ON QUOTIENT MODULES

RONALD G. DOUGLAS AND GADADHAR MISRA

ABSTRACT. In this paper we obtain an extension of one of the main results in [5] relating the fundamental class of the zero set defining a quotient Hilbert module \mathcal{M}_q , the curvatures of the two modules \mathcal{M} , \mathcal{M}_0 and the map X in a topologically exact sequence

$$0 \longrightarrow \mathcal{M}_0 \xrightarrow{X} \mathcal{M} \longrightarrow \mathcal{Q} \longrightarrow 0$$

Let Ω be a bounded open connected set in \mathbb{C}^m . Let $\mathcal{A}(\Omega)$ denote the closure of the algebra of holomorphic functions in some neighborhood of $\overline{\Omega}$ with respect to the supremum norm. Let \mathcal{M} be a Hilbert module, consisting of holomorphic functions on Ω over the function algebra $\mathcal{A}(\Omega)$. In an earlier paper [5], we considered the problem of finding invariants for \mathcal{Q} using the resolution

$$0 \longrightarrow \mathcal{M}_0 \xrightarrow{X} \mathcal{M} \longrightarrow \mathcal{Q} \longrightarrow 0, \tag{1}$$

where $X : \mathcal{M}_0 \to \mathcal{M}$ is the inclusion map and \mathcal{M}_0 is the submodule of all functions vanishing on a hypersurface $\mathcal{Z} \subseteq \Omega$. In this paper we reconsider this problem extending our earlier results.

Let \mathbb{C}_w be the one dimensional module over $\mathcal{A}(\Omega)$, where the module map is given by evaluation at $w \in \Omega$, that is, $(f, \lambda) \to f(w)\lambda$, $f \in \mathcal{A}(\Omega)$, $\lambda \in \mathbb{C}_w$. Let

$$X \otimes_{\mathcal{A}(\Omega)} 1 : \mathcal{M} \otimes_{\mathcal{A}(\Omega)} \mathbb{C}_w \to \mathcal{N} \otimes_{\mathcal{A}(\Omega)} \mathbb{C}_w$$

be the map obtained by localising a module map $X : \mathcal{M} \to \mathcal{N}$ between any two Hilbert modules \mathcal{M} and \mathcal{N} over a function algebra $\mathcal{A}(\Omega)$ (cf. [6, p. 114 - 115]). We let X(w) denote the map $X \otimes_{\mathcal{A}(\Omega)} 1$. Finally, let

$$\mathcal{K}_X(w) \stackrel{\text{def}}{=} \sum_{i,j=1}^m \frac{\partial^2}{\partial w_i \partial \bar{w}_j} \log \|X(w)\|^2 dw_i \wedge d\bar{w}_j.$$
(2)

Note that $||X(w)||^2$ vanishes on \mathcal{Z} and that the right hand side in the above definition is thought of as a (1,1) form with distributional co-efficients.

Let \mathcal{K} and \mathcal{K}_0 be the curvatures associated with the modules \mathcal{M} and the submodule \mathcal{M}_0 of functions vanishing on the hypersurface \mathcal{Z} respectively. In the paper [5], we proved that if Ω is a bounded domain in \mathbb{C}^m for which the second Cousin problem is solvable, $X : \mathcal{M} \to \mathcal{M}_0$ is the inclusion map, then

$$\mathcal{K}_X(w) - \mathcal{K}_0(w) + \mathcal{K}(w)$$

represents the fundamental class $[\mathcal{Z}]$ of the hypersurface \mathcal{Z} .

The research of the second author was partly carried out during a visit to Texas A&M University in August, 1999. He was also supported by a grant from the National Board for Higher Mathematics, India.

AMS Subject Classification. 47B38, 53C07, 58A25.

In this note, we show that this alternating sum represents the fundamental class $[\mathcal{Z}]$ not just for the inclusion map but for any injective map $X : \tilde{\mathcal{M}} \to \mathcal{M}$ which has dense range in $\mathcal{M}_0 \subseteq \mathcal{M}$.

We begin by describing the exact hypothesis on the domain Ω and the module \mathcal{M} . Let \mathcal{Z} be an irreducible analytic hypersurface in Ω (complex submanifold of dimension m-1) in the sense of [8, Definition 8, p. 17]. We assume that the second Cousin problem is solvable on the domain Ω . Consequently, as pointed out in the remark preceding Corollary 3 in [8, p. 34], there exists a global defining function φ for the hypersurface \mathcal{Z} . We also assume that Ω is polynomially convex. Then the algebra $\mathcal{A}(\Omega)$ equals the uniform limits of polynomials with respect to the supremum norm on Ω . We assume that \mathcal{M} is a complex separable Hilbert space of holomorphic functions on Ω and that the evaluation functionals on \mathcal{M} are bounded. Consequently, recall from [1] that \mathcal{M} admits a reproducing kernel K. The reproducing kernel $K : \Omega \times \Omega \to \mathbb{C}$ is holomorphic in the first variable and anti-holomorphic in the second variable. Further, $K(\cdot, w) \in \mathcal{M}$ for each fixed $w \in \Omega$ and $K(z, w) = \overline{K(w, z)}$. Finally, K has the reproducing property

$$\langle h, K(\cdot, w) \rangle = h(w) \text{ for } w \in \Omega, \ h \in \mathcal{M}.$$

Since $K(w,w) = \langle K(\cdot,w), K(\cdot,w) \rangle$, it follows that $K(w,w) \neq 0$ for $w \in \Omega$ whenever $K(\cdot,w)$ is a nonzero vector in \mathcal{M} . Assume that \mathcal{M} is a bounded module over $\mathcal{A}(\Omega)$, in particular, the tuple $\mathbf{M}^* \stackrel{\text{def}}{=} (M_1^*, \ldots, M_m^*)$ is bounded. Here M_k denotes the multiplication operator on \mathcal{M} defined by $(M_k h)(w) = w_k h(w)$ for $h \in \mathcal{M}$ and $w \in \Omega$. Finally, we assume that the tuple \mathbf{M}^* is in the class $B_1(\Omega)$ introduced in [2] and [3]. As shown in [3], in this case, the curvature of the module \mathcal{M}

$$\mathcal{K}_{\mathcal{M}}(w) = \sum_{i,j=1}^{m} \frac{\partial^2}{\partial w_i \partial \bar{w}_j} \log K(w, w) dw_i \wedge d\bar{w}_j$$

is a complete unitary invariant.

LEMMA 1. Let \mathcal{M} and \mathcal{N} be two modules satisfying the hypotheses stated in the preceding paragraph. Let $L: \mathcal{M} \to \mathcal{N}$ be a module map with dense range. Then

$$\mathcal{K}_L(w) = \mathcal{K}_\mathcal{N}(w) - \mathcal{K}_\mathcal{M}(w).$$

Proof. Assuming that the tuple M^* is in $B_1(\Omega)$ ensures on the one hand, the existence of eigenvectors

$$\{\gamma(w): M_f^*\gamma(w) = f(w)\gamma(w), \ \gamma(w) \in \mathcal{M}, \ w \in \Omega\}$$

which span \mathcal{M} , and on the other hand, it also ensures that $\mathcal{M} \otimes_{\mathcal{A}(\Omega)} \mathbb{C}_w$ is the one dimensional module spanned by $\gamma(w)$. Similarly, $\mathcal{N} \otimes_{\mathcal{A}(\Omega)} \mathbb{C}_w$ is spanned by the eigenvector $\tilde{\gamma}(w)$. Furthermore, $\gamma, \tilde{\gamma} : \Omega \to \mathcal{M}_k \otimes_{\mathcal{A}(\Omega)} \mathbb{C}_w$ may be chosen to be antiholomorphic. Indeed if the Hilbert module \mathcal{M} consists of holomorphic functions on Ω such that all of them do not vanish at any point in Ω , then $\gamma(w)$ may be taken to be the reproducing kernel at $w \in \Omega$, that is, $\gamma(w) = K(\cdot, w)$. In this case, $K(\cdot, w) \neq 0$ for each $w \in \Omega$. Hence $\|\gamma(w)\|^2 = K(w, w) \neq 0$. If all the functions vanish on a common zero set $Z \subseteq \Omega$, then it can be shown (cf. [5, p. 91]) that the reproducing kernel factors as $K(z, w) = \varphi(z)\chi(z, w)\overline{\varphi(w)}$, where $\chi(w, w)$ does not vanish for any $w \in \Omega$ and φ is holomorphic. In this case, we may use $\chi(w, w)$ for calculating the curvature $\mathcal{K}_{\mathcal{M}}$. Consequently, without loss of generality, we shall assume that all reproducing kernels are nonvanishing. Of course, similar considerations applies to the module \mathcal{N} as well.

The fact that L is a module map implies $L \otimes_{\mathcal{A}(\Omega)} 1(\mathcal{M} \otimes_{\mathcal{A}(\Omega)} \mathbb{C}_w) \subseteq \mathcal{N} \otimes_{\mathcal{A}(\Omega)} \mathbb{C}_w$. However this map cannot be zero since the range of L is dense. Hence $L \otimes_{\mathcal{A}(\Omega)} 1\gamma(w) = a(w)\tilde{\gamma}(w)$, where a(w) is a non-vanishing anti-holomorphic function. Therefore

$$||L \otimes_{\mathcal{A}(\Omega)} 1|| = ||\tilde{\gamma}(w)|| |a(w)| / ||\gamma(w)||.$$

Taking logarithm on both sides and differentiating verifies the claim.

Let $\mathcal{N}, \mathcal{N}_k, k = 1, 2$ be Hilbert modules. We say that

$$\mathcal{N}_1 \xrightarrow{X_1} \mathcal{N} \xrightarrow{X_2} \mathcal{N}_2$$

is topologically exact at \mathcal{N} if the clos(ran X_1) = ker X_2 . This differs from the usual notion of exactness in that the range of the module map X_1 is not assumed to be closed.

Let \mathcal{M} , $\tilde{\mathcal{M}}$ and \mathcal{N} , $\tilde{\mathcal{N}}$, be modules over the function algebra $\mathcal{A}(\Omega)$ satisfying the hypotheses stated in the paragraph preceding Lemma 1. Suppose that $L: \mathcal{M} \to \mathcal{N}$ is a bijective module map. In other words, the two Hilbert spaces \mathcal{M} and \mathcal{N} are isomorphic. In this case, it is easy to see that both \mathcal{M} and \mathcal{N} consist of the same set of functions on Ω . To see this, first note that for each $w \in \Omega$, we must have $LK_{\mathcal{M}}(\cdot, w) = c(w)K_{\mathcal{N}}(\cdot, w)$, for some scalar $c(w) \in \mathbb{C}$. The fact that L is a bounded invertible transform is equivalent to saying that there are positive constants a, b such that

$$aK_{\mathcal{M}}(z,w) \le c(z)\overline{c(w)}K_{\mathcal{N}}(z,w) \le bK_{\mathcal{M}}(z,w).$$

As usual, these are to be interpreted as inequalities involving the positive matrices $K_{\mathcal{M}}(w_j, w_i), 1 \leq i, j \leq n$ (respectively, $K_{\mathcal{N}}(w_j, w_i), 1 \leq i, j \leq n$) for all finite subsets $\{w_1, \ldots, w_n\} \subseteq \Omega$. From these inequalities, it also follows that $a' \leq |c(z)| \leq b'$ for all $z \in \Omega$ and some positive constants a', b'. This implies, in view of [1, Corollary IV_3 , page 383], that the module \mathcal{M} coincides with the module whose reproducing kernel is given by the positive definite kernel $c(z)\overline{c(w)}K_{\mathcal{N}}(z,w)$. Clearly, this latter module coincides with \mathcal{N} .

THEOREM 1. Let $L : \mathcal{M} \to \mathcal{N}$ be a bijective module map with $L(\operatorname{ran} X) \subseteq \operatorname{ran} Y$. Assume that the diagram

is topologically exact, the range of the module map Y is closed and that $L(\ker p) = \ker q$. Then we have

$$\mathcal{K}_X(w) - \mathcal{K}_{\tilde{\mathcal{M}}}(w) + \mathcal{K}_{\mathcal{M}}(w) = \mathcal{K}_Y(w) - \mathcal{K}_{\tilde{\mathcal{N}}}(w) + \mathcal{K}_{\mathcal{N}}(w)$$

Proof. Notice that the assumption of topological exactness at \mathcal{M} together with the fact that ran Y is closed implies

$$\operatorname{ran} Y = \ker q = L(\ker p) = L(\operatorname{clos}(\operatorname{ran} X)).$$

Furthermore, from the exactness at \mathcal{Q} , it follows that \mathcal{Q} may be identified with the quotient module $\mathcal{N}/\text{ran } Y = L(\mathcal{M})/L(\text{ran } X)$. Define a map $Z : \tilde{\mathcal{M}} \to \tilde{\mathcal{N}}$ by setting

$$Zh = Y^{-1}LX(h), \ h \in \tilde{\mathcal{M}}.$$

This definition of the map Z makes the square on the left of our diagram commutative. Clearly, the map Z is a module map which has dense range in $\tilde{\mathcal{N}}$. Tensoring the entire diagram given in the statement of the theorem with the module \mathbb{C}_w , $w \in \Omega$, we obtain a new diagram of one dimensional Hilbert modules in which the map

$$Z \otimes_{\mathcal{A}(\Omega)} 1 : \tilde{\mathcal{M}} \otimes_{\mathcal{A}(\Omega)} \mathbb{C}_w \to \tilde{\mathcal{N}} \otimes_{\mathcal{A}(\Omega)} \mathbb{C}_u$$

is surjective. Also, the square of Hilbert modules remains commutative even after the localisation, that is,

$$Z \otimes_{\mathcal{A}(\Omega)} 1 = (Y \otimes_{\mathcal{A}(\Omega)} 1)^{-1} (L \otimes_{\mathcal{A}(\Omega)} 1) (X \otimes_{\mathcal{A}(\Omega)} 1).$$

However, since all these operators act on one dimensional Hilbert spaces, it follows that $||Z \otimes_{\mathcal{A}(\Omega)} 1|| = ||X \otimes_{\mathcal{A}(\Omega)} 1|| ||(Y \otimes_{\mathcal{A}(\Omega)} 1)||^{-1} ||L \otimes_{\mathcal{A}(\Omega)} 1)||$. Hence in the notation of (2), we have

$$\mathcal{K}_Z(w) = \mathcal{K}_X(w) - \mathcal{K}_Y(w) + \mathcal{K}_L(w). \tag{3}$$

Lemma 1 shows that $\mathcal{K}_Z(w) = \mathcal{K}_{\tilde{\mathcal{N}}}(w) - \mathcal{K}_{\tilde{\mathcal{M}}}(w)$. Similarly, $\mathcal{K}_L(w) = \mathcal{K}_{\mathcal{N}}(w) - \mathcal{K}_{\mathcal{M}}(w)$. Going back to the equation (3), we arrive at the desired conclusion when we substitute the values for $\mathcal{K}_Z(w)$ and $\mathcal{K}_L(w)$.

Recall that \mathcal{M}_0 is the sub-module of functions in \mathcal{M} which vanish on the hypersurface \mathcal{Z} . Let \mathcal{Q} be the quotient $\mathcal{M}/\mathcal{M}_0$. Let $0 \to \tilde{\mathcal{M}} \xrightarrow{X} \mathcal{M} \to \mathcal{Q} \to 0$ be a topologically exact resolution. Then the range of X must be dense in \mathcal{M}_0 and conversely. If $Y : \tilde{\mathcal{N}} \to \mathcal{N}$ is any injective module map such that the range of Y coincides with $L(\operatorname{clos}(\operatorname{ran} X))$ then we can apply the theorem. Specialise to the case, where $\tilde{\mathcal{N}} = \mathcal{M}_0, \mathcal{N} = \mathcal{M}$ and $Y : \mathcal{M}_0 \to \mathcal{M}$ is the inclusion map. Note that in this case, the alternating sum

$$\mathcal{K}_{Y}(w) - \mathcal{K}_{\tilde{\mathcal{N}}}(w) + \mathcal{K}_{\mathcal{N}}(w) = \sum_{i,j=1}^{m} \frac{\partial^{2}}{\partial w_{i} \partial \bar{w}_{j}} \log |\varphi(w)|^{2} dw_{i} \wedge d\bar{w}_{j}$$
(4)

represents the fundamental class of the hypersurface \mathcal{Z} [5, Theorem 1.4]. Having established the equation (4) for a module map with closed range, we can apply the theorem to arrive at the same conclusion for the alternating sum

$$\mathcal{K}_X(w) - \mathcal{K}_{\tilde{\mathcal{M}}}(w) + \mathcal{K}_{\mathcal{M}}(w)$$

for an injective module map $X : \tilde{\mathcal{M}} \to \mathcal{M}$ which has dense but not necessarily closed range in $\mathcal{M}_0 \subseteq \mathcal{M}$. We have therefore proved

COROLLARY 1. Let $0 \longrightarrow \tilde{\mathcal{M}} \xrightarrow{X} \mathcal{M} \longrightarrow \mathcal{Q} \longrightarrow 0$ be a short topologically exact sequence of Hilbert modules. Suppose that ran X is dense in \mathcal{M}_0 . Then the alternating sum

$$\mathcal{K}_X(w) - \mathcal{K}_{\tilde{\mathcal{M}}}(w) + \mathcal{K}_{\mathcal{M}}(w)$$

represents the fundamental class of the hypersurface \mathcal{Z} .

One way to view this result is that it provides an invariant for any topologically exact resolution of quotient modules of the form $\mathcal{M}/\mathcal{M}_0$. Such resolutions give an analogue of the Sz.-Nagy–Foias model for contraction operators to the multivariate case (cf. the Introduction in [5]).

We now give some examples of maps $X : \tilde{\mathcal{M}} \to \mathcal{M}$ which satisfy the hypothesis of the Corollary. Let $\Omega_1 \times \Omega_2 \subseteq \mathbb{C}$ be a product domain containing (0,0). Let \mathcal{M} be a module over the function algebra $\mathcal{A}(\Omega_1 \times \Omega_2)$. Assume that the reproducing kernel K of the module is of the form

$$K(z,w) = K_1(z_1,w_1)K_2(z_2,w_2), \ z_i,w_i \in \Omega_i, \ i = 1,2$$

and that K_1 , K_2 possess diagonal expansion about the origin, that is,

$$K_i(z_i, w_i) = \sum_{n=0}^{\infty} a_n(i) z_i^n \bar{w}_i^n, \ i = 1, 2$$

As shown in [5, Proposition 2.4], the reprducing kernel for the submodule \mathcal{M}_0 of functions vanishing on the set $\{(0, z_2) \in \Omega_1 \times \Omega_2\}$ is of the form

$$K_0(z,w) = z_1 \bar{w}_1 \left(\sum_{n=1}^{\infty} a_n(1) z_1^{n-1} \bar{w}_1^{n-1} \right) K_2(z_2,w_2).$$

Consequently, $\mathcal{M}_0 = \{z_1 f : f \in \mathcal{M}\}$. If $X : \mathcal{M} \to \mathcal{M}$ is the multiplication operator defined by $(Xf)(z_1, z_2) = z_1 f(z_1, z_2)$ then we see that the range of this operator coincides with \mathcal{M}_0 .

We point out that similar considerations as in the paragraph preceding the Corollary apply to the commutative square on the right of the diagram in our theorem. This yields the relation

$$\mathcal{K}_{\mathcal{M}}(w) - \mathcal{K}_{\mathcal{Q}}(w) + \mathcal{K}_{p}(w) = \mathcal{K}_{\mathcal{N}}(w) - \mathcal{K}_{\mathcal{Q}}(w) + \mathcal{K}_{q}(w)$$
(5)

for $w \in \mathbb{Z}$. This relationship is obtained by restricting p to $\mathcal{M}/(\operatorname{ran} X)$ and then writing the identity map on \mathcal{Q} as qLp^{-1} . In particular, if we take $p : \mathcal{M} \to \mathcal{Q}$ to be the quotient map, it is easy to verify that

$$p \otimes_{\mathcal{A}(\Omega)} 1 : \mathcal{M}/(\operatorname{ran} X) \otimes_{\mathcal{A}(\Omega)} \mathbb{C}_w \to \mathcal{Q} \otimes_{\mathcal{A}(\Omega)} \mathbb{C}_w$$

is the constant map identically equal to 1. Now if we further assume that $X(\mathcal{M})$ is dense in \mathcal{M}_0 , then \mathcal{Q} equals the quotient \mathcal{M}_0^{\perp} . It was shown, in this case, in [5] that $\mathcal{K}_{\mathcal{Q}}(w) = \mathcal{K}_{\mathcal{M}}(w)$ for $w \in \mathcal{Z}$. Therefore we obtain the equality $\mathcal{K}_{\mathcal{M}}(w) - \mathcal{K}_{\mathcal{Q}}(w) + \mathcal{K}_p(w) = 0$ for $w \in \Omega$. Hence in view of equation (5), this alternating sum is seen to be 0 even if p is not necessarily the quotient map.

References

- N. Aronszajn, Theory of Reproducing kernels, Trans. Amer. Math. Soc., 68(1950), 337-404.
- [2] M. Cowen and R. G. Douglas, Complex geometry and operator theory, Acta Math., 141(1978), 187-261.
- M. Cowen and R. G. Douglas, Operators possessing an open set of eigenvalues, Proc. Fejér-Riesz conf., Budapest, 1980.
- [4] R. E. Curto and N. Salinas, Generalised Bergman kernels and the Cowen-Douglas theory, Amer J. Math., 106(1984), 447-488.
- R. G. Douglas and G. Misra, Geometric invariants for resolutions of Hilbert modules, Operator Theory: Advances and Applications, 104(1998), 83 - 112, Berkhäuser Verlag.
- [6] R. G. Douglas and V. I. Paulsen, *Hilbert Modules over Function Algebras*, Longman Research Notes, 217, 1989.
- [7] P. Griffiths and J. Harris, *Principles of Algebraic Geometry*, John Wiley & Sons, 1978.

[8] R. C. Gunning and H. Rossi, Analytic functions of Several Complex Variables, Prentice Hall, 1965.

TEXAS A & M UNIVERSITY, COLLEGE STATION, TEXAS 77843, *E-mail address*, R. G. Douglas: rgd@tamu.edu

INDIAN STATISTICAL INSTITUTE, R. V. COLLEGE POST, BANGALORE 560 059 $\mathit{E\text{-mail}}$ address, G. Misra: gm@isibang.ac.in