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Abstract. In this paper we study quasi-homogeneous operators, which include the homogeneous op-
erators, in the Cowen-Douglas class. We give two separate theorems describing canonical models (with
respect to equivalence under unitary and invertible operators, respectively) for these operators using
techniques from complex geometry. This considerably extends the similarity and unitary classification
of homogeneous operators in the Cowen-Douglas class obtained recently by the last author and A.
Korányi. In a significant generalization of the properties of the homogeneous operators, we show that
quasi-homogeneous operators are irreducible and determine which of them are strongly irreducible.
Applications include the equality of the topological and algebraic K-group of a quasi-homogeneous
operator and an affirmative answer to a well-known question of Halmos.

1. Introduction

For a plane domain Ω, in the paper [2], Cowen and Douglas introduced an important class of
operators Bn(Ω). It was shown by them that for operators T in Bn(Ω), the local geometry of the
corresponding vector bundle ET of rank n (curvature tensor and its higher derivatives) yields a
complete set of unitary invariants for the operator T. But a tractable set of unitary (or similarity)
invariants has not been found yet. The analysis of holomorphic Hermitian vector bundles in case
n > 1 is much more complicated, see [20, Example 2.1].

In the papers [10, 11], a class FBn(Ω) of operators in the Cowen-Douglas class possessing a flag
structure was isolated. A complete set of unitary invariants for this class of operators were listed.
Recently, Jiang and Ji have introduced methods from K-theory to classify flags of holomorphic curves
in the Grassmannian in order to reduce the questions involving operators in Bn(Ω) to the case of
n = 1 (cf. [13, 12]). On the other hand, the classification of homogeneous holomorphic Hermitian
vector bundles over the unit disc has been completed recently (cf. [17]) using tools from representation
theory of semi-simple Lie groups. Although not complete, a similar classification over an arbitrary
bounded symmetric domain is currently under way [16, 21].

The methods of K - theory developed in [13, 12] together with the methods of [11] makes it possible
to study a much larger class of “quasi-homogeneous” operators, where the techniques from represen-
tation theory are no longer available. These methods, applied to the class of “quasi-homogeneous”
operators leads to a unitary classification. In addition the bundle maps describing the triangular
decomposition of Jiang and Ji have an explicit realization in terms of the inherent harmonic analy-
sis. A model for these operators is described explicitly, which shows, among other things, that the
well-known Halmos problem for the class of “quasi-homogeneous” operators has an affirmative answer.

Prompted by these results, one might imagine that the multi-variate case (replacing the planar
domain Ω by the unit ball or a bounded symmetric domain) may also be accessible to these new
techniques.
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2. Main results

2.1. Preliminaries. Let H be a complex separable Hilbert space and let L(H) be the algebra of
bounded linear operators on H. For an open connected subset Ω of the complex plane C, and n ∈ N,
Cowen and Douglas introduced the class of operators Bn(Ω) in their very influential paper [2]. An
operator T acting on a Hilbert space H belongs to this class if each w ∈ Ω, is an eigenvalue of the
operator T of constant multiplicity n, these eigenvectors span the Hilbert space H and the operator
T −w, w ∈ Ω, is surjective. They showed that for an operator T in Bn(Ω), there exists a holomorphic
choice of n linearly independent eigenvectors, that is, the map w → ker(T −w) is holomorphic. Thus
π : ET → Ω, where

ET = {ker(T − w) : w ∈ Ω, π( ker(T − w) ) = w}
defines a Hermitian holomorphic vector bundle on Ω.

The Grassmannian Gr(n,H), is the set of all n-dimensional subspaces of the Hilbert space H.
A map t : Ω → Gr(n,H) is said to be a holomorphic curve, if there exist n (point-wise linearly
independent) holomorphic functions γ1, γ2, · · · , γn on Ω taking values in a Hilbert space H such that
t(w) =

∨
{γ1(w), · · · , γn(w)}, w ∈ Ω. Any holomorphic curve t : Ω → Gr(n,H) gives rise to a

n-dimensional Hermitian holomorphic vector bundle Et over Ω, namely,

Et = {(x,w) ∈ H × Ω | x ∈ t(w)} and π : Et → Ω, where π(x,w) = w.

Given two holomorphic curves t, t̃ : Ω → Gr(n,H), if there exists a unitary operator U on H such
that t̃ = Ut, that is, the restriction U(w) := U|Et(w) of the unitary operator U to the fiber Et(w) of

E at w maps it to the fiber of Et̃(w), then t and t̃ are said to be congruent. If t and t̃ are congruent,
then clearly the vector bundles Et and Et̃ are equivalent via the holomorphic bundle map induced
by the unitary operator U. Furthermore, t and t̃ are said to be similar if there exists an invertible
operator X ∈ L(H) such that t̃ = Xt, that is, X(w) := X|Et(w) is an isomorphism except that X(w)
is no longer an isometry. In this case, we say that the vector bundles Et and Et̃ are similar.

An operator T in the class Bn(Ω) determines a non-constant holomorphic curve t : Ω→ Gr(n,H),
namely, t(w) = ker(T − w), w ∈ Ω. However, if t is a holomorphic curve, setting Tt(w) = wt(w),
defines a linear transformation on a dense subspace of the Hilbert space H. In general, we have to
impose additional conditions to ensure that the operator T is bounded. Assuming that t defines a
bounded linear operator T , unitary and similarity invariants for the operator T are then obtained
from those of the vector bundle Et.

The motivation for this work comes from three very different directions. The attempt is to describe
a canonical model and obtain invariants for operators in the Cowen-Douglas class with respect to
equivalence via conjugation under a unitary or invertible linear transformation. These questions have
been successfully addressed using ideas from K-theory and representation theory of Lie groups.

First, the detailed study of the Cowen-Douglas class of operators, reported in the book [14, Theorem
1.49] provides a basic structure theorem for these operators: T is an operator in the Cowen-Douglas
class Bn(Ω), then there exists operators T0, T1, . . . , Tn−1 in B1(Ω) such that

(2.1) T =


T0 S0,1 S0,2 ··· S0,n−1

0 T1 S1,2 ··· S1,n−1

...
. . .

. . .
. . .

...
0 ··· 0 Tn−2 Sn−2,n−1

0 ··· ··· 0 Tn−1

 .

A slight paraphrasing of it clearly implies that if {γ0, γ1, · · · , γn−1} is a holomorphic frame for the
vector bundle Et, and H =

∨
{γi(w), w ∈ Ω, 0 ≤ i ≤ n − 1}, then there exists non-vanishing

holomorphic curves ti : Ω→ Gr(1,Hi), 0 ≤ i ≤ n− 1, such that

(2.2) γj = φ0,j(t0) + · · ·+ φi,j(ti) + · · ·+ φj−1,j(tj−1) + tj , 0 ≤ j ≤ n− 1,

where φi,j are certain holomorphic bundle maps. One would expect these bundle maps to reflect
the properties of the operator T . However the tenuous relationship between the operator T and the
bundle maps φi,j becomes a little more transparent only after we impose a natural set of constraints.
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Secondly, to a large extent, these constraints were anticipated in the recent paper [11, Theorem 3.6].
In that paper, a class of operators FBn(Ω) in Bn(Ω) possessing, what we called, a flag structure were
isolated. The flag structure was shown to be rigid. It was then shown that the complex geometric
invariants like the curvature and the second fundamental form of the vector bundle ET are unitary
invariants of the operator T . Indeed, in that paper, a complete set of unitary invariants were found.

Finally, recall that an operators T in Bn(D) is said to be homogeneous if the unitary orbit of T
under the action of the Möbius group is itself, that is, ϕ(T ) is unitarily equivalent to T for ϕ in

some open neighbourhood of the identity in the Möbius group (cf. [1]). A canonical element T (λ,µ)

in each unitary equivalence class of the homogeneous operators in Bn(D) was constructed in [17]. It

was then shown that two operators T (λ,µ) and T (λ′,µ′) are similar if and only if λ = λ′. In particular
choosing µ = 0, one verifies that a homogeneous operator in Bn(D) is similar to the n-fold direct sum

T0 ⊕ · · · ⊕ Tn, where Ti is the adjoint of the multiplication operator M (λi) acting on the weighted
Bergman space A(λi)(D) determined by the positive definite kernel 1

(1−zw̄)λi
defined the unit disc D,

0 ≤ i ≤ n− 1, λi > 0.

2.2. Main results. In this paper we study a class of operators, to be called quasi-homogeneous,
for which we can prove results very similar to those for the homogeneous operators building on the
techniques developed in [11]. This class of operators, as one may expect, contains the homogeneous
operators and is characterized by the requirement that all the bundle maps of (2.2) take their values
in a certain (full) jet bundle Ji(t) of the holomorphic curve t. For a detailed account of the jet bundles,
we refer the reader to [23].

Definition 2.1. If t is a holomorphic curve in the Grassmannian of rank 1, that is, t : Ω→ Gr(1,H).

Let γ(w) be a non-vanishing holomorphic section for the line bundle Et. The derivatives γ(j), j ∈ N,
taking values again in the Hilbert space H are holomorphic. (It can be shown that they are linearly

independent.) The jet bundle JnEt(γ) is defined by the holomorphic frame {γ(0)(:= γ), γ(1), · · · , γ(n)}.
The jet bundle JnEt(γ) has a natural Hermitian structure obtained by taking the inner product of

γ(i)(w) and γ(j)(w) in the Hilbert space H.

In the following definition we assume, implicitly, that the bundle map φi,j of (2.2) are from the
holomorphic line bundles Ei to a jet bundle JjEi, where for brevity of notation and when there is no
possibility of confusion, we will let Ei denote the vector bundle induced by the holomorphic curve ti,
0 ≤ i ≤ n− 1.

Definition 2.2 (J -holomorphic curve). Let t be a holomorphic curve in the Grassmannian Gr(n,H)
of a complex separable Hilbert space H and {γ0, γ1, · · · , γn−1} be a holomorphic frame for t. We say
that t admits an atomic decomposition if there exists holomorphic curves ti : Ω → Gr(1,Hi), to be
called the atoms of t, corresponding to operators Ti : Hi → Hi in B1(Ω) and complex numbers µi, j ∈ C,
0 ≤ j ≤ i ≤ n− 1, such that H = H0 ⊕ · · · ⊕ Hn−1 and

γ0 = µ0,0t0

γ1 = µ0,1t
(1)
0 + µ1,1t1

γ2 = µ0,2t
(2)
0 + µ1,2t

(1)
1 + µ2,2t2

...
...

γj = µ0,jt
(j)
0 + · · ·+ µi,jt

(j−i)
i + · · ·+ µj,jtj

...
...

γn−1 = µ0,n−1t
(n−1)
0 + · · ·+ µi,n−1t

(n−1−i)
i + · · ·+ µn−1,n−1tn−1.

If t admits an atomic decomposition, we call it a J - holomorphic curve.

Fix i in {0, . . . , n−1}. We say that the holomorphic curve ti is homogeneous if for w ∈ D, C[ti(w)] =
ker(Ti−w) for some homogeneous operator Ti in B1(D). We realize, up to unitary equivalence, such a

homogeneous operator Ti in B1(D) as the adjoint of the multiplication operator M (λi) on the weighted
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Bergman spaces A(λi)(D). Thus for a fixed w ∈ D, there exists a canonical (holomorphic) choice of
eigenvectors ti(w), namely, (1− zw̄)−λi .

Definition 2.3 (quasi-homogeneous curve). We say that a J - holomorphic curve t is quasi-
homogeneous if each of the atoms ti is homogeneous, λ0 ≤ λ1 ≤ · · · ≤ λn−1 and the difference
λi+1 − λi, 0 ≤ i ≤ n− 2, is a fixed positive real number Λ(t), which is called the valency of t.

We say that the J - holomorphic curve t defines a bounded linear operator if the linear span of
{γi(w) : 0 ≤ i ≤ n−1}, w ∈ Ω, is dense inH and the linear map defined by the rule T (γi(w)) = wγi(w),
0 ≤ i ≤ n− 1, extends to a bounded operator on the Hilbert space H.

We determine conditions on the scalars µi,j and the valency Λ(t), which ensure that the quasi-
holomorphic curve t defines bounded operator T, see Proposition 3.2

Throughout this paper, we make the standing assumption that these conditions for boundedness
are fulfilled. We shall use the terms quasi-homogeneous holomorphic curve t, quasi-homogeneous
operator T and quasi-homogeneous holomorphic vector bundle Et (or, even ET ) interchangeably.

If T is a quasi-homogeneous operator then it belong to the class FBn(D) introduced in the paper
[10, 11], see Theorem 3.3. All quasi-homogeneous operators are therefore irreducible. All the quasi-
homogeneous operators that are strongly irreducible are identified in Theorem 4.5. Theorem 4.2 gives
a canonical model for a quasi-homogeneous operator in the equivalence class under conjugation by an
invertible transformation.

As an application of our results, in Theorem 5.5, we show that the (topological) K0 group and the
(algebraic) K0 group of a quasi-homogeneous operator are equal, In the context of the usual K0 and
K0 groups, this is a consequence of the well-known theorem of R. G. Swan. As a second application,
we obtain an affirmative answer for the Halmos question on similarity of an operator admitting the
closed unit disc as a spectral set to a contraction.

A quasi-homogeneous vector bundle Et is indeed homogeneous if Λ(t) = 2 and the constants µi,j
are certain explicit functions of λ as we point out at the end of the following section. However, a
quasi-homogeneous vector bundle need not be homogeneous as the following example shows.

Example 2.4. Let S be the adjoint of the multiplication operator on arbitrary weighted Bergmann
space A(λ)(D) and let T be the operator

T =


S µ1 I 0 ··· 0
0 S µ2 I ··· 0

...
. . .

. . .
. . .

...
0 ··· 0 S µn I
0 ··· ··· 0 S

 , µi ∈ C,

defined on the n + 1 fold direct sum
⊕

A(λ)(D). Then T is in FBn+1(D) and therefore belongs to
Bn+1(D) and the corresponding holomorphic curve t(w) = ker(T − w), w ∈ D, is quasi homogeneous
with Λ(t) = 0. In fact, in this Example, if we replace S with an arbitrary operator, say R, from B1(D),
then the resulting operator T while no longer quasi-homogeneous, remains a member of FBn+1(D).
Indeed, it has already appeared, via module tensor products, in our earlier work [11, Section 4].

The class of quasi-homogeneous operators, contrary to what might appear to be a rather small
class of operators, contains apart from the homogeneous operators, many other operators. Indeed,
in rank 2, for instance, it is parametrized by the multiplier algebra of two homogeneous operators.
In the definition of the quasi-homogeneous operators given above, if we let the atoms occur with
some multiplicity rather than being multiplicity-free, it will make it even larger. This would cause
additional complications, which we are not able to resolve at this time. In another direction, we need
not assume that the atoms themselves are homogeneous. Most of our results would appear to go
through if we merely assume that the kernel function K(λ)(w,w) ∼ 1

(1−|w|2)λ
, |w| < 1. Deep results

about such functions were obtained by Hardy and Littlewood (cf. [7]) and have already appeared in
the context of similarity, see [3].
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3. Canonical model under unitary equivalence

An operator T in the Cowen and Douglas class Bn(Ω) is determined, modulo unitary equivalence,
by the curvature (of the vector bundle ET ) together with a finite number of its partial derivatives.
However, if the rank n of this vector bundle is > 1, then the computation of the curvature and its
derivatives is somewhat impractical. Here we show that if the operator is quasi-homogeneous, it is
enough to restrict ourselves to the computation of the curvature of the atoms and a n − 1 second
fundamental forms of pair-wise neighbouring vector bundles. We first recall, following [2, 4], that an
operator T in Bn(Ω) may be realized as the adjoint of a multiplication operator on a Hilbert space of
holomorphic functions on Ω∗ := {w : w̄ ∈ Ω} possessing a reproducing kernel.

3.1. Holomorphic Curves. For an operator T in the Cowen-Douglas class Bn(Ω), acting on a Hilbert
space H, there is a holomorphic frame {γ0, γ1, · · · , γn−1} and atoms t0, . . . , tn−1, for which we have

γi = µ0,it
(i)
0 + · · ·+ µj,it

(i−j)
i + · · ·+ µi,iti, µj,i ∈ C.

At this point, assuming that the operator is quasi-homogeneous makes the atoms T0, T1, . . . , Tn−1

homogeneous. Conjugating with a diagonal unitary, if necessary, we assume without loss of generality
that ti is the holomorphic curve defined by

ti(w) := (1− w̄z)−λi , λi = λ0 + i Λ(t), 0 ≤ i ≤ n− 1, λ0 > 0,

in the weighted Bergman space A(λi)(D). We assume without loss of generality that µi,i = 1, 0 ≤ i ≤
n− 1.

3.2. Atomic decomposition. Let t be a quasi-homogeneous holomorphic curve in Gr(n,H). Assume that
it defines a bounded linear operator T on the Hilbert space H. An appeal to the decomposition (2.1)
provides, what we would now call an atomic decomposition for the operator T. This decomposition
has several additional properties arising out of our assumption of quasi-homogeneity.

Proposition 3.1. Let t be a J -holomorphic curve with atoms {t0, . . . , tn−1} and let {γ0, . . . , γn−1}
be a holomorphic frame for the vector bundle Et. Let H be the closed linear span of the set of vectors
{γ0(w), . . . , γn−1(w) : w ∈ Ω} and Hi be the closed linear span of the set of vectors {ti(w), w ∈ Ω},
0 ≤ i ≤ n− 1. We have

(1) H = H0 ⊕H1 ⊕ · · · ⊕ Hn−1;
(2) There exists an operator T, defined on a dense subset of vectors in H, which is upper triangular

with respect to the direct sum decomposition H = H0 ⊕ · · · ⊕ Hn−1 :

T =


T0 S0,1 S0,2 ··· S0,n−1

0 T1 S1,2 ··· S1,n−1

...
...

...
...

...
0 ... 0 Tn−2 Sn−2,n−1

0 0 ... 0 Tn−1

 ,

where Si,j(tj(w)) = mi,jt
(j−i−1)
i (w), Ti(ti(w))) = w ti(w), w ∈ Ω, i, j = 0, 1, · · · , n − 1, for

some choice of complex constants mi,j depending on the µi,j .
(3) The constants mi,j and µi,j determine each other.

For convenience of notation, in the proof below, we set Si,i := Ti, 0 ≤ i ≤ n− 1, in the proof. We
will adopt this practice often and call T0, T1, . . . , Tn−1, the atoms of T . Also, Si,i+1(ti+1) = µi,i+1ti,
with the assumption that µi,i = 1, 0 ≤ i ≤ n− 2.

Proof. Note that {γ0, γ1, · · · , γn−1} is a frame for Et and the atoms ti, 0 ≤ i ≤ n− 1 are pairwise
orthogonal. From Definition 2.2, the first statement of the Proposition is included in the definition of
a holomorphic quasi-homogeneous curve.
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For 0 ≤ i ≤ j ≤ n − 1, let Si,j : Hj → H be the linear transformation induced by bundle maps
si,j : Etj → Jj−i−1Eti , namely, ∑

i≤j
si,j(γk(w)) = wγk(w), w ∈ Ω.

It follows that

(3.1) (sk,k − w)(µk,ktk(w)) = 0, (sk−1,k−1 − w)(µk−1,kt
(1)
k−1(w)) + sk−1,k(µk,ktk(w)) = 0,

Thus sk,k induces an operator Sk,k with ker(Sk,k − w) = C[tk(w)] and sk−1,k is a bundle map from
Etk(w) (:= C[tk(w)]) to Etk−1

(w) (:= C[tk−1(w)]).
For any i ≤ j ≤ n − 1, si,j is a bundle map from Etj to Jj−i−1Eti and there exists mi,j ∈ C such

that Si,j(tj(w)) = mi,jt
(j−i−1)
i (w), w ∈ Ω.

Since (s0,0 − w)γ1(w) = (s0,0 − w)(µ0,1t
(1)
0 (w)) + s0,1(µ1,1t1(w)) = 0, we have

s0,1(t1(w)) = m0,1t0(w),

where m0,1 = −µ0,1
µ1,1

. Thus we have

s0,2(t2(w)) = −2µ0,2 + µ1,2m0,1

µ2,2
t
(1)
0 (w) = m0,2t

(1)
0 (w).

Now assume that for any fixed k and some k < j ≤ n− 1, there exits mk,i ∈ C such that

sk,i(ti(w)) = mk,it
(i−k−1)
k (w), i < j.

Then from equation (3.1), we have

(sk,k − w)(µk,jt
(j−k)
k )(w) + sk,k+1(µk+1,jt

(j−k−1)
k+1 (w)) + · · ·+ sk,j(µj,jtj(w)) = 0

and from the induction hypothesis, we may rewrite this as

µk,j(j − k)t
(j−k−1)
k (w) + µk+1,jmk,k+1t

(j−k−1)
k (w) + · · ·+ µj,jsk,j(tj(w)) = 0.

Thus

sk,j(tj(w)) = mk,jt
(j−k−1)
k (w),

or, equivalently

(3.2) mk,j = −
µk,j(j − k) +

j−k−1∑
l=1

µk+l,jmk,k+l

µj,j

completing the the proof of the second statement of the Proposition.
Claim: For any operator T in Bn(Ω) with atomic decomposition exactly as in the second statement

of the lemma, there exists µi,j satisfying the conditions in Definition 2.2, that is, there exists a
holomorphic frame for ET , which is a linear combination of the non-vanishing holomorphic sections
of Eti and a certain number of jets.

Indeed, the proof of the second part of the Proposition already verifies this Claim for n ≤ 2. To
prove the Claim by induction, let us assume that it is valid for k ≤ n − 2. Note that the operator((
Si,j
))
i,j≤n−2

is in Bn−1(Ω). By the induction hypothesis, we can find mi,j , i, j ≤ n−2 verifying Claim

2 for any operator
((
Si,j
))
i,j≤n−2

. If we consider the operator(
Tn−2 Sn−2,n−1

0 Tn−1

)
,
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then we have that Sn−2,n−1(tn−1) = mn−2,n−1tn−2. Now, setting µn−2,n−1 = −mn−2,n−1, we can define
all the coefficients µn−k,n−1, 2 ≤ k ≤ n recursively. In fact, if we consider

Tn−k Sn−k,n−k+1 Sn−k,n−k+2 · · · Sn−k,n−1
Tn−k+1 Sn−k+1,n−k+2 · · · Sn−k+1,n−1

. . .
...

. . .
...

0 Tn−2 Sn−2,n−1
Tn−1


,

where 2 ≤ k ≤ n, and set

µn−k,n−1 = −

k−2∑
i=1

mn−k,n−k+iµn−k+i,n−1 +mn−k,n−1

k − 1
,

then µn−k,n−1 is defined involving only the coefficients µn−k+i,n−1 which exist by the induction hy-
pothesis. Thus coefficients µi,j depends only on the mi,j , i, j ≤ n − 1. By a direct computation,

γk = µ0,kt
(k)
0 +µ1,kt

(k−1)
1 + · · ·+µk,ktk, 0 ≤ k < n− 1 together defines a frame for ET . This completes

the proof of the Claim and the third statement of the lemma. �

3.3. Boundedness. Having shown that a holomorphic quasi-homogeneous curve t defines a linear trans-
formation on a dense subset of Ht, we determine when it extends to a bounded linear operator on all
of Ht. We make the following conventions here which will be in force throughout this paper.

3.3.1. Conventions. The positive definite kernel K(λ)(z, w) is the function (1− w̄z)−λ defined on D×D
and is the reproducing kernel for the weighted Bergman space A(λ)(D). The coefficient an(λ) of w̄nzn

in the power series expansion for K(λ) (in powers of zw̄) is of the form an(λ) ∼ nλ−1 using Stirling’s

formula: Γ(λ+n)
Γ(n) ∼ n

λ. The set of vectors e
(λ)
n :=

√
an(λ) zn, n ≥ 0, is an orthonormal basis in A(λ)(D).

The action of the multiplication operator on A(λ)(D) is easily determined:

M(e(λ)
n ) ∼

( n

n+ 1

)λ−1
2
e

(λ)
n+1.

Often, one sets w
(λ)
n :=

√
an(λ)√
an+1(λ)

and says that M is a weighted shift with weights w
(λ)
n since M(e

(λ)
n ) =

w
(λ)
n e

(λ)
n+1. The other way round,

n∏
i=0

w
(λ)
i =

√
a0(λ)
an+1(λ) ∼ (n + 1)

1−λ
2 . The adjoint of this operator is

then given by the formula:

M∗(e(λ)
n ) = w

(λ)
n−1e

(λ)
n−1 ∼

(n− 1

n

)λ−1
2
e

(λ)
n−1.

The following Proposition shows that if the valency Λ(t) is less than 2, then every possible linear
combination of the atoms and their jets need not define a bounded linear transformation. However,
from the proof of this Proposition, we infer that no such obstruction can occur if Λ(t) ≥ 2.

Proposition 3.2. Fix a natural number n ≥ 2. Let t be a quasi-homogeneous holomorphic curve with

atoms ti, i = 0, 1, . . . , n− 1. For 0 ≤ i, j ≤ n− 1, let si,j(tj(w)) = mi,jt
(j−i−1)
i (w) be the bundle map

from Etj to Jj−i−1Eti and Si,j : Hj → Hi be the densely defined linear transformation induced by the
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maps si,j . The linear transformation of the form

T =


T0 S0,1 S0,2 · · · S0,n−1
0 T1 S1,2 · · · S1,n−1
...

. . .
. . .

. . .
...

0 . . . 0 Tn−2 Sn−2,n−1
0 0 . . . 0 Tn−1


is densely defined on the Hilbert space A(λ0)(D)⊕ · · · ⊕ A(λn−1)(D). Suppose that Λ(t) < 2.

(1) If Λ(t) ∈ [1 + n−3
n−1 , 2), n ≥ 2, then T is bounded.

(2) If Λ(t) ∈ [1 + n−k−4
n−k−2 , 1 + n−k−3

n−k−1), the operator T is bounded only if we set mi,j = 0 whenever
j − i ≥ n− k − 2, n− 1 > k ≥ 0, n ≥ 4, that is, T must be of the form

S0,0 S0,1 · · · S0,n−k−2 0 · · · 0 0
S1,1 S1,2 · · · S1,n−k−1 0 · · · 0

. . .
. . .

. . .
. . .

. . .
...

. . .
. . .

. . .
. . . 0

0 Sk+1,k+1 Sk+1,k+2 · · · Sk+1,n−1
. . .

. . .
...

Sn−2,n−2 Sn−2,n−1
Sn−1,n−1


(3) If Λ(t) ∈ (0, 1), then the densely defined linear transformation T is bounded only if we set

mi,j = 0, i < j + 1, i = 0, 1, · · · , n− 2, n ≥ 3.

Proof. For i = 0, 1, · · · , n − 1, the operators Si,i are homogeneous by definition. Thus the operator
Si,i, as we have said before, is realized as the adjoint of the multiplication operator on the weighted

Bergman space A(λi)(D). The reproducing kernel K(λi)(z, w) for this Hilbert space is of the form
1

(1−zw̄)λi
. Consequently,

ker (Si,i − w)∗ = C[ti(w̄)] = C[K(λi)(z, w)], w ∈ D.

Claim : If λj − λi > 2(j − i) − 2, j > i = 0, 1, 2, · · · , n − 2, then each si,j induces a non-zero linear
bounded operator Si,j .

Without loss of generality, we set si,j(tj) = mi,jt
(j−i−1)
i ,mi,j ∈ C, i, j = 0, 1, · · · , n− 1 and

ti(w) =
1

(1− zw)λi
, tj(w) =

1

(1− zw)λj
.

Then the linear transformation Si,j : Hj → Hi induced by si,j is densely defined by the rule

Si,j(tj) = mi,jt
(j−i−1)
i , i, j = 0, 1, · · · , n− 1.

We have that

||Si,j || = |mi,j |max
`
{

√
`−(j−i)∏
l=0

wl(λj)√
`−1∏
l=0

wl(λi)

`(`− 1) · · · (`− (j − i) + 2)} .

By a direct computation,√
`−(j−i−1)∏

l=0

wl(λj)√
`−1∏
l=1

wl(λi)

`(`− 1) · · · (`− (j − i) + 2) ∼
( 1

`
λj−λi

2
−(j−i−1)

)
.
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It follows that each Si,j is a non-zero bounded linear operator if and only if

λj − λi
2

≥ j − i− 1, that is, λj − λi ≥ 2(j − i)− 2.

If Λ(t) ≥ 1 + n−3
n−1 , then

λn−1 − λ0 = (n− 1)Λ(t) ≥ 2(n− 2).

By the argument given above, we obtain S0,n−1 is non-zero and bounded. If Λ(t) < 1 + n−3
n−1 , then we

might deduce that m0,n−1 = 0 or µ0,n−1 = 0, i.e. S0,n = 0. Thus the proof of the first statement is
complete.

For the general case, if Λ(t) ∈ [1 + n−k−4
n−k−2 , 1 + n−k−3

n−k−1), k ≥ 0, then we have

(n− k − 1)Λ(t) < 2(n− k − 1)− 2.

On the other hand, if j− i ≥ n− k− 1, then we obtain λj −λi ≤ 2(j− i)− 2. By the argument above,
we have Si,j = 0, j − i ≥ n− k − 1, and S has the following matrix form:

(3.3) T =



S0,0 ··· S0,n−k−2 0 ··· 0
S1,1 ··· S1,n−k−1 0 ··· 0

. . .
. . .

. . .
...

. . .
. . . 0

0 Sk+1,k+1 ··· Sk+1,n−1

. . .
...

. . .
...

Sn−1,n−1


This completes the proof of the second statement.

In particular, if 0 ≤ Λ(t) < 1 and j − i ≥ 2, then we have λj − λi ≤ 2(j − i)− 2, which implies

T =


S0,0 S0,1 0 ··· 0

0 S1,1 S1,2 ··· 0

...
. . .

. . .
. . .

...
0 ··· 0 Sn−2,n−2 Sn−2,n−1

0 ··· ··· 0 Sn−1,n−1

 , Λ(t) ∈ [0, 1).

This completes the proof of the third statement. �

Having disposed off the question of boundedness of a quasi-homogeneous operator, we show that
all quasi-homogeneous operators are in the class FBn(D).

Theorem 3.3. Suppose T is a quasi-homogeneous operator and
((
Si,j
))
n×n is its atomic decomposition.

Then we have

Si,iSi,i+1 = Si,i+1Si+1,i+1, i = 0, 1, · · · , n− 2,

or equivalently, T is in FBn(D).

Proof. We have found constants mi,j ∈ C such that

Si,j(tj) = mi,jt
(j−i−1)
i , i < j = 0, 1, · · · , n− 1

in the second statement of Proposition 3.1. Since (Si,i − w)(ti(w)) = 0, w ∈ Ω, it follows that

Si,iSi,i+1(ti+1(w)) = Si,i+1Si+1,i+1(ti+1(w)).

We have Hi = Spanw∈Ω{ti(w)}, i = 0, 1 · · · , n− 1, therefore

Si,iSi,i+1 = Si,i+1Si+1,i+1, i = 0, 1, · · · , n− 2.

�
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3.4. The Second fundamental form. In [5, page. 2244], an explicit formula for the second fundamental
form of a holomorphic Hermitian line bundle in its first order jet bundle of rank 2 was given. The
second fundamental form, in a slightly different guise, was shown to be a unitary invariant for the
class of operators F̃Bn(Ω) in [11]. We give the computation of the second fundamental form here, yet
again, keeping track of certain constants which appear in the description of the quasi-homogeneous
operators. We compute the second fundamental form of the inclusion E0 in E, where {γ0, γ1} is a
frame for E with atoms t0 and t1. The line bundle defined by the atom t0 is E0. By necessity, we have

γ0 = t0 γ1 = µ01t
′
0 + t1

with t0 ⊥ t1. As in [5, 11], setting h = 〈γ0, γ0〉, the second fundamental form θ0,1 is seen to be of the
form

θ0,1 = −h1/2 ∂̄(h−1〈γ1, γ0〉)(
‖γ1‖2 − |〈γ1,γ0〉|

2

‖γ0‖2
)1/2 .

It is important, for what follows, to express θ0,1 in terms of the atoms t0 and t1 giving the formula

(3.4) θ0,1 =
µ0,1K0(‖t1‖2

‖t0‖2 − |µ0,1|2K0

)1/2 ,
where K0 is the curvature of the line bundle Et0 given by the formula −∂̄∂ log ‖t0‖2. The following
lemma shows the key role of the second fundamental form in determining the unitary equivalence
class of a quasi-homogeneous holomorphic curve.

Lemma 3.4. Suppose that t and t̃ are quasi-holomorphic curves with the same atoms t0, t1. Then the
following statements are equivalent.

(1) The two curves t and t̃ are unitarily equivalent;

(2) The second fundamental forms θ0,1 and θ̃0,1 are equal;
(3) The two constants µ0,1 and µ̃0,1 are equal.

Proof. The equivalence of the first two statements was proved in [11, Corollary 2.8]. The equality of

θ0,1 and θ̃0,1 is clearly equivalent to

µ̃0,1

(‖t1‖2
‖t0‖2 + |µ0,1|2∂̄∂ log ‖t0‖2

)1/2
= µ0,1

(‖t1‖2
‖t0‖2 + |µ̃0,1|2∂̄∂ log ‖t0‖2

)1/2
.

From this equality, we infer that arg(µ0,1) = arg(µ̃0,1).

Given that we have assumed, without loss of generality, ‖t0‖2 = (1 − |w|2)−λ0 and ‖t0‖2 = (1 −
|w|2)−λ1 , squaring both sides and then taking the difference of the equality displayed above, we find
that

∂̄∂ log ‖t0‖2 = λ0(1− |w|2)−2,

which can be equal to ‖t1‖
2

‖t0‖2 if and only if λ1 − λ0 = 2. Thus except when Λ(t) = 2, we must have

µ2
0,1 − µ̃2

0,1 = 0. Clearly, µ̃0,1 = −µ0,1 is not an admissible solution. So, we must have µ̃0,1 = µ0,1. In
case λ1 − λ0 = 2, if we assume µ̃0,1 6= µ0,1, then we must have(1 + λ0|µ̃0,1|2

1 + λ0|µ0,1|2
)1

2
=
|µ̃0,1|
|µ0,1|

,

from which it follows that |µ̃0,1| = |µ0,1|. The arguments of these complex numbers being equal, they
must be actually equal. �

When we consider the inclusion of the line bundle Eti in the vector bundle E{ti,
mi,j
j−i t

(j−i)
i +tj}

of rank

2, the situation is slightly different. This is the vector bundle which corresponds to the 2× 2 operator

block Ti,j :=
(
Si,i Si,j
0 Sj,j

)
.

Clearly, {ti,−mi,j
j−i t

(j−i)
i + tj} is the frame for ETi,j . By the formulae above, setting temporarily

γ0 = ti, γ1 = −mi,j
j−i t

(j−i)
i + tj , we have that
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(1) hi = ||γ0||2 = ||ti||2, hj = ||tj ||2;

(2) ||γ1||2 = |mi,jj−i |
2∂j−i∂

j−i||ti||2 + ||tj ||2 = |mi,jj−i |
2∂j−i∂

j−i
hi + hj ;

(3) < γ1, γ0 >= −mi,j
j−i ∂

j−i||ti||2 = −mi,j
j−i ∂

j−ihi;

(4) | < γ1, γ0 > |2 = |mi,jj−i |
2∂j−ihi∂

j−i
hi.

The second fundamental form θi,j for the inclusion Eti ⊆ E{ti,mi,jj−i t
(j−i)
i +tj}

is given by the formula

(3.5) θi,j =

mi,j
j−i ∂(h−1

i ∂j−ihi)

(
hj
hi

+ |mi,jj−i |2(hi∂
j−i∂

j−i
hi−∂j−ihi∂

j−i
hi

h2i
))

1
2

.

Lemma 3.5. Let Ti,j :=
(
Si,i Si,j
0 Sj,j

)
and T̃i,j :=

(
Si,i S̃i,j
0 Sj,j

)
with S̃i,j(tj) = m̃i,jt

(j−i−1)
i . The second

fundamental forms θi,j and θ̃i,j of the operators Ti,j and T̃i,j are equal, that is, θi,j = θ̃i,j if and only
if mi,j = m̃i,j .

Proof. Without loss of generality, we will give the proof only for the case i = 0, j = k, j 6= 1. In this

case, θ0,k = θ̃0,k is equivalent to the equality:

(hkh0 + |m0,k

k |
2(h0∂

k∂
k
h0−∂kh0∂

k
h0

h20
))

1
2

(hkh0 + | m̃0,k

k |2(h0∂
k∂
k
h0−∂kh0∂

k
h0

h20
))

1
2

=
m0,k

m̃0,k

For simplicity, let g0 denote (h0∂
k∂
k
h0−∂kh0∂

k
h0

h20
) and let m, m̃ denote

m0,k

k ,
m̃0,k

k respectively. Then

the equation given above may be rewritten as

(hkh0 + |m|2g0)
1
2

(hkh0 + |m̃|2g0)
1
2

=
m

m̃

From this equality, we infer that arg(m) = arg(m̃). Now, squaring both sides and then taking the
difference, we have

hk
h0

(m̃2 −m2)− m̃2m2g0(m̄2 − ¯̃m2) = 0.

Having assumed, without loss of generality, h0 = (1 − |w|2)−λ0 and hk = (1 − |w|2)−λ1 , we find that

g0 is a polynomial of degree > 1 in (1−|w|2)−1. Thus g0 can be equal to hk
h0

if and only if λ1−λ0 = 2.

Therefore, except when Λ(t) = 2, we must have m2 − m̃2 = 0. Clearly, m = −m̃ is not an admissible
solution. So, we must have m = m̃. Hence m0,k = m̃0,k. �

3.5. Unitary equivalence. Recall that a positive definite kernel K : Ω × Ω → Cn×n is said to be nor-
malized at w0 ∈ Ω, if K(z, w0) = I, z ∈ Ω. An operator T in Bn(Ω) may be realized, up to unitary
equivalence, as the adjoint of a multiplication operator on a Hilbert space possessing a normalized
reproducing kernel (cf. [4]). Realized in this form, the operator is determined completely modulo mul-
tiplication by a constant unitary operator acting on Cn. As one might expect, finding the normalized
kernel if n > 1 is not easy. The theorem below illustrates a rigidity phenomenon in the spirit of what
was proved by Curto and Salinas for operators in Bn(D). For quasi-homogeneous operators, the atoms
are homogeneous operators in B1(D). These are assumed to be realized in normal form. Consequently,
if T is a quasi-homogeneous operator, a set of n − 1 fundamental forms determine the operator T
completely, that is, two of them are unitarily equivalent if and only if they are equal assuming they
have the same set second fundamental forms.

Theorem 3.6. Suppose that t and t̃ are unitarily equivalent. Then if the second fundamental forms
are the same, that is, θi,i+1 = θ̃i,i+1, 0 ≤ i ≤ n− 2, then t = t̃.
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Proof. If necessary, conjugating by a diagonal unitary, without loss of generality, we may assume that
the atoms of the operators T and T̃ are the same. If there exists a unitary operator U such that
TU = UT̃ , then U must be diagonal with unitaries U0, U1, . . . Un−1 on its diagonal. Then we have

UiSi,j = S̃i,jUj , i, j = 0, 1, . . . , n− 1.

In particular, Ui commutes with the fixed set of atoms Ti, which are irreducible, therefore there exists
βi ∈ [0, 2π] such that

Ui = eıβiIHi , i = 0, 1, · · · , n− 1.

Then on the one hand, we have

UiSi,i+1(ti+1) = Ui(−µi,i+1ti) = −µi,i+1e
ıβiti

and on the other hand, we have

S̃i,i+1Ui+1(ti+1) = Si,i+1(eıβi+1ti+1) = −µ̃i,i+1e
ıβi+1ti.

Consequently,

−µi,i+1e
ıβi = −µ̃i,i+1e

ıβi+1 , 0 ≤ i ≤ n− 2.

The assumption that the second fundamental forms are the same for the two operators T and T̃
implies that µi,i+1 = µ̃i,i+1. Therefore, we have βi = βi+1 := β, i = 0, 1, . . . , n− 2. Since

UiSi,j = S̃i,jUj , i, j = 0, 1, . . . , n− 1,

we have

UiSi,j(tj) = eıβmi,jt
(j−i−1)
i = eıβm̃i,jt

(j−i−1)
i = S̃i,jUj(tj).

Then mi,j = m̃i,j , i, j = 0, 1, . . . , n− 1. It follows that Si,j = S̃i,j and t = t̃. �

Remark 3.7. It is natural to ask which of the quasi-homogeneous operators are homogeneous. A
comparison with the homogeneous operators given in [18] shows that a quasi-homogeneous operator
is homogeneous if and only if

(3.6) µi,j =
Γi,j(λ)µi

µj
, Γi,j(λ) =

(
i

j

)
1

(2λj)i−j
, λj = λ− m

2 + j,

for some choice of positive constants µ0(:= 1), µ1, . . . , µn−1. Here (α)` := α(α + 1) · · · (α + ` − 1) is

the Pochhammer symbol. Clearly, if two homogeneous operators with (λ,µ) and (λ̃, µ̃) were unitarily

equivalent, then λ must equal λ̃. Since it is easy to see that µi,i+1 = µ̃i,i+1 if and only if µi = µ̃i+1,
we conclude that two of these homogeneous operators are unitarily equivalent if and only if they are
equal recovering previous results of [18].

4. Canonical model under similarity

In this section, our main focus is on the question of reducibility and strong irreducibility of a quasi-
homogeneous operator. We recall that an operator T is said to be strongly irreducible if there is no
idempotent in its commutant, or equivalently, there does not exist an invertible operator L for which
LTL−1 is reducible. The (multiplicity-free) homogeneous operators in the Cowen-Douglas class of
rank n are irreducible (cf. [18]). However, they were shown (cf. [17]) to be similar to the n - fold
direct sum of their atoms making them strongly reducible. It is this phenomenon that we investigate
here for quasi-homogeneous operators. Along the way, we determine when two quasi-homogeneous
operators are similar. Our investigations show that there is dichotomy which depends on whether
or not the valency Λ(t) is less than 2 or greater or equal to 2. In what follows, we will say that a
holomorphic curve t : D→ Gr(n,H) is strongly irreducible if there is no invertible operator X on the
Hilbert space H for which Xt splits into orthogonal direct sum of two holomorphic curves, say t1 and
t2, in Gr(n1,H) and Gr(n2,H), n1 + n2 = n, respectively.

Suppose t : D → Gr(n,H) is a quasi-homogeneous holomorphic curve with atoms t0, t1, . . . , tn−1.
Then t is strongly reducible, t ∼ t0⊕ t1 · · · ⊕ tn−1, if Λ(t) ≥ 2 and strongly irreducible otherwise. The
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dichotomy involving the valency Λ(t) is also clear from the main theorem on similarity Theorem 4.2
of quasi-homogeneous holomorphic curves.

The atoms of a quasi-homogeneous operator are homogeneous operators in B1(D) by definition.
Therefore, they are uniquely determined not only up to unitary equivalence but upto similarity as
well. Now, pick any two quasi-homogeneous operators. They possess an atomic decomposition by
virtue of Proposition 3.1. Any invertible operator intertwining these two quasi-homogeneous operators
is necessarily upper triangular:

Lemma 4.1. Let t and t̃ be two quasi-homogeneous holomorphic curves with atomic decomposition
{ti : i = 0, 1, . . . , n − 1} and {t̃i : i = 0, 1, . . . , n − 1}, respectively. If they are quasi-similar via the
intertwining operators X and Y , that is, Xt = t̃ and Y t̃ = t, then for i ≤ n− 1, we have

X
(∨
{t0(w), t1(w), · · · , ti(w) : w ∈ D}

)
⊆
∨
{t̃0(w), t̃1(w), · · · , t̃i(w) : w ∈ D},

Y
(∨
{t̃0(w), t̃1(w), · · · , t̃i(w) : w ∈ D}

)
⊆
∨
{t0(w), t1(w), · · · , ti(w) : w ∈ D}.

This is easily proved by modifying the proof [11, Proposition 3.3] slightly. Hence if two quasi-
homogeneous operators are similar, then each of the atoms for one must be similar to the other.
Consequently, to determine equivalence of quasi-homogeneous operators T under an invertible linear
transformation, we may assume (as before) without loss of generality that the atoms are fixed with
the weight λ0 and the valency Λ(t). Clearly, the valency Λ(t) is both an unitary as well as a similarity
invariant of the quasi-homogeneous curve t.

Note that if we let R be the n × n diagonal matrix with
( i∏
`=0

µ`,`+1)
( i∏
`=0

µ̃`,`+1

)−1
on its diagonal

and set t̃ = R tR−1, then S̃i,i+1(ti+1) = µ̃i,i+1, 0 ≤ i ≤ n − 2. Thus up to similarity, we may assume
that the constants µi,i+1 and µ̃i,i+1 are the same. Or equivalently (see Lemma 3.4), we may assume
that the choice of the second fundamental forms θi,i+1, 0 ≤ i ≤ n− 2, does not change the similarity
class of a quasi-homogeneous holomorphic curve. Therefore the condition in the second statement of
the theorem given below is not a restriction on the similarity class of the holomorphic curves t and t̃.

Theorem 4.2. Suppose t and t̃ are quasi-homogeneous holomorphic curves.

(1) If Λ(t) ≥ 2, then t is similar to the n - fold direct sum of the atoms t0 ⊕ t1 ⊕ · · · ⊕ tn−1.

(2) If Λ(t) = Λ(t̃) < 2 and θi,i+1 = θ̃i,i+1, i = 0, 1, · · · , n− 2, then t and t̃ are similar if and only
if they are equal.

4.1. The Key Lemma. The following lemma is the key to determining when a bundle map that inter-
twines two quasi-homogeneous holomorphic vector bundles extends to an invertible bounded operator.
It reveals the intrinsic structure of the intertwiners between two quasi-homogeneous bundles. We fol-
low the conventions set up in Section 3.3.1.

Lemma 4.3. Let Et be a quasi-homogeneous vector bundle and si,j , i, j = 0, 1, · · · , n−1 be the induced
bundle maps. There exists a bundle map X : Etn−1 → Jn−1(Et0) with the intertwining property

s0,0X −Xsn−1,n−1 = s0,n−1

that extends to a bounded linear operator only if Λ(t) ≥ 2.

Proof. Let T0 and Tk+1 be the operators induced by s0,0 and sk+1,k+1 as in in Proposition 3.1.

These are then necessarily the operators M (λ0)∗ and M (λk+1)∗ acting on the weighted Bergman spaces
A(λ0)(D) and A(λk+1)(D), respectively.

The kernel of the operator (Ti−w), w ∈ D, is spanned by the vector ti(w) := (1−zw̄)−λi , i = 0, k+1.
By hypothesis, for each fixed w ∈ D, we have S0,k+1((1 − zw̄)−λk+1) = ∂̄k(1 − zw̄)−λ0 . Differentiat-

ing both sides of this equation ` times and then evaluating at w = 0, we get S0,k+1

(
(λk+1)`z

`
)

=

(λ0)`+kz
`+k. For j = 0 or j = k − 1, the set of vectors e

(λj)
` :=

√
a`(λj) z

`, ` ≥ 0 is an orthonormal
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basis in A(λj)(D). The matrix representation for the operator S0,k+1 : A(λk+1)(D) → A(λ0)(D) with
respect to this orthonormal basis is obtained from the computation:

S0,k+1

(
e

(λk+1)
`

)
= (`+k)!

`!

√
a`+k(λ0)
a`(λk+1)e

(λ0)
`+k .

Thus S0,k+1 is a forward shift of multiplicity k. We claim that if Λ(t) ≥ 2, then we can find a forward

shift X of multiplicity k + 1, namely, X(e
(λk+1)
` ) = x`e

(λ0)
`+k+1 which has the required intertwining

property. Thus evaluating the equation S0,0X −XSn−1,k+1 = S0,k+1 on the vectors e
(λk+1)
` , ` ≥ 0, we

obtain

(4.1) (`+k)!
`!

`−1∏
i=0

w
(λk+1)

i

`+k−1∏
i=0

w
(λ0)
i

e
(λ0)
`+k =

(
x`w

(λ0)
`+k − x`−1w

(λk+1)
`−1

)
e

(λ0)
`+k .

From this we obtain x` recursively:

w
(λ0)
k x0 = k!

√
ak(λ0)√

a0(λ(k+1))

and for ` ≥ 1,

x` =

√
ak+`(λ0)
a`(λk+1)

k∑
i=1

(`)i ∼
(
`
λ0−λk+1+2k+2

2

)
,

where (`)k := `(` + 1) · · · (` + k − 1) = Γ(`+k)
Γ(k) is the Pochhammer symbol as before. Here, using the

Stirling approximation for the Γ function, we infer that
∑k

i=1(`)i ∼ `k+1.
If Λ(t) ≥ 2, then λ1 − λ0 ≥ 2, λ2 − λ1 ≥ 2, · · · , λk+1 − λk ≥ 2. Consequently, λk+1 − λ0 ≥ 2k + 2

making the operator X bounded.
It follows that if Λ(t) ≥ 2, then the shift X of multiplicity n that we have constructed is bounded

and has the desired intertwining property. To show that there is no such intertwining operator if
Λ(t) < 2, assume to the contrary the existence of such an operator. Then we show that there must
also exist a shift of multiplicity k + 1 with this property leading to a contradiction. For the proof,
suppose

X
(
e

(λk+1)
`

)
=
∞∑
i=0

xi,` e
(λ0)
i , X =

((
xi,`
))
.

Then (
S0,0X −XSk+1,k+1

)(
e

(λk+1)
`

)
=
∞∑
i=0

(
xi+1,`+1w

(λ0)
i − xi,`w

(λk+1)
`−1

)(
e

(λ0)
i

)
.

In particular, we have

(x`+k+1,`+1w
(λ0)
`+k − x`+k,`w

(λk+1)
`−1 )(e

(λ0)
l+k ) = S0,k+1

(
e

(λk+1)
`

)
.

Repeating the proof above, we will have the conclusion xl+k,l →∞, l→∞ which proving the claim.
�

Recall that if A and B are two operators in L(H), then the Rosenblum operator τA,B is defined to
be the operator τA,B(X) = AX −XB, X ∈ L(H). If A = B, then we set σA := τA,B.

Lemma 4.4. Let t be a quasi-homogeneous holomorphic curve with atoms ti, 0 ≤ i ≤ n− 1. Let
T :=

((
Si,j
))

be the atomic decomposition of the operator T representing t as in Proposition 3.1.

(1) If Λ(t) ∈ [1 + n−3
n−1 , 1 + n−2

n ), then for any 1 ≤ r < n− 1, we have

S0,rSr,r+1 · · ·Sn−2,n−1 ∈ ranσS0,0,Sn−1,n−1 .
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(2) Suppose that Λ(t) ≥ 2. Then there exists a bounded linear operator X ∈ L(Hn−1,Hn−2) such
that

Sn−2,n−2X −XSn−1,n−1 = Sn−2,n−1

and

Sn−3,n−2X ∈ ranσSn−3,n−3,Sn−1,n−1 .

Proof. We only prove that S0,n−2Sn−2,n−1 is in ranσS0,0,Sn−1,n−1 . Clearly, as can be seen from the proof
we present below, the proof in all the other cases are exactly the same.

Let T0, Tn−2 and Tn−1 be the operators induced by s0,0, sn−2,n−2 and sn−1 as in in Proposition

3.1. These are then necessarily the operators M (λ0)∗, M (λn−2)∗ and M (λn−1)∗ acting on the weighted
Bergman spaces A(λ0)(D), A(λn−2)(D) and A(λn−1)(D), respectively.

As in the proof of Lemma 4.3, equations (4.1), we have that

S0,n−2

(
e

(λn−2)
`

)
= (`+n−3)!

`!

√
a`+n−3(λ0)
a`(λn−2) e

(λ0)
`+n−3,

Sn−2,n−1(e
(λn−1)
` ) =

√
a`(λn−2)√
a`(λn−1)

e
(λn−2)
`

and

S0,n−2Sn−2,n−1(e
(λn−1)
` ) = (`+n−3)!

`!

√
a`+n−3(λ0)
a`(λn−1) e

(λ0)
`+n−3.

Thus S0,n−2Sn−2,n−1 is a forward shift of multiplicity n − 3. We claim that if Λ(t) ≥ 1 + n−3
n−1 ,

then we can find a forward shift X of multiplicity n − 2, namely, X(e
(λn−1)
` ) = x`e

(λ0)
`+n−2 which has

the required intertwining property. Thus evaluating the equation S0,0X −XSn−1,n−1 = S0,n−1 on the

vectors e
(λn−1)
` , ` ≥ 0, we obtain

w
(λ0)
n−3x0 = (n− 3)!

√
an−3(λ0)√
a0(λ(n−1))

and for ` ≥ 1, we have that

w
(λ0)
l+n−3x` − x`−1w

(λn−1)
l = (`+n−3)!

`!

√
a`+n−3(λ0)√
a`(λ(n−1))

.

It follows that

x` =

√
a`+n−3(λ0)√
a`(λn−1)

n−3∑
i=1

(`)i ∼
(
`
λ0−λn−1+2n−4

2

)
.

Note that when Λ(t) > 1 + n−3
n−1 , we obtain

λn−1 − λ0 = (n− 1)Λ(t) > (n− 1)
2n− 4

n− 1
= 2n− 4

making X bounded. This completes the proof of the first statement.
For the proof of the second statement, note that by virtue of Lemma 4.3, we have Sn−2,n−1 ∈

RanσSn−2,n−1 . So there exists a bounded operator X such that

Sn−2,n−2X −XSn−1,n−1 = Sn−2,n−1.

Repeating the proof for the first part, we conclude

Sn−3,n−2X ∈ ranσSn−3,n−3,Sn−1,n−1 .

�
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4.2. Strong irreducibility. We now show that a quasi-homogeneous holomorphic curve t is strongly
irreducible or strongly reducible according as Λ(t) is less than 2 or greater equal to 2. We recall that
homogeneous operators (in this case, Λ(t) = 2) were shown to be irreducible but strongly reducible
in [17]

Theorem 4.5. Fix a quasi-homogeneous holomorphic curve t with atoms ti and let T =
((
Si,j
))

be its
atomic decomposition.

(1) If Λ(t) ≥ 2, then T is strongly reducible, indeed T is similar to the direct sum of its atoms,

namely,
n−1⊕
i=0

Ti and

(2) if Λ(t) < 2, then T is strongly irreducible.

Proof. If Λ(t) ≥ 2, then we claim that the operator T is similar to T0 ⊕ T1 ⊕ · · · ⊕ Tn−1.

When n = 2, Let T =
(
S0,0 S0,1

0 S1,1

)
. By Lemma 4.3, there exists X0,1 such that

S0,0X0,1 −X0,1S1,1 = S0,1.

Set Y0,1 =
(
I X0,1

0 I

)
, then we have that

Y0,1TY
−1

0,1 =

(
S0,0 0

0 S1,1

)
Notice that Y0,1 is invertible, we have that T ∼ S0,0 ⊕ S1,1.

In this case, using Lemma 4.3, we find an invertible bounded linear operator X0,n−1 such that

S0,0X0,n−1 −X0,n−1Sn−1,n−1 = S0,n−1.

For any i < j, applying Lemma 4.3 to the operators
Si,i Si,i+1 Si,i+2 ··· Si,j
0 Si+1,i+1 Si+1,i+2 ··· Si+1,j

...
. . .

. . .
. . .

...
0 ... 0 Sj−1,j−1 Sj−1,j

0 0 ... 0 Sj,j

 ,

we find an invertible bounded linear operator Xi,j such that Si,iXi,j −Xi,jSj,j = Si,j . Set Yn−2,n−1 :=(
I(n−2) 0

0 I Xn−2,n−1

0 I

)
and note that Y −1

n−2,n−1 =

(
I(n−2) 0

0 I −Xn−2,n−1

0 I

)
. Now, we have

 I(n−2) 0

0
I Xn−2,n−1

0 I




S0,0 S0,1 S0,2 ··· S0,n−1

0 S1,1 S1,2 ··· S1,n−1

...
. . .

. . .
. . .

...
0 ... 0 Sn−2,n−2 Sn−2,n−1

0 0 ... 0 Sn−1,n−1


 I(n−2) 0

0
I −Xn−2,n−1

0 I



=


S0,0 S0,1 S0,2 ··· S0,n−1−S0,n−2Xn−2,n−1

0
. . .

. . .
. . .

...
...

. . . Sn−3,n−3 Sn−3,n−2 Sn−3,n−1−Sn−3,n−2Xn−2,n−1

0 ... 0 Sn−2,n−2 0
0 ... ... 0 Sn−1,n−1

 .

By Lemma 4.4, we have

Sn−3,n−2Xn−2,n−1 ∈ ranσSn−1,n−1,Sn−3,n−3 .

Therefore, there exists an invertible bounded linear operator X̃ such that

Sn−3,n−3X̃ − X̃Sn−1,n−1 = Sn−3,n−1 − Sn−3,n−2Xn−2,n−1.
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Let Xn−3,n−1 := X̃ and Yn−3,n−1 =


I(n−3) 0

0
I 0 Xn−3,n−2

0 I 0
0 0 I

 . Now, we have

Yn−3,n−1


S0,0 S0,1 S0,2 ··· S0,n−1−S0,n−2Xn−2,n−1

0
. . .

. . .
. . .

...
...

. . . Sn−3,n−3 Sn−3,n−2 Sn−3,n−1−Sn−3,n−2Xn−2,n−1

0 ... 0 Sn−2,n−2 0
0 ... ... 0 Sn−1,n−1

Y −1
n−3,n−1

=


S0,0 S0,1 S0,2 ··· S0,n−1−S0,n−2Xn−2,n−1−S0,n−3Xn−3,n−1

0
. . .

. . .
. . .

...
...

. . . Sn−3,n−3 ··· 0
0 ... 0 Sn−2,n−2 0
0 ... ... 0 Sn−1,n−1

 .

Continuing in this manner, we clearly have
S0,0 S0,1 S0,2 ··· S0,n−1

0
. . .

. . .
. . .

...
...

. . . Sn−3,n−3 Sn−3,n−2 Sn−3,n−1

0 ... 0 Sn−2,n−2 Sn−2,n−1

0 ... ... 0 Sn−1,n−1

 ∼


S0,0 S0,1 ··· S0,n−2 0

0
. . .

. . .
. . .

...
...

. . . Sn−3,n−3 Sn−3,n−2 0
0 ... 0 Sn−2,n−2 0
0 ... ... 0 Sn−1,n−1

 .

This completes the proof of the induction step. We have therefore proved the first statement.
To prove the second statement, assuming that Λ(t) < 2, we must show that Et is strongly irreducible.

First, we prove that Et is irreducible. By Lemma 4.1, any projection P =
((
Pi,j
))
n×n in A′(Et) is

diagonal. Thus

P 2
i,i = Pi,i ∈ A′(Eti).

It follows that for any 0 ≤ i ≤ n− 1, Pi,i = 0 or Pi,i = I. Since PS = SP , we have

Pi,iSi,i+1 = Si,i+1Pi+1,i+1.

Therefore

Pi,i = Pj,j , i, j = 0, 1, · · · , n− 1.

Consequently, P = 0 or P = I and Et is irreducible.
We first prove that Et is also strongly irreducible for n = 2. By Lemma 4.1, we have

S0,1 6∈ ran σS0,0S1,1 .

Let P ∈ A′(Et) be an idempotent. By Lemma 3.3, P has the following form

P =

(
P0,0 P0,1

0 P1,1

)
.

Since PS = SP , we have

P0,0S0,0 = S0,0P0,0, P1,1S1,1 = S1,1P1,1

and

P00S0,1 − S0,1P11 = S0,0P0,1 − P0,1S1,1.

Since Pi,i ∈ {Si,i}′, for 0 ≤ i ≤ 1, so Pi,i can be either I or 0. If either P1,1 = I, P0,0 = 0 or P0,0 = 0,
P1,1 = I, then S0,1 ∈ Ran σS0,0,S1,1 which is a contradiction to our conclusion that S 6∈ ran σS0,0,S1,1 .
Thus the form of P will be (

I P0,1

0 I

)
or

(
0 P0,1

0 0

)
.

Since P is an idempotent operator, so we have P0,1 = 0. Hence Et is strongly irreducible.
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To complete the proof of the second statement by induction, suppose that it is valid for any n ≤ k−1.
For n = k, let P ∈ A′(Et) be an idempotent operator. By Lemma 4.1, P has the following form:

P =


P0,0 P0,1 P0,2 · · · P0,k

0 P1,1 P1,2 · · · P1,k
...

. . .
. . .

. . .
...

0 . . . 0 Pk−1,k−1 Pk−1,k
0 . . . . . . 0 Pk,k

 ,

and P
((
Si,j
))
k×k =

((
Si,j
))
k×kP . It follows that((

Pi,j
))((
Si,j
))

=
((
Si,j
))((
Pi,j
))
, 0 ≤ i, j ≤ k − 1,

((
Pi,j
))((
Si,j
))

=
((
Si,j
))((
Pi,j
))
, 1 ≤ i, j ≤ k.

Both
((
Pij
))k−1

i,j=0
and

((
Pi,j
))k
i,j=1

are idempotents. Since Λ(t) < 2, we have

Sr,s 6∈ ranσSr,r,Ss,s , r, s ≤ n.
By the induction hypothesis, we have

Pi,j = 0, i 6= j ≤ k − 1,

and
P0,0 = P1,1 = · · · = Pk,k = 0, or P0,0 = P1,1 = · · · = Pk,k = I.

Thus P has the following form:

P =


I 0 0 · · · P0,k
0 I 0 · · · 0
...

. . .
. . .

. . .
...

0 · · · 0 I 0
0 0 . . . 0 I

 or P =


0 0 0 · · · P0,k
0 0 0 · · · 0
...

...
. . .

. . .
...

... 0 · · · 0 0
0 · · · · · · · · · 0

 .

Since P is an idempotent, it follows that P0,k = 0. �

By Lemma 4.1, an intertwining operator between two quasi-homogeneous operators with respect to
any atomic decomposition must be upper triangular. Thus any operator X in the commutant of such
an operator, say T, must also be upper-triangular. In particular, Xi,i belongs to the commutant of
Si,i, 0 ≤ i ≤ n−1. Since Si,i is a homogeneous operator in B1(D), it follows that the commutant of Si,i
is isomorphic to H∞(D), the space of bounded analytic functions on the unit disc D. Consequently,
for any φ ∈ H∞(D), the operator φ(Si,i) is in the commutant A′(Si,i). In the following lemma, we
give a description of the commutant of T . We will construct an operator X in the commutant of
T, where the diagonal elements are induced by the same holomorphic function φ ∈ H∞(D), that is,
φ(Si,i) = Xi,i.

Lemma 4.6. Let t be a quasi-homogeneous holomorphic curve with atoms ti, 0 ≤ i ≤ 1. Let T =((
Si,j
))
i,j≤1

be its atomic decomposition. Suppose that X =
((
Xi,j

))
i,j≤1

is in A′(T ). Then there exists

φ ∈ H∞(D) such that Xi,i = φ(Si,i), i = 0, 1 and we also have that

S0,0X0,1 −X0,1S1,1 = X0,0S0,1 − S0,1X1,1 = 0.

In particular, X0,1 can be chosen as zero.

Proof. Set X =
((
Xi,j

))
i,j≤1

∈ A′(T ), we have the following equation(
S0,0 S0,1

0 S1,1

)(
X0,0 X0,1

X1,0 X1,1

)
=

(
X0,0 X0,1

X1,0 X1,1

)(
S0,0 S0,1

0 S1,1

)
.

As in [11, Proposition 3.4], we have X1,0 = 0. Then

S0,0X0,1 + S0,1X1,1 = X0,0S0,1 +X0,1S1,1,

and
S0,0X0,1 −X0,1S1,1 = X0,0S0,1 − S0,1X1,1.
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Note that there exist holomorphic functions φ0,0 and φ1,1 such that

X0,0(t0) = φ0,0t0, X1,1(t1) = φ1,1t1,

and by the definition of S0,1, there exist constant function φ0,1 such that

S0,1(t1) = φ0,1t0.

Then
X0,0S0,1(t1)− S0,1X1,1(t1) = (φ0,0φ0,1 − φ1,1φ0,1)t0.

and X0,0S0,1−S0,1X1,1 also intertwines S0,0 and S1,1. Taking X0,0S0,1−S0,1X1,1 the place of S0,1 and
using the proof of Lemma 3.2, we might deduce that

S0,0X0,1 −X0,1S1,1 = X0,0S0,1 − S0,1X1,1 = 0, φ0,0 = φ1,1.

Thus we can choose X0,1 = 0 and there exists a holomorphic function φ = φ0,0 = φ1,1 ∈ H∞(D) such

that X =

(
X0,0 0

0 X1,1

)
where Xi,i = φ(Si,i) satisfies that(
S0,0 S0,1

0 S1,1

)(
X0,0 0

0 X1,1

)
=

(
X0,0 0

0 X1,1

)(
S0,0 S0,1

0 S1,1

)
.

�

Lemma 4.7. Let t be a quasi-homogeneous holomorphic curve with atoms ti, 0 ≤ i ≤ n − 1. Let
T =

((
Si,j
))

be its atomic decomposition. Let φ ∈ H∞(D) be a holomorphic function. If Λ(t) < 2, then
there exists a bounded linear operator X ∈ A′(T ) such that Xi,i = φ(Si,i), i = 0, 1, · · · , n− 1.

Proof. Firstly, by Lemma 4.6, the lemma is true for the case of n = 2.

For n = 3, let X =

(
X0,0 X0,1 X0,2

0 X1,1 X1,2

0 0 X2,2

)
∈ A′(Et). Then we haveS0,0 S0,1 S0,2

0 S1,1 S1,2

0 0 S2,2

X0,0 X0,1 X0,2

0 X1,1 X1,2

0 0 X2,2

 =

X0,0 X0,1 X0,2

0 X1,1 X1,2

0 0 X2,2

S0,0 S0,1 S0,2

0 S1,1 S1,2

0 0 S2,2


and it follows that

(1) S0,0X0,1 + S0,1X1,1 = X0,0S0,1 +X0,1S1,1, that is, S0,0X0,1 −X0,1S1,1 = X0,0S0,1 − S0,1X1,1;
(2) S1,1X1,2 + S1,2X2,2 = X1,1S1,2 +X1,2S2,2, that is, S1,1X1,2 −X1,2S2,2 = X1,1S1,2 − S1,2X2,2.

By Lemma 4.6, we may choose, without loss of generality, X0,1 = 0 and X1,2 = 0. And there exists
φ ∈ H∞(D) such that Xi,i = φ(Si,i), i = 0, 1, 2. It is therefore enough to find an operator X0,2 satisfying

S0,0X0,2 −X0,2S2,2 = X0,0S0,2 − S0,2X2,2.

Clearly, we have

(X0,0S0,2 − S0,2X2,2)(t2(w)) = X0,0(m0,2t
(1)
0 (w))− S0,2(φ(w)t2(w))

= m0,2(φ(w)t0(w))(1) −m0,2φ(w)t(1)(w)

= m0,2φ
(1)(w)t0(w).

We therefore set X0,2 be the operator: X0,2(t2(w)) = m0,2φ
(1)(w)t

(1)
0 (w).

To complete the proof by induction, we assume that we have the validity of the conclusion for
n = k − 1. Thus we assume the existence of a bounded linear operator X =

((
Xi,j

))
such that((

Si,j
))((
Xi,j

))
=
((
Xi,j

))((
Si,j
))

where Xi,i = φ(Si,i) and Xi,i+1 = 0. And there exists lri,j such that

Xi,j(tj) =
j−i−1∑
r=1

lri,jφ
(j−k)t

(k)
i . To complete the inductive step, we only need to find the operator X0,k

satisfying the following equation:

(4.2) S0,0X0,k −X0,kSk,k = X0,0S0,k − S0,kXk,k + (

k−1∑
i=2

X0,iSi,k −
k−2∑
i=1

S0,iXi,k)
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Note that the induction hypothesis ensures the existence of constants cs0,k (depending on mi,j) such
that

(X0,0S0,k − S0,kXk,k +
k−1∑
i=2

X0,iSi,k −
k−2∑
i=1

S0,iXi,k)(tk) =
k−1∑
s=1

cs0,kφ
(s)t

(k−s−1)
0 .

Now, suppose that X0,k(tk) =
k−1∑
s=1

ls0,kφ
(s)t

(k−s)
0 , where the constants ls0,k are to be found. Then we

must have

(S0,0X0,k −X0,kSk,k)(tk(w)) =
k−1∑
s=1

cs0,kφ
(s)t

(k−1−s)
0 (w)

It follows that if we choose ls0,k =
cs0,k
k−s , then X0,k with this choice of the constants validates equation

(4.2). This completes the induction step.

In particular, when µi,j are all chosen to be 1, then mi,j = −1, that is, Si,j(tj) = −t(j−i−1)
j . In this

case, X0,k(t0) = −
k−1∑
s=1

φ(s)t
(k−s)
0 . Now, if mi,j = −1, i, j = 0, 1, · · · , n− 1, then by a similar argument,

we have

(4.3) Xi,j(tj) = −
j−i−1∑
s=1

φ(s)t
(j−i−s)
i , i, j = 0, 1, · · · , n− 1.

�

4.3. Proof of the main theorem.

Proof of Theorem 4.2. First, if “Λ(t) ≥ 2”, then the first conclusion of the theorem follows from
Theorem 4.5. So, it remains for us to verify the second statement of the theorem, where Λ(t) < 2.

Let T and T̃ be the operators representing t and t̃ respectively. Recall from Proposition 3.1 that

Si,j(tj) = mi,jt
(j−i−1)
i , S̃i,j(tj) = m̃i,jt

(j−i−1)
i . Up to similarity, we can assume that mi,i+1 = m̃i,i+1.

Then T and T̃ have the following atomic decomposition:

T =


S0,0 S0,1 S0,2 ··· S0,n−1

0 S1,1 S1,2 ··· S1,n−1

...
. . .

. . .
. . .

...
0 ... 0 Sn−2,n−2 Sn−2,n−1

0 0 ... 0 Sn−1,n−1

 and T̃ =


S0,0 S0,1 c0,2S0,2 ··· c0,n−1S0,n−1

0 S1,1 S1,2 ··· c1,n−1S1,n−1

...
. . .

. . .
. . .

...
0 ... 0 Sn−2,n−2 cn−2,n−1Sn−2,n−1

0 0 ... 0 Sn−1,n−1


Set ci,j =

m̃i,j
mi,j

. Now it is enough to prove the Claim stated below.

Claim: If T ∼ T̃ , then ci,j = 1, i, j = 0, 1, · · · , n.
Consider the following possibilities:

(1) Λ(t) ∈ [0, 1)
(2) n = 3, Λ(t) ∈ [1, 2); n > 3, Λ(t) ∈ [1, 4

3)

(3) n = 4, Λ(t) ∈ [4
3 , 2); n > 4, Λ(t) ∈ [4

3 ,
3
2)

(4) n = 5, Λ(t) ∈ [3
2 , 2); n > 5, Λ(t) ∈ [3

2 ,
8
5)

The method of the proof below combined with Lemma 4.7 and equation (4.3) completes the proof
in the remaining cases.

In what follows, without loss of generality, we will always choose mi,j = −1, i, j = 0, 1, · · · , n− 1.
Case (1): By Proposition 3.2, we have

T = T̃ =


S0,0 S0,1 0 ··· 0

S1,1 S1,2 ··· 0

. . .
. . .

...

0 Sn−2,n−2 Sn−1,n

Sn−1,n−1

 .
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In this case, we clearly have Kti = Ksi and θi,i+1 = θ̃i,i+1, i = 0, 1, · · · , n− 1.
Case (2): By Proposition 3.2, we have

T =


S0,0 S0,1 S0,2 ··· 0 0

S1,1 S1,2 S1,3 ··· 0

. . .
. . .

. . .
...

0 Sn−2,n−2 Sn−1,n

Sn−1,n−1

 ,

and

T̃ =


S0,0 S0,1 c0,2S0,2 0 ··· 0

S1,1 S1,2 c1,3S1,3 ··· 0

. . .
. . .

. . .
...

Sn−2,n−2 Sn−2,n−1 cn−2,nSn−2,n

0 Sn−1,n−1 Sn−1,n

Sn,n

 .

In this case, by Proposition 3.2, we first assume that n = 3. Then we have

(4.4)

S0,0 S0,1 S0,2

0 S1,1 S1,2

0 0 S2,2

X0,0 X0,1 X0,2

0 X1,1 X1,2

0 0 X2,2

 =

X0,0 X0,1 X0,2

0 X1,1 X1,2

0 0 X2,2

S0,0 S0,1 c0,2S0,2

0 S1,1 S1,2

0 0 S2,2


By Lemma 4.6, X0,1 and X1,2 may be chosen to be zero. Therefore we have the equalities:

Si,i+1Xi+1,i+1 = Xi,iSi,i+1, i = 0, 1, and S0,0X0,2 + S0,2X2,2 = c0,2X0,0S0,2 +X0,2S2,2.

Note that A′(Si,i) ∼= H∞(D), by Lemma 4.6, we can find a holomorphic function φ ∈ H∞(D) such
that Xi,iti = φti. Since Xi,i is invertible, φ(Si,i) is also invertible. Note that

(4.5)
(c0,2X0,0S0,2 − S0,2X2,2)(t2) = c0,2X0,0(−t(1)

0 )− S0,2(φt2)

= (c0,2 − 1)S0,2φ(S2,2)(t2)− c0,2S0,1S1,2φ
(1)(S2,2)(t2).

By Lemma 4.4, we have c0,2S0,1S1,2φ
(1)(S2,2) ∈ ranσS0,0,S2,2 . From (4.5), it follows that

(c0,2 − 1)S0,2φ(S2,2) ∈ ranσS0,0,S2,2 .

By Lemma 3.2, S0,2 6∈ ranσS0,0,S2,2 . Since φ(S2,2) is invertible and φ(S2,2) ∈ A′(S2,2), we have

S0,2φ(S2,2) 6∈ ranσS0,0,S2,2

it follows from Theorem 4.5. This shows that c0,2 = 1.
In the following, we will prove the general case. Now suppose that we have proved Claim 1 for

n = k − 1. Pick X =

(
X0,0 0 ··· X0,k

0 X1,1 ··· X1,k
··· ··· ··· ···
0 0 ··· Xk,k

)
such that XT̃ = TX. Then it follows that

X0((S̃i,j)
k−1
i,j=0) = ((Si,j)

k−1
i,j=0)X0, X1((S̃i,j)

k
i,j=1) = ((Si,j)

k
i,j=1)X1,

where

X0 =


X0,0 0 · · · X0,k−1

0 X1,1 · · · X1,k−1
...

. . .
. . .

...
0 · · · 0 Xk−1,k−1

 , X1 =


X1,1 0 · · · X1,k

0 X2,2 · · · X2,k
...

. . .
. . .

...
0 · · · 0 Xk,k

 .

Since X is invertible, X0 and X1 are both invertible. By the induction hypothesis ci,i+2 = 1, i =
0, 1, · · · , n− 3.

Case (3) and Case (4): By Proposition 3.2, T̃ =
((
S̃i,j
))
, S̃i,j = 0, j − i ≥ 4 and T̃ =

((
S̃i,j
))
, S̃i,j =

0, j− i ≥ 5. Following the proof given above, by Proposition 3.2, we only need to consider the case of
n = 4 and n = 5. For case 3, we only consider n = 4 and the other cases would follow by induction.
In this case, we have( S0,0 S0,1 S0,2 S0,3

0 S1,1 S1,2 S1,3

0 0 S2,2 S2,3

0 0 0 S3,3

)(X0,0 0 X0,2 X0,3

0 X1,1 0 X1,3

0 0 X2,2 0
0 0 0 X3,3

)
=

(X0,0 0 X0,2 X0,3

0 X1,1 0 X1,3

0 0 X2,2 0
0 0 0 X3,3

)( S0,0 S0,1 S0,2 c0,3S0,3

0 S1,1 S1,2 S1,3

0 0 S2,2 S2,3

0 0 0 S3,3

)
.
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It follows that

(
X0,0 0 X0,2

0 X1,1 0
0 0 X2,2

)
commutes with

(
S0,0 S0,1 S0,2

0 S1,1 S1,2

0 0 S2,2

)
and

(
X1,1 0 X1,3

0 X2,2 0
0 0 X3,3

)
commutes with(

S1,1 S1,2 S1,3

0 S2,2 S2,3

0 0 S3,3

)
. By equation (4.3), we see that X0,2 and X1,3 can be chosen to be S0,2φ

(1)(S2,2) and

S1,3φ
(1)(S3,3). Note that

(4.6) S0,0X0,3 + S0,1X1,3 + S0,3X3,3 = c0,3X0,0S0,3 +X0,2S2,3 +X0,3S3,3.

Then
X0,2S2,3 − S0,1X1,3 = S0,2φ

(1)(S2,2)S2,3 − S0,1S1,3φ
(1)(S3,3)

= (S0,2S2,3 − S0,1S1,3)φ(1)(S3,3) = 0

So we only need to consider

S0,0X0,3 −X0,3S3,3 = c0,3X0,0S0,3 − S0,3X3,3.

Since

(c0,3X0,0S0,3 − S0,3X3,3)(t3) = (1− c0,3)φt
(2)
0 − 2c0,3φ

(1)t
(1)
0 − c0,3φ

(2)t0,

we obtain

c0,3X0,0S0,3 − S0,3X3,3 = (c0,3 − 1)S0,3φ(S3,3) + 2c0,3S0,1S1,3φ
(1)(S3,3) + c0,3S0,1S1,2S2,3φ

(2)(S3,3).

By Lemma 4.4 and equation (4.6), we have

2c0,3S0,1S1,3φ
(1)(S3,3) + c0,3S0,1S1,2S2,3φ

(2)(S3,3) ∈ RanσS0,0,S3,3 .

Since φ(S3,3) is invertible, we deduce that

(c0,3 − 1)S0,3 ∈ ranσS0,0,S3,3 .

Note that S0,3 6∈ ranσS0,0,S3,3 , we have c0,3 = 1. For case 4 with n = 5, we have
S0,0 S0,1 S0,2 S0,3 S0,4

S1,1 S1,2 S1,3 S1,4

S2,2 S2,3 S2,4

0 S3,3 S3,4

S4,4




X0,0 0 X0,2 X0,3 X0,4

X1,1 0 X1,3 X1,4

X2,2 0 X2,4

0 X3,3 0
X4,4

=


X0,0 0 X0,2 X0,3 X0,4

X1,1 0 X1,3 X1,4

X2,2 0 X2,4

0 X3,3 0
X4,4




S0,0 S0,1 S0,2 S0,3 c0,4S0,4

S1,1 S1,2 S1,3 S1,4

S2,2 S2,3 S2,4

0 S3,3 S3,4

S4,4


Therefore

((
Xij

))
4×4

commutes with
((
Si,j
))
4×4

for i, j = 0, 1, 2, 3 and
((
Xij

))
4×4

commutes with
((
Si,j
))
4×4

for i, j = 1, 2, 3, 4. Then from Lemma 4.7, we find that Xi,j , (i, j) 6= (0, 4). We also have

(4.7) S0,0X0,4 −X0,4S4,4 = (c0,4X0,0S0,4 − S0,4X4,4) + (X0,2S2,4 +X0,3S3,4)− (S0,1X1,4 + S0,2X2,4).

By Lemma 4.7, we have

X0,2S2,4 − S0,2X2,4 = S0,2φ
(1)(S2,2)S2,4 − S0,2S2,4φ

(1)(S4,4)

= S0,2S2,3S3,4φ
(2)(S4,4).

Lemma 4.7 together with the equation (4.3) gives

X0,3 = S0,2S2,3φ
(2)(S3,3) + S0,3φ

(1)(S3,3),

X1,4 = S1,3S3,4φ
(2)(S4,4) + S1,4φ

(1)(S4,4).

Note that S0,2S2,3 = S0,1S1,3 and S0,3S3,4 = S0,1S1,4, we also have

X0,3S3,4 − S0,1X1,4

= (S0,2S2,3φ
(2)(S3,3) + S0,3φ

(1)(S3,3))S3,4 − S0,1(S1,3S3,4φ
(2)(S4,4) + S1,4φ

(1)(S4,4)) = 0.

Since

(c0,4X0,0S0,4 − S0,4X4,4)(t4) = c0,4X0,0S0,4(t4)− S0,4(φt4)

= (1− c0,4)φt
(3)
0 − 3c0,4φ

(2)t
(1)
0 − 3c0,4φ

(1)t
(2)
0 − c0,4φ

(3)t0,
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we also have

c0,4X0,0S0,4 − S0,4X4,4 = (c0,4 − 1)S0,4φ(S4,4) + 3c0,4S0,1S1,3φ
(1)(S3,3)

+3c0,4S0,1S1,2S2,3φ
(2)(S3,3) + c0,4S0,1S1,2S2,3φ

(3)(S3,3).

Combining Lemma 4.4 with the equation (4.7), we obtain

3c0,4S0,1S1,3φ
(1)(S3,3) + 3c0,4S0,1S1,2S2,3φ

(2)(S3,3) + c0,4S0,1S1,2S2,3φ
(3)(S3,3) ∈ ranσS0,0,S4,4 ,

S0,2S2,3S3,4φ
(2)(S4,4) ∈ ranσS0,0,S4,4 .

Then it follows that

(c0,4 − 1)S0,4φ(S4,4) ∈ ranσS0,0,S4,4 .

Note that φ(S4,4) is invertible, therefore

(c0,4 − 1)S0,4 ∈ ranσS0,0,S4,4 .

Since S0,4 6∈ ranσS0,0,S4,4 , it follows that c0,4 = 1.
�

5. Applications

We give two different applications of our results. First of these shows that the topological and
algebraic K-groups defined in our context must coincide. Second, we show that the Halmos’ ques-
tion on similarity has an affirmative answer for quasi-homogeneous operators. We begin with some
preliminaries on K- groups.

5.1. Preliminaries. Let t : Ω → Gr(n,H) be a holomorphic curve. Recall that the commutant A′(Et)
of such a holomorphic curve t is defined to be

A′(Et) = {A ∈ L(H) : A t(w) ⊆ t(w), w ∈ Ω.}

Definition 5.1. For a holomorphic curve t : Ω → Gr(n,H), the Jocaboson radical Rad A′(Et) of
A′(Et) is defined to be

{S ∈ A′(Et)|σA′(Et)(SA) = 0, A ∈ A′(Et)},
where σA′(Et)(SA) denotes the spectrum of SA in the algebra A′(Et).

The discussion below follows closely the paper [12] of the first two authors.

Definition 5.2. A holomorphic curve t : Ω→ Gr(n,H) is said to be have a finite decomposition if it
meets one of the equivalent conditions given in [12, Theorem 1.3]).

Suppose {P1, P2, · · · , Pm} and {Q1, Q2, · · · , Qn} are two distinct decompositions of t. If m = n,
there exists a permutation Π ∈ Sn such that XQΠ(i)X

−1 = Pi for some invertible operator X in
A′(Et), 1 ≤ i ≤ n, then we say that t (or Et) has a unique decomposition up to similarity.

For a holomorphic curve, f : Ω→ Gr(n,H), let Mk(A′(Et)) be the collection of k×k matrices with
entries from A′(Et). Let

M∞(A′(Et)) =

∞⋃
k=1

Mk(A′(Et)),

and Proj(Mk(A′(Et))) be the algebraic equivalence classes of idempotents in M∞(A′(Et)). If p, q are
idempotents in Proj(A′(Et)), then say that p∼stq if p⊕r∼aq⊕r for some idempotent r in Proj (A′(Et)).
The relation ∼st is known as stable equivalence.

Let X be a compact Hausdorff space, and ξ = (E, π,X) be a (topological) vector bundle. A well-
known theorem due to R. G. Swan says that a vector bundle ξ = (E, π,X) is a direct summand of
the trivial bundle, that is,

ξ ⊕ η ∼= (X × Cn, π,X)

for some vector bundle η = (F, ρ,X).
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5.2. Unique decomposition. None of what we have said so far applies to holomorphic vector bundles
over an open subset of C since they are already trivial by Graut’s theorem. However, the study of
holomorphic vector bundles over an open subset of C is central to operator theory. In the context of
operator theory, as shown in the foundational paper of Cowen and Douglas [2], the vector bundles
of interest are equipped with a Hermitian structure inherited from a fixed inner product of some
Hilbert space H. This makes it possible to ask questions about their equivalence under a unitary or
an invertible linear transformation of H. In the paper [2], questions regarding unitary equivalence
were dealt with quite successfully while equivalence under an invertible linear transformation remains
somewhat of a mystery to date. However, we can ask if the uniqueness of the summand, which was a
consequence of Swan’s theorem, remains valid in the context of Cowen-Douglas operators.

Question. Let t : Ω → Gr(m,H) be a Hermitian holomorphic curve and the vector bundle Er be a
direct summand of Et for some other holomorphic curve r : Ω→ Gr(n,H). Does there exist a unique
sub-bundle of Et, up to similarity, such that Er ⊕ Es = Et? Here the uniqueness is meant to be in
the sense of Definition 5.2

It was shown in [13] that an operator in the Cowen-Douglas class Bn(Ω) admits a unique decom-
position. So, the answer to the question raised above is affirmative. However, here we give a different
proof for quasi-homogeneous operators which is much more transparent. For our proof, we will need
the following lemma.

Lemma 5.3. Let Et be a quasi-homogeneous bundle. Then A′(Et)/Rad(A′(Et)) is commutative.

Proof. Let
S = {Y : σ(Y ) = 0, Y ∈ A′(Et)}.

Claim 1: S is an ideal of the algebra A′(Et).
By Lemma 4.1, Y is upper-triangular if Y ∈ S. Since the spectrum σ(Y ) of Y is {0}, the operator

Y must be of the form

Y =


0 Y0,1 Y0,2 · · · Y0,n−1
0 0 Y1,2 · · · Y1,n−1
...

. . .
. . .

. . .
...

0 · · · 0 0 Yn−2,n−1
0 · · · · · · 0 0

 ,

and it follows that each quasi-nilpotent element in the commutant of the holomorphic curve t of
rank one is zero. Using Lemma 4.1 again, each element X ∈ A′(Et) is upper-triangular. Thus
σ(XY ) = σ(Y X) = 0. This completes the proof of Claim 1 and S = Rad(A′(Et)).

Claim 2: A′(Et)/Rad(A′(Et)) is commutative.
Note that if X ∈ A′(Et) is (block) nilpotent, then X ∈ S. A simple computation shows that

A′(Et)/Rad(A′(Et)) is commutative. �

Theorem 5.4. For any quasi-homogeneous holomorphic curve t with atoms ti, 0 ≤ i ≤ n− 1, we
have that

(1) Et has no non-trivial sub-bundle whenever Λ(t) < 2, and
(2) if Λ(t) ≥ 2, then for any sub-bundle Er of Et, there exists a unique sub-bundle Es, up to

equivalence under an invertible map, such that Er ⊕ Es is similar to Et.

For any holomorphic curve t, we let tn denote the n - fold direct sum of t. For any two natural
numbers n and m, let Er and Es be the sub-bundles of Etn and Etm , respectively. If m > n, then
both Er and Es can be regarded as a sub-bundle of Etm .

Two holomorphic Hermitian vector bundles Er and Es are said to be similar if there exist an
invertible operator X ∈ A′(Er) such that XEr = Es. Analogous to the definition of Vect(X), we let
Vect0(Et) be the set of equivalence classes Es of the sub-bundles Es of Etn , n = 1, 2, · · · . An addition
on Vect0(Et) is defined as follows, namely,

Er + Es = Er ⊕ Es,
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where Er and Es are both sub-bundles of Et. Now, the group K0(Et) is the Grothendieck group of
(Vect0(Et),+). In this notation, we have the following theorem.

Theorem 5.5. K0(Et) ∼= K0(A′(Et)).

The proof of this theorem is split into a number of lemmas which are stated and proved below.

Lemma 5.6. Let Et be a quasi-homogeneous bundle. Then

Vect(A′(Et)) ∼= Vect(A′(Et)/RadA′(Et)).

Proof. Note that Mn(A′(Et)) ∼= A′(
n⊕
Et). Let p ∈ Mn(A′(Et)) be an idempotent. Define a map

σ : Vect(A′(Et))→ Vect(A′(Et)/RadA′(Et)) as the following:

σ[P ] = [π(P )],

where π : A′(Et)→ Vect(A′(Et)/RadA′(Et)).
Claim σ is well defined and it is an isomorphism.
If [p] = [q], where p ∈ Mn(A′(Et)) and q ∈ Mm(A′(Et)) are both idempotents, then there exists

k ≥ max{m,n} and an invertible element u ∈Mk(A′(Et)) such that

u(p⊕ 0k−n)u−1 = q ⊕ 0k−m.

Thus we have

π(u)π(p⊕ 0(k−n))π(u)−1 = π(u(p⊕ 0k−n)u−1) = π(q ⊕ 0k−m).

That means [π(p)] = [π(q)], and σ is well defined.
Now, we would prove that σ is injective. In fact, if p ∈ Mn(A′(Et)) and q ∈ Mm(A′(Et)) are

idempotents with

σ[p] = [π(p)] = [π(q)] = σ[q],

then we can find k ≥ max{m,n} and an invertible element π(u) ∈ Mk(A′(Et))/Rad(Mk(A′(Et)))
such that

π(u)(π(p⊕ 0k−n))π(u)−1 = π(q ⊕ 0k−m).

Since π(u) is invertible, there exists π(s) ∈ Rad(Mk(A′(Et))) such that π(u)−1 = π(s). Then we
have

us = I −R1, su = I −R2,

where R1, R2 ∈ Rad(Mk(A′(Et))). Since σ(R1) = σ(R2) = {0}, then us, su are both invertible.
Therefore, u is invertible and thus

π(u(p⊕ 0(k−n))u−1) = π(u)(π(p⊕ 0k−n))π(u)−1 = π(q ⊕ 0k−m).

Thus

u(p⊕ 0(k−n))u−1 = q ⊕ 0k−m +R

for some R ∈ Rad(Mk(A′(Et))). Let W1 = 2(q ⊕ 0(k−m)) − I. Since σ(Q ⊕ 0(k−m)) ⊆ {0, 1}, then
W1 is invertible. Since we have R ∈ Rad(Mk(A′(Et))) and W−1

1 ∈ Mk(A′(Et)), then RW−1
1 ∈

Rad(Mk(A′(Et))), so I +RW−1
1 is invertible. Set

W = 2(q ⊕ 0(k−m))− I +R = W1 +R = (I +RW−1
1 )W1.

and W is invertible. Since p ⊕ 0(k−n) is an idempotent, it follows that u(p ⊕ 0(k−n))u−1 and hence

(q ⊕ 0(k−m)) +R is an idempotent as well. Thus

(q ⊕ 0(k−m))2 + (q ⊕ 0(k−m))R = R(q ⊕ 0(k−m)) +R2 = (q ⊕ 0(k−m)) +R.

Similarly, q ⊕ 0(k−m) is an idempotent, therefore

(q ⊕ 0(k−m))R+R(q ⊕ 0(k−m)) +R2 = R.
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So we have

W ((q ⊕ 0(k−m) +R) = (q ⊕ 0(k−m)) +R(q ⊕ 0(k−m)) + 2(q ⊕ 0(k−m))R−R+R2

= (q ⊕ 0(k−m)) + (q ⊕ 0(k−m))R

= (q ⊕ 0(k−m))W

and
u(p⊕ 0(k−n))u−1 = (q ⊕ 0(k−m)) +R = W−1(q ⊕ 0(k−m))W.

It follows that p ∼a q, and σ is injective. Finally, we show that σ is surjective. For each [π(p)] ∈
Vect(A′(Et)/RadA′(Et)) with π(p) ∈ Mn(A′(Et))/Rad(Mn(A′(Et))), p ∈ Mn(A′(Et)) and π2(p) =
π(p), we have

p2 − p = R0, R0 ∈ Rad(Mn(A′(Et))).
Note that p = B + R, where B ∈ Mn(A′(Et)) is a block-diagonal matrix over C and R is in
Rad(Mn(A′(Et))). Then π(p) = π(B) and

R0 = p2 − p = (B +R)2 − (B +R) = B2 −B + (BR+RB +R2 −R).

Since Rad(Mn(A′(Et))) is an ideal of Mn(A′(Et)), then we have

B2 −B ∈ Rad(Mn(A′(Et))).
Since B is a block-diagonal matrix, then we have B is also an idempotent. Then we have

σ([B]) = [π(p)].

That means σ is also a surjective. And we also can see that σ is homomorphism. Then σ is an
isomorphism and

Vect(A′(Et)) ∼= Vect(A′(Et)/RadA′(Et)).
�

Proposition 5.7. Let Et and Et̃ be two quasi-homogeneous bundles with matchable bundles {Eti}n−1
i=0

and {Esi}n−1
i=0 respectively. If Λ(t) < 2, then Et and Et̃ are similarity equivalent if and only if

K0(A′(Et ⊕ Et̃)) ∼= Z.
If Λ(t) ≥ 2, then Et and Et̃ are similarity equivalent if and only if

K0(A′(Et ⊕ Et̃)) ∼= Zn.

Proof. Suppose that Λ(t) < 2. Let

T =


S0,0 S0,1 S0,2 ··· S0,n−1

S1,1 S1,2 ··· S1,n−1

. . .
. . .

...
Sn−1,n−1 Sn−1,n

Sn,n

 and X =


X0,0 X0,1 X0,2 ··· X0,n−1

X1,1 X1,2 ··· X1,n−1

. . .
. . .

...
Xn−1,n−1 Xn−1,n

Xn,n

 .

Claim 1: If XT = TX,then we have Xi,i = Xj,j , for any i 6= j.
In fact, for any i = 0, 1, · · · , n− 1, we have

Si,iXi,i+1 + Si,i+1Xi+1,i+1 = Xi,iSi,i+1 +Xi,i+1Si+1,i+1,

and
Si,iXi,i+1 −Xi,i+1Si+1,i+1 = Xi,iSi,i+1 − Si,i+1Xi+1,i+1 = 0.

Since Xi,i ∈ A′(Eti) and each Eti induces a Hilbert functional space Hi with reproducing kernel
1

(1−zw)λi
, then we have A′(Eti) ∼= H∞(D). Then there exists φi,i ∈ H∞(D) such that

Xi,i = φi,i(Si,i), i = 0, 1, · · · , n− 1.

Thus we have
φi,i(Si,i)Si,i+1 − Si,i+1φi+1,i+1(Si+1,i+1) = 0.

Since Si,iSi,i+1 = Si,i+1Si+1,i+1, then

Si,i+1(φi,i − φi+1,i+1)(Si+1,i+1) = 0.
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Note that Si,i+1 has a dense range, then we can set

φi,i = φ, i = 0, 1, · · · , n− 1.

Claim 2: A′(Et)/RadA′(Et) ∼= H∞(D).
Recall that RadA′(Et) = {S ∈ A′(Et)|σA′(Et)(SS′) = 0, S′ ∈ A′(Et)}. Any X ∈ A′(Et) is upper

triangular by Lemma 4.1 and A′(Et)/RadA′(Et) is commutative by Lemma 5.3. Therefore if Y is in
RadA′(Et), then we have

Y =


0 Y0,1 Y0,2 · · · Y0,n−1

0 Y1,2 · · · Y1,n−1

0
. . .

. . .
...

0 Yn−1,n
0

 .

Define a map Γ : A′(Et)/RadA′(Et)→ H∞(D) by the rule:

Γ([X]) = φ, where X = ((Xi,j))n×n, Xi,i = φ(Si,i).

Obviously, Γ is well defined and if Γ([X]) = 0, then φ = 0. Then Xi,i = 0, it follows that X ∈
RadA′(Et) and [X] = 0. So Γ is injective.

For any φ ∈ H∞(D), set Xi,i = φ(Si,i), i = 0, 1, 2, · · · , n− 1. By Lemma 3.6, we can construct the
operators Xi,j , j 6= i such that X :=

((
Xi,j

))
n×n ∈ A

′(Et). That means Γ is surjective. Then Γ is an

isomorphism and

A′(Et)/RadA′(Et) ∼= H∞(D).

By [12, Lemma 2.10] and [12, Lemma 2.14]), we have

Vect(A′(Et))∼=N,K0(A′(Et)) ∼= Z.

By [12, Lemma 2.10], we have Et has a unique finite decomposition up to similarity. Similarly, Et̃
also has a unique finite decomposition up to similarity.

If Et ∼ Et̃, then (t⊕ t̃) ∼ t(2). So we have

Vect(A′(t⊕ t̃)) ∼= Vect(A′(t(2))) ∼= VectM2(A′(t))) ∼= N

and

K0(A′(t⊕ t̃)) ∼= Z.
On the other hand, Note that t and t̃ are both strongly irreducible. If K0(A′(t ⊕ t̃)) ∼= Z and
Vect(A′(t⊕ t̃)) ∼= N, then by [12, Lemma 2.10], we have t ∼ t̃, otherwise we will have

Vect(A′(t⊕ t̃)) ∼= N2.

This is a contradiction. �

Proof of Theorem 5.4. When Λ(t) < 2, by Lemma 4.3, we have Et is strongly irreducible. So there
exists no non-trivial idempotent in A′(Et), which is the same as saying that the vector bundle Et has
no non-trivial sub-bundle.

When Λ(t) ≥ 2, by Lemma 4.3, we have

Er ∼ Et0 ⊕ Et1 ⊕ · · · ⊕ Etn−1 .

Since A′(Eti) ∼= H∞(D), we have

A′(Er) ∼= H∞(D)(n),

and by [12, Lemma 2.10],

Vect(A′(Er))∼=N(n),K0(A′(Er)) ∼= Z(n).

Then by [12, Lemma 2.10], we have Et has a unique finite decomposition up to similarity. Then for
any non-trivial reducible sub-bundle of Er denoted by Er, with

Hr = Spanw∈Ω{Er(w)}.
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Let Pt be the projection from H to Ht. Then

Et ∼ Er ⊕ (Et 	 Er) = PrEt ⊕ (I − Pr)Et.

Let

Pti : H → Hi := Spanλ∈Ω{Eti(w)}, i = 0, 1, · · · , n− 1

be projections in A′(Er). Then there exists an invertible operator X such that Er = X(⊕si=0Etki ).
Suppose that

⊕n−1
i=0 Eti = (⊕si=0Etki )⊕ (⊕n−si=0 Etli ).

Set Es = X(⊕n−si=0 Etli ), then we have

Er ⊕ Es ∼ Et.
If there exists another bundle Es′ such that

Er ⊕ Es′ ∼ Et.

Since Er has a unique finite decomposition up to similarity, then we have

Es′ ∼ ⊕n−si=0 Etli ∼ Es.

�

Proof of Theorem 5.5. Let P ∈ Pn(A′(Et)) = P (A′(Etn)) be an idempotent. Then we have PEtn be
a sub-bundle of Etn . Define map

Γ : V (A′(Et)))→ V 0(Et)

with Γ([p]0) = PEtn .
First, we prove that Γ is well defined. In fact, for any P ∼ Q ∈ [P ]0, there exists positive integer n

such that P,Q ∈ A′(Etn). Since Q = XPX−1, X ∈ A′(Etn), then we have

QEtn = XPX−1Etn ∼ PX−1Etn .

And Note that X,X−1 ∈ A′(Etn), then we have

X−1tn(w) = tn(w), for any w ∈ Ω.

Thus

QEtn ∼ PXEtn ,
and QEtn = PEtn . So Γ is well defined.

Second, we prove that Γ is surjective. Suppose that Er is a sub-bundle of Etn with dimension K,
where n is positive integer. Suppose that

Hr :=
∨
w∈Ω

{γ1(w), γ2(w), · · · , γK(w)},

where K ∈ N and Pr is the projection from H to Hr, then we have Pr ∈ A′(Etn) and

PrEtn ∼ Er.

Then it follows that Γ is surjective.
Finally, we prove that Γ is also injective. Let P,Q ∈ A′(Etn). Suppose that there exists an invertible

operator X ∈ A′(Etn) such that

XPEtn = QEtn .

Let {p1, p2, · · · , pm} be a decomposition of P . Then {Xp1X
−1, Xp2X

−1, · · · , XpmX−1} be a decom-
position of Q. In fact, we have

Xp1X
−1QEtn +Xp2X

−1QEtn + · · ·+XpmX
−1QEtn = Xp1Etn +Xp2Etn + · · ·+XpmEtn

= XPEtn
= QEtn .
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Suppose that {pm+1, pm+2, · · · , pN} and {qm+1, qm+2, · · · , qN} be the decompositions of (I − P )Etn
and (I −Q)Etn respectively. Then we have

{p1, p2, · · · , pN} and, {Xp1X
−1, Xp2X

−1, · · · , XpmX−1, qm+1, qm+2, · · · , qN}

are two different decompositions of Etn . By the uniqueness of decomposition of Etn , there exists an
invertible bounded linear operator Y ∈ A′(Etn) such that {Y −1PiY } is a rearrangement of

{Xp1X
−1, Xp2X

−1, · · · , XpmX−1, qm+1, qm+2, · · · , qN}.

By [12, Lemma 2.6]), for any v ∈ {m + 1,m + 2, · · · , N}, we can find Zv in GL(L(qvH, pvH)) and
pv′ , v

′ ∈ {m+ 1, · · · , N} such that

ZvqvEtn = pv′Etn , v
′
1 = v′2, when v1 = v2.

Set Zk = X−1|XpkX−1H, k = 1, 2, · · ·m, then we have that

Z =
m∑
k=1

Zk +
N∑

v=m+1

Zv ∈ GLA′(Etn),

and

ZPZ−1 = Q.

It follows that Γ is injective. Since Γ is also a homomorphism, then we have

Vect0(Et) ∼= Vect(A′(Etn),K0(Et) ∼= K0(A′(Et)).
�

5.3. The Halmos’ question. The well-known question of Halmos asks if % : C[z]→ L(H) is a continuous
(for p ∈ C[z], the norm ‖p‖ = supz∈D |p(z)|) algebra homomorphism induced by an operator S, that is,
%(p) = p(S), then does there exist an invertible linear operator L and a contraction T on the Hilbert
space H so that S = LTL−1. After the question was raised in [6, Problem 6], an affirmative answer
for several classes of operators were given. A counter example was found by Pisier in 1996 (cf. [22]).
It was pointed out in a recent paper of the third author with Korányi [17] that the Halmos’ question
has an affirmative answer for homogeneous operators in the Cowen-Douglas class Bn(D). Thus it is
natural to ask if the Halmos’ question has an affirmative answer for quasi-homogeneous operators. If
Λ(t) ≥ 2, the answer is evidently “yes”:

In this case, the quasi-homogeneous operator T is similar to the n- fold direct sum of the homo-
geneous operators Ti (adjoint of the multiplication operator) acting on the weighted Bergman spaces

A(λi)(D), i = 0, 1, . . . , n− 1. Now, if λ0 ≥ 1, this direct sum is contractive and we are done. If λ0 < 1,
then T0 is not even power bounded and therefore neither is the operator T . So, there is nothing to
prove when λ0 < 1.

If Λ(t) < 2, then the operator T is strongly irreducible. Therefore, we can’t answer the Halmos’
question purely in terms of the atoms of the operator T . Never the less, the answer is affirmative even
in this case. To show this, we first prove the following useful lemma.

For i = 1, 2, let Hi be a Hilbert space of holomorphic function on D possessing a reproducing
kernel, say Ki, and Ti be the adjoint of the multiplication operator on Hi. Assume that H0 ⊆ H1

and let ι : H0 → H1 be the inclusion map. Then the adjoint ι∗ of the inclusion map has the property
ι∗(K1(·, w)) = K0(·, w), w ∈ D.

Lemma 5.8. Assume that Ki(z, w) = 1
(1−zw)λi

, i = 0, 1. Suppose that S : H0 → H1 is a bounded

linear operator with the intertwining property T0S = ST1. Then there exists a holomorphic function φ
such that S = φ(T0)ι∗.

Proof. The operators Ti, i = 0, 1 are in B1(D). If S : H0 → H1 is a bounded linear operator and
T0S = ST1, then there exists a holomorphic function ψ such that S∗ = Mψ. This is easily proved
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as in [19, Section 5]. Let φ be the holomorphic function defined on the unit disc by the formula

φ(w) = ψ(w), w ∈ D. For any f ∈ H0, we have that

〈f(z), φ(T0)ι∗(K1(z, w))〉 = 〈f(z), φ(w)K0(z, w)〉
= φ(w)〈f(z),K0(z, w)〉
= 〈f(z),M∗ψ(K1(z, w))〉
= 〈f(z), S(K1(z, w))〉.

Consequently, S = φ(T0)ι∗. �

Lemma 5.9. Suppose that t is a quasi-homogeneous holomorphic curve. Assume that Λ(t) < 2 and
λ0 ≥ 1. Then the operator T is not power bounded.

Proof. The top 2 × 2 block in the atomic decomposition of the quasi-homogeneous operator T is

of the form
(
T0 S0,1

0 T1

)
. As always, we assume that the operators T0 and T1 are the adjoints of the

multiplication operator on the weighted Bergman spaces A(λ0)(D) and A(λ1)(D), respectively. The
operator S0,1 has the intertwining property T0S0,1 = S0,1T1.

Let ι denote the inclusion map from A(λ0)(D) to A(λ1)(D). Then ι∗(t1)(w) = t0(w), w ∈ D, and the
operator S0,1 must be of the form φ(T0)ι∗ for some holomorphic function φ on the unit disc D, as we
have shown in Lemma 5.8. Indeed, S0,1(t1(w)) = φ(w)t1(w) = φ(T0)ι∗(t1(w)).

Without loss of generality, we assume that φ(w) =
∞∑
i=0

φiw
i and φ0 6= 0. For j = 0, 1, the set of

vectors e
(λj)
` :=

√
a`(λj) z

`, ` ≥ 0, is an orthonormal basis in A(λj)(D). Then we have that

Tn−1
0 (e`(λ0)) =

`−1∏
i=`−n+1

wi(λ0)e`−n+1(λ0), S0,1(e`(λ1)) = φ0

`−1∏
i=0

wi(λ1)

`−1∏
i=0

wi(λ0)

e`(λ0).

Consequently,

nTn−1
0 S0,1(e`(λ1)) = nφ0

`−1∏
i=0

wi(λ1)

`−n∏
i=0

wi(λ0)

e`−n+1(λ0).

It is then easily deduced that ||nTn−1
0 S0,1|| → ∞ as n→∞.

Let T|2×2
denote the top 2× 2 block

(
T0 S0,1

0 T1

)
in the operator T . Since Tn|2×2

=

(
Tn0 nTn−1

0 S0,1

0 Tn1

)
,

and ||Tn|2×2
|| ≥ ||nTn−1

0 S0,1||, it follows that ||Tn|2×2
|| → ∞ as n → ∞. Clearly, ‖Tn‖ ≥ ‖Tn|2×2

‖
completing the proof. �

Since a quasi-homogeneous operator for which λ0 < 1 can’t be power bounded, the lemma we have
just proved shows that if T is quasi-homogeneous and Λ(t) < 2, then the operator T is not power
bounded. Therefore we have proved the following theorem answering the Halmos’ question in the
affirmative.

Theorem 5.10. If a quasi-homogeneous operator T has the property ‖p(T )‖op ≤ K‖p‖∞,D, p ∈ C[z],
then it must be similar to a contraction.
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[17] A. Korányi and G. Misra, A classification of homogeneous operators in the Cowen-Douglas class, Adv. Math., 226

(2011) 5338 - 5360.
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