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Abstract In this semi-expository article, we investigate the relationship between the imprimitivity introduced by
Mackey several decades ago and commuting d- tuples of homogeneous normal operators. The Hahn–Hellinger
theorem gives a canonical decomposition of a ∗- algebra representation ρ of C0(S) (where S is a locally compact
Hausdorff space) into a direct sum. If there is a group G acting transitively on S and is adapted to the ∗-
representation ρ via a unitary representation U of the group G, in other words, if there is an imprimitivity, then
the Hahn–Hellinger decomposition reduces to just one component, and the group representation U becomes
an induced representation, which is Mackey’s imprimitivity theorem. We consider the case where a compact
topological space S ⊂ C

d decomposes into finitely many G- orbits. In such cases, the imprimitivity based on S
admits a decomposition as a direct sum of imprimitivities based on these orbits. This decomposition leads to a
correspondence with homogeneous normal tuples whose joint spectrum is precisely the closure of G- orbits.

Keywords imprimitivity · induced representation · homogeneous operator

Mathematics Subject Classification Primary 22D30 · 22D45 · 47B15

1 Introduction

Let G be a locally compact second countable group and S be a locally compact Hausdorff transitive G- space.
Given a ∗- homomorphism ρ from C0(S), the algebra of continuous functions vanishing at ∞ on S to L(H), the
algebra of bounded linear operators on a complex separable Hilbert space H and a unitary representation U of
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the group G on the same Hilbert space H, the imprimitivity is the relationship

U (g)ρ( f )U (g)∗ = ρ(g · f ), g ∈ G, f ∈ C0(S),

where g · f is the function: (g · f )(s) = f (g−1 · s), s ∈ S.
In the transitive case, S can be taken to be the space of cosets G/H for some closed subgroup H of G. There

is a unique quasi-invariant measure (modulo equivalance) μ on G/H , that is, setting g∗μ(A) := μ(g(A)) for
any Borel subset A ⊂ S, we require that g∗μ be mutually absolutely continuous with respect to μ for every
g ∈ G.

A commuting d- tuple N = (N1, . . . , Nd) of normal operators acting on a complex separable Hilbert space
H is said to be homogeneous with respect to a group G if the joint spectrum σ(N) ⊂ C

d is a G- space and there
is a unitary representation U of G on H such that

U (g)∗NU (g) := (U (g)∗N1U (g), . . . ,U (g)∗NdU (g))

= (g1(N), . . . , gd(N)) := g(N),

where g j , 1 � j � d, are the coordinate functions of the action of G on σN , namely,

g · s := (g1(s), . . . , gd(s)).

We explore the relationship of imprimitivities with commuting d- tuples of homogeneous normal operators.
For this, we assume throughout that the G- space S is a subset of C

d . Somewhat surprisingly, such a relationship
was hinted in [2].

The imprimitivity theorem of Mackey has two parts. The first is that any transitive imprimitivity (S,U, ρ)

is equivalent to a canonical imprimitivity, where ρ( f ) for f ∈ C0(S) is defined to be the operator M f of
multiplication by f on L2(S, μ,Hn) and U is a multiplier representation on L2(S, μ,Hn), that is,

(
U (g)h

)
(s) = c(g, s)(g · h)(s), h ∈ L2(S, μ,Hn), g ∈ G,

where c : G × S → U(Hn) is a Borel map taking values in the group of unitary operators U(Hn) of the Hilbert
space Hn of dimension n. For U to be a homomorphism, the function c must be a cocycle. The second part of
the imprimitivity theorem asserts that such a multiplier representation is induced from a unitary representation
of the subgroup H acting on the Hilbert space Hn .

It is evident that the d- tuple of multiplication by coordinate functions (M1, . . . , Md) acting on L2(S, μ,Hn)

is homogeneous. We prove that any d- tuple N of commuting homogeneous normal operators such that σ(N)

is a G- space is actually equivalent to a direct sum of several transitive imprimitivities that are taken to be of the
canonical form without loss of generality.

Since in the simplest of examples like that of the closed unit disc, the group of Möbius transformations acts
holomorphically but the action is not transitive, we set out to study some class of imprimitivities that do not come
from a transitive action. (This example was first mentioned in [3].) We prove that, under mild hypotheses, these
are direct sums of transitive imprimitivities. For a precise statement, see Corollary 4.10. We then apply this result
to several examples and list all the homogeneous d- tuples of normal operators modulo unitary equivalence.

In the Remark on page 225 of [17], it is stated that “Theorem 6.12 gives a complete analysis of the transitive
homogeneous systems of imprimitivity based on X. …In view of this it has not been possible to carry out the
analysis of ergodic systems of imprimitivity further than that of Theorem 6.11.” In this paper, we identify a class
of imprimitivities where neither the G action is transitive nor is the spectral measure of uniform multiplicity and
yet the imprimitivities are described completelymodulo unitary equivalence, see Theorem4.9 andCorollary 4.10.
We discuss several examples where the theorem applies.

In the concluding section, we state two problems that we think might be of some interest to researchers in
operator theory as well as representation theory.

2 Spectral theorem and the Hahn–Hellinger decomposition

We begin by describing ∗- representations of a commutative C∗- algebra. In the case of a non-unital C∗- algebra,
a ∗- representation ρ : C0(S) → L(H) is said to be non-degenerate if there is no nonzero h ∈ H such that
ρ( f )h = 0 for all f ∈ C0(S).
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Definition 2.1 Let B be the σ - algebra of all Borel sets in S and P(H) be the set of projections on a separable
complex Hilbert spaceH. A spectral measure defined on S is a projection valued map P : B → P(H) such that
P(S) = I and P(∪· Ek) = ∑∞

k=1 P(Ek) for any disjoint collection of sets Ek , k = 1, 2, . . . , in B, where the
convergence is in the strong operator topology. The spectrum σ(P) of a spectral measure is the complement in
S of the union of all those open subsets E of S such that P(E) = 0. A spectral measure is said to be compact if
σ(P) is compact. If P is a spectral measure for (S,B) and x, y ∈ H, then

Px,y(E) ≡ 〈P(E)x, y〉, x, y ∈ H, E ∈ B,

defines a countably additive measure on S. A projection-valued measure P on (S,B) is called regular if each of
the measures Px,y is regular.

Theorem 2.2 (Corollary 1.55, [8]) Suppose thatS is a locally compactHausdorff space, andρ is a nondegenerate
∗- representation of C0(S) on H. Then there is a unique regular projection-valued measure P on S such that
ρ( f ) = ∫

f d P for all f ∈ C0(S).

If S is compact, then the ∗- representation ρ of C(S) extends to the algebra B(S) of bounded Borel functions
on S. Here and in what follows, if S is compact then we denote it by S.

Theorem 2.3 (Chapter IX, Theorem 1.14, [6]) If S is a compact topological space and ρ : C(S) → L(H) is a
∗- representation, there is a unique spectral measure P defined on the Borel subsets of S such that for all x and
y inH, Px,y is a regular measure and ρ( f ) = ∫

f d P for all f ∈ C(S).

We reproduce a key idea of the proof of Theorem2.3 above from [6]. If x, y ∈ H, then�x,y( f ) := 〈ρ( f )x, y〉
is a linear functional on C(S) with ‖�x,y‖ � ‖x‖‖y‖. Hence there is a unique regular Borel measure μx,y such
that

〈ρ( f )x, y〉 =
∫

f dμx,y

for all f in C(S). Let φ be a bounded Borel function on S and define [x, y] = ∫
φdμx,y . Evidently, [·, ·]

is a sesquilinear form and |[x, y]| � ‖φ‖‖x‖‖y‖. Hence there is a unique bounded operator Aφ such that
[x, y] = 〈Aφx, y〉 and ‖Aφ‖ � ‖φ‖. Define ρ̃ : B(S) → L(H) by setting ρ̃(φ) = Aφ . Thus,

〈ρ̃(φ)x, y〉 =
∫

φdμx,y .

It is shown in the proof of Theorem 1.14 of [6] that (a) ρ̃ : B(S) → L(H) is a ∗- representation and ρ̃|C(S) = ρ

and (b) P(E) := ρ̃ (χE ), E ∈ B, is a spectral measure, where χE is the characteristic function of E .

Remark 2.4 Any ∗- representation ρ of C(S), S compact, not only (uniquely) defines a spectral measure, and it
is actually the restriction of a ∗- representation of the algebra of bounded Borel functions on S.

Finally, using the Hahn–Hellinger theorem, onemaywrite down any ∗- representation ofC0(S) in a canonical
form, see [16, Theorem 3.7]. Let μ be a σ -finite Borel measure on S, and Hn denote an n dimensional Hilbert
space, 1 � n � ℵ0. The map πn

μ defines a ∗- representation of C(S) by setting

(πn
μ( f )h)(x) = f (x)h(x), f ∈ C(S), h ∈ L2 (S, μ,Hn) .

Theorem 2.5 Let π : C0(S) → L(H) be a ∗- representation of C0(S) on a separable Hilbert space H.

(a) Then, there exists a Borel measure μ on S, and a sequence {En : 1 ≤ n ≤ ℵ0} of pairwise disjoint Borel sets
in S, and Hilbert spaces Hn, 1 � n � ℵ0, with dimHn = n such that μ (S \ (∪· n En)) = 0, and

π ∼=
⊕

1≤n≤ℵ0

πn
μ|En .

(b) Further, if π ′ is another representation of C0(S), and if μ′ is a measure and if
{
E ′
n : 1 ≤ n ≤ ℵ0

}
is a

sequence of pairwise disjoint Borel sets such that

π ′ ∼=
⊕

1≤n≤ℵ0

πn
μ′|E ′

n
,

and if π ∼= π ′, then μ ∼= μ′ and μ
(
En�E ′

n

) = 0 for all n, where � denotes “symmetric difference”:
A�B = (A ∩ Bc) ∪ (B ∩ Ac).

123



G. Misra et al.

We need to discuss the relationship of the spectrum of the spectral measure P defined on a locally compact
space S with the (joint) spectrum of N (commuting tuple of normal operators) defined by P as in Theorem 2.3.
However, there are several different ways in which one may define the spectrum of N , and these are discussed
below.

Let N = (N1, N2, · · · , Nd) be a commuting tuple of normal operators acting on a Hilbert space H. Some
of what we are going to say applies to any commuting tuple of bounded operators but we will restrict ourselves
to normal operators. In this case, some of the arguments are much simpler.

First, the left spectrum σleft(N) is defined to be thoseλ := (λ1, . . . , λd) ∈ C
d such that the left ideal generated

by {(N1 − λ1) , (N2 − λ2) , . . . , (Nd − λd)} in the unital (commutative) C∗- algebra C∗(N) generated by N is
proper. The right spectrum σright(N) is defined similarly.

From the Gelfand theory, see [15, Theorem B, p. 320], it follows that C∗(N) is ∗- isomorphic to the algebra
of continuous functions C(M) on the space M of multiplicative linear functionals of C∗(N). Then we have

σleft(N) = σright(N) = {(
 (N1) , . . . , 
 (Nd)) : 
 ∈ M} ⊂ C
d , (2.1)

see [10, Lemma 2.1] and also the remark following [4, Corollary 4].

Remark 2.6 It may appear that the definition of the spectrum, say, the left spectrum, depends on the algebra
C∗(N) since (λ1, . . . , λd) /∈ σleft(N), only if we can find S1, . . . , Sd ∈ C∗(N) such that

∑d
j=1 S j (N j −λ j ) = I .

However, if C∗(N) ⊂ A such that the identity of A also serves as the identity in C∗(N), then the spectrum
σleft(N) = σA(N), see [7, Corollary 8]. A particular case that is important in what follows occurs by choosing
A = C∗(N)′′. Since we have σleft(N) = σright(N), we drop the subscripts “left” and “right” and let σ(N) denote
the spectrum of N . This is known as the Harte spectrum.

A second notion of the spectrum is the joint approximate spectrum σa(N): The d- tuple (λ1, · · · , λd) of
complex numbers is said to be inσa(N) if there exists a sequence xn of unit vectors inH such that

(
N j − λ j

)
xn →

0, 1 � j � d. The proof of the following lemma is in [5]. We provide a proof for the sake of completeness.

Lemma 2.7 If N is a d- tuple of commuting normal operators, then σleft(N) = σa(N).

Proof Let I =
{∑d

j=1 S j
(
N j − λ j

) : S j ∈ L(H)
}
.

To prove that σa(N) ⊆ σ(N), consider (λ1, . . . , λd) ∈ σa(N), i.e.,
(
N j − λ j

)
xn → 0, for every j

with ‖xn‖ = 1. If I is not proper, then I ∈ I. Hence, there exist S j ∈ L(H), j = 1, 2, · · · , d, such that
∑d

j=1 S j
(
N j − λ j

) = I , i.e.,
∑d

j=1 S j
(
N j − λ j

)
xn = xn . This contradicts the fact that

(
N j − λ j

)
xn → 0

since ‖xn‖ = 1. Hence I is proper and (λ1, . . . , λd) ∈ σ(N).
To prove thatσ(N) ⊆ σa(N), consider (λ1, . . . , λd) ∈ σ(N). ThenI is proper and, therefore, consists of non-

invertible elements. Hence
∑d

j=1

(
N j − λ j

)∗ (
N j − λ j

) ∈ I is non-invertible, that is, 0 belongs to the spectrum

of the operator
∑d

j=1

(
N j − λ j

)∗ (
N j − λ j

)
. Since the operator is self-adjoint, all its spectral values are approxi-

mate eigenvalues. Hence, there exists {xn ∈ H : ‖xn‖ = 1, n ∈ N} such that∑d
j=1

(
N j − λ j

)∗ (
N j − λ j

)
xn →

0, n → ∞. It follows that
∑d

j=1

∥
∥(

N j − λ j
)
xn

∥
∥2 → 0 and

(
N j − λ j

)
xn → 0, n → ∞, for every j . Hence

(λ1, . . . , λd) is in σa(N).

Recall that the spectral measure P defines a commuting d- tuple of normal operators as described below.
This is the spectral theorem for a d- tuple of commuting operators.

Theorem 2.8 (Theorem 3, [11]) Let N = (N1, . . . , Nd) be a d- tuple of pairwise commuting normal operators
acting on aHilbert spaceH and letW ∗(N) := {N1, . . . , Nd}′′ be the commuting vonNeumannalgebra consisting
of all those operators that doubly commute with {N1, . . . , Nd}. Then there exists a projection-valued spectral
measure P with supp(P) = σ(N) such that

N j =
∫

z j d P(z), 1 ≤ j ≤ d,

where σ(N) is computed relative to W ∗(N).

From Remark 2.6, we conclude that σ(N) is unambiguously defined irrespective of whether we define it
relative to the algebraW ∗(N) or the algebra C∗(N). The claim that supp(P) = σ(N) follows from [5, Theorem
2] as pointed out in [11]. We verify this equality closely following the proof of Theorem 2 from [9, p. 64].
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Lemma 2.9 Assume that P is a compact spectral measure on a locally compact space S ⊂ C
d . Then the support

of the spectral measure P and the spectrum of the commuting tuple N of operators, where N j = ∫
z j d P(z), 1 ≤

j ≤ d, are equal.

Proof From Lemma 2.7, we have that σ(N) = σa(N). Thus, it is enough to prove supp(P) = σa(N).
Pick λ0 /∈ supp(P). Then there exists an open neighborhood U of λ0 such that P(U ) = 0. Let U ′ be the

complement of U and δ = dist(λ0,U ′). Now, we have

d∑

j=1

∥∥(N j − λ0j I )x
∥∥2 =

d∑

j=1

〈(N j − λ0j )
∗(N j − λ0j )x, x〉

=
d∑

j=1

∫ (
(λ j − λ0j )(λ j − λ0j )

)
d〈P(λ)x, x〉

for all x ∈ H. Since P(U ) = 0, it follows that

( d∑

j=1

∥∥(N j − λ0j I )x
∥∥)2 �

d∑

j=1

∥∥(N j − λ0j I )x
∥∥2

=
∫

U ′

d∑

j=1

|λ j − λ0j |2d〈P(λ)x, x〉

� δ2‖x‖2

for all x ∈ H. Consequently,
d∑

j=1

∥∥∥
(
N j − λ0j

)
x
∥∥∥ � δ‖x‖ and therefore λ0 /∈ σa(N).

Conversely, if λ0 ∈ supp(P), then P(U ) �= 0 for every open set containing λ0. Hence if δ is any positive
number such that B = {λ : |λ − λ0| < δ}, then there is a non-zero vector x in the range of P(B). Now, arguing
as in the first half of the proof, we conclude that

( d∑

j=1

∥∥(N j − λ0j I )x
∥∥)2 =

∫

B

d∑

j=1

|λ j − λ0j |2d〈P(λ)x, x〉 � δ2‖x‖2.

It follows that λ0 ∈ σa(N).

Adapting the terminology from [9], let us say that a spectral measure defined on a subset S ofC
d is a complex

spectral measure. It is proved in [9, Theorem 1, p. 63] that a complex spectral measure is regular for d = 1. The
same proof works with the obvious modifications for any d ∈ N. We record below this property of a complex
spectral measure without proof.

Proposition 2.10 Every complex spectral measure is regular.

3 Multiplier representations and Induced representations

This section is devoted to establishing a correspondence between multiplier representations and induced repre-
sentations. We start with some generalities.

LetG be a locally compact second countable group and S be a locally compactG- space, that is, there is amap
α : G × S → S, such that for a fixed g ∈ G, s → αg(s), αg(s) := α(g, s), is a bijective and continuous map of
S, moreover, g → αg is a homomorphism. We let g · s := α(g, s), g ∈ G and s ∈ S. The action of G on S is said
to be transitive if for every pair s1, s2 in S, there is a g ∈ G such that g ·s1 = s2. Let H ⊆ G be a closed subgroup
and let S := G/H be the space of cosets: {gH | g ∈ G}. Equipped with the action of G by left multiplication:
g′(gH) := (g′g)H , g′, g ∈ G, the coset space S is a transitive G- space. On the other hand, any transitive G-
space must be of this form, see [8, Proposition 2.46]. Following [8], let us say that S is a homogeneous space if

123



G. Misra et al.

it is homeomorphic to G/H . In this case, we identify S with G/H and define (g · f )(s) = f (g−1 · s) for any
function defined on S.

Let (S,B) be the Borel measurable space, and note that each g ∈ G defines a continuous map on S by our
assumption. Given a σ -finite measure μ on S, define the push-forward g∗μ of the measure μ by the requirement

(g∗μ)(A) := μ
(
g · A)

, g · A := {g−1 · s | s ∈ A}, A ∈ B.

The measure μ on G is said to be invariant if g∗μ = μ and quasi-invariant if g∗μ is equivalent (mutually
absolutely continuous) to μ for all g ∈ G.

Remark 3.1 If G is second countable, then we have the following two very useful tools at our disposal.

(1) There is a Borel cross-section p : G/H → G, that is, a Borel subset B ⊂ G that meets each coset of H in
exactly one point, see [1, Corollary, Theorem 3.41], and [14, Lemma 1.1]. Thus, each g ∈ G can be written
uniquely as g = g1g0 with g0 ∈ H and g1 ∈ B.

(2) There is a quasi-invariant measure uniquely determined modulo mutual absolute equivalence on S, see [8,
Theorem 2.58].

The inducing construction is a way of producing unitary representations of a locally compact group G
from unitary representations of a closed subgroup H of G. In this section we describe two pictures of induced
representations.

(i) The first is that of a multiplier representation, which is more suitable for function theory/operator theory
applications.

(ii) The second one is the standard representation theoretic construction of aG- action on a space of vector-valued
functions on G that transform according to the given representation of H.

3.1 Multiplier representations

Let S be a second countable Hausdorff space on which a Lie group G acts transitively. For x ∈ S and g ∈ G,

g · x denotes the action of g on the point x . If x0 ∈ S, the stabilizer of x0 is the closed subgroup H of G defined
by

H = {h ∈ G : h · x0 = x0}.
We fix x0 ∈ S in what follows. Since the action is transitive, we can identify the space S with the homogeneous
space G/H. Recall that G/H admits a quasi-invariant measure, which we denote by μ.

Example 3.2 Let B
n = {z ∈ C

n : |z| < 1} denote the Euclidean unit ball in C
n . The group of bi-holomorphic

automorphisms on B
n, denoted by Möb(Bn) can be described as follows:

For each a ∈ B
n, let Pa be the orthogonal projection of C

n onto the subspace generated by a. So, P0 = 0
and

Paz = 〈z, a〉
〈a, a〉a, a �= 0.

Let Qa = I − Pa be the orthogonal projection onto the orthogonal complement of a. Define

ϕa(z) = a − Paz − (1 − |a|2)1/2Qaz

1 − 〈z, a〉 . (3.1)

The bi-holomorphic map ϕa is an involution which interchanges the points 0 and a. Then, the group Möb(Bn)

is given by

Möb(Bn) = {Uϕa : a ∈ B
n,U ∈ U (n)}.

The unit ball B
n can be identified with G/K where G = Möb(Bn) and K = SU (n). In this case, it is well

known that G/K carries a measure that is G- invariant.
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Now we describe the multiplier representations. Let m : G × S → U(V ) be a Borel function, where U(V )

is the space of unitary operators on a complex separable Hilbert space V .

Define

Tg f (x) =
(
d(g∗μ)

dμ
(x)

) 1
2

m(g, x) f (g−1 · x),

where f comes from L2(S, μ, V ). We assume that Tg defines a unitary representation of G. It is easily verified
that g → Tg is a homomorphism if and only if the multiplier m satisfies the cocycle identity

m(g1g2, x) = m(g1, x)m(g2, g
−1
1 · x), g1, g2 ∈ G, x ∈ S. (3.2)

Next, set σ(g) = m(g, x0). Notice that,

σ(hg) = σ(h)σ (g), h ∈ H, g ∈ G. (3.3)

In particular, σ restricted to H is a homomorphism of H into U(V ), the group of unitary operators on V and
hence σ is a unitary representation of H as m is Borel.

Next, we obtain a general form for the multiplier m using σ (this connects the representation of H and the
multiplier m). We start with the definition of a section.

If s : S → G is a Borel cross-section as in Remark 3.1, then every g ∈ G admits a unique decomposition
g = s(x)h where x = g · x0 and h ∈ H. We shall need the following (Remark 3.1):

Lemma 3.3 There exists a Borel cross-section s : S → G which is measurable.

Notice that, for x ∈ S, g ∈ G,

σ (s(x)−1g) = m(s(x)−1g, x0) = m(s(x)−1, x0)m(g, x) = σ(s(x)−1)m(g, x). (3.4)

Since,

s(g−1 · x)−1g−1s(x) · x0 = s(g−1 · x)−1g−1 · x = x0,

we have,

s(g−1 · x)−1g−1s(x) ∈ H.

So, g−1s(x) = s(g−1 · x)h for some h ∈ H. Write, s(x)−1g = h−1s(g−1 · x)−1. By (3.3) we get

σ(s(x)−1g) = σ(h−1)σ (s(g−1 · x)−1), g−1s(x) = s(g−1 · x)h.

Using the above and (3.4), we get the general form for a multiplier as

m(g, x) = σ(s(x)−1)−1σ(h−1)σ (s(g−1 · x)−1), g−1s(x) = s(g−1 · x)h. (3.5)

3.2 Induced representations

Next, we describe the representation theoretic construction of an induced representation and show that multiplier
representations and induced representations are the same. As above S = G/H and let quasi μ be the quasi
G- invariant measure on S.

Let σ be a unitary representation of H on a Hilbert spaceHσ . We denote the inner product onHσ by 〈·, ·〉σ .

Let Fc be the vector space of functions taking values in Hσ defined by

Fc = {F ∈ C(G,Hσ ) : F(gh) = σ(h−1)F(g) and q(supp(F)) is compact },
where q : G → G/H is the canonical projection. Notice that, if F1, F2 ∈ Fc, the function 〈F1(g), F2(g)〉σ
depends only on the coset q(h) = gH (as the representation σ is unitary) and so is a function in Cc(G/H).

Define an inner product on Fc by

〈F1, F2〉 =
∫

S

〈F1(x), F2(x)〉σ dμ(x).
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It is easy to verify that the above defines an inner product on Fc. Let H be the Hilbert space obtained
by completing Fc with respect to this inner product. Notice that the space Fc is invariant under the operators
Lg, g ∈ G, defined by

LgF(g1) =
(
d(g∗μ)

dμ
(g1 · x0)

) 1
2

F(g−1g1)

and the inner product on Fc is preserved by these maps Lg, g ∈ G (because μ is quasi G- invariant). It follows
that Lg for each g ∈ G extends to an isometry onH. Since it is easy to see that Lg1g2 = Lg1Lg2 on Fc, each Lg
becomes a unitary operator onH. Moreover, the map g → LgF from G to Fc (for a fixed F) is continuous and
since the operators Lg are uniformly bounded, they are strongly continuous. Thuswe have a unitary representation
of G called the induced representation, denoted by IndGH (σ ). We may also use Lg to denote this representation
when there is no scope for confusion.

Example 3.4 Let σ be the trivial representation of H on C. Then, Fc is naturally identified with Cc(G/H) =
Cc(S) and F = L2(G/H) = L2(S, μ). If G/H admits a G- invariant measure μ, the representation IndGH (σ ) is
the left regular representation of G on L2(G/H, μ).

Remark 3.5 The elements in the spaceH are in fact functions that take values inHσ , see Remark 1 in [8, Chapter
6].

For F ∈ H, define theHσ valued function F̃ on S by F̃(x) = F(s(x)), where s : S → G is the measurable
section chosen earlier. Then, it can be verified that the map F → F̃ is a unitary transformation fromH onto the
Hilbert space H̃, where

H̃ = L2(S, μ,Hσ ) = {F̃ : S → Hσ ,

∫

S

‖F̃(x)‖2σdμ(x) < ∞}.

Transferring the action of G on H to H̃, we obtain the representation L̃g of G defined by

L̃g F̃(x) =
(
d(g∗μ)

dμ
(x)

) 1
2

σ(h−1)F̃(g−1s(x) · x0)

=
(
d(g∗μ)

dμ
(x)

) 1
2

σ(h−1)F̃(g−1 · x), (3.6)

where h ∈ H is determined by g−1s(x) = s(g−1 · x)h. The representation L̃g is, of course, unitarily equivalent
to IndGH (σ ). Recall that the representation IndGH (σ ) is realized (as Lg) on the Hilbert space H.

We now show the correspondence between multiplier representations and induced representations. For this,
consider the multiplier representation Tg described earlier with the cocycle m and its restriction σ . Note that σ

is defined on all of G and, when restricted to H gives a unitary representation of H , see Equation (3.3).
Define the map A on H̃ by A f (x) = σ(s(x))−1 f (x). Clearly, A is an invertible transformation. Let us

compute ATgA−1. For f ∈ H̃ we have,

ATgA−1 f (x) = σ(s(x))−1
(
TgA−1 f

)
(x)

= σ(s(x))−1
(
d(g∗μ)

dμ
(x)

) 1
2

m(g, x)(A−1 f )(g−1 · x)

= σ(s(x))−1
(
d(g∗μ)

dμ
(x)

) 1
2

m(g, x)σ (s(g−1 · x)) f (g−1 · x)

=
(
d(g∗μ)

dμ
(x)

) 1
2

σ(h−1) f (g−1 · x),

where we used (3.5) in the last step. But the above equals L̃g f (x) (see (3.6)) and hence Tg is equivalent to
IndGH (σ ), with the representation σ from which the induction is done being the representation obtained by
restricting the cocycle m as mentioned above.
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Conversely, let σ be a unitary representation of H on a Hilbert spaceHσ . We shall construct a multiplier m
such that the corresponding multiplier representation, denoted by Tm

g is unitarily equivalent to IndGH (σ ). Notice
that we can not define the multiplier m using the form given in (3.5) as σ(s(x)) does not make sense if s(x) /∈ H
(which is the case if x �= x0). However, notice that s(x)−1gs(g−1 · x) ∈ H, as

s(x)−1gs(g−1 · x) · x0 = s(x)−1g(g−1 · x) = s(x)−1 · x = x0.

Hence we can define

m(g, x) = σ(s(x)−1gs(g−1 · x)).
It is easy to verify that m satisfies the cocycle identity (3.2). Define Tm

g on H̃ by

Tm
g f (x) =

(
d(g∗μ)

dμ
(x)

) 1
2

m(g, x) f (g−1 · x).
Clearly, g → Tm

g is a unitary representation of G. Now, proceeding as above by defining σ̃ (g) = m(g, x0) we

obtain a unitary representation σ̃ of the subgroup H and that Tm
g is unitarly equivalent to IndGH (̃σ ). Hence, it

suffices to prove that σ and σ̃ are unitarily equivalent as representations of H. Now, for h ∈ H,

σ̃ (h) = m(h, x0) = σ(s(x0)
−1hs(h−1 · x0)) = σ(s(x0))

−1σ(h)σ (s(x0))

as s(x0) ∈ H and σ is a representation of H, which proves that σ and σ̃ are equivalent. So, it follows that Tm
g

and IndGH (σ ) are unitarily equivalent. Thus we have proved the following:

Theorem 3.6 Let G be a second countable locally compact group and H be a closed subgroup of G.

(a) Let m be a multiplier defined on G × S taking values in the group of unitary operators on a Hilbert space.
Then the multiplier representation Tm

g defined by

Tm
g f (x) =

(
d(g∗μ)

dμ
(x)

) 1
2

m(g, x) f (g−1 · x)

is unitarily equivalent to IndGH (σ ), where the representation σ of H is given by σ(h) = m(h, x0).
(b) Conversely, let σ be a unitary representation of H and let

m(g, x) = σ(s(x)−1gs(g−1 · x)).
Then m is a multiplier and IndGH (σ ) is equivalent to the multiplier representation Tm

g .

A lot more on the inducing construction and the imprimitivity can be found in sections 1 and 2 of [12]. In
particular, see Theorems 4 and 5 of [12].

4 Imprimitivity and homogeneous normal operators

Let N be a commuting tuple of normal operators acting on a complex separable Hilbert space H. Let C∗(N)

be the unital C∗- algebra generated by (N1, . . . , Nd). This C∗- algebra is ∗- isomorphic to the algebra of
continuous functions C(S) for some compact Hausdorff space S ⊂ C

d via the Gelfand representation theorem.
The joint spectrum σ(N) of (N1, . . . , Nd) is the set S. The continuous functional calculus for the commuting
d- tuple N defined using the Gelfand transform provides a ∗- homomorphism ρN : C(σ (N)) → L(H) by
setting ρN ( f ) = f (N). On the other hand, if ρ : C(σ (N)) → L(H) is any ∗- homomorphism, then setting
N j = ρ(z j ), where z j are the coordinate functions, we see that (N1, . . . , Nd) is a commuting tuple of normal
operators. The ∗- homomorphism ρN induced by N coincides with ρ.

Let G be a second countable locally compact group and S be a locally compact topological space. We say
that S is a G- space if there is a continuous map G × S → S such that (e, s) = s, where e is the identity in G
and for every pair g, ĝ in G, g · (ĝ · s) = (gĝ) · s, s ∈ S. It then follows that for every fixed g ∈ G, the map
g : S → S, g(s) := g · s, s ∈ S, is a continuous bijection of S. Thus, g = (g1, . . . , gd) with g j : S → C,
1 � j � d. These are the coordinate functions of the action g : S → C

d induced by g ∈ G.
In what follows, we assume that σ(N) is a G- space and that the action of g ∈ G is holomorphic in some

open neighbourhood Og of σ(N). This action of G on σ(N) lifts to the commuting tuple N by setting

g · N := (g1 · N, . . . , gd · N). (4.1)
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Definition 4.1 Let N = (N1, . . . , Nd) be a commuting tuple of normal operators such that the spectrum σ(N)

is a G- invariant compact set. The commuting d- tuple N is said to be homogeneous if there is a unitary
representation U of G on H such that

U∗
g NUg := (U∗

g N1Ug, . . . ,U
∗
g NdUg) = g · N, g ∈ G. (4.2)

To discuss induced representations for a locally compact second countable group G, Mackey introduced the
notion of an imprimitivity which we recall below. For any locally compact Hausdorff space S, we let C0(S)

denote the C∗- algebra of continuous functions vanishing at ∞, that is, if f ∈ C0(S), and ε is any positive
number, then there is a compact subset K of S such that | f (s)| < ε for all s /∈ K . The action of the group G lifts
to an action on C0(S): (g, f ) → g · f , where (g · f )(s) = ( f ◦ g−1)(s), g ∈ G, s ∈ S.

Definition 4.2 Suppose that U is a unitary representation of the group G on some Hilbert space H and ρ :
C0(S) → L(H) is a ∗- homomorphism of the C∗- algebra of continuous functions on S vanishing at infinity.
The imprimitivity introduced by Mackey is the requirement

Ugρ( f )U∗
g = ρ(g · f ), f ∈ C0(S), (†)

where (g · f )(s) = f (g−1 · s), s ∈ S.

If (S,U, ρ) is an imprimitivity for some compact set S, then the d- tuple (ρ(z1), . . . , ρ(zd)) of commuting
normal operators is homogeneous by definition, see (†) above, with σ(ρ(z1), . . . , ρ(zd)) = S. The other way
round, the theorem below shows that if N is a d- tuple of homogeneous normal operators with associated
representation U , then (σ (N),U, ρN ) is an imprimitivity.

Theorem 4.3 Let N := (N1, . . . , Nd) be a d- tuple of commuting normal operators defined on a complex
separable Hilbert space H. Assume that N is homogeneous under the action of a group G with associated
representation U. Then (σ (N),U, ρN ) is an imprimitivity.

Proof. By hypothesis, we have U∗
g NUg = g · N , g ∈ G, for some unitary representation U of G. Taking

the adjoint of both sides, we get U∗
g N

∗Ug = (g · N)∗, where N∗ = (N∗
1 , . . . , N∗

d ) and similarly, (g · N)∗ =
((g1 · N)∗, . . . , (gd · N)∗). Or, equivalently,

(g · N)∗ = (g1 · N∗, . . . , gd · N∗),

where g j denotes the complex conjugate of the coordinate functions g j , 1 ≤ j ≤ d. We adopt the convention:
(g · N)∗ = g · N∗. Thus, if N is a commuting d- tuple of homogeneous normal operators, then we also have
U∗
g N

∗Ug = g · (N∗), g ∈ G.
The homogeneous d- tuple N defines a ∗- homomorphism ρN : C(σ (N)) → L(H) and the homogeneity

ensures that

U∗
g (ρ(z1), . . . , ρ(zd))Ug := U∗

gρ(z)Ug

= (g1 · z, . . . , gd · z) := ρ(g · z), z ∈ σ(N), g ∈ G. (4.3)

Similarly, the equality U∗
g N

∗Ug = g · (N∗) becomes

U∗
gρ(z)Ug = ρ(g · z), g ∈ G. (4.4)

Setting fm(z) = zm1
1 zm2

2 · · · zmd
d , and fm,n(z) = fm fn , we have that

U∗
gρ( fm)Ug = U∗

g N
m
1 · · · Nmd

d Ug

= (
(U∗

g N1Ug)
m1(U∗

g N2Ug)
m2 · · · (U∗

g NdUg)
md

)

= (U∗
gρ(z1)Ug)

m1 · · · (U∗
gρ(zd)Ug)

md

= ρ(g1 · z)m1 · · · ρ(gd · z)md

= ρ(g · fm).
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Similarly, as before,

U∗
gρ( fn)Ug = U∗

g N
∗
1
n1 . . . N∗

1
ndUg

= (
(U∗

g N
∗
1Ug)

n1(U∗
g N

∗
2Ug)

n2 · · · (U∗
g N

∗
dUg)

nd
)

= (U∗
gρ(z1)Ug)

n1 · · · (U∗
gρ(zd)Ug)

nd

= ρ(g1 · z)n1 · · · ρ(gd · z)nd )
= ρ((g1 · z)n1 · · · (gd · z)nd )
= ρ(g · fn)

Finally, the computation below shows that U∗
g fm,nUg = ρ(g · fm,n):

U∗
gρ( fm,n)Ug = U∗

gρ( fm)UgU
∗
gρ( fn)Ug = ρ(g · fm)ρ(g · fn)

= ρ
(
(g · fm)(g · fn)

) = ρ(g · fm,n).

Now if p is a polynomial of the form p = ∑
m,n am,n fm,n , we clearly have U∗

gρ(p)Ug = ρ(g · p). By the
Stone–Weierstrass theorem, these polynomials are dense in C(σ (N)). Thus,

U∗
gρ( f )Ug = ρ(g · f ), f ∈ C(σ (N)).

Next, we show that every imprimitivity (S,U, ρ) based on a locally compact G- space S defines a homoge-
neous commuting normal tuple N with spectrum S, where S is the closure of S. For this, it would be useful to
describe the imprimitivity in an equivalent form involving a spectral measure on S.

Definition 4.4 LetG be a second countable locally compact group and S be a locally compactG- space. Suppose
that U is a unitary representation of G on a Hilbert spaceH and P is a regularH-projection-valued measure on
S. Then (S,U, P) is said to be a system of imprimitivity if

U (g)P(E)U (g)−1 = P(g · E) (4.5)

for all g ∈ G and every Borel subset E of S.

It is proved in [8, p. 180] that the Definitions 4.2 and 4.4 are equivalent. For the proof of Proposition 4.6
given below, we will find it convenient to use the formulation of imprimitivity in Definition 4.4.

The imprimitivity theorem due to Mackey says, among other things, that if (S,U, ρ) is a transitive system of
imprimitivity, thenU is unitarily equivalent to the induced representation IndGH (σ ) for someunitary representation
σ of H , where the homogeneous space S is assumed to be of the form G/H , G locally compact, H ⊂ G closed.

Applying theHahn–Hellinger theorem to the spectralmeasure P , writing it in the canonical formTheorem2.5,
and imposing the imprimitivity condition of Equation (4.5) from Definition 4.4 gives a canonical form of the
imprimitivity (S,U, P) as described below, see [16, Proposition 4.1 and Theorem 4.3(b)] (and also [17, Theorem
6.12], [12, Theorem 4]).

Theorem 4.5 (Imprimitivity theorem) Let S = G/H be a homogeneous G- space and μ be a quasi-invariant
measure on S (there is always one such uniquely determined modulo mutual absolute equivalence). Assume that
(S,U, ρ) is an imprimitivity acting on some separable complex Hilbert spaceH. Then there is

a Hilbert space V such that H is isometrically isomorphic toH = L2(S, μ, V ), where

(i) μ is a quasi-invariant measure on S determined uniquely modulo equivalence,
(ii) the representation ρ is of the form ρ( f ) = M f , f ∈ C0(S), and
(iii) the representation U is of the form

(U (g) f )(s) =
√
dμ(g · s)
dμ(s)

σ (h) f (g · s).

Here h ∈ H is determined from the relation g p(g−1 · s) = p(s)h, s ∈ S, where p : G/H → G is a Borel
cross-section.
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We let B denote the σ - algebra of Borel subsets of C
d . The Borel σ - algebra of X ⊂ C

d then consists of
all subsets of X of the form X ∩ B, B ∈ B. If E is a subset of X , then we say that a measure μ lives on E if
μ(X \ E) = 0. Two measures μ and ν are said to be mutually singular if they live on two disjoint sets.

We have gathered all the tools from spectral theory of commuting tuples of normal operators to prove that
every imprimitivity (S,U, ρ) based on a locally compact transitiveG- spaceS is the restriction of an imprimitivity
based on S.

Theorem 4.6 Suppose that S is a locally compact transitive G- space and the action of G extends to S, the
closure of S with g · ∂S ⊆ ∂S.

(1) If (S,U, P) is an imprimitivity, then there exists a unique spectral measure P̂ defined on the Borel σ - algebra
B of S satisfying the imprimitivity condition (4.5) with P̂(E) = P(E) for every Borel subset E of S. Moreover,
supp(P) = S.

(2) If (S,U, P) is an imprimitivity, then it defines uniquely a homogeneous commuting tuple of normal operators
N such that σ(N) = supp(P̂) = S, where P̂ is the spectral measure of N .

Proof The imprimitivity on S comes equipped with a spectral measure P defined on the Borel subsets of S.
Define P̂ on any Borel subset E of S by setting

P̂(E) =
{
P(E ∩ S) if E ∩ S �= ∅,

0 if E ⊆ ∂S.

Thus, P̂ is an extension of the spectral measure P to the Borel σ - algebra on S with P̂(∂S) = 0. Clearly, these
properties determine P̂ uniquely.

Pick s ∈ E and use Urysohn’s Lemma to find a continuous function f defined on Swith f (s) = 1, f = 0 on
Ec. If we had P(E) = 0, then

∫
S
f d P = 0. This is not possible since the ∗- homomorphism ρ of C(S) defined

by ρ( f ) = ∫
S
f d P cannot be the zero operator. Hence, P(E) �= 0 whenever E is open in S. Consequently,

supp(P) = S.
Starting with the imprimitivity, (S,U, P), we define the spectral measure P̂ on S as in the Theorem. Since

the action of G leaves S and ∂S invariant, it follows that (S,U, P̂) is an imprimitivity. Or, equivalently, (S,U, ρ)

is an imprimitivity, where ρ( f ) = ∫
S
f d P̂ is a ∗- homomorphsim of C(S). By the imprimitivity theorem, the

∗- homomorphsim ρ can be realized on the Hilbert space L2(S, μ, V ) in the form ρ( f ) = M f , f ∈ C(S). The
d- tuple (ρ(z1), . . . , ρ(zd)) of multiplication by the coordinate functions is homogeneous. To verify this claim,
we have to find a unitary representation � of G and show that

�(g)∗ρ(zk)�(g) = g · zk, k = 1, . . . , d,

where g · (z �→ zk) = zk(g · z) = gk(z). (Recall that g(z) = (g1(z), . . . , gd(z)).) Evidently, this is the
imprimitivity condition for the particular choice of the function zk := z �→ zk . Hence choosing � = U , where
U is the unitary from the Imprimitivity theorem, we are done. Moreover, the spectrum of this d- tuple is S as
shown in the first half of the proof.

Definition 4.7 Let G be a second countable locally compact group and S be a locally compact G- space. We say
that a representation U of G acting on a Hilbert space H consisting of functions (equivalence classes modulo
zero sets) is a multiplier representation if there is a concrete realisation of U as follows:

(Ug f )(z) = (m(g−1, z))−1 f (g−1z), z ∈ S, f ∈ H, g ∈ G.

Let S ⊂ C
d be a compact G- space. Assume that S decomposes into finitely many G orbits: S = S0 ∪·

S1 ∪· · · · ∪· Sr . Thus, G acts transitively on each S j , and therefore S j ∼= G/Hj for some closed subgroup Hj of
G, 0 � j � r . There exists a unique quasi-invariant measure on each of these orbits modulo mutual absolute
equivalence. We choose and fix one such quasi-invariant measure on S j , say, μ j .

Lemma 4.8 Let μ be a Borel measure on S that is quasi-invariant with respect to the G- action on S. Then
μ ∼= ∑r

j=0 μ j .

Proof The proof follows from the uniqueness of the quasi-invariant measure μ j on S j , 0 � j � r .
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Theorem 4.9 Let N be a homogeneous d- tuple of commuting normal operators acting on some Hilbert space
H and let S := σ(N) be the spectrum of N . Assume that S is a G- space and that S = ∪· rj=0S j , where each S j

is a G- orbit. Then the imprimitivity (S,U, ρN ) induced by N is equivalent to the imprimitivity (S, πμ, Û ), i.e.,
there is a unitary

� : H → ⊕L2(En, μ,Hn)

such that �ρ( f )�∗ = πμ( f ), f ∈ C(S) and �U�∗ = Û is a multiplier representation.

Proof Applying the Hahn–Hellinger theorem to the ∗- representation ρ of C(S), we find a disjoint sequence
En , n � 1, of Borel subsets of S such that (i) S = ⋃· ∞

n=1 En , (ii) H ∼= ⊕L2(En, μ,Hn), and (iii) ρ( f ) ∼=
⊕n�1π

(n)( f ), f ∈ C(S), where π(n) = πn
μ|En is the canonical ∗- representation of C(S).

Since ρ and g · ρ are unitarily equivalent, it follows from the uniqueness assertion in the Hahn–Hellinger
theorem that μ ∼= μ ◦ g−1 and μ(En�g · En) = 0, g ∈ G. Since μ is quasi-invariant it lives on a union of G-
orbits, namely, S0 ∪ S1 ∪ · · · ∪ Sr .

Let n̂ be the multiplicity function defined on S, i.e., n̂ : S → N, n̂|En = n. By the Hahn–Hellinger theorem,
n̂ ◦ g = n̂ for all g ∈ G. It follows that n̂ is a constant function on each orbit of G. Consequently, S j ⊆ En j for
some n j . Let S j = ∪· {Sk : Sk ⊆ En j }. Hence S = ∪{S j : j ∈ F ⊆ {0, 1, . . . , r}}. We also see by the uniqueness
portion of the Hahn–Hellinger theorem, that μn j (En j �S j ) = 0. Thus, μ|S j = μ j1 + · · · + μ jk , where μ jk is
the quasi-invariant measure that lives on S jk with S jk ⊆ En j . It follows that modulo unitary equivalence via an
unitary � : H → ⊕∞

n=1L
2(En, μ,Hn) we have

H ∼=
⊕

j∈F

L2(En j ∩ S j , μ|S j ,Hn j ) =
r⊕

j=0

L2(S j , μ|S j ,Hn j ).

Let ρ̂ = �ρ�∗ and Û = �U�∗ and note that the pair (ρ̂, Û ) satisfy the imprimitivity condition. For each
j = 0, 1, . . . , r , define the unitary representation V j

g on L2(S j , μ j ,Hn j ) by setting

V j
g ψ(x) = ( d(μ j◦g−1)

dμ j
(x)

)1/2(
ψ ◦ g−1)(x), x ∈ S j , ψ ∈ L2(S j , μ j ,Hn j ).

Let Vg = ⊕r
j=0V

j
g . By construction, (S, ρ̂, Vg) is an imprimitivity. Hence

Û∗
g ρ̂Ûg = ρ̂(g · f ) = V ∗

g ρ̂Vg, g ∈ G.

Hence the unitary operators ÛgV ∗
g , g ∈ G, commute with the set of normal operators {ρ̂( f ) : f ∈ C(S)}.

It follows that the reducing subspaces L2(S j , μ j ,Hn j ) of the operators ρ̂( f ) ( f ∈ C(S)) are also invariant

under the unitary operators ÛgV ∗
g (g ∈ G). Consequently, these reducing subspaces are also invariant under Ûg .

Therefore, Ûg has the form ⊕r
j=0Û

j
g , where Û

j
g is the restriction of Ûg to the subspace L2(S j , μ j ,Hn j ).

Recall that ÛgV ∗
g must be a multiplication by a Borel function cg(·) defined on S taking values in the

unitary operators acting on ⊕r
j=0Hn j . Furthermore, since L2(S j , μ j ,Hn j ) are reducing subspaces for ÛgV ∗

g ,

we conclude that cg = ⊕r
j=0c

j
g . Hence Û

j
g V j ∗

g = ⊕r
j=0c

j
g . The representation V j

g is a multiplier representation

by construction with multiplier
( d(g·μ j )

dμ j

)1/2, we have that

Û j
g f (x) = c jg(x)(Vg f )(x)

= ( d(μ j◦g−1)

dμ j
(x)

)1/2
c jg(x)(g · f )(x),

for all x ∈ S j and f ∈ L2(S j , μ j ,Hn j ). Since Û
j
g is a homomorphism, it follows that (

d(μ j◦g−1)

dμ
)1/2c jg is a

cocycle. Moreover,
( d(g·μ j )

dμ j

)1/2 is evidently a cocycle and therefore c jg is a cocyle taking values in the group of
unitary operators acting on Hn j .
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We can assert more than what is claimed in the theorem. This is the corollary below, and its proof is apparent
from the proof of the theorem.

Corollary 4.10 Let N be a homogeneous d- tuple of commuting normal operators acting on some Hilbert space
H and let S := σ(N) be the spectrum of N . Assume that S = ∪· rj=0S j , where each S j is a G- orbit and is
not necessarily compact. Then there exist quasi-invariant measures μ j living on S j such that N is unitarily
equivalent to the direct sum of M( j) of the multiplication by the coordinate functions acting on the Hilbert space
L2(S j , μ j ,Hn j ), dim(Hn j ) = n j , 0 � j � r .

We point out that Hn j may be isomorphic toHnk even if j �= k.

Remark 4.11 Let N be a homogeneous d- tuple. Theorem 4.9 ensures that we may take, modulo unitary
equivalence and without loss of generality, the unitary representation U intertwining the commuting d- tuple
(N1, . . . , Nd) with (g1(N), . . . , gd(N)) to be a multiplier representation.

Conversely, assume that the d- tuple N of normal operators is realized as multiplication Mk , k = 1, . . . , d,
by coordinate functions zk on some L2(S, μ, V ). If there is a multiplier representation U on L2(S, μ, V ) of the
form f �→ c(g, z) f (g · z), then

(
MkU (g) f

)
(z) = Mkc(g, z) f (g · z)

= gk(g · z)c(g, z) f (g · z)
= (

U (g)Mgk f
)
(z), 1 � k � d.

Thus, U intertwines the commuting d- tuple N with g · N . Hence N is homogeneous.

5 Examples

The Möbius group acts transitively on the open unit disc D and the unit circle T. However although the Möbius
group acts on the closed disc D, this action is no longer transitive. Indeed, D is the disjoint union of two orbits,
namely, D and T. When the action is transitive, the canonical form of the imprimitivity is described by Mackey.
Hence if N is a homogeneous normal operator with σ(N ) = T, then it must be a n- fold direct sum of the
operator of multiplication by α, α ∈ T on L2(T, dθ), where dθ is the arc length measure. However, it is not
obvious what are the homogeneous normal operators N with σ(N ) = D. These are described explicitly in a
forthcoming paper of the first named author with A. Korányi, see also [3, Theorem 6.6].

5.1 The case of a product domain

In this subsection, we describe commuting pairs N of homogeneous normal operators with σ(N) = D × D. The
subset D

2 := D × D of C
2 is a G- space, where G is the subgroup

{φ := (φ1, φ2) | φk(zk) = βk
zk−αk
1−αk zk

, βk ∈ T, αk ∈ D, k = 1, 2}
of the group of bi-holomorphic automorphisms of D × D. The automorphism φ extends to an automorphism
of D × D with φ(∂D

2) ⊆ ∂D
2. To identify homogeneous (under the G- action) pairs of commuting normal

operators, we first note that the spectrum of such a pair must be a G- invariant compact subset of C
2. To find

these, note that the orbit through a point (z1, z2) ∈ T × D is T × D; similarly D × T is also a G- orbit. If
(z1, z2) ∈ T × T, the G- orbit is T × T. These are all the G- orbits in the boundary of D × D. Closures of these
orbits give us compact sets that are G- invariant. Moreover, if (z1, z2) is in D

2, then the G- orbit through this
point is D

2. Thus, all the compact G- invariant subsets of C
2 are

D × D, T × D, D × T, T × T.

Among these, the group G acts transitively only on T × T. Consequently, imprimitivities based on T × T,
or equivalently, associated pairs N of homogeneous normal operators, are described by Mackey’s theorem. The
remaining three cases can be dealt with using Corollary 4.10; however, we provide an elementary analysis below.

If we consider a commuting pair of homogeneous normal operators N with σN = D × D, then it must be
unitarily equivalent to the pair of multiplication operators M = (M1, M2) acting on L2(D×D, μ,Hn), where μ
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is quasi-invariant with respect to the group G and dimHn = n. The restriction of the measure μ to the transitive
G- space D × D, D × T, T × D and T × T is uniquely determined since the group acts on these transitively.
These are the measures: μ1 := d A × d A, μ2 := d A × dθ , μ3 := dθ × d A and μ4 := dθ × dθ , respectively.
(Here, d A and dθ denote the area and the arc length measures, respectively.) Evidently, μ = μ1 +μ2 +μ3 +μ4.
Moreover, μ j , 1 � j � 4, are mutually singular. Consequently, L2(D × D, μ,Hn) must be a direct sum of the
form

L2(D × D, μ1,Hn1) ⊕ L2(D × T, μ2,Hn2) ⊕ L2(T × D, μ3,Hn3) ⊕ L2(T × T, μ4,Hn4),

where n = n1 + n2 + n3 + n4. These are reducing subspaces of the homogeneous pair of operators (M1, M2)

acting on L2(D × D, μ,Hn). We have therefore proved that any pair N of homogeneous normal operators with
σ(N) = D × D must be unitarily equivalent to the direct sum of the pair (M1, M2) of multiplication operators
acting on the Hilbert space

⊕4
j=1 L

2(X j , μ j , n j ), where X1 = D×D, X2 = D×T, X3 = T×D, X4 = T×T.

The two cases where the spectrum of N is either T × D or D × T are described exactly in the same manner.

5.2 Cartan domains

LetD ⊂ C
d be an irreducible bounded symmetric domain (in its standard realization as a Cartan domain) and G

be the connected component containing the identity of the bi-holomorphic automorphism group of D. We note
that the G- action on D extends to some open neighborhood of D ∪· ∂D. The G- action is transitive on D. It is
known that, under the G action, the topological boundary ∂D splits into the disjoint union

S0 ∪· S1 ∪· · · · ∪· Sr−1,

of G- orbits so that S j = S0 ∪· S1 ∪· · · · ∪· S j , 0 � j � r − 1. Here, S0 is the Shilov boundary and is necessarily
compact.

The only possibilities for the spectrum of a d- tuple of commuting homogeneous normal operators are
compact G- invariant subsets of C

d . These are the sets: D and S j , 0 � j � r − 1. Fixing the spectrum of a
d- tuple of commuting homogeneous normal operators to be one of these sets, we see that the hypotheses of
Corollary 4.10 are met. Therefore, we have a complete description of the commuting d- tuples of homogeneous
normal operators, or equivalently, all the imprimitivities based on the G- spaces S j , 0 � j � r − 1 and D.

6 Open problems

Let S be a bounded open connected subset of C
d . Following the well-established tradition in Operator theory,

we propose to study homomorphisms of the “disc” algebra A(S) ⊂ C(S), where A(S) consists of all those
complex-valued functions f such that there is an open set U containing S and f is holomorphic on U . Now,
pick any algebra homomorphism � : A(S) → L(H) and a unitary representation of a locally compact second
countable group G on H, and say that (S, �,U ) is a “holomorphic imprimitivity" if

U (g)∗�( f )U (g) = �(g · f ), g ∈ G, f ∈ A(S).

A homomorphism � as above clearly defines a d- tuple of commuting bounded linear operators (T1 :=
�(z1), . . . , Td := �(zd)) that is homogeneous, namely,

U (g)∗(T1, . . . , Td)U (g) = (g1(T1), . . . , gd(Td)), g ∈ G.

Here we must assume that the joint spectrum (we take it to be the one defined in the sense of Taylor) of T is
contained in S.

Conversely, starting with a d- tuple T of homogeneous commuting bounded linear operators with σ(T ) ⊆ S,
a homomorphism � is defined by setting �T ( f ) = f (T ) via the holomorphic functional calculus.

A detailed study of the class of algebra homomorphisms � : A(S) → L(H) that are restrictions of ∗-
homomorphisms ρ̂ : B(S) → L(K), where K ⊃ H and ρ̂( f )(H) ⊆ H has been very fruitful. In this case the
commuting d- tuple of operators (T1, . . . , Td) is called subnormal.

When S is only locally compact, as pointed out earlier, the ∗- representation ρ̂ extends to a ∗- representation of
the algebra B(S) of bounded Borel functions on S andA(S) ⊂ B(S). Thus, we can speak of ρ̂( f ) for f ∈ A(S).
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The first question in the context of this paper is the following. Suppose that (S, �,U ) is a holomorphic
imprimitivity based on H, and there exists a ∗- homomorphism ρ̂ : C0(S) → L(K), K ⊃ H, such that (a) H is
invariant for ρ̂( f ), f ∈ A(S), and (b) ρ̂|H( f ) = ρ( f ), f ∈ A(S). Then does it follow that there is a unitary
representation Û of G on K such that (S, ρ̂, Û ) is an imprimitivity?

Let (S, ρ̂,U ) be an imprimitivity. The second question asks for a description of all the simultaneous invariant
subspaces of ρ̂ and Û .

The first question has an affirmative answer when S is either D or T. This is in a forthcoming paper of the
first named author jointly with A. Kóranyi. In the same paper, although there are some partial results describing
the simultaneous invariant subspaces in the case of D and T, the answer to the question of simultaneous invariant
subspaces is far from complete even in this very simple case.

When the answer to the second question is affirmative, restricting to the simultaneous invariant subspace
we obtain homogeneous subnormal operators. If the answer to the first question is also affirmative, which is
very likely, and if we have a description of all the simultaneous invariant subspaces, then all the homogeneous
subnormal operators would be the restriction of homogeneous normal operators (or imprimitivities) to these
subspaces.
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