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For any complex domain Ω, one can ask if all contractive algebra homomorphisms of

A(Ω) (into the algebra of Hilbert space operators) are completely contractive or not.

By Ando’s Theorem, this has an affirmative answer for Ω = ID2, the bi-disc - while the

answer is unknown for Ω = (`1(2))1, the unit ball of C2 with `1− norm. In this paper,

we consider a special class of homomorphisms associated with any bounded complex

domain; this well known construct generalizes Parrott’s example. Our question has

an affirmative answer for homomorphisms in this class with Ω = (`1(2))1. We show

that there are many domains in C2 for which the question can be answered in the

affirmative by reducing it to that of Ω = ID2 or (`1(2))1. More generally, the question

for an arbitrary Ω can often be reduced to the case of the unit ball of an associated

finite dimensional Banach space. If we restrict attention to a smaller subclass of ho-

momorphisms the question for a Banach ball becomes equivalent to asking whether in

the analogue of Grothendieck’s inequality, in this Banach space, restricted to positive

operators, the best constant is = 1 or not . We show that this is indeed the case for

Ω = ID2, ID3 or the dual balls, but not for IDn or its dual for n ≥ 4. Thus we isolate a

large class of homomorphisms of A(ID3) for which contractive implies completely con-

tractive. This has many amusing relations with injective and projective tensor product

norms and with Parrott’s example.

1 Contractive Homomorphisms

Let Ω ⊆ Cm be a bounded domain, and Cn×n be the n× n matrices over the complex field.

For ω in Ω and A1, . . . , Am in Cn×n, let

〈∇f(ω),A〉 = A1
∂f
∂z1

(ω) + · · ·+ Am
∂f

∂zm
(ω), f ∈ H∞ (Ω),

where A = (A1, . . . , Am). The map ϕω(A, ·) : H∞ (Ω) → C2n×2n, defined by

ϕω(A, f) =


 f(ω)In 〈∇f(ω),A〉

0 f(ω)In






is easily seen to be an unital algebra homomorphism, which is continuous from H∞ (Ω)

equipped with the topology of uniform convergence on compact sets into C2n×2n with the

usual operator norm topology. In this paper, we study a stronger notion of continuity.

Indeed, we investigate the norm of each of the operators

ϕ(k)
ω (A, ·) = ϕω(A, ·)⊗ I : H∞ (Ω)⊗ Ck×k → (C2n×2n ⊗ Ck×k ∼= C2nk×2nk, op),

where ‖F‖ = sup{‖F (z)‖op : z ∈ Ω}, for F ∈ H∞ (Ω)⊗ Ck×k. Let

‖ϕω(A, ·)‖cb = lim
k→∞

∥∥∥ϕ(k)
ω (A, ·)

∥∥∥.

The map ϕω(A, ·) is said to be contractive if ‖ϕω(A, ·)‖ ≤ 1 and is completely contractive if

‖ϕω(A, ·)‖cb ≤ 1.

It is an important open problem to determine domains Ω ⊆ Cm for which every contractive

homomorphism ϕω(A, ·) is completely contractive.

These homomorphisms are related to the familiar notion of a spectral set and complete

spectral set for the commuting operator tuple

N (ω,A) =





 ω1In A1

0 ω1In


, . . . ,


 ωmIn Am

0 ωmIn





 .

Thus, for any rational function r in the algebra R(Ω̄) of rational functions with poles off

Ω̄, the evaluation map r → r(N (ω,A)), r ∈ R(Ω̄) is well defined and coincides with the

homomorphism ϕω(A, ·) on R(Ω̄).

Here are two competing definitions of spectral set (resp. complete spectral set). We would

say that the operator tuple N(ω,A) admits the compact set Ω̄ as a spectral set (resp.

complete spectral) set if

1. the homomorphism ϕω(A, ·) is contractive ( resp. completely contractive ) on the

algebra A(Ω̄) of functions holomorphic in a neighbourhood of Ω̄,

or if

2. the homomorphism ϕω(A, ·) is contractive ( resp. completely contractive ) on the al-

gebra R(Ω̄).

Agler [1] uses the first definition, while Paulsen [7] uses the second one.

These two notions of a spectral set need not coincide. We will be mainly concerned with

the homomorphism ϕω(A, ·) as a map on H∞ (Ω). Agler [1] points out that if ϕω(A, ·) is

contractive over the algebra H∞ (U) for every open set U containing Ω̄, then ϕω(A, ·) is



contractive over A(Ω̄). However, for certain domains, if the homomorphism ϕω(A, ·) or for

that matter ϕ(k)
ω (A, ·) is contractive on any one of these algebras then it is contractive on

all of them.

If F = (fij) ∈ H∞ (Ω)⊗Ck×k, then the map F : Ω → Ck×k, F (z) = (fij(z)) is holomorphic.

Let

F (z) = F (ω) + (z1 − ω1)
∂F
∂z1

(ω) + · · ·+ (zm − ωm) ∂F
∂zm

(ω) + · · · ,
be the power series expansion of F around the point ω in Ω with matrix co-efficients. Thus

ϕ(k)
ω (A, (fij)) = (ϕω(A, fij))

=


 fij(ω)In 〈∇fij(ω),A〉

0 fij(ω)In




∼

 F (ω)⊗ In 〈DF (ω),A〉

0 F (ω)⊗ In


,

where ∼ means that we have obtained the last matrix after elementary row and column

operation from the preceeding one and

〈DF (ω),A〉 = ∂F
∂z1

(ω)⊗ A1 + · · ·+ ∂F
∂zm

(ω)⊗ Am.

There is a bi-holomorphic automorphism ( Möbius map ) of the matrix unit ball taking

F (ω) to 0, which is in fact a rational function. Using this map and the von Neumann

inequality, it is not hard to prove the following theorem (cf. [6, 7]).

For a normed linear space V , let (V )1 denote the open unit ball in V .

Theorem 1.1
∥∥∥ϕ(k)

ω (A, ·)
∥∥∥ ≤ 1 if and only if ‖〈DF (ω),A〉‖ ≤ 1, for all holomorphic func-

tions F : Ω → (Ck×k)1, F (ω) = 0.

Thus, the homomorphism ϕω(A, ·) is contractive on H∞ (Ω) if and only if

sup{‖〈∇f(ω),A〉‖op : f ∈ Hol ω(Ω, ID)} ≤ 1, (1.1)

where ID = {z : |z| ≤ 1} and Hol ω(Ω, ID) = {f : f : Ω → ID is holomorphic , f(ω) = 0}.
However the set

DΩ(ω) = {∇f(ω) : f ∈ Hol ω(Ω, ID)} (1.2)

is a unit ball with respect to some norm in Cm ( see [7] ). The Carathéodory norm is the

dual norm

CΩ,ω(v) = sup{|〈∇f(ω),v〉| : f ∈ Hol ω(Ω, ID)}.



Proposition 1.2 ϕω(A, ·) is contractive on H∞ (Ω) if and only if ϕ0(A, ·) is contracive on

H∞
(
(Cm, CΩ,ω)1

)
.

Proof: The condition in 1.1 for k = 1 is equivalent to contractivity of the operator LA :

(Cm, C∗Ω,ω) → (Cn×n, op), defined by

LA(λ) = λ1A1 + · · ·λmAm for λ ∈ Cm. (1.3)

Therefore, putting Σ = (Cm, CΩ,ω)1, it suffices to verify the following claim: (Cm, CΩ,ω)1 =

(Cm, CΣ,0)1. Let B be a bounded domain in Cm, which contains 0 and is balanced. If

f : B → ID is holomorphic, then ∇f(0) : B → ID in accordance with the Schwarz lemma (see

[9, page 161]). This implies that for any such domain B, we have (in terms of notation in

(1.2))

DB(0) = {` : B → ID : ` is linear }.
Hence, if B is a ball with respect to some norm, then DB(0) is the dual ball. Applying this

observation to the ball Σ proves the claim. 2

Similarly, the homomorphism ϕ(k)
ω (A, ·) is contractive if and only if

sup{‖〈DF (ω),A〉‖op : F ∈ Hol ω(Ω, (Ck×k)1)} ≤ 1. (1.4)

Again, the set

DΩ(k)(ω) = {DF (ω) : F ∈ Hol ω(Ω, (Ck×k)1)} (1.5)

is a unit ball with respect to some norm in Ck×m k ( see [7] ). If we let C
(k)
Ω,ω be the dual norm,

then as before the condition in theorem 1.1 is equivalent to contractivity of the operator

L
(k)

A : (Ck×m k, C
(k)
Ω,ω

∗
) → (Cnk×nk, op), defined by

L
(k)

A(Λ) = Λ1 ⊗ A1 + · · ·+ Λm ⊗ Am, for Λ ∈ Cm k×m k. (1.6)

An explicit description of the set DΩ(k)(ω) will certainly help understand the operator

norm of L
(k)

A . In this note, we will describe the set DΩ(k)(ω) for a product domain and a

balanced domain.

Following Paulsen [7], we define for each domain Ω, and a fixed point ω ∈ Ω, a numerical

constant as follows

α(Ω, ω) = sup
{
‖ϕω(A, ·)‖cb : ‖ϕω(A, ·)‖ ≤ 1, ϕω(A, ·) : H∞ (Ω) → Cn×n

}
. (1.7)

Note that α(Ω, ω) = α(Ω̂, ω), where Ω̂ is the holomorphic convex hull of Ω. Therefore, Ω̂

is a domain of holomorphy, and we assume through out this paper that the domain Ω is a

domain of holomorphy.



1.1 The case of a balanced domain

Let B be a bounded domain in Cm, which contains zero and is balanced.

Remark 1.3 We note that if we use rational functions or functions holomorphic in neigh-

bourhood of Ω̄ in defining the set DB(0), we would still have

DB(0) = {` : B → ID : ` is linear }, (1.8)

and if B is a ball with respect to some norm, then

DB(0) = (Cm, ‖ · ‖∗B)1 . (1.9)

In particular, the operator norm on Ck×k and the Carathéodory norm on (Ck×k)1 at 0

coincide. Since holomorphic maps are norm decreasing with respect to the Carathéodory

norm, it follows that for any holomorphic map F ∈ Hol0(B, (C
k×k, op)1), the derivative

DF (ω) =

(
∂F

∂z1

(ω), . . . ,
∂F

∂zm

(ω)

)
: (Cm, CB,0) → (Ck×k, op)

is a contraction.

Lemma 1.4 If B is a bounded balanced domain in Cm then ϕ0(A, ·) is completely contractive

on H∞ (B) if and only if ϕ0(A, ·) is completely contractive on H∞
(
(Cm, CB,0)1

)

Proof: By the preceeding remark,

DB(k)(0) ⊆
((

Cm, C∗B,0

)
⊗̌

(
Ck×k, op

))
1

(1.10)

Since the convex hull coB of the balanced region B is a ball, it follows that

DB(0) =
(
Cm, C∗B,0

)
1

= {` : B → ID : ` is linear }
= {` : coB → ID : ` is linear } =

(
Cm, C∗coB,0

)
1

(see 1.8). For Λ1, . . . ,Λm ∈ Ck×k , define the linear map Λ : (Cm, CB,0) → (Ck×k, op) by

Λ(z) = z1 Λ1 + · · ·+ zm Λm.

Any such linear contraction is holomorphic and maps B into
(
Ck×k, op

)
1
. Therefore, we

have the opposite inequality in 1.10. The contractivity of ϕ(k)
ω (A, ·) is thus equivlent to

sup
{
‖Λ1 ⊗ A1 + · · ·+ Λm ⊗ Am‖op : Λ ∈

(
Cm, C∗B,0

)
⊗̌

(
Ck×k, op

)
1

}
≤ 1. (1.11)

The simple observation (see 1.9) that

D ((Cm, CB,0)1)
(k) (0) =

((
Cm, C∗B,0

)
⊗̌

(
Ck×k, op

))
1

= DB(k)(0)

completes the proof. 2



Example 1.5 Let 0 < r ≤ 1/4, and

B =
{
z = (z1, z2) ∈ C2 : |z1|+ |z2| < 1 and |z1| |z2| < r

}
.

Since B is a Rienhardt domain, and is logarithmically convex, it follows that it is a domain of

holomorphy. Remark 1.3 implies that DB(0) is the unit bi-disk. Therefore,
(
C2, CB,0

)
1
is just

the unit ball in C2 with respect to the `1 norm. By lemma 1.4, α(B, 0) = α ((Cm, CB,0)1, 0).

Ando’s theorem (cf. [7]) and the duality result from [6] shows that α(B, 0) = 1.

Note that this is a genuinely new example of a domain B with α(B, 0) = 1 since the

Remark [5, page 364] clearly implies that this domain is not bi-holomorphically equivalent

to the unit ball of `1(2).

1.2 The case of an arbitrary domain

We now examine the relationship between the contractivity of

1. ϕ(k)
ω (A, ·) on the algebra H∞ (Ω)

and

2. ϕ
(k)
0 (A, ·) on the algebra H∞

(
(Cm, CΩ,ω)1

)
.

If k = 1, then we have verified that these two questions are equivalent (Proposition 1.2) .

The situation is more complicated for k > 1.

Theorem 1.6 If there is a holomorphic map H : Ω → (Cm, CΩ,ω)1 such that

DH(ω) : (Cm, CΩ,ω) → (Cm, CΩ,ω)

is an isometry then ϕ(k)
ω (A, ·) is contractive on H∞ (Ω) if and only if ϕ

(k)
0 (A, ·) is contractive

on the algebra H∞
(
(Cm, CΩ,ω)1

)
.

Proof: As we have pointed out, the operator norm on Ck×k and the Carathéodory norm

of (Ck×k)1 at 0 coincide. If F : Ω → (Ck×k)1 is holomorphic with F (ω) = 0 then DF (ω) :(
Cm, C∗Ω,ω

)
→

(
Ck×k, op

)
is a contraction, which is the norm decreasing property of the

Carathéodory norm. This amounts to the inclusion

DΩ(k)(ω) ⊆
((

Cm, C∗Ω,ω

)
⊗̌

(
Ck×k, op

))
1
. (1.12)



For any Λ ∈
((

Cm, C∗Ω,ω

)
⊗̌

(
Ck×k, op

))
1
, we see that the map

G = Λ ◦H : Ω → (Ck×k, op)1,

is holomorphic. We can assume without loss of generality that DH(ω) = I, therefore

DG(ω) = Λ. Thus we get the opposite inclusion in 1.12. In view of lemma 1.4, the proof is

complete. 2

1.3 The case of a product domain

Let Ω1,Ω2 ⊆ C be any two bounded domains, P = Ω1 × Ω2 be the product domain in C2

and ω = (ω1, ω2) ∈ P be an arbitrary but fixed point.

Theorem 1.7 The homomorphism ϕω(A, ·) is completely contractive on H∞ (P) if and only

if ϕ0(A, ·) is completely contractive over the algebra H∞
((

C2, CP,ω

)
1

)
. The norm CP,ω is

a weighted `∞ norm.

Proof: For j = 1, 2, let FΩj ,ωj
be the Ahlfors functions (cf. [3, page 109]) for the

domains Ωj at the points ωj ∈ Ωj. The unit ball with respect to the dual Carathéodory

norm
(
C, CΩj ,ωj

)
1

is a disk of radius rj = DFΩj ,ωj
(ωj). Thus, CΩj ,ω(vj) = rj|vj|. Let

Gj = r−1
j FΩj ,ωj

. Then Gj : Ωj →
(
C, CΩj ,ωj

)
1

and the derivative DGj(ωj) = 1. Since the

Carathéodory norm of a product domain is the maximum of the Carathéodory norms on the

factors (see [4]), it follows that

CP,ω(v1, v2) = max {r1|v1|, r2|v2|}
The map G = (G1, G2) maps P into

(
C2, CP,ω

)
1
. An application of Theorem 1.6 completes

the proof. 2

Note that if Ωj for each j = 1, 2 is bounded by a simple analytic closed curve then the

Ahlfor’s function is analytic in a neighbourhood of Ω̄ (see [3, Theorem 1.6, page 114]). So

the Carathéodory norm remains unchanged if we use either rational functions or functions

analytic in a neghbourhood of Ω̄ instead of the H∞ functions. Thus the theorem above can

be used to study spectral and complete spectral sets.

Example 1.8 Let Ω1,Ω2 ⊆ C be any two bounded domains, P = Ω1 × Ω2 be the product

domain in C2 and ω = (ω1, ω2) ∈ P be an arbitrary but fixed point. If z ∈
(
C2, CP,ω

)
, then

CP,ω(z) = max(r1 |z1|, r2 |z2|),
by Theorem 1.7. This theorem also implies that α(P , ω) = α

((
C2, CP,ω

)
1
, 0

)
. Since,(

C2, CP,ω

)
1

is bi-holomorphic to the bi-disk, it follows via Ando’s theorem that α(P , ω) = 1

for every ω ∈ P .



1.4 A special class of homomorphisms

We now specialise to those domains B, which can be realised as the unit ball with respect

to some norm ‖ · ‖B in Cm. So far, we have considered A = (A1, . . . , Am), where each

Ai ∈ Cn×n, i = 1, . . . ,m, is arbitrary. Suppose now that except for the first row every

other row in Ai, i = 1, . . . ,m, is zero. We will label this nonzero row in Ai as ai. Let

z = (z1, · · · , zm) ∈ B, and bi be vectors in Ck for i = 1, . . . ,m.

Theorem 1.9 For A as above, ϕ
(k)
0 (A, ·) is contractive if and only if

sup
{∣∣∣

∑〈bi, bj〉 〈ai, aj〉
∣∣∣ : ‖z1 b1 + · · ·+ zm bm‖2 ≤ 1 for all z ∈ B

}
≤ 1.

Proof: Let B = (B1, · · · , Bm), Bi ∈ Ck×k for i = 1, . . . ,m be such that

‖z1B1 + · · ·+ zmBm‖op ≤ 1, for all z ∈ B,

that is,

sup
z∈B

{
|
〈∑

(z̄izj)B
∗
iBj x,x

〉
| ≤ 1, for x in `2(k), ‖x‖2 ≤ 1

}
,

where `2(k) denotes k dimensional complex Hilbert space. Or, equivalently the operator

defined by

(z1, . . . , zm) → z1B1 x + · · ·+ zmBm x,

is a contraction from Cm with the norm determined by B into `2(k) for each x in the unit

ball of `2(k). The contractivity of ϕ
(k)
0 (A, ·) is thus (see 1.11) equivalent to

‖B1 ⊗ a1 + · · ·+Bm ⊗ am‖op ≤ 1, (1.13)

for B as above. Let bi = Bix, i = 1, 2, . . . ,m. In this notation, 1.13 is equivalent to

1 ≥ sup
{∣∣∣

〈∑
B∗

iBj〈aj, ai〉x,x
〉∣∣∣ : x ∈ `2(k), ‖x‖2 ≤ 1

}

= sup
{∣∣∣

∑ 〈B∗
iBj〈aj, ai〉x,x〉

∣∣∣ : x ∈ `2(k), ‖x‖2 ≤ 1
}

= sup
{∣∣∣

∑〈bj, bi〉 〈aj, ai〉
∣∣∣ : ‖z1 b1 + · · ·+ zm bm‖2 ≤ 1 for z ∈ B

}
(1.14)

This completes the proof. 2

The theorem specialised to k = 1 says that the operator

A = ((〈aj, ai〉)) : (Cm, ‖ · ‖∗B) → (Cm, ‖ · ‖B)

is a contraction. The operator

B = ((〈bj, bi〉)) : (Cm, ‖ · ‖B) → (Cm, ‖ · ‖∗B)

is a contraction if and only if supz∈B ‖z1 b1 + · · · + zm bm‖2 ≤ 1. In the following corollary

‖A‖, ‖B‖ are the operator norms of A and B respectively.



Corollary 1.10 The following two conditions are equivalent.

1. Every contractive homomorphism ϕ0(A, ·) is completely contractive over H∞ (B) for

A as in this section.

2. 〈A, B〉 ≤ ‖A‖ ‖B‖, for all A ≥ 0 B ≥ 0, where 〈·, ·〉 denotes the Hilbert-Schmidt inner

product.

2 Tensor Product Norms

All Banach spaces considered in this note are finite dimensional complex spaces. For two

such spaces V, W, we shall use the natural identification of V ⊗W with the space of (linear)

operators from V ∗ into W. Thus viewed, the injective tensor product norm ‖ · ‖̌ on V ⊗W is

just the operator norm. The projective tensor product norm ‖ · ‖̂ is the norm on V ⊗W dual

to the injective norm on the dual space W ∗⊗V ∗. By general nonsense, we have ‖ · ‖̌ ≤ ‖ · ‖̂.
For computational purposes, we shall think of the elements of V ⊗W as matrices with respect

to standard bases. Finally, the complex space of dimension n equipped with the lp norm

(1 ≤ p ≤ ∞) will be denoted by lp(n). T will denote the unit circle.

Note that there is a natural notion of positivity for elements of V ⊗V. Namely, an element

A of V ⊗ V is positive (written A ≥ 0) if it is in the convex hull of the set of symmetric

tensors x ⊗ x, x ∈ V, equivalently, it is an element which factors as A = B∗B for some

B ∈ V ⊗ l2.

Because of its intimate connection with the ‘spectral implies complete spectral’ question

for the class of operator tuples discussed above (see Corollary 1.10), we were led to ask :

what are the spaces V which satisfy the following

Property P : ∀A ∈ V ⊗ V, ∀B ∈ V ∗ ⊗ V ∗, A ≥ 0 & B ≥ 0 ⇒ 〈A,B〉 ≤ ‖A‖̌ ‖B‖̌.
Here 〈., .〉 is the Hilbert-Schmidt inner product.

A stronger property which a Banach space may possess is :

Property Q : ∀A ∈ V ⊗ V,A ≥ 0 ⇒ ‖A‖̂ = ‖A‖̌.
Fact 0 : Property Q ⇒ Property P.

Proof: This is immediate from the definition of the projective norm as a dual norm. 2

Fact 1 : Property P is conserved by duality but Property Q is not so conserved. Thus,

Property P 6⇒ Property Q.



Proof: From the symmetry in the statement of Property P, it is clear that if V has

Property P then so does V ∗ (and, hence, conversely). We shall see that l∞(3) has Property

Q but l1(3) does not have it. In consequence, l1(3) has Property P though it does not have

Property Q. 2

Recall that for u ∈ V ∗ ⊗ l2, the 2-summing norm π2(u) is defined as

(π2(u))
2 = sup{

n∑

i=1

‖uxi‖2}

where the supremum is over all n ≥ 1 and all x1, . . . , xn ∈ V for which
∑n

i=1 |x∗(xi)|2 ≤ 1

for all x∗ in the unit ball of V ∗.

From the case n = 1 in the definition of π2(u), it is clear that we have π2(u) ≥ ‖u‖̌ ∀ u ∈
V ∗ ⊗ l2. In [2] V is said to have the 2-summing property if π2(u) = ‖u‖̌ ∀ u ∈ V ∗ ⊗ l2.

Fact 2 : Property P is equivalent to the 2-summing property.

(Remark : This fact was brought to our attention by Pisier in a private conversation. But

the proof presented below is more direct than the argument outlined by him.)

Proof: Given x1, . . . , xn ∈ V, if we define T ∈ l2(n) ⊗ V by Tej = xj, j = 1, . . . , n

(where ej are the standard basis vectors), then T ∗(x∗) =
∑n

j=1 x
∗(xj)ej, x

∗ ∈ V ∗. Thus the

condition (in the definition of π2))
∑n

j=1 |x∗(xj)|2 ≤ 1 for all x∗ in the unit ball of V ∗ means

that ‖T ‖̌ ≤ 1. But
∑n

j=1 ‖uxj ‖̌2 =
∑n

j=1 ‖uTej ‖̌2 = 〈uT, uT 〉 = 〈u∗u, TT ∗〉. Hence, putting

S = TT ∗, we find that for u ∈ V ∗ ⊗ l2,

(π2(u))
2 = sup{〈u∗u, S〉 : S ≥ 0, S ∈ V ⊗ V, ‖S‖̌ ≤ 1.}

Thus Property P says that π2(u) ≤ ‖u‖̌ for all such u. We have already remarked that the

reverse inequality is trivial. 2

Fact 3: l1(2) has Property Q.

Proof: Since l∞(2)⊗̌l∞(2) = l∞(4), we have, for 0 ≤ A =


 a b

b c


 ∈ l1(2) ⊗ l1(2),

‖A‖̂ = |a|+ 2|b|+ |c|. But,

‖A‖̌ = sup{|a+ bω|+ |b+ cω| : ω ∈ T} = sup{|a+ bω|+ |c+ bω| : ω ∈ T} = |a|+ 2|b|+ |c|

as is seen by taking ω = b/b. 2

(Remark : we have not used the full force of the hypothesis on A. See Lemma 2.1 below for

an explanation.)



Fact 4 : l∞(2) has Property Q.

Proof: This follows from Facts 7 and 9 below. 2

Fact 5 : lp(2) does not have Property P for 1 < p <∞.

Proof: An easy norm computation shows that for lp(2), 1 < p <∞, Property P fails with

both A and B taken as the 2× 2 identity. 2

Lemma 2.1 Let 0 ≤ A =




∗ α β

α ∗ γ

β γ ∗


 ∈ l1(3) ⊗ l1(3). Then, ‖A‖̂ = ‖A‖̌ if and only if

αβγ is a non-negative real number.

(Here, and later, * stands for an unspecified (real) number, not necessarily the same in all

occurences.)

Proof: We may assume that α, β, γ are all non-zero (otherwise it reduces to Fact 3).

Choose ω ∈ T3 such that ‖A‖̌ = 〈Aω, ω〉. Now, ‖A‖̌ = ‖A‖̂ means that

Re(αω1ω2 + βω1ω3 + γω2ω3) = |α|+ |β|+ |γ|.

This happens iff a = αω1ω2, b = βω1ω3, c = γω2ω3 are all non-negative reals. Now, this

holds for some choice of ω ∈ T3 iff αβγ = abc ≥ 0. 2

Fact 6 : l1(3) does not have Property Q.

Proof: This is immediate from Lemma 2.1. 2

Fact 7 : l∞(3) has Property Q.

Proof: Let X be the set of all A ≥ 0 in l∞(3)⊗ l∞(3) such that ‖A‖̌ ≤ 1. Enough to show

that for any extreme point A of X , ‖A‖̂ is ≤ 1. Since A is an extreme point of X , A ≥ 0

and all the diagonal entries of A equal 1. Such an A may be written as A = U∗U where U

is upper triangular and all the columns of U have l2 length = 1. Say,

U =




1 α1 β1

0 α2 β2

0 0 β3


 .

Hence, we have,

A =




1 α1 β1

α1 1 α1β1 + α2β2

β1 α1β1 + α2β2 1


 ,



where |α1|2 + |α2|2 = 1, |β1|2 + |β2|2 ≤ 1.

Take a B ∈ l1(3)⊗l1(3) such that ‖B‖̌ ≤ 1 and B maximises |〈A,B〉| over all such matrices.

Replacing B by a suitable unimodular scalar multiple of B, we may assume 〈A,B〉 ≥ 0. But

then 〈A, (B+B∗)/2〉 = 〈A,B〉 and ‖(B+B∗)/2‖̌ ≤ ‖B‖̌ ≤ 1. So, replacing B by (B+B∗)/2

if necessary, we may assume that B is self adjoint. Say,

B =




∗ λ1 λ2

λ1 ∗ λ3

λ2 λ3 ∗


 .

We have to show that 〈A,B〉 ≤ ‖B‖̌. Since ‖B‖̌ ≥ sup〈Bz, z〉, where the supremum is

over all z =




1

ω1

ω2


 ∈ T3, it is enough to show that 〈A,B〉 ≤ sup〈Bz, z〉, that is,

Re(λ1α1 + λ2β1 + λ3(α1β1 + α2β2)) ≤ sup
ω1,ω2∈T

Re(λ1ω1 + λ2ω2 + λ3ω1ω2).

Since the left hand side is ≤ f(α1, β1) where f is as in Lemma 2.2, this follows from Lemma

2.2 below. 2

Lemma 2.2 Let λ1, λ2, λ3 be complex numbers. Define the function f on the closed bi-disc

by :

f(α, β) = Re(λ1α+ λ2β + λ3αβ) + |λ3|
√

(1− |α|2)(1− |β|2).
Then the maximum of f is attained on the torus T× T.

Proof: Rotating β, we see that at a maximum,

f = Re(λ1α) + |β||λ2 + λ3α|+ |λ3|
√

(1− |α|2)(1− |β|2).

The last two terms here give the standard inner product between the two vectors

(|β|,
√

1− |β|2) and (|λ2 + λ3α|, |λ3|
√

1− |α|2). Therefore, Cauchy-Schwarz shows that at a

maximum, these two vectors must be proportional (so that at a maximum, |α| = 1 ⇒ |β| =
1.), and the maximum value of f is

f = Re(λ1α) +
√
|λ2 + λ3α|2 + |λ3|2(1− |α|2)

= Re(λ1α) +
√
|λ2|2 + |λ3|2 + 2Re(λ2λ3α).

Therefore, it suffices to show that the maximum over |α| ≤ 1 of this last expression is

attained at |α| = 1. Suppose, on the contrary, that the maximum is attained at a point α



in the interior of the unit disc. Take ω, |ω| = 1, such that λ2λ3ω is purely imaginery. Then,

replacing α by α ± εω, ε > 0, does not change the second term and the new value of α is

in the unit disc provided ε is small. But the first term increases by ±εRe(λ1ω), and, for

the appropriate choice of sign, this increment is strictly positive if λ1λ2λ3 is not real. This

contradiction proves that at a maximum for f we must have |α| = 1 and hence also |β| = 1,

provided λ1λ2λ3 is not real. If, on the other hand, λ1λ2λ3 is real, then the above expression

depends on α only through Re(λ1α). Since |α| can be increased to 1 without changing the

value of Re(λ1α), we have the result in this case also. 2

Remark. The above Lemma is a minor variation of the ‘calculus lemma’ of [2]. In [2],

Arias et. al. used the calculus lemma and a Hahn Banach argument to prove that l∞(3) has

Property P. We observed that their argument actually establishes the apparently stronger

Property Q. (But, it turns out, in the case of l∞(n), this appearance is illusory. See the

following paragraph.) Arias et. al. [2] uses a sophisticated Hahn Banach argument to reduce

this to the case of upper triangular matrices, and the calculus lemma does the rest. The

point of the above proof is that a much more elementary reduction to the case of self adjoint

matrices suffices, so that the calculus lemma carries the entire strength of the observation.

We show that if l∞(4) had Property P, then it would have Property Q as well. So assume it

has Property P. Take 0 ≤ A ∈ l∞(4)⊗ l∞(4), and B ∈ l1(4)⊗ l1(4) such that all the diagonal

entries of A are = 1 and B is self adjoint. Arguing as in the proof of Fact 7, we see that, in

order to deduce Property Q for l∞(4), it suffices to show that 〈A,B〉 ≤ sup〈Bz, z〉 where the

supremum is over all z ∈ T4. Take r so large that B + rI ≥ 0. Since l∞(4) is supposed to

have Property P, we get 〈A,B〉 + 4r = 〈A,B + rI〉 ≤ sup〈(B + rI)z, z〉 = sup〈Bz, z〉 + 4r,

so that our claim follows.

A proof of the following fact is given in [2].

Fact 8 : l∞(4) (and hence also l1(4)) does not have Property P.

Recall that a subspace W of a Banach space V is called constrained if there is a projection

of norm one from V onto W .

Fact 9 : If a Banach space has Property P (or Q) then so does all its constrained subspaces.

Proof: Let W be a constrained subspace of the space V . Let i : W → V be the inclusion

map and p : V → W be a projection of norm 1. Let’s define the maps φ : W ⊗W → V ⊗ V

and ψ : W ∗⊗W ∗ → V ∗⊗ V ∗ by φ(A) = iAi∗, ψ(B) = p∗Bp, A ∈ W ⊗W, B ∈W ∗⊗W ∗.

It is easy to verify that these two maps preserve the injective norms. Also, together they

preserve the inner product : 〈φ(A), ψ(B)〉 = 〈A,B〉. In consequence, they preserve the

projective norms as well. Further, both maps preserve positivity. Therefore, these two maps

pull back Property P (or Q) from V to W . 2



Note that lp(m) is a constrained subspace of lp(n) for m ≤ n. Therefore, the observations

made above may be summarised in :

Theorem 2.3 Let n ≥ 2 be an integer and let 1 ≤ p ≤ ∞. Then lp(n) has Property Q only

for (p, n) = (1, 2), (∞, 2), (∞, 3). it has Property P but not Q only for (p, n) = (1, 3).

Unfortunately, the only constrained subspaces of l∞(n) (resply l1(n)) are (isometric to)

l∞(m) (resply l1(m)), m ≤ n. Therefore Fact 9 does not enable us to find more examples of

2-dimensional spaces with Property P or Q. However, in [2] it is shown that every subspace

of `∞(3) has the 2-summing property, that is, any such subspace has Property P. Arias et. al.

[2] have also determined all real Banach spaces with Property P. In view of their result and

the above theorem, it is perhaps not too wild a guess that l∞(3) may be the only complex

Banach space of dimension ≥ 3 which has Property Q.

Parrott’s example (cf. [6],[7]) shows that there is a contractive homomorphism ϕ0(A, ·) on

H∞
(
ID3

)
, which is not completely contractive. This study was motivated partly to see if

“Parrott like” examples can be found in the restricted class of homomorphisms considered in

section 1.4. Theorem 2.1 answers this question in the negative. Further it follows that every

contractive homomorphism ϕ0(A, ·) on H∞ (Ω), with A in the restricted class is completely

contractive when Ω ⊆ C3 is a product of three possibly different domains in C as well as

domains Ω in C2 or C3 of the kind considered in Example 1.5 above.
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