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Abstract. In this paper we obtain an extension of one of the main results in
[5] relating the fundamental class of the zero set defining a quotient Hilbert
module Mq, the curvatures of the two modules M, M0 and the map X in a
topologically exact sequence

0 −→M0
X−→M −→ Q −→ 0.

Let Ω be a bounded open connected set in Cm. Let A(Ω) denote the closure of
the algebra of holomorphic functions in some neighborhood of Ω̄ with respect to the
supremum norm. Let M be a Hilbert module, consisting of holomorphic functions
on Ω over the function algebra A(Ω). In an earlier paper [5], we considered the
problem of finding invariants for Q using the resolution

0 −→M0
X−→M −→ Q −→ 0, (1)

where X : M0 →M is the inclusion map and M0 is the submodule of all functions
vanishing on a hypersurface Z ⊆ Ω. In this paper we reconsider this problem
extending our earlier results.

Let Cw be the one dimensional module over A(Ω), where the module map is
given by evaluation at w ∈ Ω, that is, (f, λ) → f(w)λ, f ∈ A(Ω), λ ∈ Cw. Let

X ⊗A(Ω) 1 : M⊗A(Ω) Cw
→ N ⊗A(Ω) Cw

be the map obtained by localising a module map X : M → N between any two
Hilbert modules M and N over a function algebra A(Ω) (cf. [6, p. 114 - 115]). We
let X(w) denote the map X ⊗A(Ω) 1. Finally, let

KX(w) def=
m∑

i,j=1

∂2

∂wi∂w̄j
log ‖X(w)‖2dwi ∧ dw̄j . (2)

Note that ‖X(w)‖2 vanishes on Z and that the right hand side in the above defi-
nition is thought of as a (1,1) form with distributional co-efficients.

Let K and K0 be the curvatures associated with the modules M and the sub-
module M0 of functions vanishing on the hypersurface Z respectively. In the paper
[5], we proved that if Ω is a bounded domain in Cm for which the second Cousin
problem is solvable, X : M→M0 is the inclusion map, then

KX(w)−K0(w) +K(w)

represents the fundamental class [Z] of the hypersurface Z.
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In this note, we show that this alternating sum represents the fundamental class
[Z] not just for the inclusion map but for any injective map X : M̃ → M which
has dense range in M0 ⊆M.

We begin by describing the exact hypothesis on the domain Ω and the module
M. Let Z be an irreducible analytic hypersurface in Ω (complex submanifold of
dimension m − 1) in the sense of [8, Definition 8, p. 17]. We assume that the
second Cousin problem is solvable on the domain Ω. Consequently, as pointed out
in the remark preceding Corollary 3 in [8, p. 34], there exists a global defining
function ϕ for the hypersurface Z. We also assume that Ω is polynomially convex.
Then the algebra A(Ω) equals the uniform limits of polynomials with respect to
the supremum norm on Ω. We assume that M is a complex separable Hilbert
space of holomorphic functions on Ω and that the evaluation functionals on M
are bounded. Consequently, recall from [1] that M admits a reproducing kernel
K. The reproducing kernel K : Ω × Ω → C is holomorphic in the first variable
and anti-holomorphic in the second variable. Further, K(·, w) ∈ M for each fixed
w ∈ Ω and K(z, w) = K(w, z). Finally, K has the reproducing property

〈h,K(·, w)〉 = h(w) for w ∈ Ω, h ∈M.

Since K(w, w) =
〈
K(·, w),K(·, w)

〉
, it follows that K(w,w) 6= 0 for w ∈ Ω when-

ever K(·, w) is a nonzero vector in M. Assume that M is a bounded module over
A(Ω), in particular, the tuple M∗ def= (M∗

1 , . . . , M∗
m) is bounded. Here Mk denotes

the multiplication operator on M defined by (Mkh)(w) = wkh(w) for h ∈ M and
w ∈ Ω. Finally, we assume that the tuple M∗ is in the class B1(Ω) introduced in
[2] and [3]. As shown in [3], in this case, the curvature of the module M

KM(w) =
m∑

i,j=1

∂2

∂wi∂w̄j
log K(w, w)dwi ∧ dw̄j

is a complete unitary invariant.

Lemma 1. Let M and N be two modules satisfying the hypotheses stated in the
preceding paragraph. Let L : M→N be a module map with dense range. Then

KL(w) = KN (w)−KM(w).

Proof. Assuming that the tuple M∗ is in B1(Ω) ensures on the one hand, the
existence of eigenvectors

{γ(w) : M∗
f γ(w) = f(w)γ(w), γ(w) ∈M, w ∈ Ω}

which span M, and on the other hand, it also ensures that M⊗A(Ω) Cw is the one
dimensional module spanned by γ(w). Similarly, N ⊗A(Ω) Cw is spanned by the
eigenvector γ̃(w). Furthermore, γ, γ̃ : Ω →Mk⊗A(Ω)Cw may be chosen to be anti-
holomorphic. Indeed if the Hilbert module M consists of holomorphic functions
on Ω such that all of them do not vanish at any point in Ω, then γ(w) may be
taken to be the reproducing kernel at w ∈ Ω, that is, γ(w) = K(·, w). In this case,
K(·, w) 6= 0 for each w ∈ Ω. Hence ‖γ(w)‖2 = K(w, w) 6= 0. If all the functions
vanish on a common zero set Z ⊆ Ω, then it can be shown (cf. [5, p. 91]) that the
reproducing kernel factors as K(z, w) = ϕ(z)χ(z, w)ϕ(w), where χ(w,w) does not
vanish for any w ∈ Ω and ϕ is holomorphic. In this case, we may use χ(w, w) for
calculating the curvature KM. Consequently, without loss of generality, we shall
assume that all reproducing kernels are nonvanishing.
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Of course, similar considerations applies to the module N as well.
The fact that L is a module map implies L⊗A(Ω)1(M⊗A(Ω) Cw) ⊆ N ⊗A(Ω) Cw.

However this map cannot be zero since the range of L is dense. Hence L ⊗A(Ω)

1γ(w) = a(w)γ̃(w), where a(w) is a non-vanishing anti-holomorphic function.
Therefore

‖L⊗A(Ω) 1‖ = ‖γ̃(w)‖|a(w)|/‖γ(w)‖.
Taking logarithm on both sides and differentiating verifies the claim.

Let N , Nk, k = 1, 2 be Hilbert modules. We say that

N1
X1−→ N X2−→ N2

is topologically exact at N if the clos(ran X1) = kerX2. This differs from the usual
notion of exactness in that the range of the module map X1 is not assumed to be
closed.

Let M, M̃ and N , Ñ , be modules over the function algebra A(Ω) satisfying the
hypotheses stated in the paragraph preceding Lemma 1. Suppose that L : M→N
is a bijective module map. In other words, the two Hilbert spaces M and N are
isomorphic. In this case, it is easy to see that both M and N consist of the same
set of functions on Ω. To see this, first note that for each w ∈ Ω, we must have
LKM(·, w) = c(w)KN (·, w), for some scalar c(w) ∈ C. The fact that L is a bounded
invertible transform is equivalent to saying that there are positive constants a, b such
that

aKM(z, w) ≤ c(z)c(w)KN (z, w) ≤ bKM(z, w).
As usual, these are to be interpreted as ineqaulities involving the positive matrices
KM(wj , wi), 1 ≤ i, j ≤ n (respectively, KN (wj , wi), 1 ≤ i, j ≤ n) for all finite sub-
sets {w1, . . . wn} ⊆ Ω. From these inequalities, it also follows that a′ ≤ |c(z)| ≤ b′

for all z ∈ Ω and some positive constants a′, b′. This implies, in view of [1, Corollary
IV3, page 383], that the module M coincides with the module whose reproducing
kernel is given by the positive definite kernel c(z)c(w)KN (z, w). Clearly, this latter
module coincides with N .

Theorem 1. Let L : M→ N be a bijective module map with L(ran X) ⊆ ran Y .
Assume that the diagram

0 −→ M̃ X−→ M p−→ Q −→ 0
↓ ↓ L ‖

0 −→ Ñ Y−→ N q−→ Q −→ 0

is topologically exact, the range of the module map Y is closed and that L(ker p) =
ker q. Then we have

KX(w)−KM̃(w) +KM(w) = KY (w)−KÑ (w) +KN (w).

Proof. Notice that the assumption of topological exactness at M together with the
fact that ran Y is closed implies

ran Y = ker q = L(ker p) = L(clos(ran X)).

Furthermore, from the exactness at Q, it follows that Q may be identified with
the quotient module N/ran Y = L(M)/L(ran X). Define a map Z : M̃ → Ñ by
setting

Zh = Y −1LX(h), h ∈ M̃.
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This definition of the map Z makes the square on the left of our diagram commuta-
tive. Clearly, the map Z is a module map which has dense range in Ñ . Tensoring
the entire diagram given in the statement of the theorem with the module Cw,
w ∈ Ω, we obtain a new diagram of one dimensional Hilbert modules in which the
map

Z ⊗A(Ω) 1 : M̃ ⊗A(Ω) Cw → Ñ ⊗A(Ω) Cw

is surjective. Also, the square of Hilbert modules remains commutative even after
the localisation, that is,

Z ⊗A(Ω) 1 = (Y ⊗A(Ω) 1)−1(L⊗A(Ω) 1)(X ⊗A(Ω) 1).

However, since all these operators act on one dimensional Hilbert spaces, it follows
that ‖Z⊗A(Ω)1‖ = ‖X⊗A(Ω)1‖‖(Y ⊗A(Ω)1)‖−1‖L⊗A(Ω)1)‖. Hence in the notation
of (2), we have

KZ(w) = KX(w)−KY (w) +KL(w). (3)

Lemma 1 shows that KZ(w) = KÑ (w) − KM̃(w). Similarly, KL(w) = KN (w) −
KM(w). Going back to the equation (3), we arrive at the desired conclusion when
we substitute the values for KZ(w) and KL(w).

Recall that M0 is the sub-module of functions in M which vanish on the hy-
persurface Z. Let Q be the quotient M/M0. Let 0 → M̃ X→ M → Q → 0 be
a topologically exact resolution. Then the range of X must be dense in M0 and
conversely. If Y : Ñ → N is any injective module map such that the range of Y
coincides with L( clos( ran X)) then we can apply the theorem. Specialise to the
case, where Ñ = M0, N = M and Y : M0 →M is the inclusion map. Note that
in this case, the alternating sum

KY (w)−KÑ (w) +KN (w) =
m∑

i,j=1

∂2

∂wi∂w̄j
log |ϕ(w)|2dwi ∧ dw̄j (4)

represents the fundamental class of the hypersurface Z [5, Theorem 1.4]. Having
established the equation (4) for a module map with closed range, we can apply the
theorem to arrive at the same conclusion for the alternating sum

KX(w)−KM̃(w) +KM(w)

for an injective module map X : M̃ → M which has dense but not necessarily
closed range in M0 ⊆M. We have therefore proved

Corollary 1. Let 0 −→ M̃ X−→M −→ Q −→ 0 be a short topologically exact se-
quence of Hilbert modules. Suppose that ran X is dense in M0. Then the alternat-
ing sum

KX(w)−KM̃(w) +KM(w)
represents the fundamental class of the hypersurface Z.

One way to view this result is that it provides an invariant for any topologically
exact resolution of quotient modules of the form M/M0. Such resolutions give an
analogue of the Sz.-Nagy–Foias model for contraction operators to the multivariate
case (cf. the Introduction in [5]).

We now give some examples of maps X : M̃ →M which satisfy the hypothesis
of the Corollary. Let Ω1 × Ω2 ⊆ C be a product domain containing (0, 0). Let M
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be a module over the function algebra A(Ω1 × Ω2). Assume that the reproducing
kernel K of the module is of the form

K(z, w) = K1(z1, w1)K2(z2, w2), zi, wi ∈ Ωi, i = 1, 2

and that K1, K2 possess diagonal expansion about the origin, that is,

Ki(zi, wi) =
∞∑

n=0

an(i)zn
i w̄n

i , i = 1, 2.

As shown in [5, Proposition 2.4], the reprducing kernel for the submodule M0 of
functions vanishing on the set {(0, z2) ∈ Ω1 × Ω2} is of the form

K0(z, w) = z1w̄1

( ∞∑
n=1

an(1)zn−1
1 w̄n−1

1

)
K2(z2, w2).

Consequently, M0 = {z1f : f ∈M}. If X : M→M is the multiplication operator
defined by (Xf)(z1, z2) = z1f(z1, z2) then we see that the range of this operator
coincides with M0.

We point out that similar considerations as in the paragraph preceding the Corol-
lary apply to the commutative square on the right of the diagram in our theorem.
This yields the relation

KM(w)−KQ(w) +Kp(w) = KN (w)−KQ(w) +Kq(w) (5)

for w ∈ Z. This relationship is obtained by restricting p to M/(ran X) and then
writing the identity map on Q as qLp−1. In particular, if we take p : M → Q to
be the quotient map, it is easy to verify that

p⊗A(Ω) 1 : M/(ran X)⊗A(Ω) Cw → Q⊗A(Ω) Cw

is the constant map identically equal to 1. Now if we further assume that X(M̃)
is dense in M0, then Q equals the quotient M⊥

0 . It was shown, in this case, in
[5] that KQ(w) = KM(w) for w ∈ Z. Therefore we obtain the equality KM(w) −
KQ(w)+Kp(w) = 0 for w ∈ Ω. Hence in view of equation (5), this alternating sum
is seen to be 0 even if p is not necessarily the quotient map.
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