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Abstract: It is shown that a tangent vector v in TωΩ determines a finite dimensional
Hilbert module over H∞(Ω) and that the module is contractive if and only if CΩ, ω(v),
the Carathéodory length of v, is less or equal to one. More generally, an element V of
TωΩ⊗Mn also determines a finite dimensional Hilbert module over H∞(Ω) and if the
norm on TωΩ⊗Mn is understood to be the injective tensor product norm then again the
module is contractive if and only if ‖V ‖ is less or equal to one. The question of which
contractive modules are completely contractive over H∞(Ω) is discussed in terms of the
Carathéodory metric on Ω. The relationship of this question with certian aspects of the
theory of tensor products for operator spaces is established.
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1 Introduction

The notion of a Hilbert module over a function algebra was introduced recently by R.G.
Douglas (cf. [3]). In this paper we study a class of finite dimensional Hilbert modules
over the algebra of bounded analytic functions on a domain Ω ⊆ Cm. The class of
modules we study here have been investigated in a series of papers [1], [7], [8], [9], [10].
Our main objective is to determine when these modules are contractive, and among the
contractive modules, which ones are completely contractive. Recent examples of contractive
modules (over A(ID3) due to Parrot (cf. [9]), and over A(IB2), [8]) which are not completely
contractive are in this class.

We show that each tangent vector v ∈ TωΩ gives rise to a certain two dimensional
module over the algebra H∞(Ω). Further, these modules are contractive if and only
if they are completely contractive. This is an immediate consequence of the distance
decreasing property of the Carathéodory metric. Subsequently, we introduce the notion of
a matricial tangent vector, that is an element of TωΩ⊗Mn and show that each matricial
tangent vector gives rise to a module of dimension 2n. However, while the Carathéodory
metric on the T0(Mk)1 is just the operator norm, the analogue of the Carathéodory metric
on the matricial tangent space T0(Mk)1 ⊗Mn is smaller than the usual operator norm
(see example 2.1). For this reason, contractive modules are not necessarily completely
contractive.

It turns out that the module determined by a matricial tangent vector V = (V1, . . . , Vm)
at ω ∈ Ω is contractive if and only if, the induced linear map ρ : H∞(Ω) →Mn, ρ(f) =
∇f(ω)(V ) is a contraction. There is a norm on Cm [10, Proposition 3.1] such that the
set {∇f(ω) : f ∈ H∞(Ω), ‖f‖∞ ≤ 1} is a unit ball with respect to this norm. Thus,
the contractivity of the module is equivalent to the contractivity of ρ : Cm → Mn.
Similarly, the complete contractivity of such a module is equivalent to contractivity of
ρ(k) : H∞(Ω) ⊗Mk → Mnk, ρ(k)(F ) = DF (ω)(V ) for all k. There is a norm on Cmk

[10, Proposition 3.1] such that the set {DF (ω) : F ∈ H∞(Ω) ⊗Mk, ‖F‖∞ ≤ 1} ⊂ Cmk

is a unit ball with respect to this norm. Thus, complete contractivity of the module is
equivlaent to contractivity of ρ(k) : Cmk →Mn for all k. An explicit description of these
norms was a question raised by Paulsen [loc. cit.]. As a consequence of our duality lemma,
this norm is explicitly defined for a domain Ω ⊂ Cm. In the particular case when Ω is a
product domain Ω× Ω̃, for example, the norm is

C∗Ω,ω⊗̌‖ ‖op

on T ∗ωΩ⊗Mk.
In section 2, we provide a functorial frame work for dealing with distance decreasing

norms, and introduce the notion of a pullback and pushforward of a given norm with
respect to a fixed family of linear maps, which obey a universal norm decreasing property
with respect to that family. Indeed, the usual Carathéodory and Kobayashi norms are
the classical prototypes of these constructions. These constructions enable us to define
norms on matricial (co)tangent vectors (see sections 2.1 and 2.3). The pullback and the
pushforward norms are dual notions, as we establish in our duality lemma 2.1.

The issue of when contractive modules of our class are completely contractive, now gets
formulated as follows.
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For a matricial tangent vector V ∈ TωΩ⊗Mn, we define the injective tensor product

ČΩ,ω(V ) = CΩ,ω⊗̌‖ ‖op

as a pullback norm. The contractivity of the Hilbert module determined by V is equivalent
to ČΩ,ω(V ) ≤ 1 (see Theorem 2.2).

The unit ball (Mk)1 with respect to operator norm is a homogeneous domain, and
has transitive family of bi-holomorphic automorphisms acting on it. Thus, putting the
operator norm on the matrix tangent space at the origin uniquely determines a norm on
the matrix tangent bundle of (Mk)1, by requiring these automorphisms to be isometries.
Let us call this norm δ. We define the pullback norm δL, where L is the family DΩ(k)(ω)
(see 2.10), on the matrix tangent space TωΩ⊗Mn. It follows from the Corollary 2.5 that
complete contractivity of the module is equivalent to the condition

δL(V ) ≤ ČΩ,ω(V ).

In other words, the question of contractivity implying complete contractivity “linearises”
for our class of modules, that is, depends only on derivatives of functions in H∞(Ω)⊗Mk.
More precisely, complete contractivity follows if for all F ∈ Holω(Ω, (Mk)1), the map

DF (ω) : (TωΩ⊗Mn, ČΩ,ω)→ (Tω(Mk)1 ⊗Mn, δ),

(see 2.16), is norm decreasing.
We would like to view this as a generalised Schwarz lemma. A result due to Yau [14]

provides a fairly general Schwarz lemma under curvature hypotheses on the domain and
target manifolds. In analogy with this result, one should seek geometric conditions on
the various different norms on the matricial tangent spaces of the domain and target. We
note here that as opposed to the situation in [14], our tangent spaces are matricial and the
norms involved are not necessarily Hermitian, Kahler etc., and so, for example, a suitable
notion of curvature would have to be found for such a Schwarz lemma. For instance, the
evidence in support of such a lemma is Ando’s theorem stating that contractive modules
over A(ID2) are completely contractive.

In section 2.6, we introduce the notion of a norm decreasing metric for matricial tangent
vectors. Let KΩ,ω and CΩ,ω be the Kobayashi and Carathéodory metric respectively. It
is shown that among all such metrics, the injective tensor product norm on

((TωΩ, CΩ,ω)⊗̌(Mn, op)),

is the smallest, while, the projective tensor product norm on

((TωΩ,KΩ,ω)⊗̂(Mn, op)),

is the largest such distance decreasing metric. In a recent paper [1], J. Agler has reproved
Lempert’s theorem, which states that the Carathéodory and the Kobayashi distances are
the same for a convex domain Ω. However, using Parrott’s example, it is easy to see that
for the tri-disk, the two extremal metrics for matricial tangent vectors we have obtained
do not agree (see Remark 2.4).
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1.1 Tangent vectors

Let Ω be a bounded region in Cm and ω = (ω1, . . . , ωm) in Ω be an arbitrary but fixed
point. In what follows, it will be useful to think of a vector v in Cm as an element of the
tangent space TωΩ. For any pair of complex scalars α, and β, let

N(β, α) =

[
α β
0 α

]
∈M2(C), (1.1)

and given a tangent vector v = (v1, . . . , vm) in TωΩ, define the commuting m-tuple

N(v, ω) = (N(v1, ω1), . . . , N(vm, ωm)) . (1.2)

Let ϑ(ω) be the germs of holomorphic functions at ω. As usual a tangent vector v in TωΩ
acts on any f in ϑ(ω) by the rule

v(f) = 〈∇f(ω), v〉. (1.3)

It is not hard to see that the map ρN : ϑ(ω)→M2(C) defined by

ρN (f) def= f(N(v, ω)) = N(v(f), f(ω)) (1.4)

is a continuous algebra homomorphism coinciding with the evaluation map on C[z1, . . . , zm]
(cf. [7, Proposition 2.2.3]). We can think of C2 as a module over ϑ(ω) via the action
m : ϑ(ω)× C2 → C2

m(f, ν) = ρN (f) · ν, f ∈ ϑ(ω) and ν ∈ C2. (1.5)

We will write C2
N(v,ω) for this module. Thus, each tangent vector v in TωΩ determines

a module C2
N(v,ω) over ϑ(ω). In particular, C2

N(v,ω) is also a module over H∞(Ω), the
algebra of holomorphic functions on Ω. We wish to determine, when the module C2

N(v,ω)

is contractive over H∞(Ω), that is, to determine the set

ΓΩ,ω = {v ∈ TωΩ : ‖m(f, ν)‖`2 ≤ ‖f‖∞‖ν‖`2}
= {v ∈ TωΩ : ‖ρN (f)‖op ≤ 1, f : Ω→ cl ID holomorphic}, (1.6)

where cl ID is the closed unit disk in C.

Remark 1.1 Note that, by the maximum modulus principle, ΓΩ,ω does not change, if we
use the open unit disk ID as the target space in 1.6.

We will consider later, more general modules determined by what we call matricial
tangent vectors.

The following notation will be very convenient. For fixed ω in Ω and any domain ∆
containing 0, we let,

Holω(Ω,∆) = {f : Ω→ ∆ is holomorphic, and f(ω) = 0}, (1.7)
Holω(∆,Ω) = {f : ∆→ Ω is holomorphic, and f(0) = ω}, (1.8)
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and for a normed linear space X, we let (X)1 be the closed unit ball in X. Note that, any
holomorphic function f : Ω→ ∆ induces a linear map f∗ : TωΩ→ Tf(ω)∆, defined by

f∗(v) = (v(f1), . . . , v(fm)), (1.9)

where (f1, . . . , fm) = f . In particular, f∗(v) = v(f) is in T0ID for any f in Holω(Ω, ID)
and v in TωΩ. It is not hard to see that [7, Lemma 3.2], C2

N(v,ω) is contractive if and only
if

sup {‖N(f∗(v), f(ω))‖op : f ∈ Holω(Ω, ID)} ≤ 1. (1.10)

For any f in Holω(Ω, ID),

‖N(f∗(v), f(ω))‖op =

∥∥∥∥∥
[

0 f∗(v)
0 0

]∥∥∥∥∥
op

= |f∗(v)|. (1.11)

The Carathéodory length CΩ, ω(v) of a tangent vector v in TωΩ is defind by the formula

CΩ, ω(v) = sup {|f∗(v)| : f ∈ Holω(Ω, ID)}, (1.12)

and is a norm for any bounded domain Ω in Cm. It follows that, if C2
N(v,ω) is contractive,

then the Carathéodory norm of the tangent vector v in TωΩ is at most 1. The indicatrix
of Ω at ω is the closed unit ball in TωΩ with respct to suitable length function on TωΩ. We
will write the indicatrix with respect to the Carathéodory norm as Γ(CΩ,ω). Note that,

ΓΩ,ω = Γ(CΩ,ω). (1.13)

For our purposes, it will be necessary to introduce the dual object

DΩ(ω) def= {∇f(ω) : f ∈ Holω(Ω, ID)} (1.14)

However, the fact that DΩ(ω) = Γ(C∗Ω,ω) will be established in section 2.6.
We refer the reader to the survey article [5] for details on the Carathéodory norm and

the indicatrix.
There are some natural modules that can be constructed from C2

N(v,ω) as follows. Let
H∞(Ω)⊗Mk be the algbraic tensor product of H∞(Ω) and the linear space of k × k
matrices, Mk. We think of an element of H∞(Ω)⊗Mk as a Mk-valued holomorphic
function and declare its norm to be the supremum norm on Ω. Unless, we specify to the
contrary, Mk is to be thought of as a normed linear space with respect to the operator
norm. The homomorphism ρN ⊗ Ik : H∞(Ω)⊗Mk →M2k, which we shall denote by ρ

(k)
N ,

makes the k-fold direct sum, C2
N(v,ω) ⊕ · · · ⊕ C2

N(v,ω) a module over H∞(Ω)⊗Mk via the
action

(F, ν)→ (ρ(k)
N )(F ) · ν, ν ∈ C2

N(v,ω) ⊕ · · · ⊕ C2
N(v,ω), (1.15)

where the dot on the right indicates usual matrix multipication. If F is in H∞(Ω)⊗Mkthen
F =

[
F jl

]
: Ω→Mk , and we have

(ρ(k)
N )

([
F jl

])
=

[
N

(
F jl

)]
=

[
N

(
F jl
∗ (v), F jl(ω)

)]
(1.16)
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We say that the module C2
N(v,ω) is completely contractive if for each k, the map ρ

(k)
N is a

contraction. It will be useful to think of C2
N(v,ω)⊕ · · ·⊕C2

N(v,ω) as module with respect to
a different but equivalent action. For any pair of linear transformations T and A in Mk,
let

N(T,A) =

[
A T
0 A

]
(1.17)

By applying suitable row and column operations, we can write

(ρ(k)
N )(F ) =

[
N

(
F jl
∗ (v), F jl(ω)

)]
'

[
F (ω)

(
F jl
∗ (v)

)
0 F (ω)

]
= N(F∗(v), F (ω)), (1.18)

where F∗ : TωΩ→ TF (ω)Mk is the induced map.
Note that if we write F in Holω(Ω, (Mk)1) as

F (z) = (z − ω1)F1 + · · ·+ (z − ωm)Fm + · · · , F` ∈Mk (1.19)

then
F∗(v) = v1F1 + · · ·+ vmFm. (1.20)

The module structure on C2
N(v,ω) ⊕ · · · ⊕ C2

N(v,ω) over H∞(Ω)⊗Mk determined by the
action

m(k) : (F, ν)→ N(F∗(v), F (ω)) · ν (1.21)

is isomorphic to the original one, via a unitary module map. Thus, the contractivity ρ
(k)
N

is equivalent to that of m(k). Once again, it can be shown [8, Lemma 1.6] that ρ
(k)
N (or,

for that matter m(k)) is a contraction if and only if

sup {‖N(F∗(v), F (ω))‖op : F ∈ Holω(Ω, (Mk)1)} ≤ 1. (1.22)

However, for F in Holω(Ω, (Mk)1)

‖N(F∗(v), F (ω))‖op =

∥∥∥∥∥
[

0 F∗(v)
0 0

]∥∥∥∥∥
op

= ‖F∗(v)‖op. (1.23)

The following is a version of Schwarz Lemma.

Lemma 1.1 If Ω in Cm is the unit ball with respect to some norm ‖ · ‖Ω on Cm, then the
indicatrix Γ(CΩ,0) is Ω.

Proof: Recall that, the indicatrix Γ(CΩ,0) is

Γ(CΩ,0) = {v ∈ T0Ω : CΩ,0(v) ≤ 1}
= {v ∈ T0Ω : |〈∇f(0), v〉| ≤ 1, f ∈ Hol0(Ω, ID)}.
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Here, we are thinking of ∇f(0) as a co-tangent vector in T ∗0 Ω. One form of Schwarz lemma
[12, p.161], implies that ∇f(0) is a linear function in Hol0(Ω, ID), that is, ∇f(0) is a linear
functional of norm at most 1, on (Cm, ‖ · ‖Ω). On the other hand, any linear functional of
norm at most 1, on (Cm, ‖ · ‖Ω), is in Hol0(Ω, ID). Thus,

DΩ(0) = {∇f(0) : f ∈ Hol0(Ω, ID)} = (Cm, ‖ · ‖∗Ω)1 .

It now follows that CΩ,0(V ) ≤ 1 if and only if v is in (Cm, ‖ · ‖∗∗Ω )1. Since, (Cm, ‖ · ‖Ω)∗∗

and (Cm, ‖ · ‖Ω) are isometrically isomorphic, the proof is complete.
While the proof of the following theorem is not difficult, we wish to emphasize that

the statement of the theorem is equivalent to the distance decreasing property of the
Carathéodory metric.

Theorem 1.1 Every contractive module C2
N(v,ω) is completely contractive.

Proof: We have to show that for any v in ΓΩ,ω =Γ(CΩ,ω)

‖F∗(v)‖ ≤ 1, F ∈ Holω(Ω, (Mk)1).

The Carathéodory metric is distance decreasing, that is, for any holomorphic map
f : Ω→ Ω̃,

C
Ω̃,f(ω)

(f∗(v)) ≤ CΩ, ω(v).

In particular, we have
C(Mk)1,0(F∗(v)) ≤ CΩ, ω(v).

A trivial consequence of the previous lemma is that, CΩ,0(v) = ‖v‖Ω for any ball
((Cm, ‖ · ‖Ω))1. In particular, C(Mk)1,0(V ) = ‖V ‖op, and for v in Γ(CΩ,ω), we have

‖F∗(v)‖op = C(Mk)1,0(F∗(v)) ≤ CΩ, ω(v) ≤ 1.

The proof is now complete.
Let K be a compact subset of Cm and A(int K), be the algebra of holomorphic func-

tions on int K, which extend continuously to K. Contractive modules over A(int K)
correspond in a one to one manner to m-tuples of Hilbert space operators, which admit
K as a spectral set (cf. [3]). Recently, J. Agler has introduced the notion of a spectral
domain for an m-tuple of operaors. Contractive Hilbert modules over H∞(Ω) correspond
in a one to one manner to m-tuples, which admit Ω as a spectral domain. Thus Theorem
1.2 is the limiting case of Theorem 1.9 of [1]. While, Agler suggests that a proof can be
obtained by limiting arguments, we have included a direct proof of Theorem 1.1, both to
introduce some basic techniques and to emphasize the complex geometric language.

2 Matricial Tangent Vectors

In this section, we consider modules determined by matricial tangent vectors, that is, an
element V of TωΩ⊗Mn. Note that, we may write V ∈ TωΩ⊗Mn either as

V =
n∑

i,j=1

vij ⊗ Eij , vij ∈ TωΩ, (2.1)
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where, Eij is the usual matrix unit, or by setting V l =
[
vij
l

]
, we have

V =
m∑

l=1

el ⊗ V l, V l ∈Mn, (2.2)

where, el is the standard basis vector in Cm. If f : Ω → Ω̃ is holomorphic, then the
induced map f∗ ⊗ In : TωΩ⊗Mn → TωΩ̃⊗Mn, is defined by

(f∗ ⊗ In)(V ) = (f∗ ⊗ In)(
∑

el ⊗ V l)

=
∑

f∗(el)⊗ V l

=
∑

((〈∇f j(ω), el〉)m
j=1)⊗ V l. (2.3)

If fl = ( ∂
∂zl

f)(ω), then

(f∗ ⊗ In)(V ) =
∑

fl ⊗ V l. (2.4)

For V in TωΩ⊗Mn, we will write f∗(V ) instead of (f∗ ⊗ In)(V ). The map ρN : ϑ(ω)→
M2n(C), defined by (see, 1.2 and 1.17)

ρN (f) def= f(N(V, ω1In), . . . , N(V, ωmIn))
= N(f∗(V ), f(ω)In), f ∈ ϑ(ω), (2.5)

is a continuous algebra homomorphism [9, Proposition 2.3], coinciding with the evaluation
map on polynomials. Let C2n

N(V,ω) be the module over H∞(Ω) determined by this action.
As before the k-fold directsum, C2n

N(V,ω)⊕· · ·⊕C2n
N(V,ω) is a module over H∞(Ω)⊗Mk, via

the action determined by

(ρ(k)
N )

([
F jl

])
=

[
F jl(N(V, ω1In)), . . . , N(V, ωmIn)

]
=

[
N

(
F jl
∗ (V ), F jl(ω)In

)]
, (2.6)

where, F =
[
F jl

]
is in H∞(Ω)⊗Mk. However, after suitable row and column operations,

we find that

(ρ(k)
N )

([
F jl

])
=

[
N

(
F jl
∗ (V ), F jl(ω)In

)]
'

[
In ⊗ F (ω) F jl

∗ (V )
0 In ⊗ F (ω)

]
= N(F∗(V ), In ⊗ F (ω)); (2.7)

F∗(V ) = F1 ⊗ V1 + · · ·Fm ⊗ Vm, where Fi = (
∂

∂zi
F jl)(ω) ( see 2.4).

Thus, for F in H∞(Ω)⊗Mk and ν in C2n
N(V,ω)⊕· · ·⊕C2n

N(V,ω), the module structure on the
k-fold directsum of C2n

N(V,ω) determined by either of the actions 2.6, or 2.8, are isomorphic.
We will without loss of generality, consider the k-fold direct sum of C2n

N(V,ω) as a module
over H∞(Ω)⊗Mk via the action induced by N(F∗(V ), In ⊗ F (ω)), and set

(ρ(k)
N )(F ) = N(F∗(V ), In ⊗ F (ω)). (2.8)
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Even in this generality, it can be shown that [9, Lemma 3.3] , ρ
(k)
N is contractive for any

k ≥ 1, if and only if

sup { ‖N(F∗(V ), 0)‖op : F ∈ Holω(Ω, (Mk)1) }
= sup{‖F∗(V )‖op : F ∈ Holω(Ω, (Mk)1) } ≤ 1. (2.9)

Question 2.1 When is a contractive module C2n
N(V,ω) over H∞(Ω), completely contrac-

tive?

Remark 2.1 To answer this question it would be helpful to define

DΩ(k)(ω) def= {DF (ω) : F ∈ Holω(Ω, (Mk)1)}. (2.10)

It turns out that DΩ(k)(ω) is a unit ball with respect to some norm (cf. [10, Proposition
3.1]). We will later determine this norm explicitly (see Corollary 2.1 and 2.2). For a fixed
but arbitrary matricial tangent vector V ∈ TωΩ⊗Mn, set

ρ(f) def= f∗(V ), and ρ(k)(F ) def= F∗(V ),

for f ∈ H∞(Ω), and F ∈ H∞(Ω) ⊗ Mk, respectively. Question 2.1, is answered by
determining the norm

‖ρ(k)‖ = sup{‖ρ(k)(F )‖op : F ∈ Holω(Ω, (Mk)1)}‖. (2.11)

First, we consider the case k = 1, and try to describe the set (Recall, 1.6)

Γ̌Ω,ω = {V ∈ TωΩ⊗Mn : ‖ρN (f)‖op ≤ 1, f : Ω→ ID is holomorphic}
= {V ∈ TωΩ⊗Mn : ‖f∗(V )‖op ≤ 1, f ∈ Holω(Ω, ID)}. (2.12)

To imitate the proof of theorem 1.1, it would then seem natural to define

ČΩ,ω(V ) = sup {‖f∗(V )‖op : f ∈ Holω(Ω, ID)}. (2.13)

It turns out (see Proposition 2.2), ČΩ,ω(V ) is distance decreasing. However, the following
simple example, shows that Č(Mk)1,0(V ), is not always equal to ‖V ‖op.

Example 2.1 Let

V =

[
V11 V12

V21 V22

]
=


1 0
0 0

0 1
0 0

0 0
0 0

0 0
0 0

 .

Note that, ‖V ‖op =
√

2, while

ČΩ,ω(V ) = sup


∣∣∣∣∣∣

∑
i,j=1,2

aijVij

∣∣∣∣∣∣ : |tr [aij ]
∗| ≤ 1

 .

If x and y are unit vectors in C2, then〈 ∑
i,j=1,2

ai,jVi,j

 x, y

〉
= tr ([aij ] [〈Vijx, y〉]∗) .

Since ‖[〈Vijx, y〉]∗‖op ≤ 1, it follows that ČΩ,ω(V ) ≤ 1.
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2.1 Pullbacks

Let V be a finite dimensional vector space, and W be a finite dimensional normed linear
space. Let L ⊂ Hom(V,W) be some family of linear maps. Define a function
‖ ‖L : V → IR+ by

‖v‖L = sup{‖Lv‖ : L ∈ L} (2.14)

It is clear that
‖αv‖L = |α|‖v‖L, α ∈ C,

and

‖v1 + v2‖L = sup{‖Lv1 + Lv2‖ : L ∈ L}
≤ sup{‖Lv1‖+ ‖Lv2‖ : L ∈ L}
≤ ‖v1‖L + ‖v2‖L,

since
‖Lvk‖ ≤ ‖vk‖L for k = 1, 2 and L ∈ L.

It is easy to see that ∩{ker L : L ∈ L} = {0} if and only if ‖ ‖L is a norm.

Proposition 2.1 Let us assume that that ‖ ‖L is a norm. Then

{v : ‖v‖L ≤ 1} = ∩L∈L{L−1(w : ‖w‖ ≤ 1)},

where {w : ‖w‖ ≤ 1} is the unit ball in W.

Proof: ‖v‖L ≤ 1 ⇔ ‖Lv‖ ≤ 1 for all L ∈ L
⇔ Lv ∈ {w : ‖w‖ ≤ 1} for all L ∈ L
⇔ v ∈ L−1{w : ‖w‖ ≤ 1} for all L ∈ L
⇔ v ∈ ∩L∈LL

−1{w : ‖w‖ ≤ |}.

2.2 Examples of L, where ‖ ‖L is a Norm

Example 2.2 Let

W = T0(Mk)1 ∼= (Mk, op),
V = Tω(Ω), and
L = {DF (ω) : F ∈ Hol ω(Ω, (Mk)1)} ⊂ Hom (V,W).

Then ‖ ‖L is a norm.

It is enough to show that for some v ∈ TωΩ, v 6= 0, there exists F in Holω(Ω, (Mk)1) such
that DF (ω)(v) = F∗(v) 6= 0.

So take a linear functional λ : Tω(Ω) → C such that λ(v) 6= 0. Say λ = (λ1 . . . λm).
Then the linear map

λ̃ : Tω(Ω)→Mk = T0((Mk)1), λ̃(v) = λ(v) Id.
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satisfies λ̃(v) 6= 0. If we define F̃ by

F̃ (z) = λ̃[(z − ω)] = (z1 − ω1)λ1 Id + · · ·+ (zm − ωm)λm Id,

then F̃ ∈ Hol ω(Cm,Mk), and clearly DF̃ (ω) = λ̃. However, F̃ does not necessarily map
Ω into (Mk)1. Since Ω is bounded, we can take C = maxz∈Ω |F̃ (z)| < ∞, and F = 1

c F̃

satisfies DF (ω)v = 1
cDF̃ (ω)v = 1

c λ̃(v) 6= 0. So we are done.
Let X and Y be finite dimensional normed vector spaces. It is possible to construct

various norms on the algebraic tensor product X ⊗ Y using the norms on X and Y . One
way is to introduce a norm, which is independant of the representation of the equivalence
class is to assign to

∑n
i=1 xi ⊗ yi the norm it recieves when regarded as an operator from

X∗ to Y , that is

‖
n∑

i=1

xi ⊗ yi‖̌ = sup

{∥∥∥∥∥
n∑

i=1

ϕ(xi)yi

∥∥∥∥∥ : ϕ ∈ X∗, ‖ϕ‖ = 1

}
. (2.15)

The norm ‖ ‖̌ is called the injective tensor product norm.

Example 2.3 Let

W = T0(Mk)1⊗(Mn) ∼= (Mkn, op),
V = Tω(Ω)⊗(Mn, op), and
L = {DF (ω)⊗ Id : F ∈ Holω(Ω, (Mk)1)}

For any bounded domain Ω, ‖ ‖L is a norm as well.

The following is true for vector-spaces of finite dimension. Suppose L : V → W then for
a fixed vector space X, consider

(L⊗ Id) : V ⊗X →W ⊗X

and note that
0→ ker L→ V L→W

is exact and ⊗X is an exact functor

0→ (ker L)⊗X → V ⊗X
L⊗IdX→ W ⊗X

is also exact. So ker(L⊗ IdX) = (kerL)⊗X. Thus,

∩ ker{DF ⊗ IdX : F ∈ Holω(Ω, (Mk)1)}
= ∩{ker DF : F ∈ Holω(Ω, (Mk)1)} ⊗X

= 0.

by the preceeding example.
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Remark 2.2 This example suggests the following definition. For V ∈ V, let

Čk
Ω,ω(V ) def= ‖V ‖L, (2.16)

where L is the same set of linear maps as in the preceding example. Note that, for m ≥ 2,
we can not apply the maximum principle to conclude that the norm Čk

Ω,ω, does not change
if we use only those holomorphic function on Ω, which take their values in the open unit
ball of k × k matrices (Recall 1.1). However, Given any r > 1, we observe that,

Holω(Ω, (Mk)◦1) ⊂ Holω(Ω, (Mk)1) ⊂ Holω(Ω, r(Mk)◦1).

If we call these families L◦, L and rL◦, then the corresponding norms satisfy

‖ ‖L◦ ≤ ‖ ‖L ≤ ‖ ‖rL◦ = r‖ ‖L◦ ,

for all r > 1, and we have equality everywhere, by letting r → 1. Thus, Čk
Ω,ω is the same

whether we use an open or closed matrix ball as the target. The above family L gives a
sort of Carathéodory norm with respect to Holω(Ω, (Mk)1) for matricial tangent vectors
as ‖ ‖L (compare 2.13). We obtain the usual Carathédory metric by taking n=k=1.

The next proposition about ‖ ‖L is a universal functorial property that characterises ‖ ‖L.

Definition 2.1 We say some arbitrary norm ‖ ‖a on V is L - distance decreasing if
L ⊂ (L(V,W))1,that is

‖Lv‖ ≤ ‖v‖a for all L ∈ L.

Proposition 2.2 ‖ ‖L is the smallest L - distance decreasing norm on V.

Proof: It is trivial to check that ‖ ‖L is L - distance decreasing by definition.
The norm ‖ ‖a is L - distance decreasing if and only if

‖Lv‖ ≤ ‖v‖a for all L ∈ L v ∈ V.

Equivalently, sup{‖Lv‖ : L ∈ L} ≤ ‖v‖a, that is, ‖v‖L ≤ ‖v‖a.

The least distance decreasing property of various Caratheodory norms (Examples 2.2 and
2.3) follows for holomorphic maps (see 2.22 and 2.24).

2.3 Pushforwards

There is a dual notion to ‖ ‖L, namely ‖ ‖L, which is defined as follows.
As before, let V and W be finite dimensional vector spaces with a norm on W with

the only difference that L ⊂ Hom(W,V). Define a function ‖ ‖L : V → IR+ by

‖λ‖L = inf{‖µ‖ : Lµ = λ for some L ∈ L, µ ∈ W} (2.17)

= inf{‖µ‖ : µ ∈ L−1(λ)}, where L−1(λ)
def
= ∪{L−1(λ) : L ∈ L},
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for λ ∈ V. If no L with Lµ = λ, exists, define ‖λ‖L = 0 note ‖0‖L = 0, and also for c 6= 0,

‖cλ‖L = inf{‖µ‖ : Lµ = cλ for some µ ∈ W and L ∈ L}

= inf{|c|‖1
c
µ‖ : L(

1
c
µ) = λ for some L ∈ L,

1
c
µ ∈ W}

= |c| inf{‖1
c
µ‖ : L(

1
c
µ) = λ for some L ∈ L,

1
c
µ ∈ W}

= |c| inf{‖µ′‖ : L(µ′) = λ, µ′ ∈ W, L ∈ L}
= |c|‖λ‖L

Example 2.4 Let W = T0(ID),V = Tω(Ω), and

L = {Df(0) : f ∈ Holω(ID,Ω)}.

Note that the norm ‖ ‖L is the Kobayashi norm KΩ,ω on Tω(Ω) (cf. [5]).

We now find sufficient conditions on L so that ‖ ‖L is a norm.

Hypothesis 2.1 We list, for L ⊂ Hom(W,V) the following conditions

(i) there exists a distinguished vector J ∈ W with ‖J‖ = 1 such that for each µ ∈ W with
‖µ‖ = 1, there exists a linear endomorphism (of W) Rµ which is of operator norm 1
and Rµ(J) = µ.

(ii) If L ∈ L and Rµ as in (i) then L ◦Rµ ∈ L.

(iii) For any λ ∈ V, there exists L ∈ L, µ ∈ W such that

Lµ = λ and ‖λ‖L = ‖µ‖

(iv) L is convex, that is, for c1, c2 ∈ IR+, L1, L2 ∈ L we have

c1L1 + c2L2

c1 + c2
∈ L.

Proposition 2.3 If L satisfies Hypothesis 2.1 and J ∈ W be the distinguished unit vector
guaranteed by (i), thereof, then

(a) for any λ ∈ V, there exists an L ∈ L with L(cJ) = λ, where c = ‖λ‖L.

(b) ‖ ‖L is a norm.

Proof of (a): By (iii), there exists µ such that ‖µ‖ = c = ‖λ‖L and Lµ = λ. But 1
cµ is

a unit vector, so 1
cµ = Rµ(J) by (i) . So µ = cRµJ = Rµ(cJ). But then Lµ = (L◦Rµ)(cJ)

and by (ii) L ◦Rµ ∈ L. So we are done. By definition c = ‖λ‖L.
Proof of (b): By part (a), there exists L ∈ L such that

L(cJ) = λ and |c| = ‖cJ‖ = ‖λ‖L.
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So ‖λ‖L = 0, which implies c = 0, and in turn λ = 0. Thus ‖ ‖L is positive definite.
To prove triangle-inequality, again by Proposition 2.3 for λ1, λ2 ∈ V, there exists

c1, c2 ∈ IR+ with
Li(ciJ) = λi and ci = ‖λi‖L > 0

But then
ciLi(J) = λi ⇒

(c1L1 + c2L2)(J)
(c1 + c2)

=
λ1 + λ2

(c1 + c2)

But L = c1L1+c2L2
c1+c2

∈ L by (iv) of achieving property. This means

‖λ1 + λ2‖L

c1 + c2
≤ ‖J‖ = 1⇒ ‖λ1 + λ2‖L ≤ c1 + c2 = ‖λ1‖L + ‖λ2‖L.

This completes the proof.

Proposition 2.4 Let L satisfy Hypothesis 2.1. Then the unit ball of ‖ ‖L is described by

{λ ∈ V : ‖λ‖L ≤ 1} = L{µ ∈ W : ‖µ‖ ≤ 1}
def= ∪L∈LL((W)1)

Proof: If ‖λ‖L ≤ 1, then

λ = Lµ for µ ∈ W and ‖µ‖ = ‖λ‖L ≤ 1

by (iii) of Hypothesis 2.1. Thus, λ ∈ ∪L∈LL((W)1).
Conversely, if λ ∈ ∪L∈LL((W)1), then

λ = Lµ for some µ ∈ W , ‖µ‖ ≤ 1 and L ∈ L,

which implies
inf{‖µ‖ : Lµ = λ, µ ∈ W, L ∈ L} ≤ ‖µ‖ ≤ 1

Thus, ‖λ‖L ≤ 1.

2.4 Examples of L satisfying Hypothesis 2.1

Example 2.5 Let Ω ⊂ Cm be a bounded domain, ω ∈ Ω. Let

W = T ∗0 (ID) ∼= C (usual cotangent spaces),
V = T ∗ω(Ω), and
L = {(Df(ω))∗ : where f ∈ Hol ω(Ω, ID)}.

On W put the obvious norm | |. The family L satisfies Hypothesis 2.1
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(i) of Hypothesis 2.1 is satisfied (for the distinguished vector 1 ∈ C), since the unitary
group of S1 acts transitively on S1 = {α : |α| = 1}.

Note (Df(ω))∗(µ) = λ implies

λ(v) = µ((Df(ω))∗v)

= µ(
∑

i

∂f

∂zi
(ω)vi)

=
∑

i

µ
∂f

∂zi
(ω)vi

So that (Df(ω))∗ is the linear functional

µ 7→ (µ
∂f

∂z1
, . . . , µ

∂f

∂zm
) on T ∗ω(Ω) = V

by definition .
(ii) is clearly satisfied, for if α ∈ Iso (W), α ∈ C, and |α| = 1, then

(Df(ω))∗ ◦ α = D(αf(ω))∗ for f ∈ Hol ω(Ω, ID),

and clearly, αf ∈ Hol ω(Ω, ID).
(iv) is satisfied since

c1(Df1(ω))∗ + c2(Df2(ω))∗

c1 + c2
= (Df(ω))∗,

where f = c1f1+c2f2

c1+c2
, ci ≥ 0. But

|f | ≤ (c1 + c2) maxi=1,2 |fi|
c1 + c2

= 1.

So f ∈ Hol ω(Ω, ID).
It only remains to prove (iii). We have to use a normal family argument, which applies

to any bounded region Ω ⊂ Cm.
Let r = ‖λ‖L. Then it is not hard to show that there exists a linear map ` : Cm →

C, `(ω) = 0 and z →
∑

(zk − ωk)`k such that λ = `∗(1). By choosing α satisfying α` :
Ω → ID, we get λ = (α`)∗( 1

α) so that λ = (D(α`))∗( 1
α) This shows that the set L−1(λ)

is non-empty. So suppose given fk ∈ Hol ω(Ω, ID) with (Dfk(ω))∗(µk) = λ and ‖µk‖ =
r + εk, εk → 0. By extracting subsequence, since Hol ω(Ω, ID) is a normal family, fk → f
uniformly on compact sets for some f ∈ Hol ω(Ω, ID), and so Dfk → Df by Montel’s
Theorem. Similarly, µk is a bounded sequence, so µk → µ by taking subsequence. Now,

λ = (Dfk(ω))∗(µk) = (Df)∗(µ)

and ‖µ‖ = lim ‖µk‖ = r + lim εk = r. This proves (iii), and we are done.

Corollary 2.1 {Λ ∈ T ∗ω(Ω) : ‖Λ‖L ≤ 1} = {∇f(ω) : f ∈ Hol ω(Ω, ID)}.
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Proof: For any f ∈ Holω(Ω, ID), using Proposition 2.4, we have

{Λ ∈ T ∗ω(Ω) : ‖Λ‖L ≤ 1} = L(w : |w| ≤ 1)
= {(Df(ω)∗)(µ) : |µ| ≤ 1}

= {(µ ∂f

∂z1
(ω), . . . , µ

∂f

∂zm
(ω)) : |µ| ≤ 1}

= {( ∂f

∂z1
(µf)(ω), . . . ,

∂

∂zm
(µf)(ω)) : |µ| ≤ 1}

= {∇(µf)(ω) : |µ| ≤ 1},

which is clearly equal to {∇f(ω) : f ∈ Hol ω(Ω, ID)}.
We note that for A =

∑
i,j Eij ⊗Aij ∈Mk

∗ ⊗Mn ≡ Hom (Mk,Mn), we have

(DF (ω)∗ ⊗ Id)(A) =

∑
i,j

∂Fij

∂z1
(ω) Aij , . . . ,

∑
i,j

∂Fij

∂zm
(ω) Aij


= A ◦DF (ω)⊗ Id.

We will in analogy with 2.8, write (DF (ω)∗ ⊗ Id) as F ∗.

Example 2.6 Let

W = Hom ((Mk, op), (Mk, op)) ∼= (Mk, tr)⊗̌(Mk, op),
V = T ∗ω(Ω)⊗(Mk, op) ∼= Hom(Tω(Ω), (Mk, op)), and
L = {(DF (ω))∗ : F ∈ Hol ω(Ω, (Mk)1)}.

Then L satisfies Hypothesis 2.1.

Since DF (ω) is in Hom(Tω(Ω),Mk), and A is in Hom(Mk,Mn); we see that, A ◦DF (ω)
belongs to Hom(TωΩ,Mk) = V. Further more, if Ω is a bounded domain, and ∆ is a
bounded set in Cn, then Holω(Ω,∆) is an equi-continuous family of maps. Furthermore,
if every bounded subset of ∆ is relatively compact, then Holω(Ω,∆) is a normal family
(cf. [13, Lemma 1.1(iii) and Lemma 1.4]).

Proof of (i): If µ ∈ Hom (Mk,Mk) = W is an operator of norm 1, Rµ(Id) = µ,
where Rµ : Hom (Mk,Mk) → Hom (Mk,Mk) is right multiplication by µ, so the dis-
tinguished element J can be taken as Id ∈ Hom(Mk,Mk).

Proof of (ii): Suppose Rµ ∈ Hom (Mk,Mk) with ‖Rµ‖op,op ≤ ‖µ‖op ≤ 1 then

(F ∗ ◦Rµ)(A) = (RµA) ◦DF (ω) = A ◦ µ ◦DF (ω)
= A ◦D(µ ◦ F )(ω)
= A ◦DF ′(ω) = (F ′)∗(A),

where F ′ = µ ◦ F. But F : Ω → (Mk)1 and ‖µ ◦ F‖op ≤ ‖µ‖op, so ‖F ′‖ ≤ ‖F‖, and
F ′ : Ω→ (Mk)1. This implies (ii).
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Proof of (iii): Normal family argument, we won’t repeat the proof.

Proof of (iv): Since c1F ∗
1 +c2F ∗

2
c1+c2

= (c1F1+c2F2)∗

c1+c2
, same proof as previous example shows

that
F ′ =

c1F1 + c2F2

c1 + c2
∈ Hol ω(Ω, (Mk)1).

Corollary 2.2 Let W,V, and L be as in Example 2.6. Then

{Λ : ‖Λ‖L ≤ 1} = {DF (ω) : F ∈ Holω(Ω, (Mk)1)}.

Proof: Exactly as in Corollary 2.1, with the identity map in Hom(Mk,Mk) replacing
1 as the distinguished element J . Note that

F ∗(Id) = (
∂F

∂z1
, . . . ,

∂F

∂zm
).

Definition 2.2 An arbitrary norm ‖ ‖a on V is called L - distance decreasing if
for all L ∈ L we have

‖Lµ‖a ≤ ‖µ‖ for all µ ∈ W.

Proposition 2.5 The norm ‖ ‖L is the largest L -distance decreasing norm on V.
(This Proposition is dual to Proposition 2.2)

Proof: Again, ‖‖L is L - distance decreasing by definition. Suppose λ ∈ W and Lµ = λ
for L ∈ L then ‖λ‖a = ‖Lµ‖a ≤ ‖µ‖. So ‖λ‖a ≤ inf{‖µ‖ : Lµ = λ for some L ∈ L}, and
‖λ‖a ≤ ‖λ‖L.

It is easy to check that the largest distance decreasing property of the Kobayashi norm
(see 2.22) follows from the above.

For any z ∈ X ⊗ Y define the projective tensor product norm as

‖z‖̂ = inf

{
n∑

i=1

‖xi‖ ‖yi‖ : xi ∈ X, yi ∈ Y, z =
n∑

i=1

xi ⊗ yi

}
(2.18)

The next example is that of a family resulting from tensoring a family satisfying Hypothesis
2.1 with the Id operator.

Example 2.7 Let
W = T0(ID)⊗̂(Mn, op) ∼= (Mn, op)
V = Tω(Ω)⊗ (Mn)
L = {Df(0)⊗ Id : f ∈ Holω(ID,Ω)}

and assume that the family G = {Df(0) : f ∈ Holω(ID,Ω)} satisfies Hypothesis 2.1
(see Example 2.4), and that ‖ ‖L is a pseudonorm. Then ‖ ‖L is a norm and equal to
the projective tensor product norm K̂Ω,ω

def= KΩ,ω⊗̂‖ ‖op on the matrix tangent space V.
(Note that KΩ,ω is defined in Example 2.4)
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First let v⊗X be an indecomposable tensor in V. Since G is assumed to be achieving,
we have a scalar µ ∈ T0(ID) = C such that KΩ,ω(v) =| µ | and Df(0)(µ) = v. Thus
(Df(0)⊗ Id)(µX) = v ⊗X, and since

‖µX‖op =| µ | ‖X‖op = KΩ,ω(v)‖X‖op

we have that
‖v ⊗X‖L ≤ KΩ,ω(v)‖X‖op

which implies that if Y ∈ V with Y =
∑

i vi ⊗Xi we have, because ‖ ‖L is a pseudonorm,
that

‖Y ‖L ≤
∑

i

KΩ,ω(vi)‖Xi‖op

so that
‖Y ‖L ≤ K̂Ω,ω(Y )

because of the definition of projective tensor norm. On the other hand, it is trivially
checked that the norm K̂Ω,ω is L - distance decreasing, so that by Proposition 2.5 above,
we have this norm majorised by ‖ ‖L. The latter is thus a norm.

2.5 Duality Principle

Let W be a normed linear space, and W∗ be the dual linear space with the dual norm.
Let

L ⊂ Hom(V,W), so that L∗ ⊂ Hom(W∗,V∗), (2.19)

where L∗ = ( dual of L), V∗ = dual of V.

Theorem 2.1 (Basic duality principle) Assume that ‖‖L and ‖‖L∗ are norms. Then
(‖ ‖L)∗ = ‖ ‖L∗ .

Proof: First we claim (‖ ‖L)∗ ≤ ‖ ‖L
∗
.

We recall Proposition 2.5 which says ‖ ‖L∗ is the largest L∗ - distance decreasing norm
on V∗. So it is just enough to show that (‖ ‖L)∗ is L∗ - distance decreasing.

Let L∗ ∈ L∗( so L ∈ L). Then for µ ∈ W∗

(‖L∗µ‖L)∗
def= sup

‖v‖L≤1

|〈L∗µ, v〉|
‖v‖L

= sup
‖v‖L≤1

|〈µ,Lv〉|
‖v‖L

but ‖ ‖L is L - distance decreasing, so ‖v‖L ≥ ‖Lv‖. So

(‖L∗µ‖L)∗ ≤ sup
‖v‖L≤1

|〈µ,Lv〉|
‖Lv‖

.

Now, if ‖v‖L ≤ 1, ‖Lv‖ ≤ 1 , then {Lv : ‖v‖L ≤ 1} ⊂ {w ∈ W : ‖w‖ ≤ 1}. So that,

(‖L∗µ‖L)∗ ≤ sup
‖w‖≤1

|〈µ,w〉|
‖w‖

def= ‖µ‖ (as an element of W∗).
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This proves what we wanted.
Next, we claim

‖ ‖L ≤ (‖ ‖L∗)∗.

(This would show ‖ ‖∗L ≥ ‖ ‖L
∗
, the other inequality we need). We will show that (‖ ‖∗L)∗

is L-distance decreasing, and since ‖ ‖L is least L - distance decreasing by Proposition
2.2, we would be done.

Use proposition 2.4, to observe that {‖λ‖L∗ ≤ 1} = L∗{µ : ‖µ‖ ≤ 1}

(‖v‖L∗)∗ = sup
‖λ‖L∗≤1

|〈λ, v〉|
‖λ‖L∗

= sup
‖µ‖≤1, L∗∈L∗

|〈L∗µ, v〉|
‖L∗µ‖L∗

≥ sup
‖µ‖≤1, L∈L

|〈µ,Lv〉|
‖µ‖

, ( because ‖L∗µ‖L∗ ≤ ‖µ‖)

= ‖Lv‖∗∗ = ‖Lv‖ for all L ∈ L

Thus, ‖Lv‖ ≤ ‖v‖L∗∗ for all L ∈ L.
This shows ‖ ‖L∗∗ is L-distance decreasing, and the proof is complete.

Remark 2.3 This theorem generalises to any arbitrary family L. In this situation ‖‖L and
‖‖L are quasi and pseudo norms respectively. This theorem therefore contains Proposition
6 of [6] as a special case.

2.6 Distance decreasing metrics

Following Royden [11, p.397], a hyperbolic infinitesimal metric of order n is an asignment
of a norm δΩ on the matricial tangent space TΩ ⊗Mn, Ω ⊆ Cm such that

δD(ω, V ) = (1− ‖ω‖2)−1‖V ‖op (2.20)

and for any holomorphic function f : Ω→ Ω̃,

δΩ̃(f(ω), f∗(V )) ≤ δΩ(ω, V ). (2.21)

Note that if L(k) = {DF (ω) ⊗ Id : F ∈ Holω(Ω, (Mk)1)} and δ is hyperbolic infinitesi-
mal metric then δ is L(1) - distance decreasing, that is, for all f ∈ Holω(Ω, ID) we have
‖f∗(V )‖op ≤ δ(V ). Similarly, if L(k) = {DF (ω)⊗Id : F ∈ Holω((Mk)1,Ω)}, then δ is L(1)

- distance decreasing. Thus, in view of Propositions 2.5 and 2.2, we have the inequalities

ČΩ,ω(V ) ≤ δ(V ) ≤ K̂Ω,ω(V ). (2.22)

Further, if we define as in example 2.3 (compare 2.16)

K̂k
Ω,ω(V ) def= ‖V ‖L(k) , (2.23)
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where

W = (T0((Mk)1)⊗̂(Mn, op))
V = Tω(Ω)⊗ (Mn)

L(k) = {DF (0)⊗ Id : F ∈ Holω((Mk)1,Ω)}

then we have the following inequalities at the level of matricial tangent vectors

ČΩ,ω ≤ · · · ≤ Čj
Ω,ω ≤ · · · ≤ K̂k

Ω,ω ≤ · · · ≤ K̂Ω,ω. (2.24)

Note that the maps ID
i→
←
π

(Mk)1, defined by

z
i→ diag (z, . . . , z) and (zj`)

π→ z11

satisfy π ◦ i = id. For f ∈ Holω(Ω, ID), define F = i ◦ f ∈ Holω(Ω, (Mk)1). Since
π ◦ F = f , the map f → F is injective. Similarly, for g ∈ Holω(ID,Ω), define G = g ◦ π ∈
Holω((Mk)1,Ω). Since G ◦ i = g, the map g → G is injective. This proves the first and
the last inequality in 2.24.

To prove the middle inequality, we show that Čj
Ω,ω is L(k) - distance decreasing for all

k. Recall that, in this case W = T0(Mk)1⊗̂Mn and V = TωΩ⊗Mn. Let
L ∈ L(k) = {DF ⊗ Id : F ∈ Holω((Mk)1,Ω)}. Then for W ∈ W and V = L(W ) =
g∗W, g ∈ Holω((Mk)1,Ω), we have

‖L(W )‖L(j) = Čj
Ω,ω(V )

= sup{‖F∗(V )‖op : F ∈ Hol(Ω, (Mj)1)}
= sup{‖F∗g∗(W )‖op : F ∈ Hol(Ω, (Mj)1)}
≤ sup{‖(Fh)∗(W )‖op : F ∈ Hol(Ω, (Mj)1), h ∈ Holω((Mk)1,Ω)}
≤ sup{‖G∗W‖op : G ∈ Hol0((Mk)1, (Mj)1)}
≤ sup{‖G∗W ‖̂ : G ∈ Hol0((Mk)1, (Mj)1)}.

Recall that (see 2.8), G∗W = (DG(0) ⊗ I)(W ). The Schwarz lemma applied to the two
unit balls (Mk)1 and (Mj)1 says that DG(0) is a contraction. If W =

∑n
i=1 Ai ⊗ Bi is

any representation of the matricial tangent vector W , then we have

‖G∗(W )‖̂ ≤
∑
‖DG(0)Ai‖op‖Bi‖op

≤
∑
‖Ai‖op‖Bi‖op

Thus, sup{‖G∗W ‖̂ : G ∈ Hol0((Mk)1, (Mj)1)} ≤ ‖W ‖̂. This completes the proof of the
inequalities 2.24.

We now go back to our basic question (Question 2.1).

Theorem 2.2 Γ̌Ω,ω
def= {V ∈ TωΩ⊗Mn : ČΩ,ω(V ) ≤ 1} = Γ(ČΩ,ω)
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Proof: Note that, Corollary 2.1 identifies the set DΩ(ω) with the unit ball with respect
to the norm ‖ ‖L, where L = DΩ(ω). Next, Theorem 2.1 identifies this ball as the unit
ball in the co-tangent space T ∗ωΩ with respect to the dual of the Carthédory norm. This
completes the proof

Corollary 2.3 If C2n
N(V,ω)is contractive, then

sup {Č(Mk)1,0(F∗(V )) : F ∈ Holω(Ω, (Mk)1)} ≤ 1,

for k = 1, 2, . . . .

The proof of this corollary is the same as that of Theorem 1.1, once we note that ČΩ,ω

is a L(1) - distance decreasing metric. In fact, as we have seen, it is the least such metric.
Note that, ČΩ,ω(V ) is the injective tensor product norm of V as an element of

(TωΩ, CΩ,ω)⊗ (Mn, op). Thus, V ∈ Γ̌Ω,ω if and only if V : ΓC∗Ω,ω → (Mk)1.

Corollary 2.4 C2n
N(V,ω) is contractive over H∞(Ω) if and only if

V ∈ ((Mn, op)⊗̌(TωΩ, CΩ,ω)1) .

The proof follows directly from theorem 2.2.

Corollary 2.5 Every contractive module C2n
N(V,ω) over H∞(Ω) is completely contractive

if and only if
F∗ : Γ(ČΩ,ω)→ ((T0Mk ⊗Mn), op))1 ∼= (Mkn, op)1,

for all k, and F in Holω(Ω, (Mk)1). Or, equivalently, if and only if for all

Č1
Ω,ω = Č2

Ω,ω = · · · = Čk
Ω,ω = · · · ,

k = 1, 2, . . ..

This corollary is merely the statement that contractive modules are completely con-
tractive if and only ρ(k) is a contraction (in the sense of 2.11) for k = 1 implies it remains
a contraction for all k > 1.

Corollary 2.6 C2n
N(V,ω) is contractive over H∞(Ω) if and only if C2n

N(V,0) is contractive
over H∞(Γ(CΩ,ω)).

Remark 2.4 Note that if ČΩ,ω = K̂Ω,ω, then every contractive module C2
N(v,ω) is com-

pletely contractive over H∞(Ω). However, there are examples due to Parrott (cf. [9], in
fact ČΩ,ω 6= Č2

Ω,ω) of contractive modules of this type over the tri-disk, which are not com-
pletely contractive. This shows that the two extremal metrics in 2.24 can not be equal.
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3 Operator spaces

In this section, we relate our discussion on contractive, and completely contractive modules
over H∞(Ω) to that of the theory of abstract Operator Spaces.

Let X be a vector space over C, and letMn(X) be the vector space of n× n matrices
with entries from X. The vector space X is matrix normed if each (Mn(X), ‖ · ‖n) is a
normed linear space such that

1. For every B inMn(X), 0 inMm(X), ‖B ⊕ 0‖n+m = ‖B‖n,

2. For B inMn(X), A, C inMn, ‖ABC‖ ≤ ‖A‖ ‖B‖n‖C‖.

Among the matricially normed spaces, there are some matrix norm structures, which
are `∞-matricially normed. Such spaces are called operator spaces (cf. [10]).

Definition 3.1 If X and Y are matrix normed spaces and ϕ : X → Y is linear, then
we define, ϕ(k) : Mn(X) → Mn(Y ) via ϕ(k)((xij)) = (ϕ(xij)). We say that, ‖ϕ‖cb =
supk ‖ϕ(k)‖ is the cb-norm of ϕ. The map ϕ is said to be completely contractive, if ϕ(k) is
a contraction for each k.

There are many natural ways in which we may matricially norm a vector space X (cf.
[2]). However, we single out one particular matrix norm structure on a vector space X.
Let (X, ‖ · ‖), be any vector space, declare the norm ‖ · ‖n by identifyingMn(X) with the
injective tensor product (X, ‖ · ‖)⊗̌(Mn, op).

Let X = (T ∗ωΩ, C∗Ω,ω) and DΩ(k)(ω) ⊂ Mk(X) be the unit ball with respect to the
norm ‖ ‖L, where L = Holω(Ω, (Mk)1). This gives X an operator space structure [10,
Proposition 3.2]. It is shown in [10] that if Ω = IB is the open unit ball with respect to
some norm in Cm, then

DIB(k)(0) = (T ∗IB,0⊗̌(Mk, op))1.

If IB is homogeneous, then this result remains valid for an arbitrary point ω ∈ IB. We have
a similar result for product domains.

Theorem 3.1 For any two domains Ω1,Ω2 ⊂ C, let Ω = Ω1×Ω2, be the product domain,
and ω = (ω1, ω2) ∈ Ω. Then

DΩ(k)(ω) = (T ∗Ω,ω⊗̌(Mk, op))1.

Proof: For j = 1, 2, let FΩj ,ωj be the Ahlfors functions (cf. [4, Theorem 1.6]) for
the domains Ωj at the points ωj ∈ Ωj . The indicatrices ΓΩj ,ωj are disks of radius rj =
DFΩj ,ωj (ωj). Let Gj = r−1

j FΩj ,ωj . Then Gj → ΓΩj ,ωj and the derivative DGj(ωj) = 1. It
is of course, easy to see that

DΩ(k)(ω) ⊂ (T ∗Ω1×Ω2,(ω1,ω2)⊗̌(Mk, op))1.

To verify the opposite inclusion, let Λ ∈ (T ∗Ω1×Ω2,(ω1,ω2)⊗̌(Mk, op))1 be arbitrary. Since

CΩ1×Ω2,(ω1,ω2) = max{CΩ1,ω1 , CΩ2,ω2},
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the indicatrix
ΓΩ1×Ω2,(ω1,ω2) = ΓΩ1,ω1 × ΓΩ2,ω2 ,

and it follows that
G = (G1, G2) : Ω1 × Ω2 → ΓΩ1×Ω2,(ω1,ω2).

Note that,
Λ ◦G : Ω1 × Ω2 → (Mk)1, (Λ ◦G)(ω1, ω2) = 0.

The derivative (DG)(ω1, ω2) = Id, and therefore

D(Λ ◦G)(ω1, ω2) = Λ.

Thus,
Λ ∈ DΩ(k)(ω)

This completes the proof.

4 Appendix on The quotient norm for matrix tangent

vectors

On Ω, we clearly have the holomorphic vector bundles

L ((Mn, tr) , TΩ) ∼= (Mn, tr)∗ ⊗ TΩ, and
L (TΩ, (Mn, op)) ∼= T ∗Ω⊗ (Mn, op), (4.1)

where the tensor products and linear maps are fibrewise.

Definition 4.1 We define,

Eω,n = L ((Mn, tr) , (TωΩ, CΩ,ω))) ∼= (TωΩ, CΩ,ω) ⊗̌ (Mn, op) , and
EΩ,n = q

{
(ω, V ) : ω ∈ Ω, V ∈ (Eω,n)1

}
Similarly, there is a dual definition,

E∗ω,n = L ((TωΩ, CΩ,ω)) , (Mn, op)) ∼=
(
T ∗ωΩ, C∗Ω,ω

)
⊗̌ (Mn, op) , and

E∗Ω,n = q
{
(ω, Λ) : ω ∈ Ω,Λ ∈

(
E∗ω,n

)
1

}
If f : Ω→ Ω̃, f(ω) = 0, and f is holomorphic, then

f∗ : Γ(CΩ,ω)→ Γ(CΩ̃,f(ω)). (4.2)

and by 4.2, we obtain the map, f∗ : Eω,n → Ef(ω),n defined by

f∗(V ) = ∇f(ω) ◦ V. (4.3)

Similarly, there is a pullback, f∗ : E∗f(ω),n → E
∗
ω,n defined by

f∗(V ) = Λ ◦ ∇f(ω). (4.4)
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These maps induce functorially maps f̃ : EΩ,n → EΩ̃,n and f# : E∗
Ω̃,n
→ E∗Ω,n. Where, the

case k = 1 is the standard push foroward of tangent vectors or pullback of co-tangent
vectors. The corresponding bundle diagrams are

f̃ : EΩ,n → EΩ̃,n

π ↓ ↓
f : Ω → Ω̃

and
f# : E∗Ω,n ← E∗

Ω̃,n

π ↓ ↓
f : Ω → Ω̃

(4.5)

For notational convenience, we think of a point in EΩ,n as a pair (z, Z). We obtain the
map f̃ : EΩ,n → EΩ̃,n by setting

f̃(z, Z) = (f(z), f∗(z) ◦ Z). (4.6)

We have called an element of Eω,n, a matricial tangent vector at ω. There is a way to view
these as ordinary tangent vectors to EΩ,n. Indeed, Ω ↪→ EΩ,n and Ω ↪→ E∗Ω,n as the zero
section. Let j be these inclusions.

Proposition 4.1 There is a split exact sequence,

0→ TΩ
j∗→ TEΩ,n |Ω → TΩ⊗ (Mn, tr)∗ → 0,

which identifies the matricial tangent bundle as the normal bundle to j(Ω) in EΩ,n.

Proof: If U is a co-ordinate chart around ω, we have

Tω(EΩ,n) = Tω(π−1(U)) ∼= Tω(U ×Hom(Mk, Tω(Ω))
∼= Tω(U)⊕Hom(Mk, Tω(Ω))
∼= Tω(Ω)⊕Hom(Mk, Tω(Ω))

This completes the proof.
The map, f̃∗ : Γ(CEΩ,n,(z,Z))→ Γ(CEΩ̃,n,f̃(z,Z)) is obtained by

f̃∗(v, V ) = (f∗(v), f∗(z) ◦ V ). (4.7)

Let ((z1, . . . , zm), (Z1
ij , . . . , Z

m
ij )), be a cordinate system in EΩ,n, and f : EΩ,n → ID be

holomorphic, with f(ω, 0) = 0. Write,

f(z, Z) =
m∑

l=1

(zl − ωl)f l +
n∑

i,j=1

m∑
l=1

Z l
ijf

ij
l (4.8)

Identifying, (Eω,n)1 as the fibre at ω of EΩ,n we see that CEΩ,n,(ω,0)(0, V ) ≤ C(Eω,n)1,(ω,0)(0, V ),
and using the distance decreasing property, 4.2 of the Carathéodory metric on EΩ,n, we
obtain

|f∗(0, V )| ≤ CEΩ,n,(ω,0)(0, V )

≤ C(Eω,n)1,0(V ) = ČΩ,ω,(V ). (4.9)
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Let us put Fl =
[
F ij

l

]
, l = 1, . . . ,m. Thus,

|tr
∑

Fl · V l| = |f∗(0, V )| ≤ ČΩ,ω(V ). (4.10)

In particular, if V l = vlX, l = 1, . . . ,m, (v1, . . . , vm) ∈ Γ(CΩ,ω) and X ∈ (Mn)1, then
ČΩ,ω(V ) ≤ 1. Observe that,

|tr(v1F1 + · · ·+ vmFm) ·X| ≤ 1, for X ∈ (Mn)1, (4.11)

that is,
‖(v1F1 + · · ·+ vmFm)‖op ≤ ‖(v1F1 + · · ·+ vmFm)‖tr ≤ 1. (4.12)

Definition 4.2 Let q : TEΩ,n → TΩ ⊗Mn, be the quotient map, that is, q(v, V ) = V .
Define, the quotient norm of V as

‖V ‖q = inf {CEΩ,n,(ω,0)(v, V ) : q(v, V ) = V }.

Theorem 4.1 The quotient norm and the injective tensor norm for a matricial tangent
vector are the same.

Proof: Let (ω, W ) be a fixed but arbitrary point in EΩ,n, and f be in Holω(Ω, ID). We

obtain, a map (as in 4.7), EΩ,n
f̃→ ED,n

π̃→ (Mn)1,

π̃ ◦ f̃(z, Z) = π̃(f(z), f∗(z) ◦ Z) = f∗(z) ◦ Z. (4.13)

For (v, V ) in T(ω,0)EΩ,n, we have

(π̃ ◦ f̃)∗(v, V ) = f∗(ω)(V ) (4.14)

ČΩ,ω(V ) = sup {‖f∗V ‖op : f ∈ Holω(Ω, ID)}
= sup {‖(π̃ ◦ f̃)∗(v, V )‖op : f ∈ Holω(Ω, ID)}
≤ sup {‖F∗(v, V )‖op : F ∈ Holω(EΩ,n, (Mn)1}
= sup {‖F∗(v, V )‖op : F ∈ Holω(EΩ,n, D},
≤ inf

v
CEΩ,n,(ω,0)(v, V ) = ‖V ‖q.

The last inequality is valid, since every map f : EΩ,n → ID descends to a map F =
(F1, . . . , Fm) : Γ(CΩ,ω)→ (Mn)1 in view of 4.12. On the other hand,

‖V ‖q = inf CEΩ,n,(ω,0)(v, V ) ≤ CEΩ,n,(ω,0)(0, V )
= sup {‖f∗(0, V )‖ : f ∈ Holω(EΩ,n, ID)},
≤ ČΩ,ω(V ) (recall 4.9).

This completes the proof.
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