
1 + α2 + β2z1 + η2z2

1 + · · · .
It is not hard to see that we can have α1 = α2 and β1 = β2. Indeed, Γ = Γ+Γ̄

2 , which allows us to
take the common value α1+α2

2 , and similarly β1+β2

2 , as the coefficient of both z1 and z̄1. While
similar considerations apply to the coefficient of z2

1 , we have to remember that in that case, and
for all the other coefficients, these are not holomorphic functions. Therefore, we see that

γ = exp Γ

= | exp(
α1 + α2

2
)|2| exp(

β1 + β2

2
z1)|2| exp(

η1 + η2

2
z2
1)|2 · · ·

= |α|2|(1 + βz1 + β2z2
1 + · · · )|2|(1 + η2z2

1 + · · · |2 · · ·
= |α|2(1 + βz1 + β̄z̄1 + |β|2z̄1z1 + · · · ),
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where α = exp(α1+α2
2 ) and β = β1+β2

2 . It now follows that

h̃ = h̃00 + h̃10z1 + h̃01z̄1 + h̃11z̄1z1 + · · ·
= γh

= (h00 + h10z1 + h01z̄1 + h11z̄1z1 + · · · )(|α|2(1 + βz1 + β̄z̄1 + |β|2z̄1z1 + · · · ))
= |α|2(h00 + (h10 + βh00)z1 + (h01 + β̄h00)z̄1 + (h11 + β̄h10 + βh01 + h00|β|2)z̄1z1 + · · · ).

Equating the coefficients in this equation, we clearly have the following relationship:

h̃00 = |α|2h00

h̃10 = |α|2(h̃10 + βh00)

h̃01 = |α|2(h̃01 + β̄h00)

h̃11 = |α|2(h11 + β̄h10 + βh01 + h00|β|2).(5.13)

Conversely, we see that K22 = h11h00−|h10|2
h2
00

on Z. If we assume the relationships between h

and h̃ as in (5.13) then on the hypersurface Z,

K̃22 =
|α|4(h11 + β̄h10 + βh01 + |β|2h00)h00 − |α|2(h10 + βh00)(h01 + β̄h00)

|α|4h2
00

=
h11h00 − |h10|2

h2
00

.

It therefore follows that K̃22 = K22 on Z. Similarly, again restricted to Z, we have K12 =
h00∂h01−h01∂h00

h2
00

. We see that K12 = h00∂′h01−h01∂′h00

h2
00

on Z. Hence a calculation, using (5.13),
shows that

K̃12 =
(∂h01 + β̄∂h00)h00 − (h01 + β̄h00)∂h00

h2
00

=
∂′h01h00 − h01∂

′h00

h2
00

ensuring K̃12 = K12 on Z. Finally, it is clear that K11(z) = K̃11(z), for z ∈ Z is equivalent to
h̃00 = |α|2h00 for some holomorphic function α defined on Z. ¤

Proof of Theorem 2. We first prove the “if” part of the theorem. In this case, we have equality
of all the coefficients of the two curvatures on the hypersurface Z. This is equivalent to the
relationship given in the equations (5.13). We then find that

(
α 0
αβ α

)(
h00 h01

h10 h11

)(
ᾱ ᾱβ̄

0 ᾱ

)
= |α|2

(
h00 h01 + β̄h00

h10 + βh00 h11 + β̄h10 + βh01 + h00|β|2
)

=
(
h̃00 h̃01

h̃10 h̃11

)
.

It follows that the bundle map Θ : J (2)
1 E|Z → J

(2)
1 Ẽ|Z defined by, Θ(z) =

(
α 0
αβ α

)
, for z ∈ Z is

holomorphic as well as isometric. Moreover, it intertwines the nilpotent action as well. Therefore,
the quotient modules are isomorphic via this map.

For the proof of the only if part, we first observe that any unitary implementing the equivalence
of the quotient modules must map the submodule M0 onto M̃0. This implies that the tangential
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curvatures must coincide. The matrix representation for the nilpotent action corresponding to
the normal coordinate has the transverse curvature at the (1, 2) position. So, if these nilpotent
actions are equivalent, then the transverse curvature corresponding to them must coincide.
Furthermore, any such intertwining unitary between the quotient modules must be of the form(

a 0
b a

)
for holomorphic functions a, b defined on the hypersurface Z. We can assume, without

loss of generality, that b = ac. Hence we must have
(
a 0
ac a

) (
h00 h01

h10 h11

)(
ā āc̄

0 ā

)
=

(
h̃00 h̃01

h̃10 h̃11

)
.

It then follows that we must have that the relationship given by (5.13) holds, which completes
the proof. ¤

6. Applications and Examples

6.1. Consider Ω0 contained in Cm and M a quasi-free rank one Hilbert module for A(Ω0). For
Ω = D×Ω0 contained in Cm+1, we can obtain quasi-free rank one Hilbert modules R = H2(D)⊗M

and R′ = B2(D) ⊗M over A(Ω). Consider the hypersurface Z = {z ∈ Ω : z1 = 0} = 0 × Ω0

contained in Ω and the quotient Hilbert modules Q = R/R0 and Q′ = R′/R′0, where R0 and R′0
are the submodules of functions in R and R′, respectively, that vanish on Z. Then Q ∼= Q′ ∼= M′,
where M′ is the module over A(Ω) obtained from pushing forward the module M over A(Ω0)
using the inclusion map i : Ω0 → Ω.

However, if we consider the submodules R1 and R′1 of functions f in R and R′, respectively,
so that both f and the partial derivative of f with respect to z1 vanish on Z, we obtain a rather
different result. In this case, R/R1 = Q1 is not equivalent to Q′1 = R′/R′1, which can be shown
by direct calculation of the quotient modules or by using the fact that the transverse curvatures
are not equal.

In both cases, the longitudinal curvatures agree with that of M. In these cases, restricted to the
zero set, the transverse curvatures are constant and the angle invariant or the second fundamental
forms vanishes identically. It is not hard to produce an example where the restriction of the
transverse curvature to the zero set is not constant.

Let A2(B2) be the Bergman space on the unit ball B2. It consists of square integrable holo-
morphic functions on B2 and possesses a reproducing kernel B(z, w) = (1−〈z, w〉)−3, z, w ∈ B2.
As it turns out, any positive real power of the Bergman kernel B is positive definite. There-
fore, there exists a Hilbert space A(λ)(B2) corresponding to such a positive definite kernel
K(λ)(z, w) := Bλ/3(z, w) = (1 − 〈z, w〉)−λ for λ > 0. Thus we obtain a module A(λ)(B2)
over the polynomial algebra C[z], z ∈ B2. Now, the curvature of the corresponding holomorphic
hermitian line bundle E(λ) over the unit ball B2 is easy to compute. It then follows that the re-
striction of neither the longitudinal nor the transverse curvature to the zero set {z ∈ B2 : z1 = 0}
is constant. However, the angle invariant is still zero in these examples.

In the rest of this section, we construct examples of modules R and R′ where both the longitu-
dinal and the transverse curvatures of these modules are the same yet the corresponding quotient
modules are not isomorphic, see Remark 6.1. In these examples, it is the “angle invariant” which
is not the same.
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We also give applications of our results to a familiar class of Hilbert modules over the bi-disc
algebra. These applications involve homogeneity of the modules under the action of the Möbius
group. The study of homogeneity for Hilbert modules over the algebra A(Ω) for a bounded
symmetric domain Ω ⊆ Cm was initiated in [23] and was further studied in [2]. However, in
these papers, it was assumed that Ω is irreducible. So, the question of considering the possibility
of Ω = D2 did not arise. Although, the theorem below is stated in this case, it is clear that the
proof works just as well in the case of Dm. The recent work of Ferugson and Rochberg [19] and
[18] are very close to the discussion below – at least, in spirit. Similarly, the work of the second
named author with Koranyi [22] on homogeneous operators in the class Bk(D) is closely related
to what we report here.

6.2. For λ > 0, let M(λ) be the Hilbert space which is determined by requiring that {e(λ)
n (z) :=

c
−1/2
n zn : n ≥ 0} is a complete orthonormal set in it, where cn is the coefficient of xn in the

expansion of (1−x)−λ or cn is the set of binomial coefficients:
(−λ

n

)
= λ(λ+1)···(λ+n−1)

n! . It follows
that M(λ) possesses a reproducing kernel K(λ) : D× D→ C, which is given by the formula

K(λ)(z, w) =
∞∑

n=0

e(λ)
n (z)e(λ)

n (w)

= (1− zw̄)−λ,

where D is the open unit disc. Thus M(λ) consists of holomorphic functions on the open unit
disc D. For θ ∈ [0, 2π) and α ∈ D, let ϕα,θ(z) = eiθ z−α

1−ᾱz for z ∈ D. The group of bi-holomorphic
automorphisms Möb of the unit disc is {ϕα,θ : θ ∈ [0, 2π) and α ∈ D}. We recall that
for λ > 0, the natural action of the polynomial ring C[z] on each of the Hilbert spaces M(λ),
for λ ≥ 0, makes it into a module. However, for each λ > 1, this action extends to the disc
algebra A(D). The modules M(λ), λ ≥ 0, lie in the class B1(D). What is more, they are Möb –
homogeneous, that is, the module ϕ∗M(λ) defined by the action (f, h) 7→ (f ◦ϕ) ·h for f ∈ A(D),
h ∈ M(λ) is isomorphic to the module M(λ) for all ϕ in Möb. It turns out these are the only
homogeneous modules in the class B1(D). For a complete discussion, we refer the reader to
the survey paper [3]. D. Wilkins [27] has obtained a classification of all homogeneous Hilbert
modules over the disc algebra which are in the class Bk(D) for k > 1. However, he was able to
give an explicit description of these modules only for rank 2. In a recent pre-print, Ferguson
and Rochberg have obtained a similar description of these modules, again only in the case of
rank 2. A. Koranyi and the second named author have also obtained a model for these quotient
modules [22] which works for an arbitrary k ∈ N.

6.3. For λ, µ > 0, there is a natural action of the group Möb×Möb on the module M(λ,µ), which
is just the tensor product M(λ)⊗M(µ). The Hilbert space M(λ,µ) is then a space of holomorphic
functions on the bi-disc via the identification of the elementary tensor e(λ)

m ⊗ e
(µ)
n with the

function of two variables zm
1 z

n
2 on the bi-disc D × D. It naturally possesses the reproducing

kernel K(λ,µ)(z,w) = (1−z1w̄1)−λ(1−z2w̄2)−µ, where z = (z1, z2) and w = (w1, w2) are both in
D×D. These modules are then Möb×Möb – homogeneous, with respect to the obvious action of
this group on M(λ,µ). We now show that these are the only Möb×Möb – homogeneous modules
which are in B1(D2).
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Theorem 3. Let M be a Hilbert module over the bi-disc algebra A(D2). Assume that M is in
B1(D2) and that it is homogeneous. Then M is isomorphic to M(λ,µ) for some λ, µ > 0.

Proof. Let γ be a holomorphic section for the bundle E corresponding to M. It then follows
thatγ ◦ φ−1 is a holomorphic section for the module φ∗M, where φ = (ϕ1, ϕ2) is an arbitrary
element of the group Möb×Möb. These modules are then isomorphic if and only if the curvatures
of the bundle E corresponding to M and the bundle φ∗E corresponding to φ∗M are equal. Let
KE be the curvature of the line bundle E, that is,

KE(z) =
2∑

i,j=1

∂̄i∂j log ‖γ(z)‖2dz̄i ∧ dzj .

It will be convenient to let KE also denote the coefficient matrix of the curvature of the line
bundle E, namely

KE = D log ‖γ‖2, where D =
((
∂̄i∂j

))
i,j=1,2

.

Using the chain rule, we find that the curvature of φ∗E can be related to the curvature of E as
follows. For z ∈ D2,

Kϕ∗E(z) = D log ‖γ ◦ φ−1(z)‖2
= Dφ−1(z)∗KE(φ−1(z))Dφ−1(z)

=

(
eiθ1 1−|a1|2

1+ā1z1
0

0 eiθ2 1−|a2|2
1+ā2z2

0

)∗
KE(φ−1(z))

(
eiθ1 1−|a1|2

1+ā1z1
0

0 eiθ2 1−|a2|2
1+ā2z2

0

)
.

(6.1)

The equality of the curvatures for E and φ∗E now amounts to

KE(z) =

(
eiθ1 1−|a1|2

1+ā1z1
0

0 eiθ2 1−|a2|2
1+ā2z2

0

)∗
KE(φ−1(z))

(
eiθ1 1−|a1|2

1+ā1z1
0

0 eiθ2 1−|a2|2
1+ā2z2

0

)

for all φ in Möb × Möb. By setting, z = 0 in the equation relating the curvature KE at z and
at φ−1(z), we see that

KE(a1, a2) =

(
e−iθ1 1

1−|a1|2 0
0 e−iθ2 1

1−|a2|2

)∗
KE(0, 0)

(
e−iθ1 1

1−|a1|2 0
0 e−iθ2 1

1−|a2|2

)
.

We can now put a1 = 0 = a2 to infer that KE(0, 0) must be diagonal, with diagonals equal to
λ, µ, say.

Finally, we can show, without loss of generality by setting θ1 = 0 = θ2, that the curvature has
the form

KE(a1, a2) =
(
λ(1− |a1|2)−2 0

0 µ(1− |a2|2)−2

)
,

for (a1, a2) ∈ D2. However, the curvature of the module M(λ,µ) has exactly this form. So, we
conclude that the homogeneous module M is isomorphic to M(λ,µ). ¤

The notion of homogeneity can be adapted easily to quotient modules over the bi-disc algebra.
Let M be a module over the bi-disc algebra which is in the class B2(D2). Let us define the
module ϕ∗M to be the module which as a Hilbert space is the same as M. However, the algebra
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A(D2) now acts via the map (f, h) 7→ (f ◦ φ) · h, where φ = (ϕ,ϕ) with ϕ in Möb. Let M0 be
the submodule of functions vanishing to order k on the diagonal set {(z, z) : z ∈ D} ⊆ D2. Then
the action (f, h) 7→ (f ◦ φ) · h of the algebra A(D2) on M leaves the submodule M0 invariant.
Consequently, ϕ∗M ⊆ ϕ∗M0. In particular, ϕ∗M

(λ,µ)
0 is a submodule of ϕ∗M(λ,µ). Therefore,

we may form the quotient module ϕ∗Q(λ,µ) = ϕ∗M(λ,µ)/ϕ∗M
(λ,µ)
0 . We clearly have, in view of

Corollary 6.1, ϕ∗Q isomorphic to ϕ∗Q(λ,µ) for ϕ in Möb. This prompts the following Definition.

Definition 6.1. Let 0←− Q ´ M←↩ M0 ←− 0 be a short exact sequence of Hilbert modules
over the bi-disc algebra with the property that the natural action of the group Möb leaves the
submodule M0 invariant. The quotient module Q is said to be homogeneous if ϕ∗Q := ϕ∗M/ϕ∗M0

is isomorphic to Q for all ϕ in the Möbius group.

Corollary 6.1. Let M
(λ,µ)
0 be the submodule of M(λ,µ) which consist of functions vanishing

to order 2 on the diagonal set 4 = {(z, z) : z ∈ D}. Then the quotient module Q(λ,µ) =
M(λ,µ)/M

(λ,µ)
0 is homogeneous.

The proof of this Corollary is a straightforward application of the Theorem 1 which in the
case of rank 2, as we have pointed out, says that the restriction of the curvature to the zero set
is a complete set of invariants for the quotient modules. An explicit description of these quotient
modules follows.

6.4. Let M
(λ,µ)
0 be the subspace of all functions in M(λ,µ) which vanish to order k on the diagonal

{(z, z) : z ∈ D} ⊆ D × D. To describe the quotient M(λ,µ)/M
(λ,µ)
0 , it will be useful to consider

the ascending chain

(6.2) {0} = V0(p) ⊆ V1(p) ⊆ V2(p) · · · ⊆ Vp+1(p) = Hom(p),

where Hom(p) is the space of homogeneous polynomials of degree p and Vk(p) is the subspace of
Hom(p) which is orthogonal to the submodule M

(λ,µ)
0 . The second named author and B. Bagchi

have developed methods to calculate f (k)
p ∈ Vk(p)ªVk−1(p) for 1 ≤ k ≤ p+1. These calculations

are also related to the recent work of Ferguson and Rochberg on higher order Hankel forms [19].
Also, in a recent paper, Peng and Zhang [24] have shown how to carry out such calculations in
the context of much more general domains. However, for our purposes, we will give the details
of these calculations for the case of k = 2 only.

First, we compute an orthonormal basis for the quotient module Q = M(λ,µ)/M
(λ,µ)
0 . We then

describe the compression of the two operators, M1 : f 7→ z1f and M2 : f 7→ z2f for f ∈M(λ,µ),
on the quotient module Q, as a block weighted shift operator with respect to the orthonormal
basis we have computed. These are homogeneous operators in the class B2(D) which were first
discovered by Wilkins [27].

It is easily seen that

g(1)
p =

p∑

`=0

zp−`
1 z`

2

‖zp−`
1 ‖2‖z`

2‖2

g(2)
p =

p∑

`=0

`zp−`
1 z`

2

‖zp−`
1 ‖2‖z`

2‖2
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are in V1(p) and V2(p) respectively. We set f (1)
p = g

(1)
p . To find f (2)

p , all we have to do is to find
constants ap, bp such that

p∑

`=0

ap`+ bp

‖zp−`
1 ‖2‖z`

2‖2
= 0.

This will ensure that f (2)
p = bpg

(1)
p + apg

(2)
p vanishes on the set {(z, z) : z ∈ D}. Hence it must

be orthogonal to V1. It is clear that ap = −∑p
`=0

1

‖zp−`
1 ‖2‖z`

2‖2
and bp =

∑p
`=0

`

‖zp−`
1 ‖2‖z`

2‖2
meet

the requirement. Therefore,
{
e(1)
p =

f
(1)
p

‖f (1)
p ‖

, e(2)
p

def=
f

(2)
p

‖f (2)
p ‖

}∞

p=0

forms an orthonormal set of vectors in the quotient module M/M
(λ,µ)
2 . To calculate the module

action, we first note that

(1− |z1|2)−(λ+µ) = (1− |z1|2)−λ(1− |z2|2)−µ
|z1=z2

=
∞∑

p=0

p∑

`=0

|z1|2(p−`)

‖zp−`
1 ‖2

|z2|2`

‖z`
2‖2 |z1=z2

=
∞∑

p=0

|z1|2p
p∑

`=0

‖zp−`
1 ‖−2‖z`

2‖−2.

It follows that −ap = ‖f (1)
p ‖2 is the coefficient of zp in the expansion of (1− |z1|2)−(λ+µ) which

is
(−(λ+µ)

p

)
. Similarly,

µ(1− |z1|2)−(λ+µ+1) = (1− |z1|2)−λ d

d |z2|2 (1− |z2|2)−µ
|z1=z2

=
∞∑

p=0

p∑

`=0

|z1|2(p−`)

‖zp−`
1 ‖2

`|z2|2(`−1)

‖z`
2‖2 |z1=z2

=
∞∑

p=0

|z1|2(p−1)
p∑

`=0

`‖zp−`
1 ‖−2‖z`

2‖−2.

Therefore, we see that bp = 〈g(1)
p , g

(2)
p 〉 is the coefficient of zp−1 in the expansion of µ(1 −

|z1|2)−(λ+µ+1) which is µ
(−(λ+µ+1)

p−1

)
.

Further,

µ(1 + µ|z1|2)(1− |z1|2)−(λ+µ+2) = (1− |z1|2)−λ d

d |z2|2
(|z2|2 d

d |z2|2 (1− |z2|2)−µ
)
|z1=z2

=
∞∑

p=0

p∑

`=0

|z1|2(p−`)

‖zp−`
1 ‖2

`2|z2|2(`−1)

‖z`
2‖2 |z1=z2

=
∞∑

p=0

|z1|2(p−1)
p∑

`=0

`2‖zp−`
1 ‖−2‖z`

2‖−2.
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Consequently, if we set cp = ‖g(2)
p ‖2, then cp is the coefficient of zp−1 in the expansion of

µ(1 + µ|z1|2)(1− |z1|2)−(λ+µ+2) which is µ
((−(λ+µ+2)

p−1

)
+ µ

(−(λ+µ+2)
p−2

))
. We find that

(6.3) ‖g(1)
p ‖2‖g(2)

p ‖2 − 〈g(1)
p , g(2)

p 〉2 =
λµ

λ+ µ

(−(λ+ µ)
p

)(−(λ+ µ+ 2)
p− 1

)
.

It is now easy to compute the norm of f (2)
p :

‖f (2)
p ‖2 =

∥∥ 〈g(1)
p , g(2)

p 〉g(1)
p − ‖g(1)

1 ‖2g(2)
p

∥∥2

= ‖g(1)
p ‖2

(‖g(1)
p ‖2‖g(2)

p ‖2 − 〈g(1)
p , g(2)

p 〉2
)

=
λµ

λ+ µ

(−(λ+ µ)
p

)2(−(λ+ µ+ 2)
p− 1

)
.(6.4)

Now, we have all the ingredients to compute the module action. Let us first compute the

matrix M
(1)
p =

(
α

(1)
p 0
β

(1)
p η

(1)
p

)
for multiplication by z1 with respect to the orthonormal basis

{e(1)
p , e

(2)
p }∞p=0. It is clear that

α(1)
p = 〈z1e(1)

p , e
(1)
p+1〉

=
1

‖g(1)
p+1‖ ‖g(1)

p ‖
〈

p∑

`=0

zp+1−`
1

‖zp−`
1 ‖2

z`
2

‖z`
2‖2

,

p+1∑

`=0

zp+1−`
1 z`

2

‖zp+1−`
1 ‖2‖z`

2‖2
〉

=
1

‖g(1)
p+1‖ ‖g(1)

p ‖

p∑

`=0

‖zp−`
1 ‖−2‖z`

2‖−2

=
‖g(1)

p ‖
‖g(1)

p+1‖

=

(−(λ+µ)
p

)1/2

(−(λ+µ)
p+1

)1/2
.

Similarly,

β(1)
p = 〈z1e(1)

p , e
(2)
p+1〉

=
1

‖g(1)
p ‖‖f (2)

p ‖
〈g(1)

p , f (2)
p 〉

=
1

‖g(1)
p ‖‖f (2)

p ‖
〈g(1)

p+1, g
(2)
p+1〉‖g(1)

p ‖2 − 〈g(1)
p , g(2)

p 〉‖g(1)
p+1‖2

=
(µ
λ

)1/2(λ+ µ+ 1)1/2
(
(λ+ µ+ p)(λ+ µ+ p+ 1)

)−1/2
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Finally, we have

η(1)
p = 〈z1e(2)

p , e
(2)
p+1〉

=
1

‖f (2)
p ‖ ‖f (2)

p+1‖
〈z1f (2)

p , f
(2)
p+1〉

=
1

‖f (2)
p ‖ ‖f (2)

p+1‖
‖g(1)

p+1‖2
(‖g(1)

p ‖2‖g(2)
p ‖2 − 〈g(1)

p , g(2)
p 〉2

)

=

(−(λ+µ+2)
p−1

)1/2

(−(λ+µ+2)
p

)1/2

Since e(2)
p = 0 on the set {(z1, z2) : z1 = z2}, it follows that z2e

(2)
p = 0 on this set as well. Hence

the projection of z2e
(2)
p to the subspace V1(p) is 0. Consequently, M (1)

p (1, 2) = 0. Similarly, we

can compute the matrix M (2)
p =

(
α

(2)
p 0
β

(2)
p η

(2)
p

)
for multiplication by z2 with respect to the same

orthonormal basis {e(1)
p , e

(2)
p }∞p=0 as before. Calculations similar to the ones described above

show that α(1)
p = α

(2)
p and β(1)

p = β
(2)
p . However, η(2)

p = −λ
µη

(1)
p .

Summarizing, the matrix

M (1)
p =




(−(λ+µ)
p )1/2

(−(λ+µ)
p+1 )1/2 0

(µ
λ

)1/2 (λ+µ+1)1/2(
(λ+µ+p)(λ+µ+p+1)

)1/2

(−(λ+µ+2)
p−1 )1/2

(−(λ+µ+2)
p )1/2




represents the operator M1 which is multiplication by z1 with respect to the orthonormal basis
{e(1)

p , e
(2)
p }∞p=0. Similarly,

M (2)
p =




(−(λ+µ)
p )1/2

(−(λ+µ)
p+1 )1/2 0

−(
λ
µ

)1/2 (λ+µ+1)1/2(
(λ+µ+p)(λ+µ+p+1)

)1/2

(−(λ+µ+2)
p−1 )1/2

(−(λ+µ+2)
p )1/2




represents the operator M2 which is multiplication by z2 with respect to the orthonormal basis
{e(1)

p , e
(2)
p }∞p=0. Therefore, we see that Q(p)

1 = 1
2(M (p)

1 −M (p)
2 ) is a nilpotent matrix of index 2

while Q(p)
2 = 1

2(M (p)
1 +M

(p)
2 ) is a diagonal matrix in case µ = λ. These definitions naturally give

a pair of operators Q1 and Q2 on the quotient module Q(λ,µ). Let f be a function in the bi-disc
algebra A(D2) and

f(u1, u2) = f0(u1) + f1(u1)u2 + f2(u1)u2
2 + · · ·

be the Taylor expansion of the function f with respect to the coordinates u1 = z1+z2
2 and

u2 = z1−z2
2 . Now the module action for f ∈ A(D2) in the quotient module Q(λ,µ) is then given
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by

f · h = f(Q1, Q2) · h
= f0(Q1) · h+ f1(Q1)Q2 · h
def=

(
f0 0
f1 f0

)
·
(
h1

h2

)
,

where h =
(
h1

h2

) ∈ Q(λ,µ) is the unique decomposition obtained from realizing the quotient module

as the direct sum Q(λ,µ) =
(
M(λ,µ) ªM

(λ,µ)
1

)⊕ (
M

(λ,µ)
1 ªM

(λ,µ)
2

)
, where M

(λ,µ)
i , i = 1, 2, are the

submodules in M(λ,µ) consisting of all functions vanishing on Z to order 1 and 2 respectively.

We now calculate the curvature K(λ,µ) for the bundle E(λ,µ) corresponding to the metric
K(λ,µ)(u,u), where u = (u1, u2) ∈ D2. The curvature K(λ,µ) is easy to compute:

K(λ,µ)(u1, u2) = (1− |u1 + u2|2)−2

(
λ λ

λ λ

)
+ (1− |u1 − u2|2)−2

(
µ −µ
−µ µ

)
.

The restriction of the curvature to the hyper-surface {u2 = 0} is

K(λ,µ)(u1, u2)|u2=0 = (1− |u1|2)−2

(
λ+ µ λ− µ
λ− µ λ+ µ

)
,

where u1 ∈ D. Thus we find that if λ = µ, then the curvature is of the form 2λ(1− |u1|2)−2I2.

Remark 6.1. Let us now compare the two jet bundles, corresponding to λ = µ and λ1 6= µ1

such that λ1 + µ1 = 2λ. We see that the tangential and the transverse curvatures of these line
bundles restricted to the hyper-surface {u2 = 0} are then equal. However, the jet bundles in
these two cases are not equivalent (which is the same as saying that the quotient modules are
not equivalent). The second fundamental form, which is ”essentially” the off diagonal entry in
the restriction of the curvature, distinguishes them. In the first case it is 0 and in the second
case it is not!

We now describe the unitary map which is basic to the construction of the quotient module,
namely,

h 7→
k−1∑

`=0

∂`
1h⊗ ε`+1

|z1=z2

for h ∈ M(λ,µ). For k = 2, it is enough to describe this map just for the orthonormal basis
{e(1)

p , e
(2)
p : p ≥ 0}. A simple calculation shows that

e(1)
p (z1, z2) 7→




(−(λ+µ)
p

)1/2
zp
1

µ
√

p
λ+µ

(−(λ+µ+1)
p−1

)1/2
zp−1
1




e(2)
p (z1, z2) 7→

(
0√

λµ
λ+µ

(−(λ+µ+2)
p−1

)1/2
zp−1
1

)
.(6.5)

This allows us to compute the 2× 2 matrix-valued kernel function

KQ(z,w) =
∞∑

p=0

e(1)
p (z)e(1)

p (w)∗ +
∞∑

p=0

e(2)
p (z)e(2)

p (w)∗, z,w ∈ D2
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corresponding to the quotient module. Indeed, a straight forward computation shows that

KQ(z,w)|res 4

=

(
(1− |z|2)−(λ+µ) µz(1− |z|2)−(λ+µ+1)

µz̄(1− |z|2)−(λ+µ+1) µ2

λ+µ
d

d|z|2
(|z|2(1− |z|2)−(λ+µ+1)

)
+ µλ

λ+µ(1− |z|2)−(λ+µ+2)

)

=
((
(1− |z1|2)−λ∂i∂̄j(1− |z2|2)−µ

|res 4
))

i,j=0,1

= (JK)(z,w)|res Z, z, w ∈ D2,

where 4 = {(z, z) ∈ D2 : z ∈ D}. These calculations give an explicit illustration of one of the
main theorems on quotient modules from [14, Theorem 3.4].

6.5. Let E be a holomorphic hermitian line bundle defined on the bi-disc and J (k)E be the jet
bundle of order k associated to E. The Möbius group acts on the holomorphic sections of the
jet bundle J (k)E via the module map s 7→ Jφ · s, where φ = (ϕ,ϕ) for ϕ in Möb. The jet bundle
along with this action of the group Möb on its sections will be denoted by (Jϕ)∗(J (k)E). The
bundle E is said to be Möb – homogeneous of rank k if the jet bundle J (k)E of E is equivalent
to (Jϕ)∗(J (k)E) on the set 4 = {(z, z) : z ∈ D} ⊆ D2 for all ϕ in the Möbius group.

It is then natural to ask which quotient modules over the bi-disc algebra are Möb – homo-
geneous. In the case of rank k = 2, we have shown that the modules M(λ,µ) are Möb×Möb –
homogeneous. Therefore, these are Möb – homogeneous as well. Are there any others? We first
consider this question for bundles E over the bi-disc.

Let π : Eβ
α,δ → D2 be a hermitian (trivial) holomorphic line bundle determined by the holo-

morphic frame

γ(w)(z) = (1− z1w̄2)β(1− z2w̄1)β(1− z1w̄1)−α(1− z2w̄2)−δ

at w ∈ D2. Let ‖γ(w)‖2 = |(1 − w1w̄2)|2β(1 − |w1|2)−α(1 − |w2|2)−δ. We note that the metric
for the jet bundle J (2)Eα,δ

β is then given by
((
∂i

1∂̄
j
1‖γ(w)‖2))

i,j=0,1
. But for this to be positive

definite at w = (w,w), w ∈ D, we must have the conditions: α, δ > 0 and αδ − |β|2 > 0.

Theorem 4. A holomorphic hermitian line bundle E over the bi-disc is Möb – homogeneous of
rank 2 if and only if E is isomorphic to Eβ

α,δ for α, δ > 0 and some real number β satisfying
αδ − |β|2 > 0.

Proof. To prove the “if” part, we compute the curvatures of Eβ
α,δ as well as that of ϕ∗(Eβ

α,δ),
using the chain rule (6.1), and verify that the restrictions of these to the set 4 are equal.

For the “only if” part, let E be a line bundle which is Möb – homogeneous of rank 2. Let
K(z) =

∑2
i,j=1 Kij(z)dzi ∧ dz̄j be the (1, 1) form valued curvature of the line bundle E. Then

the coefficients Kij |res 4 form a complete set of invariants for J (2)E|res 4.

On the other hand, it is easy to see using the chain rule (6.1) that the curvature Kϕ∗E
restricted to the set 4 is given by the formula

Kϕ∗E(z, z) =
(1− |a|2)2
|1− āz|4 (KE ◦ φ−1)(z, z),
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where φ−1 = (ϕ−1, ϕ−1) and ϕ(z) = z−a
1−āz for a ∈ D. Now, if ϕ∗(J (2)E) is unitarily equivalent

to J (2)E on 4 ⊆ D2, then

(KE)ij(z, z) =
(1− |a|2)2
|1− āz|4 ((KE)ij ◦ ϕ−1)(z, z)

for all a ∈ D. Putting z = 0, we obtain

(6.6) (KE)ij(0, 0)(1− |a|2)−2 = (KE)ij(a, a), (KE)ij(0, 0) =
(

α β
β̄ δ

)
.

We assume that the metric h for E is normalized at 0. The curvature of E at 0 for a nor-
malized metric is

∑2
i,j=1(∂̄i∂jh)(0)dz̄i ∧ dzj . However, the metric for the jet bundle J (2)E at 0

is ((∂̄i∂jh)(0)))2i,j=1. This metric must be positive definite which is equivalent to the condition
αδ − |β|2 > 0.

For the rest of the proof, it will be convenient to work with the coordinates u1 = (z1 + z2)/2
and u2 = (z1 − z2)/2. The curvature of the bundle E with respect to these new coordinates is
then easily seen to be of the form

(6.7) KE(u1, u2)|u2=0 =
(
α+ δ + β + β̄ α− δ + β − β̄
α− δ + β − β̄ α+ δ − (β + β̄)

)
(1− |u1|2)−2.

Let us set a = α + δ + β + β̄, b = α − δ + β − β̄, and c = α + δ − (β + β̄). Let γ(u1, u2) =∑∞
m,n=0 amn(u1, ū1)um

2 ū
n
2 be a positive real analytic function on D2. We will try to find the

coefficients amn so as to ensure that the curvature of γ restricted to the set u2 = 0 satisfies
the equation (6.7). We will let ∂i denote differentiation with respect to u1 or u2 depending on
whether i = 1 or i = 2. It is clear that the equation (6.7) forces

( ∂2

∂1∂̄1
log ‖γ‖2)|u2=0

=
∂2

∂1∂̄1
log a00(6.8)

= a(1− |u1|2)−2.

It then follows that a00 = (1− |u1|2)−a. Similar calculations show that

( ∂2

∂̄1∂2
log ‖γ‖2)|u2=0

= a−2
00 (a00 ∂̄1 a10 − a10 ∂̄1 a00)(6.9)

= b(1− |u1|2)−2.

Choosing a10 = (b/a)∂1 a00 = b ū1(1− |u1|2)−a−1 = b a00 ū1(1− |u1|2)−1, we verify the equation
(6.9). Finally, we have

( ∂2

∂̄2∂2
log ‖γ‖2)|u2=0

= a−2
00 (a11a00 − |a10|2)(6.10)

= c(1− |u1|2)−2.

We can now solve for

a11 = a−1
00

(
c(1− |u1|2)−2a2

00 + b2|u1|2a2
00(1− |u1|2)−2

)
(6.11)

= a00(1− |u1|2)−2(c+ b2|u1|2).

Recall that the restriction of the curvature determines the coefficients a00, a10 and a11 in the
metric γ modulo unitary equivalence of the quotient modules. Therefore, the positive definite
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matrix-valued function Γ =
(
a00 a01

a10 a11

)
describes all possible homogeneous bundles of rank 2

on the bi-disc. We see that the jet bundle J (2)Eβ
α,δ on 4 may be obtained from the line bundle

Eβ
α,δ and that the curvature of this line bundle, computed with respect to the variables u1, u2 at

(u1, 0), u1 ∈ D, is exactly what is prescribed in (6.7). This completes the proof. ¤

Whether the holomorphic hermitian line bundles Eβ
α,δ, αδ− |β|2 > 0, correspond to a Hilbert

module M over the algebra A(Ω) depends on the question of positive definiteness of the function
γ(w)(z) for z, w ∈ D2.

7. Some closing Remarks

As is true in many cases, the current paper probably raises as many questions as it answers.
While our hope is to investigate many of the directions suggested in the future, we want to point
them out here. Also, other thoughts seem to be of a more intuitive, preliminary nature but
promise tantalizing connections with other topics. We will attempt to record these possibilities
as well.

7.1. We begin with a succinct conceptual recollection of the original connection of operator
theory with complex geometry couched in the context studied in this paper.

As mentioned in Section 1, the kernel functionKM defined for a finite-rank k quasi-free Hilbert
module M over a domain Ω can be used to define a hermitian holomorphic rank k vector bundle
EM which is a pullback of a holomorphic map from Ω to the Grassmanian of k-dimensional
subspaces of M. Moreover, this bundle determines the module up to unitary equivalence. Since
for U an open subset of Ω, one can show that the span of the fibers of EM over U equals M,
the restriction (EM)|U of EM to U also determines M. Hence there is no compelling reason to
consider the bundle over the largest open set possible. However, the fibers of EM over any point
of Ω can still be seen in terms of M.

In particular, the fiber of EM at w ∈ Ω can be identified naturally with the quotient
M/[A(Ω)wM], where [A(Ω)wM] denotes the closure of the linear span of the products of A(Ω)w

with the functions in M, and A(Ω)w is the maximal ideal of functions in A(Ω) that vanish at w.
It is shown in [14] that the disjoint union of these fibers can be identified with EM. Moreover,
for f a function in A(Ω), the module action defines a holomorphic bundle map on EM which is
multiplication by the scalar f(w). We complete this brief summary by stating the three basic
parts of the theory in the form of a theorem.

Theorem 7.1. Let M be a Hilbert module in the class Bk(Ω) with associated bundle EM. Then

(a) a complete set of “geometric invariants” for a hermitian holomorphic vector bundle E,
which determines the bundle up to equivalence, consists of its curvature and sufficiently
many partial derivatives of the curvature;

(b) a complete set of “operator invariants” which determines the Hilbert module M up to
unitary equivalence, consists of the m-tuples of commuting nilpotent matrices obtained by
restricting the coordinate multiplication operators to the common generalized eigenspaces
to high enough order; and
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(c) the “geometric invariants” of (a) determines the “operator invariants” of (b) and vice
versa.

We refer the reader to the earlier papers [6, 7, 8, 5] for complete details.

7.2. Now we want to consider the same set of questions for the quotient Hilbert modules
considered in this paper.

We begin with a few comments on the notion of an analytic hypersurface. In general, a subset
Z of Ω defined as the zero set of a holomorphic function possesses singularities of various kinds.
Even so, the set of smooth manifold points forms a dense open subset Z′ of Z. Although one
can restrict attention to Z′ contained in a smaller open subset of Ω, as we have done, a function
in M that vanishes on Z′ will actually vanish on all of Z. Moreover, the quotient Hilbert module
will yield a kind of spectral sheaf defined over all of Z with the fibers over singular points also
having an operator theoretic meaning. But this phenomenon is a topic for a later investigation.
Thus we will assume, as we have done in the paper, that Z is a smooth manifold.

In Section 3 we showed how to construct the jet bundle J (k)EM over an open subset U of Ω
on which there is a “good defining function” ϕ and determined the change in this construction
corresponding to a change in defining function. An obvious question which presents itself at
this point is whether or not the jet bundle can be defined over a neighborhood of Z or even on
all of Z? As in the previous section, one can use the fact that the J (k)EM constructed on an
open set U is defined as a pullback bundle from the Grassmanian of k-dimensional subspaces
of the quotient Hilbert space Q to identify it and its fibers concretely, at least over points of
Z. Analogous to the earlier case, such a fiber can be identified with Q/[A(k)(Ω)wQ] for w in Z.
Thus, one can show that J (k)EM is a well-defined hermitian holomorphic vector bundle over Z.
Actually, there is a simpler expression for these fibers. For w ∈ Z and v a vector normal to
Z at w, let A(Ω)w,v denote the functions in A(Ω) for which both the function and the partial
derivative in the v-direction vanish at w to order k. Then one can show that Q/[A(k)(Ω)wQ] is
naturally isomorphic to M/[A(k)(Ω)w,vM]. (Here the exponent again refers to the linear span of
k-fold products.) In this context, even more is true.

The identification of Q/[A(k)(Ω)w,vQ] with the fiber over w preserves Q/[A(i)(Ω)w,vQ] for 1 ≤
i ≤ k, and hence the flag structure of J (k)EM is also well-defined over Z. To make this more
precise, one needs to recall the special frame for the jet bundle constructed over an open set U in
Section 4. Now the metric on J (k)EM defined in Section 3 is the same as the one inherited from
the Grassmanian or the quotient norm on M/[A(k)(Ω)w,vM]. But there is even more structure
present.

For ψ a function in A(Ω), a bounded operator is defined on Q and hence also on each fiber
Q/[A(k)(Ω)w,vQ]. Relative to the special basis chosen in Section 4, the operator at each point
w is a Toeplitz-like matrix. In particular, the matrix for a defining function for Z at w in Z is
a nilpotent matrix of order k. It is the unitary equivalence class of this nilpotent at the points
w in Z that corresponds to the operator invariants for this case. We summarize these results in
the following theorem:

Theorem 7.2. Let M be a rank one quasi-free Hilbert module over A(Ω) and Z be an analytic
hypersurface contained in Ω. Then the jet bundle J (k)EM over Z can be identified with the union
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of the fibers M/[A(k)(Ω)w,vM]. Moreover, the module action induces by restriction to each fiber
an algebra isomorphic to the lower triangular Toeplitz matrices. Finally, the quotient module
determines these fiber operators up to unitary equivalence.

Unfortunately, at this point we don’t understand what constitutes a complete set of “operator-
theoretic invariants”, although, in analogy with the results described in Section 7.1, we might
expect it to be the commuting m - tuple of nilpotents obtained from the restriction of the
coordinate multipliers to higher order generalized eigenspaces. These invariants can be viewed
as analogues to “geometric invariants” but except for the case k = 2, a better description should
be possible. We will say more about this matter below. We were, however, able to obtain a
complete set of invariants in terms of the operator Dk which is the result we presented in Section
4.

7.3. In this part we begin by reviewing what it means for bundles to be equivalent in terms
of frames, in both the contexts of sections 7.1 and 7.2. With that information in hand, we will
see that characterizing equivalence can be divided into two parts, equivalence at a point and
equivalence in a neighborhood of the point. After that, we will attempt to use this framework
to interpret the invariants we have obtained earlier in the paper.

In section 7.1 the bundle EM in question has rank k and a hermitian holomorphic structure
and is defined as a pullback from the Grassmanian. Moreover, at least locally on an open set U
of Ω, one can find a holomorphic frame {s1(w), . . . , sk(w)} which we can take to be holomorphic
M - valued functions on U , where M is a Hilbert module over A(Ω).

Now suppose M̃ is another Hilbert module over A(Ω) which defines a rank k hermitian holo-
morphic bundle EM̃ with a holomorphic frame {s̃1(w), . . . , s̃k(w)} also over U . What does it
mean to say that EM and EM̃ are equivalent over U?

Essentially, there must exist a k × k matrix of holomorphic functions ((ψi,j)) on U such that

(1) s̃p(w) =
∑k

j=1 ψp,j(w)sj(w) for p = 1, . . . , k; and
(2) the matrix ((ψi,j(w))) defines a unitary map between the corresponding fibers of EM and

EM̃ for w ∈ U .

Now an obvious necessary condition for the existence of such a matrix of functions is that such a
matrix must exist at each point w. This is the pointwise condition mentioned above. However,
here that condition is vacuously satisfied.

By hypothesis, the set of values at w of a frame over U for EM forms a basis for the k-
dimensional fiber as does the set of values at w of a frame over U for EM̃. Now both fibers have
an inner product and we can find a matrix taking one basis to the other and acting as a unitary.
(Note this is not the same thing as saying that the matrix is a unitary matrix since the inner
products on the domain and range are different.) However, note that such a matrix is far from
being unique since we can both pre- and post-multiply it by a unitary matrix. In case k = 1, or
the bundles are line bundles, the non-uniqueness is a scalar of modulus one.

In the general case, one can choose a matrix of functions which accomplishes both (1) and
(2) but the question is whether or not those functions can be chosen to be holomorphic. That
is the question answered in [6], [7], and [8] with the answer involving the curvature and partial
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derivatives of the curvature. We will not proceed any further with a descriptive analysis in this
case.

7.4. Now we want to treat the bundle discussed in 7.2 which arises from the quotient Hilbert
module in the same fashion as we did for EM.

In particular, we have the jet bundles for the two Hilbert modules M and M̃. Each has rank k
and there is a canonical frame s(w) over an open set U for each once one fixes sections s(w) and
s̃(w). The other elements of the frame are obtained by differentiating the given section in the
direction normal to the hypersurface Z using the same good defining function for each. Again,
we ask when these two bundles are equivalent but now we want more, not just equivalence of the
two bundles but a bundle map effecting that equivalence which is also a module map. Before
discussing just what that entails, let us point out that although we didn’t mention it in 7.3, the
bundle maps discussed there were module maps because the action induced by a multiplier ψ in
A(Ω) on the fiber over w is just multiplication by the scalar ψ(w).

Now a bundle map effecting an equivalence between J (k)EM and J (k)EM̃ must again be a
matrix of holomorphic functions satisfying (1) and (2) but now there is also a condition:

(3) the matrix for the value of ((ψi,j)) at w Toeplitz-like matrices, that is, it is is lower
triangular and the entries on a diagonal are predetermined multiples of each other.
Moreover, the matrix corresponding to a defining function for Z at w is a nilpotent
of order k which is a single Jordan block.

This latter condition places strong restrictions on the matrix function Ψ, particularly in view
of (2) which means it must define a unitary map. And, whereas in the case of 7.3 there is no
pointwise obstruction, now there is. This issue can be approached as follows.

Consider a separable, infinite dimensional Hilbert space H and the collection Nk(H) of or-
dered, linearly independent k-tuples X = {x1, . . . , xk} in H. For a given X in Nk(H), there is
a unique element Gr(X) of the Grassmanian, Grk(H), of k - dimensional subspaces of H which
it determines. There is also an element St(X) in the complex Stiefel manifold of linearly inde-
pendent subsets with k elements. Finally, let us consider the order k nilpotent operator Nil(X)
defined on the span of the vectors in X by the simple shift, that is, the operator which takes xi

to xi+1 for 0 ≤ i < k.

We can define several notions of equivalence on Nk(H) as follows. First, we can identify X

and X ′ if the subspaces they span are equal or equivalently, if Gr(X) = Gr(X ′). Second, we can
identify them if the two Stieffel elements, St(X) and St(X ′), are unitarily equivalent. Finally,
we can identify them if the nilpotent operators Nil(X) and Nil(X ′) are unitarily equivalent.
One can easily see that equivalence of the nilpotents implies equivalence of the Stieffel elements
implies equivalence of the Grassmanians, and none of the equivalences are the same. Moreover,
one can easily determine the Lie group of operators that respect each of the equivalences, in case
X = X ′.

Now let us return to the question of a pointwise obstruction to the existence of a k×k matrix
of holomorphic functions satisfying (1), (2) and (3).

Theorem 7.3. Let s(w) and s′(w) be the canonical frames over U for two jet bundles determined
by the same defining function and consider the elements S(w) and S′(w) of Nk(M) and Nk(M′),
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respectively, that they determine. Then a necessary condition for the jet bundles to be equivalent
is that Nk(M) and Nk(M′) are equivalent.

The proof is straightforward since (1), (2), and (3) imply equivalence of the nilpotents.

If s(w) and s′(w) are the canonical frames over U for the two jet bundles determined by
the same defining function, then for each w ∈ U they yield elements in Nk(M) and Nk(M′),
respectively, by evaluating the ordered frames at w. Conditions (1), (2) and (3) imply that
the corresponding nilpotent operators are unitarily equivalent. Hence for each w, a necessary
condition for the jet bundles to be equivalent is that the elements in Nk are equivalent, and this
does not always happen. The relationship of this condition to the unitary invariants obtained
in this paper will be considered in subsequent work.

7.5. We conclude with a number of comments suggesting additional connections or further lines
of investigation of the results of this paper.

The “nilpotent invariants” identified in the previous subsection refine the Stieffel invariants
studied earlier and would seem to be related to the “moving frames” of Cartan [4]. Further, one
should be able to use the Lie algebra structure relative to the Toeplitz Lie group to define char-
acteristic forms which capture these invariants. Moreover, if one assumes that those invariants
are the same for the jet bundles for two line bundles, then the remaining degrees of freedom in
choosing the bundle map to be holomorphic essentially amounts to a phase which in this case is
a unitary-valued function. The existence question for such a phase would seem to be related to
the existence of complex structure and thus to Chern-Moser invariants.

If one considers quotient modules for submodules of functions that vanish to increasing order,
then they form a natural inverse limit of Hilbert modules whose limit will be M. In a dual
manner, one should be able to show that the direct limit of the jet bundles constructed for these
quotient modules has a limit equal to Ω×M. One way of viewing these constructions would be
as expanding M as a “Taylor series” of modules over Z.

Finally, assume that there is a global defining function φ for Z in A(Ω) and consider the
operator it defines on the quotient module defined by the functions which vanish to order k in
the direction of Z. Then φ defines a bundle map on the k×k matrix-valued kernel Hilbert space
for the quotient which can be written as the scalar multiplier φIk plus a nilpotent matrix-valued
multiplier. Such an operator can be seen to be analogous to the spectral operators of Dunford
[17]. That is the case if one replaces a normal operator by a multiplication operator on a space of
holomorphic functions. An abstract characterization of operators having such a representation
as well as a study of their properties would seem to be of interest.

It is clear that the ideas and techniques of this paper raise many questions that warrant
additional study.
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