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Abstract: LetM be a Hilbert module of holomorphic functions defined
on a bounded domain Ω ⊆ Cm. Let M0 be the submodule of functions
vanishing to order k on a hypersurface Z in Ω. In this paper, we describe
the quotient moduleMq.

Introduction

If M is a Hilbert module over a function algebra A and M0 ⊆ M is a submodule,
then determining the quotient moduleMq is an interesting problem, particularly if the
function algebra consists of holomorphic functions on a domain Ω in Cm and M is a
functional Hilbert space. It would be very desirable to describe the quotient module
Mq in terms of the last two terms in the short exact sequence

0←−Mq ←−M X←−M0 ←− 0

where X is the inclusion map. For certain modules over the disc algebra, this is related
to the model theory of Sz.-Nagy and Foias.

In a previous paper [6], the quotient module was described assuming that the sub-
moduleM0 is the maximal set of functions inM vanishing on Z, where Z is an analytic
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submanifold of dimension m − 1. Two essentially distinct approaches were presented
there, the first provides a model for the quotient module as a Bergman kernel Hilbert
space while the second uses the notion of tensor product localization introduced in
[7] to obtain the hermitian holomorphic line bundle which characterizes the quotient
module in B1(Ω). Assuming that the moduleM is itself defined by a kernel function,
the first model mentioned is obtained by describing the kernel function for the quotient
module. Although the kernel function for a module is not unique, the geometric meth-
ods in [4], [3] allow one to decide when different kernel functions lead to equivalent
Hilbert modules. An intrinsic hermitian holomorphic line bundle is the key here since
curvature is a complete invariant in the case of line bundles. Localization provides
another method to construct this line bundle and hence to obtain the model for the
quotient module.

In caseM0 is a submodule determined by the functions inM which vanish to some
higher order on Z, the preceding approach becomes more complicated but this is the
subject we consider in this paper. We are able to generalize completely the first part
of the results described above by introducing a notion of matrix-valued kernel function
which enables us to provide a model for the quotient module. The reason we can’t
use ordinary kernel functions is that the multiplicity of the zero set shows up in the
dimension of the hermitian holomorphic bundle in the complex geometric approach and
somehow our model must capture the fact that one is not dealing with a line bundle.
While the generalized notion of kernel function accomplishes that, the equivalence
problem becomes more complex and not completely resolved. If one considers only the
module action of functions on Z, then one could use the Bk(Z) - theory of [4], [3] but
the action of functions in the ‘normal’ variable brings a nilpotent bundle endomorphism
into the picture. Our results here are not as definitive and involve approaches using
modules corresponding to a resolution of the multiplicity of the zero set analogous
to studying the corresponding hermitian holomorphic bundle via a resolution of line
bundles. Despite the open questions that remain, our results seem of sufficient interest
and the issues raised of such central concern to hermitian algebraic geometry to merit
publication.

Our work may have some interesting relationship with earlier work of Martin and
Salinas [10]. We have not explored this yet but intend to return to these questions in
the near future.

In the following paragraphs, we state the assumptions we make on the Hilbert
module M, and the algebra A. The assumptions on the submodule M0 are stated in
the next section after some preliminaries on multiplicity.

We assume that the Hilbert spaceM is a functional Hilbert space, that is, it consists
of holomorphic functions on a domain (open, connected set) Ω ⊆ Cm and that the
evaluation functionals on M are bounded. In addition, we assume that polynomials
belong to the Hilbert spaceM. Consequently,M admits a reproducing kernel K. We
recall that K : Ω × Ω → C is holomorphic in the first variable and anti-holomorphic
in the second variable. Further, K(·, w) ∈ M for each fixed w ∈ Ω and K(z, w) =
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K(w, z). Finally, K has the reproducing property

〈h,K(·, w)〉 = h(w) for w ∈ Ω, h ∈M.

Since K(w,w) =
〈
K(·, w), K(·, w)

〉
, it follows that K(w,w) 6= 0 for w ∈ Ω.

Let A(Ω) denote the closure (in the supremum norm on Ω̄, the closure of Ω) of
functions holomorphic in a neighborhood of Ω̄. Then A(Ω) is a function algebra and
consists of continuous functions on Ω̄ which are holomorphic on Ω. In case Ω is poly-
nomially convex, the algebra A(Ω) equals the uniform limits of polynomials on Ω̄. A
proof of this theorem due to Oka can be found in [9, Proposition 2, p.56]. We will
assume that Ω is polynomially convex.

The module action is assumed to be the natural one, (f, h) 7→ f · h for f ∈ A(Ω)
and h ∈M, where f ·h denotes pointwise multiplication. The operator associated with
this action, that is, h 7→ f · h for a fixed f ∈ A(Ω) will be denoted by Mf . We assume
throughout that the algebra A(Ω) acts boundedly on the Hilbert spaceM. This means
that the pointwise product f · h is in M for each f ∈ A(Ω) and each h ∈ M. Note
that the closed graph theorem ensures the boundedness of the operator (f, h) 7→ f · h
so thatM is a Hilbert module in the sense of [7]. Alternatively, since the polynomials
are dense in A(Ω), the inequality

‖p · h‖M ≤ K‖p‖∞‖h‖M, h ∈M for all polynomials p,

together with the uniform boundedness principle ensures thatM is a Hilbert module.
It is easy to verify that the adjoint of this action admits K(·, w) as an eigenvector

with eigenvalue f(w), that is, M∗
fK(·, w) = f(w)K(·, w) for w ∈ Ω.

1 The submodule M0

Let Z be an irreducible (hence connected) analytic hypersurface (complex submanifold
of dimension m − 1) in Ω in the sense of [9, Definition 8, p. 17], that is, to every
z(0) ∈ Z, there exists a neighborhood U ⊆ Ω and a holomorphic map ϕ : U → C such
that ∂ϕ

∂zj
(z(0)) 6= 0 for some j, 1 ≤ j ≤ m and

U ∩ Z = {z ∈ U : ϕ(z) = 0}. (1.1)

To a fixed point z(0) ∈ Z, there corresponds a neighborhood U ⊆ Ω and local coor-

dinates ([9, Theorem 9, p.17]), φ
def
= (φ1 (= ϕ), . . . , φm) : U ⊆ Ω → Cm such that

U ∩ Z = {z ∈ U : ϕ(z) = 0}. We assume that the neighborhood U of z(0) ∈ Z has
been chosen such that φ is biholomorphic on U . Let V = φ(U).

Lemma 1.1 ([9, p. 33]) If f is any holomorphic function on U such that f(z) = 0
for z ∈ U ∩ Z, then f(z) = ϕ(z)g(z) for some function g holomorphic on U .

Proof: Fix z in U∩Z and consider the power series expansion of f ◦φ−1 at φ(z) = 0
in the local co–ordinates (λ1 (= ϕ(z)), . . . , λm). Since f ◦ φ−1(0, λ2, . . . , λm) ≡ 0 by
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hypothesis, it follows that all monomials in the power series expansion must contain
λ1. Hence f ◦ φ−1 = λ1g̃ for some holomorphic function g̃ in a small neighborhood of
0. In other words, in a small neighborhood Uz of z, we have f = ϕg, where g = g̃ ◦ φ.
For z′ 6= z in U ∩ Z, we can find an open set Uz′ such that f = ϕg′. If Uz ∩ Uz′ 6= ∅,
then ϕg = f = ϕg′ on Uz ∩ Uz′ . It follows that g = g′ on Uz ∩ Uz′ . Hence f = ϕg for
some function g holomorphic on the open set U0 = ∪{Uz : z ∈ U ∩Z}. This completes
the proof since f/ϕ is holomorphic on U\(U ∩ Z) and we have shown that f/ϕ is
holomorphic in the neighborhood U0 containing U ∩ Z. 2

In general, a function ϕ holomorphic on U is a local defining function for the sub-
manifold Z if ϕ| (U ∩ Z) = 0, and the quotient f/ϕ is holomorphic in U whenever
f is holomorphic in U and f | (U ∩ Z) = 0. If ϕ and ϕ̃ are both defining functions,
then it follows that both ϕ/ϕ̃ and ϕ̃/ϕ are holomorphic on U . Hence ϕ is unique up
to multiplication by a nonvanishing holomorphic function on U . For any holomorphic
function defined in a neighborhood of z in Z, the order ordZ,z(f) of the function f at z
is defined to be the largest integer p such that f = ϕpg for some function g holomorphic
in a neighborhood of z. Since ordZ,z(f) is easily seen to be independent of the point
z, we may define the order ordZ(f) of the function f to be simply ordZ,z(f) for some
z in Z.

We are now ready to describe the submoduleM0 which will be investigated in this
paper. Let

M0 = {f ∈M : ordZ(f) ≥ k}. (1.2)

We give two alternative characterisations of the module M0. The first of these is
a consequence of the following lemma which is proved in the same manner as Lemma
1.1.

Lemma 1.2 ([9, p. 33]) Let U ∩ Z = {z ∈ U : ϕ(z) = 0} where ϕ is the defining
function of Z . If f is any holomorphic function on U and ordZf = n, then f = ϕng
for some function g holomorphic on U .

For z ∈ Z, we can find a neighborhood Uz and a local defining function ϕz such
that Uz ∩ Z = {ϕz = 0}. Thus

M0 = {f ∈M : f = ϕn
z g, g holomorphic on Uz, n ≥ k}. (1.3)

For each z(0) in Z, there exists a neighborhood U and local coordinates (λ1 (=
ϕ), . . . , λm). Clearly, any function f in M0 has the factorization f = λk

1g on V in

these co–ordinates. Hence f together with the derivatives ∂`f
∂λ`

1
vanishes on ϕ(Z) ∩ V

for 1 ≤ ` ≤ k − 1. Conversely, we claim that if f together with the derivatives ∂`f
∂λ`

1

vanish on ϕ(Z) ∩ V for 1 ≤ ` ≤ k − 1, then f is inM0. To prove this, observe that if
f vanishes on ϕ(Z) ∩ V, then f = λ1g by Lemma 1.1 for some holomorphic function g
on V . If ∂f

∂λ1
is also zero on ϕ(Z)∩V, then on the one hand ∂f

∂λ1
= g+λ1

∂g
∂λ1

and on the

other hand ∂f
∂λ1

= λ1g̃ for some g̃ holomorphic on V . It follows that g = λ1(g̃ − ∂g
∂λ1

).

Thus f = λ2
1g1 for some holomorphic function g1 on V . Proceeding inductively, we
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assume that if the first ` derivatives of f vanishes on Z ∩ V then f = λ`+1
1 g` for some

holomorphic function g` on V . If ∂`+1f

∂λ`+1
1

vanishes on ϕ(Z)∩V then as before, on the one

hand ∂`+1f

∂λ`+1
1

= g` + λ1h and on the other hand ∂`+1f

∂λ`+1
1

= λ1g̃ for some g̃, h holomorphic

on V . This shows that f = λ`+2
1 g`+1 for some holomorphic function g`+1 on V . Hence

the order of the function f is at least k. Thus we can also describe the moduleM0 as

M0 = {f ∈M :
∂`f

∂λ`
1

(λ) = 0, λ ∈ V ∩ ϕ(Z), 0 ≤ ` ≤ k − 1}.

Finally, we may assume that ∂ϕ
∂z1

(z) 6= 0 on the open set U . In this case, λ1 = ϕ,
λ2 = z2, . . . , λm = zm is a local coordinate system. However, a simple calculation using
the chain rule shows that




1

0 ∂ϕ
∂z1

(z)

0 ∂2ϕ
∂z2

1
(z) ( ∂ϕ

∂z1
(z))2

0

?
. . .

...

. . . ( ∂ϕ
∂z1

(z))k−1







f ◦ φ−1(λ)
∂(f◦φ−1)

∂λ1
(λ)

∂2(f◦φ−1)
∂λ2

1
(λ)

...
∂k−1(f◦φ−1)

∂λk−1
1

(λ)




=




f(z)
∂f
∂z1

(z)
∂2f
∂z2

1
(z)

...
∂k−1f

∂zk−1
1

(z)




.

(1.4)

Thus ∂`f
∂z`

1
(z) = 0 for z ∈ U∩Z, 0 ≤ ` ≤ k−1 if and only if ∂`f

∂λ`
1
(λ) = 0 for λ ∈ V ∩ϕ(Z),

0 ≤ ` ≤ k − 1 and we obtain the third alternative characterisation of the submodule
M0 simply as

M0 = {f ∈M :
∂`f

∂z`
1

(z) = 0, z ∈ U ∩ Z, 0 ≤ ` ≤ k − 1}. (1.5)

In general, the function φ does not define global co–ordinates for Ω. However, if the
second Cousin problem is solvable for Ω, then there exists a global defining function
( which we will again denote by ϕ ) for the hypersurface Z. This is pointed out in
the remark preceding Corollary 3 in [9, p. 34]. In this case, in view of Lemma 1.2, it
follows that h belongs toM0 if and only if it admits a factorization h = ϕng for some
holomorphic function g on Ω and n ≥ k. At this point, we might simply assume that
the second Cousin problem is solvable on our domain Ω. However, we show that our
module can be localized, that is, it is enough to work with a fixed open set U ⊆ Ω such
that U ∩ Z = {z ∈ U : ϕ(z) = 0} for some local defining function ϕ.

Recall that two Hilbert modules M and M̃ over the algebra A(Ω) are said to be
equivalent if there is an unitary operator T : M → M̃ intertwining the two module
actions, that is, f · Th = T (f · h) for f ∈ A(Ω) and h ∈ M. Any operator satisfying
the latter condition is said to be a module map.

Let Mres U
def
= {f |U : f ∈ M} and R : M → Mres U be the restriction map. If

f is in the kernel of the restriction map R, then f must vanish on the open set U
implying that f must vanish on all of Ω. Thus the kernel of the restriction map R is

trivial. We define an inner product on Mres U by setting 〈Rh,Rh〉 def
= 〈h, h〉M. This
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makes R a unitary map. We turn Mres U into a Hilbert module by restricting the
original action to the open set U . The fact that (RMfR

∗)(Rh) = R(f · h) = f · h|U
shows that M is equivalent to the module Mres U. Further if (Mres U)0 denotes the
submodule of functions vanishing on U ∩Z to at least order k inMres U and (Mres U)q

the corresponding quotient, then RM0 = (Mres U)0 and RMq = (Mres U)q. The first
of these follows from the characterisation ofM0 we have obtained above and then the
second one follows from unitarity of the map R. Hence we may replace, without loss
of generality, the module M by the module Mres U. Once we do that, the submodule
(Mres U)0 may be described as

{h ∈M : h = ϕn g, g holomorphic on U, n ≥ k}.
In the following section, we will assume that we have localized our module to a fixed
open set U and pretend that U = Ω. In section 3, we describe the quotient module
Mq.

2 Reproducing kernels and vector bundles

Let E be a finite dimensional (dimE = k) Hilbert space and H be a Hilbert space of
holomorphic functions from Ω to E. Let evw : H → E be the evaluation functional
defined by evw(f) = f(w), for f ∈ H and w ∈ Ω. If evw is both bounded and surjective
on a Hilbert space H of holomorphic functions from Ω to E for each w ∈ Ω, then it
is said to be a functional Hilbert space. In this case, ev∗w : E → H is bounded and
injective. The function K : Ω× Ω→ L(E), defined by

K(z, w) = evzev
∗
w, z, w ∈ Ω,

is called the reproducing kernel of H. The kernel K has the following reproducing
property:

〈
f,K(·, w)ζ

〉
H =

〈
f, ev∗w(ζ)

〉
H

=
〈
evw(f), ζ

〉
E

=
〈
f(w), ζ

〉
E
. (2.1)

Since K(·, w)ζ = (ev∗wζ)(·) ∈ H for each w ∈ Ω, it follows that K is holomorphic
in the first variable. Also, K(w, z) = evwev

∗
z = (evzev

∗
w)∗ = K(z, w)∗. Hence K is

anti-holomorphic in the second variable. The reproducing property (2.1) implies that
K is uniquely determined.

Clearly, f ∈ H is orthogonal to ran ev∗w if and only if
〈
f, ev∗wζ

〉
H =

〈
f(w), ζ

〉
E

= 0

for every ζ ∈ E. Hence f ⊥ ran ev∗w for all w ∈ Ω if and only if f = 0. Hence
H is generated by the subspace ev∗w(E). Therefore functions f in H of the form
f =

∑n
j=1 ev

∗
wj

(ζj) form a dense linear subspace H0 of H. For f ∈ H0,

‖f‖2 =
〈 n∑

j=1

ev∗wj
(ζj),

n∑

j=1

ev∗wj
(ζj)

〉
H
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=
〈 n∑

j,k=1

evwk
ev∗wj

(ζj), ζk
〉

E
.

Since ‖f‖2 ≥ 0, it follows that the operator valued kernel K(z, w) = evzev
∗
w has the

property that

n∑

k,j=1

〈
K(wk, wj)ζj, ζk

〉
E
≥ 0, w1, . . . , wn ∈ Ω, ζ1, . . . , ζn ∈ E. (2.2)

Since ker ev∗w = {0}, it follows that

〈
K(w,w)ζ, ζ

〉
E

=
〈
ev∗wζ, ev

∗
wζ

〉
H > 0, for all ζ 6= 0. (2.3)

Any functionK : Ω×Ω→ L(E), holomorphic in the first variable and anti-holomorphic
in the second satisfying (2.2) and (2.3) is called a reproducing kernel for H.

The proof of the following theorem is similar to that for a Hilbert space of ordinary
scalar valued functions.

Theorem 2.1 For any kernel function K : Ω× Ω→ L(E), it is possible to construct
a unique functional Hilbert space H satisfying

1. H0 is dense in H
2. evz : H → E is bounded for each z ∈ Ω

3. K(z, w) = evzev
∗
w, z, w ∈ Ω.

As a consequence of the uniform boundedness principle, it is easy to see that evw is
uniformly bounded on Ω0 ⊆ Ω if and only if ‖K(w,w)‖E→E is uniformly bounded on
Ω0. In this case,

sup
w∈Ω0

|
〈
f(w), ζ

〉
E
| = sup

w∈Ω0

|
〈
f,K(·, w)ζ

〉
H|

= ‖f‖ sup
w∈Ω0

〈
K(·, w)ζ,K(·, w)ζ

〉
for ζ ∈ E.

Hence supw∈Ω0
‖f(w)‖E ≤ ‖f‖H ‖K(w,w)‖. Therefore, convergence in H implies

uniform convergence on Ω0 if ‖K(w,w)‖ is uniformly bounded. The following lemma
is well known (cf. [5]).

(Note that if f ∈ H then f(z) is in E, which may be thought of as a linear map
f(z) : C → E, defined by f(z)(α) = αf(z), for α ∈ C. In the following, f(z)∗ merely
denotes the adjoint of the linear map f(z).)

Lemma 2.2 Let H be a functional Hilbert space of holomorphic functions taking values
in a finite dimensional Hilbert space E and {en}∞n=0 be an orthonormal basis for H.
The sum

∑∞
n=0 en(z)en(w)∗ converges in L(E) to K(z, w).
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Of course, the reproducing property of
∑∞

n=0 en(z)en(w)∗ is easy to verify indepen-
dently. Let f(z) =

∑∞
n=0 anen(z) be the Fourier series expansion of f ∈ H. It follows

that
〈
f(·),

∞∑

n=0

en(·)en(w)∗ζ
〉

=
〈 ∞∑

n=0

anen(·), (
∞∑

n=0

en(·)en(w)∗)ζ
〉

=
∞∑

m,n=0

(em(w)∗ζ)
〈
amem(·), en(·)

〉

=
∞∑

n=0

am

〈
em(w), ζ

〉

=
〈
f(w), ζ

〉
.

Since the reproducing kernel K is uniquely determined, it follows that K(z, w) =∑∞
n=0 en(z)en(w)∗.
Suppose we start with a Hilbert space H of complex valued holomorphic functions

on Ω with a reproducing kernel K. Let ε`, ` = 1, . . . , k be the standard basis vectors
for Ck and ∂1 denote differentiation with respect to z1, that is, ∂1 = ∂

∂z1
. For h ∈ H,

let

h =
k−1∑

`=0

∂`
1h⊗ ε`+1

and J(H) = {h : h ∈ H} ⊆ H ⊗ Ck. Consider the map J : H → J(H) defined by
Jh = h, for h ∈ H. Since J is injective, we can define an inner product on J(H)

〈
J(g), J(h)

〉
J(H)

def
=

〈
g, h

〉
H

so as to make J unitary. We point out that J(H) 6= H⊗ Ck, in general.

Proposition 2.3 The reproducing kernel JK : Ω×Ω→Mk(C) for the Hilbert space
J(H) is given by the formula:

(JK)`,j(z, w) = (∂`
1∂̄

j
1K)(z, w), 0 ≤ `, j ≤ k − 1,

where ∂̄1 = ∂
∂w̄1

and ∂1 = ∂
∂z1

as before.

Proof: Since J is a unitary map, it follows that {(Jen) : n ≥ 0} is an orthonormal
basis for J(H), where {en : n ≥ 0} is an orthonormal basis for H.

If h is an element of J(H) then it has the expansion h(z) =
∑∞

n=0 an (Jen)(z). Also,
note that for any x ∈ Ck, we have

(JK)(z, w)x =
k−1∑

`,j=0

( ∞∑

n=0

(∂`
1en)(z) (∂j

1en)(w)
)
xjε`+1

=
k−1∑

j=0

xj

( ∞∑

n=0

(∂j
1en)(w)(

k−1∑

`=0

(∂`
1en)(z)ε`+1)

)

=
∞∑

n=0

〈
x, (Jen)(w)

〉
C

k (Jen)(z)
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Thus

〈
h, JK(·, w)x

〉
J(H)

=
∞∑

n=0

an

〈
x, (Jen)(w)

〉
C

k

=
〈 ∞∑

n=0

an(Jen)(w),x
〉

C
k

=
〈
h(w),x

〉
C

k .

Hence JK has the reproducing property
〈
h, JK(·, w)x

〉
J(H)

=
〈
h(w),x

〉
C

k for x ∈ Ck and h ∈ J(H), (2.4)

which completes the proof. 2

Let {ε` : 1 ≤ ` ≤ k} be a set of basis vectors for E. Let s`(w) = K(·, w)ε`. The
vectors s`(w) span the range Ew of K(·, w) : E → H. Let Ω∗ = {w : w̄ ∈ Ω}. The
holomorphic frame w → {s1(w̄), . . . , sk(w̄)} determines a holomorphically trivial vector
bundle E over Ω∗. The fiber of E over w is Ew = span{K(·, w̄)ε` : 1 ≤ ` ≤ k}, w ∈ Ω∗.
An arbitrary section of this bundle is of the form s =

∑k
`=1 a`s`, where a`, ` = 1, . . . , k,

are holomorphic functions on Ω∗. The norm at w ∈ Ω∗ is determined by

‖s(w)‖2 =
〈 k∑

`=1

a`(w)s`(w),
k∑

`=1

a`(w)s`(w)
〉
H

=
k∑

`,m=1

a`(w)am(w)
〈
s`(w), sm(w)

〉
H

=
k∑

`,m=1

a`(w)am(w)
〈
K(·, w)ε`, K(·, w)εm

〉
H

=
k∑

`,m=1

a`(w)am(w)
〈
K(w,w)ε`, εm

〉
E

=
〈
K(w,w)tra(w), a(w)

〉
E
, (2.5)

where a(w) =
∑k

`=1 a`(w)ε` andK(w,w)tr denotes the transpose of the matrixK(w,w).
Since K(w,w) is positive definite and w 7→ K(w,w) is real analytic, it follows that
K(w,w) determines a hermitian metric for the vector bundle E .

Conversely, let E be a hermitian holomorphic vector bundle with a real analytic
metric G on Ω∗ and {s1(w), . . . , sk(w) : w ∈ Ω∗} be a holomorphic frame. Since G
is real analytic on Ω∗, we can find a function G̃ : Ω∗ × Ω∗ → C anti-holomorphic
in the first variable and analytic in the second such that G̃(w,w) = G(w), w ∈ Ω∗.
If G̃ is a positive definite kernel on Ω, then it naturally gives rise to a reproducing
kernel Hilbert space H, which is spanned by {G̃(·, w)x : w ∈ Ω∗ and x ∈ Ck}. The

inner product on this spanning set is defined by
〈
G̃(·, w)x, G̃(·, λ)y

〉
def
=

〈
G̃(λ,w)x,y

〉
.
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The completion with respect to this inner product produces the Hilbert space H and
G̃ is the reproducing kernel for H. Let s(w) =

∑k
`=1 s`(w)x`(w), w ∈ Ω∗. Then the

map s(w) 7→ G̃(·, w)x(w) defines a unitary isomorphism between the fiber Ew and
ran G̃(·, w) ⊆ H.

Now consider the operator M∗
f,w : Ew → Ew defined by

M∗
f,wG̃(·, w)x

def
= f(w)G̃(·, w)x,

where f ∈ A(Ω). This defines an operator M∗
f,w on the subspace of H defined by

{
n∑

i=1

G̃(·, wi)xi : xi ∈ Ck}, where w = (w1, . . . , wn), wi ∈ Ω∗.

Since M∗
f,w is an operator on a finite dimensional space, it is bounded and it follows

that there exists a positive constant Cf,w depending on {w1, . . . , wn} such that

‖M∗
f,w(

n∑

i=1

G̃(·, wi)xi)‖2 = ‖
n∑

i=1

f(wi)G̃(·, wi)xi‖2

=
n∑

i,j=1

f(wi)f(wj)
〈
G̃(wj, wi)xi,xj

〉

≤ Cf,w

n∑

i,j=1

〈
G̃(wj, wi)xi,xj

〉
.

We conclude that the above construction defines a bounded map on all of H, if and
only if there exists a positive constant Cf independent of {w1, . . . , wn} such that the
kernel

G̃f (z, w)
def
= (Cf − f(z)f(w))G̃(z, w) (2.6)

is non-negative definite. The adjoint of this operator is equal to the multiplication
operator Mf on H. Finally, the map (f, h) 7→ Mfh for f ∈ A(Ω) and h ∈ H is
uniformly bounded if and only if C = sup{Cf : f ∈ A(Ω), ‖f‖∞ ≤ 1} is finite. Thus,
H is a Hilbert module with respect to the natural action of the algebra A(Ω) if and
only if there exists a positive constant C (independent of f) such that

G̃f (z, w) = (C − f(z)f(w))G̃(z, w) (2.7)

is a non-negative definite kernel for each f ∈ A(Ω), ‖f‖∞ ≤ 1.
The quotient modules we describe later in this paper turn out to be modules over

the algebra A(Ω) with respect to a module multiplication quite different from the one
described here.

It is possible to associate a jet bundle JE with a holomorphic hermitian vector
bundle E on Ω. For a holomorphic hermitian bundle E over a planar domain, the con-
struction of the jet bundle JE is given in [4]. One may proceed in a similar manner to
construct the jet bundle JE in the multi-variate case. Fortunately, for our application,
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it is enough to do this for a line bundle E on Ω along the normal direction to the
zero variety Z = {w ∈ Ω : w1 = 0} ⊆ Ω, that is, with respect to the coordinate z1.
In this case, we can adapt the construction given in [4], in a straightforward manner.
For the sake of completeness, we give the details of this construction. Let s0 and s1

be holomorphic frames for E on the coordinate patches Ω0 ⊆ Ω and Ω1 ⊆ Ω respec-
tively. That is, s0(resp. s1) is a non-vanishing holomorphic section on Ω0(resp. Ω1) .
Then there is a non-vanishing holomorphic function g on Ω0 ∩ Ω1 and s0 = gs1 there.

Let J(s`) =
∑k−1

j=0
∂j
1s`

∂1wj εj+1, ` = 0, 1. An easy computation shows that Js0 and Js1

transform on Ω0 ∩ Ω1 by the rule J(s0) = (J g)J(s1), where J is the lower triangular
operator matrix

J =




1

...

. . . 0(
`
j

)
∂`−j

1 1
. . .

∂k−1
1 . . . 1



. (2.8)

with 0 ≤ `, j ≤ k − 1.
The components of Js, that is, s, ∂1s, . . . , ∂

k−1
1 s, determine a frame for a rank k

holomorphic vector bundle JE on Ω. The transition function with respect to this frame
is represented by the matrix (J g)tr. We will refer to this bundle JE as the jet bundle
associated with E . The hermitian metric G(w) = 〈s(w), s(w)〉E on E with respect to
the frame s on E induces a hermitian metric JG on JE such that with respect to the
frame Js,

(JG)(w) =




G(w) . . . (∂k−1G)(w)

...

. . .

(∂`
1∂̄

m
1 G)(w)

. . .

...

(∂̄k−1
1 G)(w) . . . (∂k−1

1 ∂̄k−1
1 G)(w)



. (2.9)

We point out that there is no canonical normal to the hypersurface Z. However,
the construction of the jet bundle depends on the choice of a normal vector to the
hypersurface Z. In the construction outlined above, we have chosen the normal direc-
tion to be z1. Thus, if we take two different normal directions to the zero variety Z,
then we can construct two distinct jet bundles. The following proposition explores the
relationship between these two jet bundles.

Proposition 2.4 If ϕ and ϕ̃ are two different defining functions for U ∩Z for some
open set U ⊆ Ω, then the jet bundles obtained as above are equivalent holomorphic
hermitian bundles on U.

Proof: The fact that both ϕ and ϕ̃ are defining functions for Z implies ϕ̃
ϕ

is a

non-vanishing holomorphic function on U . Hence if ∂ϕ
∂z1
6= 0 on U , we can assume (by

going to a smaller open set, if necessary) that ∂ϕ̃
∂z1
6= 0 on U .

11



We denote by L(ϕ) the matrix introduced in the equation (1.4). Then the jet
bundles constructed using the two defining functions are related by a unitary bundle
map represented by the matrix L(ϕ̃)L(ϕ)−1. 2

As pointed out above, any Hilbert space H of holomorphic functions on Ω with
a reproducing kernel K determines a line bundle E on Ω∗ whose fiber at w̄ ∈ Ω∗ is
spanned by K(·, w). We can now construct a rank k holomorphic vector bundle by the
procedure outlined in the previous paragraph. A holomorphic frame for this bundle is
{K(·, w), ∂̄1K(·, w), . . . , ∂̄k−1

1 K(·, w)}, and as usual, this frame determines a metric for
the bundle by the formula (compare (2.9) ):

〈 k−1∑

j=0

aj∂
j
1K(·, w),

k−1∑

j=0

aj∂
j
1K(·, w)

〉
=

k−1∑

j,`=0

aj ā`

〈
∂j

1K(·, w), ∂`
1K(·, w)

〉
.

This is the jet bundle JE associated with E .
On the other hand, the Hilbert space JH together with its kernel function JK

defined in Proposition 2.3 defines a rank k hermitian holomorphic bundle on Ω∗ (see
discussion preceding equation (2.5)). That these two constructions yield equivalent
hermitian holomorphic bundles is a consequence of the fact that J is a unitary map
from H onto JH.

Our interest in describing this connection between a functional Hilbert space and
the associated bundle lies in a theorem due to Cowen and Douglas [4] which states that
local equivalence of these associated bundles determines the unitary equivalence class
of the multiplication tuple. Since the curvature determines the equivalence class of a
line bundle, this theorem becomes particularly useful in that case.

In this paper, we start with a Hilbert spaceM consisting of holomorphic functions
on Ω ⊆ Cm. We assume thatM admits a reproducing kernel K satisfying the positive
definiteness condition in (2.7). Then the multiplication operators on this Hilbert space
induce a map A(Ω) ×M → M given by (f, h) 7→ Mfh, f ∈ A(Ω), h ∈ M which is
bounded. Consequently, we have an action of A(Ω) on the Hilbert space M, which
makes it a module overA(Ω). LetM0 be the submodule of all functions inM vanishing
to order k on some hypersurface Z and letMq be the quotient module. The main goal
of this paper is to understand the quotient moduleMq. This means, we wish to describe
the quotient module in some canonical manner and possibly find unitary invariants.
While we succeed in our first objective, we have not been able to make much headway
in the second one.

The reason for describing the construction of a jet bundle lies in the fact that
the quotient module gives rise to a rank k bundle over Z which is the jet bundle JE
associated with E restricted to Z together with a bundle map Jf , for every f ∈ A(Ω).
The bundle maps Jf , in case k > 1, are not necessarily trivial. (We say that a bundle
map is trivial if it is multiplication by a scalar, when restricted to any fiber of the
bundle.) The complex geometric approach developed in [4], is applicable to Hilbert
modules which necessarily give rise to holomorphic bundles together with bundle maps
Jf which are trivial. If two such bundles E and Ẽ are equivalent via the bundle map

Θ : E → Ẽ , then it is shown that there exists an unitary UΘ : M → M̃. Since the
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action of A(Ω) in that treatment is scalar on each fiber of the respective bundles and
Θ is a bundle map, an unitary module map is obtained. Although the quotient module
in our case gives rise to a rank k bundle over Z, the action of the algebra A(Ω) is no
longer scalar on the fiber. Hence, even if we obtain an unitary map U : Mq → M̃q

using techniques from [4], we have to ensure further that this is a module map. We
have not been able to find necessary and sufficient conditions for this. (In a previous
paper [6], we assumed that M0 is the submodule consisting of all functions vanishing
on a hypersurface Z. In that case, the quotient module gives rise to a line bundle on Z
and the module action is scalar on each fiber. Hence the complex geometric approach
of [4] applies.)

Now, we give a construction which may be thought of as associating a k th order
jet JM to a Hilbert module M of holomorphic functions on a bounded domain Ω ⊆
Cm with a reproducing kernel K. In the preceding paragraphs, we have not only
constructed the Hilbert space JM but also described the kernel function JK. To
complete this construction, we only need the module action on JM.

Define the action of the algebra A(Ω) on JM by

f · h =
k−1∑

`=0

( ∑̀

j=0

(
`

j

)
∂`−j

1 f∂j
1h

)
⊗ ε`+1, h ∈M and f ∈ A(Ω).

This action is best described in terms of the matrix J defined in equation (2.8), where

J`,j =
(

`
j

)
∂`−j

1 and (J f)`,j =
(

`
j

)
∂`−j

1 (f), 0 ≤ ` ≤ j ≤ k − 1. If Jf denotes the module

action (f,h) 7→ f ·h, then we find that Jf (h) = (J f)(h). Using the Leibnitz formula,
we obtain

J(f · h) =
k−1∑

`=0

∂`
1(f · h)⊗ ε`+1

=
k−1∑

`,j=0

(
`

j

)
∂`−j

1 f∂j
1h⊗ ε`+1

= (J f)(h).

It follows thatM and JM are equivalent modules via the module map J .
The elements of JM vanishing on Z form a submodule of JM. Let

(JM)0 = {h ∈ JM : h(z) = 0 for z ∈ Z},
and let (JM)q denote the quotient module of JM by the sub-module (JM)0. Let
X :M0 →M and X0 : (JM)0 → JM be the inclusion maps.

The following proposition shows not only that the two modules M and JM are
equivalent but also thatM0 andMq are equivalent to (JM)0 and (JM)q respectively.

Proposition 2.5 The following diagram of two short exact sequences is commutative.

0 ←− Mq ←− M X←− M0 ←− 0
↓ ↓ ↓

0 ←− (JM)q ←− JM X0←− (JM)0 ←− 0

13



Proof: It is clear that J maps M0 onto (JM)0 and hence it follows that they are
equivalent. The fact that J is unitary and onto implies that it maps the orthogonal
complimentMq onto (JM)q. Hence the quotient modulesMq, (JM)q are equivalent.
2

The proof of the following lemma is similar to the first part of the proof of Theorem
1.4 in [6].

Lemma 2.6 The reproducing kernel K0(z, w) for the submodule M0 is of the form
ϕk(z)χ(z, w)ϕk(w), where χ(w,w) 6= 0, w ∈ Ω.

Proof: Recall that M0 is the space of all functions which admit ϕk as a factor.
Let {e(0)

n : n ≥ 0} be an orthonormal basis for M0. The reproducing kernel has the

expansion K0(z, w) =
∑∞

n=0 e
(0)
n (z)e

(0)
n (w). Since e(0)

n (z) = ϕk(z)gn(z) for each n, it
follows that K0(z, w) = ϕk(z)χ(z, w)ϕk(w), where χ(z, w) =

∑∞
n=0 gn(z)gn(w). The

reproducing property of K0(·, w) implies that K0(w,w) does not vanish on Ω\Z. It
follows that χ(w,w) 6= 0 off the set Z ∩Ω. We point out, in fact, that χ(w,w) is never
zero on Ω. If χ(w,w) = 0 for some w ∈ Z, then

∑∞
n=0 |gn(w)|2 = 0. It follows that

gn(w) = 0 for each n. This in turn would mean the order of the zero at w for each
f ∈M0 is strictly greater than k. This contradiction proves our assertion. 2

Calculations similar to the ones leading up to equation (2.4) show that

(J0K)i,j(z, w) = (∂i
1∂̄

j
1K0)(z, w), 0 ≤ i, j ≤ k − 1, (2.10)

is the reproducing kernel for (JM)0. Let (Jχ)i,j(z, w) = (∂i
1∂̄

j
1χ)(z, w), 0 ≤ i, j ≤ k−1.

Then the preceding lemma yields the factorization

J0K(z, w) = (Jϕk)(z)Jχ(z, w)(Jϕk)(w)∗, (2.11)

where J is the operator matrix defined in (2.8).

3 The quotient module Mq

The fact that Mq is equivalent to (JM)q was pointed out in the previous section.
We record this as a separate proposition along with a computational proof. These
computations will be useful later.

Proposition 3.1 The quotient modules Mq and (JM)q are equivalent.

Proof: We begin by pointing out that ∂̄`
1K(·, w) is in the Hilbert space M for

0 ≤ ` ≤ k − 1. Hence if h ∈ M has the expansion
∑∞

n=0 anen(·) in terms of an
orthonormal basis {en : n ≥ 0} and K(·, w) =

∑∞
n=0 en(·)en(w), then we have

〈 ∞∑

n=0

anen(·), ∂̄`
1K(·, w)

〉
=

〈 ∞∑

n=0

anen(·),
∞∑

n=0

en(·)∂`
1en(w)

〉

=
∞∑

n=0

an∂
`
1en(w)

= (∂`
1h)(w) . (3.1)
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If h inM is orthogonal to all the vectors in the set

D = {∂̄j
1K(·, w) : 0 ≤ j ≤ k − 1, w ∈ Z} ,

then (∂j
1h)(w) must vanish for 0 ≤ j ≤ k − 1 and w ∈ Z. Also, the reproducing

property implies that {∂̄j
1K(·, w) : 0 ≤ j ≤ k − 1} are orthogonal to M0. It follows

that D is a spanning set forMq. Notice that for 0 ≤ j ≤ k − 1, we have

J(∂̄j
1K(·, w)) =

k−1∑

`=0

∂`
1∂̄

j
1K(·, w)⊗ ε`+1.

Recalling the fact that (JK)`,j = (∂`
1∂̄

j
1K), we find that (JM)q is spanned by the set

of vectors
JD = {JK(·, w)ε`+1 : 0 ≤ ` ≤ k − 1, w ∈ Z}.

It is clear from equation (2.4) that

〈
h, JK(·, w)x

〉
= x̄1h(w) + · · ·+ x̄k∂

k−1
1 h(w)

vanishes for all x ∈ Ck and w ∈ Z if and only if h is in (JM)0. Consequently, the set
of vectors JD spans (JM)q. Hence J(Mq) = (JM)q. We have (M∗

f − f(w))K(·, w) =

0, for f ∈ A(Ω). Differentiating this equation by ∂1, we see that M∗
f ∂̄1K(·, w) =

f(w)∂̄1K(·, w) + ∂1f(w)K(·, w). By induction, we find that

M∗
f ∂̄

`
1K(·, w) =

∑̀

j=0

(
`

j

)
∂̄`−j

1 K(·, w)∂j
1f(w), 0 ≤ ` ≤ k − 1. (3.2)

If we can verify the equation JM∗
f = J∗fJ on the set D, then the proof will be

complete.
We note that J∂̄j

1K(·, w) = JK(·, w)εj+1, 0 ≤ j ≤ k − 1. Hence using equation
(3.2), we find that

J(M∗
f ∂̄

`
1K(·, w)) =

∑̀

j=0

(
`

j

)
J(∂̄`−j

1 K(·, w))∂j
1f(w)

=
∑̀

j=0

(
`

j

)
JK(·, w)εj+1, ∂

j
1f(w), 0 ≤ ` ≤ k − 1. (3.3)

The fact that

J∗fJK(·, w) · x = JK(·, w)(J f)(w)∗ · x, x ∈ Ck, w ∈ Ω (3.4)

is established in the next lemma.
The equations (3.3) and (3.4) together imply that JM∗

f = J∗fJ on the set D. This
completes the proof. 2
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Lemma 3.2 Let M be a Hilbert module of holomorphic functions on Ω over the alge-
bra A(Ω) with reproducing kernel K. Let JM be the associated module of jets with
reproducing kernel JK. The adjoint of the module action Jf on JK(·, w)x, x ∈ Ck is
given by

J∗fJK(·, w) · x = JK(·, w)(J f)(w)∗ · x.

Proof: We find that for h =
∑k−1

j=0 ∂
j
1h⊗ εj+1 ∈ J(M) and x = (x1, . . . , xk) ∈ Ck,

〈
Jfh, JK(·, w) · x

〉
=

〈
Jf (h)(w),x

〉

=
〈
(J f)(w) · (h)(w),x

〉

=
〈
(h)(w), (J f)(w)∗x

〉
ICk

=
〈
h, JK(·, w)(J f)(w)∗ · x

〉
.

This calculation completes the proof. 2

We consider the Hilbert space (JM)res obtained by restricting the functions in JM
to the set Z, that is,

(JM)res = {h0 holomorphic on Z : h0 = h|Z for some h ∈ JM} .

The norm of h0 ∈ (JM)res is

‖h0‖ = inf{‖h‖ : h|Z = h0 for h ∈ JM},

and the module action is obtained by restricting the map (f, h|Z)→ Jfh in both the
arguments to Z, that is,

(f, h|Z ) → (Jf · h)|Z
= J f |Z · h|Z .

Aronszajn [1, p. 351] shows that the restriction map R is unitary, on a functional
Hilbert space consisting of scalar valued holomorphic functions. This proof was re-
produced in [6]. However, his proof goes through for the vector valued case as well.
The restriction map can be used to show that the reproducing kernel JK(·, w)res for
(JM)res is JKres(·, w) = K(·, w)|Z , w ∈ Z.

Theorem 3.3 Let M be a Hilbert module over the algebra A(Ω) and M0 be the sub-
module of functions h such that ∂j

1h vanish on Z for 0 ≤ j ≤ k − 1. The module
(JM)res is equivalent to the quotient module (JM)q .

Proof: Since the reproducing kernel K0(·, w) admits the factorization (2.6), it fol-
lows that J0K(z, w) vanishes for all w ∈ Z. However, JK(·, w) = JqK(·, w)+J0K(·, w),
where JqK(·, w) denotes the reproducing kernel for the quotient module (JM)q. Hence
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it follows that JqK(·, w) = JK(·, w) for w ∈ Z. Note that for
∑k−1

j=0 ∂
j
1h⊗εj+1 ∈ (JM)q

and w ∈ Z, we have

k−1∑

j=0

∂j
1h⊗ εj+1

R→
k−1∑

j=0

〈
∂j

1h⊗ εj+1, JKq(·, w)εj+1

〉
εj+1

=
k−1∑

j=0

∂j
1h(w)εj+1.

Hence R is the restriction map on (JM)q. Since JqK(·, w) = JK(·, w) for w ∈ Z, it
follows that R(JqK(·, w)) = JK|res (·, w). Besides, R is injective on (JM)q. We may
therefore define an inner product on R{(JM)q} so as to make R an isometry. For
h ∈ (JM)q and w ∈ Z, then it follows that

〈
Rh, JK|res (·, w)x

〉
=

〈
h, JqK(·, w)x

〉
=

〈
h(w),x

〉
.

Thus the reproducing kernel for the space R{(JM)q} is JK|res (·, w), w ∈ Z. By our
construction R is an isometry from R{(JM)q} onto the Hilbert space (JM)res.

We point out that (see (3.4))

J∗f◦iJKres(·, w)x = JKres(·, w)(J f)(w)∗x, (3.5)

where i : Z → Ω is the inclusion map and w ∈ Z.
We only need to verify that R : (JM)q → (JM)res is a module map, that is,

Jf◦i ·R(h) = RP (Jf ·h) for all h ∈ (JM)q, where P denotes the orthogonal projection
onto the space (JM)q. Note that for w ∈ Z, we have

〈
h, J∗fPJqK(·, w)x

〉
=

〈
h, J∗fJK(·, w)x

〉

=
〈
h, JK(·, w)(J f)(w)∗x

〉

=
〈
(h)(w), (J f)(w)∗x

〉
.

¿From this calculation, it follows that
〈
PJf · h, JqK(·, w)x

〉
=

〈
(J f)(w) Jh(w),x

〉
. (3.6)

Further, for h ∈ (JM)q, we have

〈
Jf◦i ·Rh, JKres(·, w)x

〉
=

〈
Rh, J∗f◦iJKres(·, w)x

〉

=
〈
Rh, JKres(·, w)(J f)(w)∗x

〉

=
〈
h, JKq(·, w)(J f)(w)∗x

〉

=
〈
PJfh, JqK(·, w)x

〉

=
〈
PJfh, R

∗JKres(·, w)x
〉

=
〈
RPJfh, JKres(·, w)x

〉
.
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This calculation verifies that R is a module map and the proof is complete. 2

A special case of the following theorem was worked out by B. Bagchi and the second
author.

Theorem 3.4 The quotient module Mq is equivalent to the module (JM)res.

Proof: We have already shown thatMq and (JM)q are equivalent modules. Now
that we have proved (JM)q and (JM)res are also equivalent, it follows that Mq and
(JM)res are equivalent. 2

At this point, it may seem a little unnatural to consider (JM)res as a module over
the algebra A(Ω). We describe an alternative point of view.

Let
JA(Ω) = {J f : f ∈ A(Ω)} ⊆ A(Ω)⊗Mk(C). (3.7)

A multiplication on JA(Ω) is obtained by defining the product (J f ·J g)(z) def
= (J f)(z)·

(J g)(z), where · is the usual matrix product. The algebra JA(Ω) acts naturally on
JM via the map (Jf,h) 7→ (J f)h (see equation (2.8)). The restriction of the algebra
JA(Ω) to the hypersurface Z will be denoted by JA(Ω)res. Indeed, restricting the
map (Jf,h) 7→ (J f)h in both arguments to the hypersurface Z, it is easy to see
that (JM)res is a module over the restriction algebra JA(Ω)res. The inclusion map
i : Z → Ω induces a map i∗ : JA(Ω)→ JA(Ω)res defined by i∗(Jf) = (Jf) ◦ i. Finally,
if we think of (JM)res as a module over the algebra JA(Ω)res, then we may push it
forward to a module i∗(JM)res over the algebra JA(Ω) via the map

(Jf,h|Z)→ i∗(Jf) · h|Z , h ∈ JM, Jf ∈ JA(Ω).

Thus, we may push forward the module (JM)res, thought of as a module over the
algebra JA(Ω)res, to a module over the algebra JA(Ω), which can then be thought of
as a module over A(Ω).

Now, consider the module of holomorphic functions on Z taking values in Ck over
the algebra Ak(Z), where

Ak(Z) = {J f =




f0

...

. . . 0(
`
j

)
f`−j f0

. . .
fk−1 . . . f0




: f = (f0, . . . , fk−1) ∈ A(Z)⊗ Ck}.

If h is an arbitrary element of the module of holomorphic functions on Z taking values
in Ck, then the module action is given by the usual matrix multiplication J f ·h. It is
clear that JA(Ω)res = Ak(Z).

The preceding discussion together with Theorem 3.4 implies that the quotient mod-
ules that arise in our context (for fixed Ω, Z and k) are modules of holomorphic func-
tions on Z taking values in Ck over the algebra Ak(Z). However, the algebra A(Z)
sits inside Ak(Z) as diagonal elements. Hence any module over the algebra Ak(Z) is
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also a module over A(Z). We can therefore ask, if we restrict the action to this smaller
algebra, then whether the module lies in the class Bk(Z) (cf. [7]). In particular, we
ask if the quotient module equipped with the action of the smaller algebra A(Z) lies
in the class Bk(Z).

The discussions so far have led us to consider the following classes of modules:
(i) Mod(Ω): These are Hilbert spaces of holomorphic functions on Ω ⊆ Cm (with
bounded evaluation functionals) which are modules over the algebra A(Ω).

(ii) Mod
(k)
0 (Ω,Z): Submodules of modules in Mod(Ω) consisting of functions which

vanish to order k on a hypersurface Z ⊆ Ω.
(iii) Quotk(Ω,Z): Quotients of modules in Mod(Ω) by submodules of the type de-
scribed in (ii). Of course, these are modules over A(Ω).
(iv) Modk(Z): These modules are reproducing kernel Hilbert spaces of Ck valued
holomorphic functions on Z. They are modules over the algebra Ak(Z) which is a
homomorphic image of A(Ω) as indicated earlier.

A significant part of the foregoing discussion has been devoted to showing that
given a module in Quotk(Ω,Z), there corresponds a unitarily equivalent module in
Modk(Z).

The converse question may be termed a ‘dilation question’ since, in the language
of reproducing kernels, it corresponds to the following:

Assume we are given a module in Modk(Z) with (matrix valued) reproducing ker-
nel IK. Then, does there exist a module in Mod(Ω) (as in (i) above) with (scalar)
reproducing kernel K such that IK = JKres Z ?

Let M and M̃ be two Hilbert modules over the algebra A(Ω) with reproducing
kernels K and K̃ respectively. Assume further that both M and M̃ are in B1(Ω) (cf.
[7]).

As pointed out earlier, these modules give rise to trivial holomorphic hermitian
bundles E and Ẽ on Ω∗. The assumption that M is in the class B1(Ω) implies, in
particular,

1. Ew = ∩{ker(M∗
` − w̄`), 1 ≤ ` ≤ k}, where Ew is the fiber of the holomorphic

bundle E at w ∈ Ω∗ and M` is the operator of multiplication by w`

2. dim Ew = 1,

3. ∨{Ew : w ∈ Ω∗} =M.

The holomorphic frame for the bundle E (respectively, Ẽ) is s(w) = K(·, w̄) (respec-
tively, s̃(w) = K̃(·, w̄)) for w ∈ Ω∗. Similarly, the hermitian metric for the bundle E
(respectively, Ẽ) is K(w̄, w̄) (respectively, K̃(w̄, w̄)) for w ∈ Ω∗.

If T : M̃ → M is a module map ( T is a bounded operator intertwining the
two module actions ), then T ∗ ker(M∗

f − w) ⊆ ker(M̃∗
f − w). Hence T ∗K(·, w) =

ψ(w)K̃(·, w), for some function ψ : Ω→ C. If this operator is to be bounded then

((
ψ(wi)ψ(wj)K̃(wj, wi)

))
≤ C

((
K(wj, wi)

))
,
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for every finite set {w1, . . . , wn} ⊆ Ω and some positive constant C. Moreover,

(Tf)(w) =
〈
Tf,K(·, w)

〉
=

〈
f, T ∗K(·, w)

〉

=
〈
f, ψ(w)K̃(·, w)

〉
= ψ(w)f(w)

In particular, ψ̄ must be also holomorphic since both T h̃ = ψ̄h̃ and h̃ are holomorphic.
We obtain a bundle map Ψ : Ẽ → E which is merely multiplication by ψ(w) on the

fiber Ẽw, w ∈ Ω∗.
If T is also unitary, that is,M and M̃ are equivalent modules, then en = T ẽn is an

orthonormal basis for M whenever ẽn is an orthonormal basis for M̃. Therefore the
reproducing kernel K is of the form

K(z, w) =
∞∑

n=0

(T ẽn)(z)(T ẽn)(w)

=
∞∑

n=0

ψ(z)ẽn(z)ẽn(w)ψ(w)

= ψ(z)K̃(z, w)ψ(w).

Finally, note that if T is unitary then ψ(w) 6= 0 for w ∈ Ω.
This implies that the bundle map Ψ is isometric, that is, K(z, w) = ψ(z)K̃(w,w)ψ(w),

z, w ∈ Ω.

Theorem 3.5 If M and M̃ are equivalent modules in B1(Ω) and M0, M̃0 are the
submodules of functions vanishing to order k on Z, then the quotient modulesMq and

M̃q are also equivalent.

Proof: It follows from the preceding discussion that there exists a holomorphic
function η : Ω → C (η = ψ̄) such that Mη : M̃ → M is a unitary module map. We

also have the unitary module maps J :M→ JM and J̃ : M̃ → JM̃. The composite
map JMηJ̃

∗ : JM̃ → JM is h̃ 7→ J(ηh̃). Or, in other words, JMηJ
∗ = J η.

It is, of course, as easy to verify directly that this map is a unitary module map.
Since η does not vanish on Ω, the submodule (JM̃)0 is mapped onto (JM)0. Hence

the quotient modules (JM̃)q and (JM)q must also be equivalent. But these latter

modules are equivalent to M̃q andMq respectively by Lemma 3.1. This completes the
proof. 2

A simple example to illustrate the ideas above is the following:
Let M be the Hardy space H2(ID2). If ID2 is parameterized by coordinates z =

(z1, z2) ∈ C2, we choose Z to be the hypersurface defined by z1 = 0, that is, Z is a
disc parameterized by the co-ordinate z2. M0 is the set of functions in H2(ID2) which
vanish up to order k on Z.

The quotient module can then be identified with H2(ID) ⊗ Ck (ID here is parame-
terized by z2). If we think of an element of H2(ID)⊗ Ck as a vector of functions from
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H2(ID), the module actions of z1, z2 ∈ A(ID2) are defined by the following matrices:

z1 7→




0
1 0

1 0
0

. . .

0
0
1 0




z2 7→




z2

z2

z2

0

0
. . .

z2




Notice that z2 (and, in fact, any function of z2) acts by a scalar. This, as mentioned
in the introduction, is a general feature, that is, the action of A(Z) ⊆ Ak(Z) defined
above on (JM)q is a scalar action. The quotient module is naturally a module over
the algebra Ak(Z). As pointed out earlier, we can look at the restricted action of the
algebra A(Z) ⊆ Ak(Z) on the quotient module and ask whether it lies in the class
Bk(Z) as a module over this smaller algebra. That this is true for the Hardy space
example discussed above is a special case of a more general theorem.

Proposition 3.6 Assume that the reproducing kernel K has a diagonal power series
expansion, that is, for z, w ∈ Ω

K(z, w) =
∑

α≥0

Aα(z − Z)α(w −W )
α
,

for some Z,W ∈ Ω with Z1 = 0 = W1, where α = (α1, · · · , αm) ∈ Zm. Then the
quotient module (restricted to a module over A(Z)) lies in Bk(Z) ifM∈ B1(Ω) as we
have assumed.

Proof: It is easy to see, in this case, that JKres also has a diagonal Taylor expansion.
Further, the Taylor coefficients (which are now k×k matrices) are themselves diagonal.

Explicitly, if z̃ = (z2, · · · , zm), w̃ = (w2, · · · , wm), Z̃ = (Z2, · · · , Zm), W̃ =
(W2, · · · ,Wm), µ = (µ2, · · · , µm) ∈ Zm−1, then JKres has the Taylor expansion

JKres(z̃, w̃) =
∑

µ≥0

Dµ(z̃ − Z̃)µ(w̃ − W̃ )
µ
,

where Dµ is the (diagonal) matrix given by

(Dµ)ij = Ai,µ2,···,µmδij.

It follows, therefore (see [5]), that the co-ordinate functions of Z act on (JM)q by
weighted shift operators with weights determined by the Dµ’s.
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We then apply Theorem 5.4 in [5] in two stages. Since M ∈ B1(Ω) and K has
a diagonal Taylor expansion, the Taylor coefficients satisfy the inequality in part (b)
of that theorem. Consequently, the weights referred to above satisfy a correspond-
ing (operator) inequality. Another application of the same theorem (using the latter
inequality) ensures that (JM)q (as a module over A(Z)) lies in Bk(Z). 2

If, in fact, the quotient modules (as modules over A(Z)) lie in Bk(Z), we have the
following possible approach to the equivalence question:

If two quotient modules are equivalent, they must be equivalent as modules over
the subalgebra A(Z). The latter then becomes a question of equivalence in Bk(Z).
This question has been studied in [4].

For a complete answer to the equivalence question, we need to determine when there
is, among all the unitaries that implement the equivalence in Bk(Z), one that inter-
twines the (nilpotent) action of functions depending only on the ‘normal’ co-ordinate.
This question can be studied in a series of steps as follows:

Notice, firstly, that the action of zp
1 is given by a (k−p)-step nilpotent operator. The

requirement that the unitary which describes the Bk(Z) equivalence must intertwine
these powers of z1 translates into a sequence of conditions on the unitary. (For instance,
in the case k = 2, where only the first power of z1 is relevant, this requires that the
unitary is upper triangular with equal entries on the diagonal.)

We are thus led to the following vector bundle picture. If the quotient module lies
in Bk(Z), there is naturally associated a (rank k) bundle on Z. However, this bundle
now comes equipped with a collection of subbundles which together determine a flag
on each fiber. The full equivalence of the quotient modules is then characterised in
terms of the equivalence of these ‘flag bundles’.

Equivalence of flag bundles, at least formally like these, is considered and character-
ized by Martin and Salinas [10, Theorem 4.5]. We hope to explore possible implications
of their work for ours at a later time.

4 Module tensor products

The module action on JM defined by (f,h) 7→ (J f)h, f ∈ A(Ω),h ∈ JM, nat-
urally induces a module action on Ck which is merely given by the map (f,x) 7→
(J f)(w)x, x ∈ Ck, w ∈ Ω. The k - dimensional vector space Ck equipped with
this module action will be denoted by Ck

w. We point out that this action is somewhat
different from the one introduced in [3].

The module tensor product JM⊗A(Ω) Ck
w is the orthogonal complement of the

following subspace N in the Hilbert space JM ⊗ Ck
w. In fact, the subspace N is

left invariant by both Jf ⊗ I and I ⊗ (J f)(w). The module action is obtained by
compressing either Jf ⊗ I or I ⊗ (J f)(w) to the orthocomplement of the subspace

N = span
{ k∑

`=1

(Jf · h` ⊗ ε` − h` ⊗ (J f)(w) · ε`):

h` ∈ JM, ε` ∈ Ck are standard basis vectors and f ∈ A(Ω), 1 ≤ ` ≤ k
}
.
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The compression of I ⊗ (J f)(w) and Jf ⊗ I to N⊥ are equal. Let Jf ⊗A(Ω) I denote
this compression. The subspace N⊥ ⊆ JM⊗Ck

w, together with the action defined by
the operator Jf ⊗A(Ω) I, is a module over A(Ω), which is the localization JM⊗A(Ω) Ck

w

of the moduleM. The adjoint operators J∗f ⊗ I and I ⊗ (J f)(w)∗ leave the subspace
N⊥ invariant and both of them equal (Jf ⊗A(Ω) I)

∗. We will calculate I ⊗ (J f)(w)∗

on JM⊗A(Ω) Ck
w, which will then be related to the earlier work in [4].

Lemma 4.1 The module tensor product JM⊗A(Ω) Ck
w is spanned by the vectors ep in

JM⊗ Ck
w, where

ep(w) =
p∑

`=1

ap,`JK(·, w)εp−`+1 ⊗ ε`, ap,` =
(p− 1)!

(p− `)!(`− 1)!
, 1 ≤ p ≤ k.

The module action J∗f ⊗ I : JM⊗A(Ω) Ck
w → JM⊗A(Ω) Ck

w is given by (J∗f ⊗ I)(ep) =
∑p

`=1

〈
(J f)(w)∗εp, ε`

〉
e`.

Proof: During the course of this proof, w ∈ Ω is fixed and we write ep for ep(w).
By assuming that constants are in M, we have ensured that the rank of the module
M is 1. Then Lemma 5.11 from [7] implies that the dimension of JM⊗A(Ω) Ck

w is at
most k. Therefore, if ep ⊥ N for 1 ≤ p ≤ k then it will follow that {ep : 1 ≤ p ≤ k}
span JM⊗A(Ω) Ck

w (since the ep’s are linearly independent). We find that

〈 k∑

`=1

Jf · h` ⊗ ε` − h` ⊗ (J f)(w) · ε`, ep

〉

=
p,k∑

j=1,`=1

ap,j

{〈
h`, J

∗
fJK(·, w)εp−j+1

〉〈
ε`, εj

〉
−

〈
h`, JK(·, w)εp−j+1

〉〈
ε`, (J f)(w)∗εj

〉}

=
p∑

`=1

ap,`

〈
h`, JK(·, w)(J f)(w)∗εp−`+1

〉
−

p,k∑

j=1,`=1

ap,j

〈
h`(w), εp−j+1

〉〈
(J f)(w)ε`, εj

〉

=
p∑

`=1

ap,`

〈
h`(w), (J f)(w)∗εp−`+1

〉
−

p,k∑

j=1,`=1

ap,j

〈
h`(w), εp−j+1

〉〈
(J f)(w)ε`, εj

〉

=
p∑

`=1

{ p∑

j=1

〈
h`(w), εj

〉(
ap,`

〈
(J f)(w)εj, εp−`+1

〉
− ap,p−j+1

〈
(J f)(w)ε`, εp−j+1

〉)}
.

It is easy to verify that ap,p−j+1

〈
(J f)(w)ε`, εp−j+1

〉
= ap,`

〈
(J f)(w)εj, εp−`+1

〉
. Hence

it follows that ep ⊥ N , 1 ≤ p ≤ k.
Now we calculate I ⊗ (J f)(w)∗ which is equal to J∗f ⊗ I on N⊥.

(I ⊗ (J f)(w)∗)(ep) =
p∑

`=1

ap,`JK(·, w)εp−`+1 ⊗ (J f)(w)∗ε`

=
p,∑̀

`,j=1

ap,`

〈
(J f)(w)∗ε`, εj

〉
JK(·, w)εp−`+1 ⊗ εj
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=
p−1∑

j=0

p−j∑

`=1

ap,`+j

〈
(J f)(w)∗ε`+j, ε`

〉
JK(·, w)εp−j−`+1 ⊗ ε`.

We verify that

ap,`+j

〈
(J f)(w)∗ε`+j, ε`

〉
=

(p− 1)!

(p− `− j)!(`+ j − 1)!

(`+ j − 1)!

j!(`− 1)!
(∂jf)(w)

= ap−j,`
(p− 1)!

(p− j − 1)!

(∂jf)(w)

j!
.

Consequently,

(I ⊗ (J f)(w)∗)(ep) =
p−1∑

j=0

(∂jf)(w)

j!

(p− 1)!

(p− j − 1)!
ep−j

=
p∑

`=1

〈
(J f)(w)∗εp, ε`

〉
e`.

This completes the proof. 2

We emphasize that I ⊗ J f(w)∗ equals (Jf ⊗A(Ω) I)
∗. Recall that the vectors sp =

JK(·, w)εp span the fiber JEw at w ∈ Ω∗ of the bundle JE associated with the module
JM. The module action on this fiber was shown to be

J∗f sp = JK(·, w)(J f)(w)∗εp

=
p∑

`=1

〈
(J f)(w)∗εp, ε`

〉
s`. (4.1)

The localizations JM⊗A(Ω) Ck
w also give rise to a hermitian holomorphic bundle

JlocE over Ω∗ via the holomorphic frame {ep(w) : w ∈ Ω∗, 1 ≤ p ≤ k}. The preced-
ing lemma says that there is a natural (adjoint) action of the algebra A(Ω) on each

fiber ∨{ep(w) : w ∈ Ω∗, 1 ≤ p ≤ k}, namely, ep(w) → ∑p
`=1

〈
(J f)(w)∗εp, ε`

〉
e`(w).

However, the natural metric
((〈
ep, eq

〉))k

p,q=1
on JlocE is not the same as that of JE -

although they are related. To unravel this relationship, we set
((
JlocK(z, w)

))
p,q

=
〈
eq(z), ep(w)

〉
, 1 ≤ p, q ≤ k,

and observe that
〈
eq(w), ep(z)

〉
=

p∑

`=1

q∑

m=1

ap,`aq,m

〈
JK(·, w)εq−`+1, JK(·, z)εp−m+1

〉
δ`m

=
k∑

`=1

ap,`aq,`

((
Jk−`+1K(z, w)

))
p−`+1,q−`+1

=
k∑

`=1

am+`−1,`an+`−1,`

((
Jk−`+1K(z, w)

))
m,n

, 1 ≤ n,m ≤ k − l + 1,
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where

((
Jk−`+1K(z, w)

))
p−`+1,q−`+1

=





((
JK(z, w)

))
p−`+1,q−`+1

if p− `+ 1 ≥ 1

and q − `+ 1 ≥ 1

0 otherwise.

It follows that

JKloc(z, w)
def
=

((〈
ep(w), eq(z)

〉))

=
k∑

`=1

D(`)Jk−`+1K(z, w)D(`), (4.2)

where D(`) is a diagonal matrix with diagonal entries D(`)m,m = am+`−1,`.
Now consider the map Jk−`+1 : M → M⊗ Ck given by h → ∑k−`

p=0 ap+`−1,`∂
p
1h ⊗

εp+`. Since Jk−`+1 is injective, we may choose an inner product on Jk−`+1M which
makes Jk−`+1 an unitary map. As before (see Proposition 2.3), it is easy to see
that the reproducing kernel for this Hilbert space is D(`)Jk−`+1K(z, w)D(`). It fol-
lows that D(`)Jk−`+1K(z, w)D(`) is positive definite. Consequently, JlocK(w,w) =∑k

`=1D(`)Jk−`+1K(z, w)D(`) is positive definite. Hence there is a functional Hilbert
space JlocM consisting of holomorphic functions on Ω associated with the vector bundle
JlocE with reproducing kernel JlocK as described in Section 2.

Since Jk−`+1M∩ Jk−m+1M = {0}, 1 ≤ ` 6= m ≤ k, we can form the internal direct
sum ⊕k

`=1Jk−`+1M.

Proposition 4.2 The reproducing kernel for the Hilbert space ⊕k
`=1Jk−`+1M is

k∑

`=1

D(`)Jk−`+1K(z, w)D(`)

and
JlocM = ⊕k

`=1Jk−`+1M.

Proof: Let {e`,j : j ∈ IN} be an orthonormal basis for the Hilbert space Jk−`+1M.
It follows that {e`,j : j ∈ IN, 1 ≤ ` ≤ k} is an orthonormal basis for the Hilbert space
⊕k

`=1Jk−`+1M. Therefore (see Lemma 2.2), the reproducing kernel for this Hilbert
space is

k∑

`=1

∞∑

j=0

e`,j(z)e`,j(w)∗ =
k∑

`=1

Jk−`+1K(z, w).

Since the reproducing kernel uniquely determines a Hilbert space, and both JlocM and
⊕k

`=1Jk−`+1M have the same reproducing kernel, it follows that JlocM = ⊕k
`=1Jk−`+1M.

2

Recall that (J∗f ⊗ I)(ep) =
∑p

`=1

〈
(J f)(w)∗εp, ε`

〉
e`. As discussed in Section 2,

the span of {ep(w) : w ∈ Ω∗} and the range of JlocK(·, w) are isomorphic via the map
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∑k
p=1 ep(w)xp → K(·, w)x. Thus the algebra A(Ω) acts on the linear span of the vectors
{JlocK(·, w)ε` : 1 ≤ ` ≤ k}, via (J f)(w)∗. The Hilbert space JlocM is the closed linear
span of ranK(·, w). Thus we find that A(Ω) acts on a dense linear subspace of JlocM.
Since we are assuming thatM is a Hilbert module over A(Ω), it follows that Mf defines
a bounded module map via (f, h) → Mfh. However, the fact that Jk−`+1 is unitary
implies Jk−`+1MfJ

∗
k−`+1 defines a bounded module map on Jk−`+1M, for 1 ≤ ` ≤ k.

Consequently, the sum
∑k

`=1 Jk−`+1MfJ
∗
k−`+1 defines a bounded module map on JlocM.

We observe that the action of A(Ω) obtained this way is identical (on a dense subspace)
with the one we have obtained via the localization. Thus, equipped with this module
action, JlocM becomes a bounded module over the algebra A(Ω).

We find that in the orthogonal decomposition of JlocM, described in Proposition
4.2, the first piece, namely, JkM equals JM, and that the first term in the sum (4.2)
is JK. Besides, the module action described in the previous paragraph leaves the
subspace JkM invariant. Finally, the action of A(Ω) restricted to the sub-module
JkM is the same as Jf . This discussion proves the following theorem.

Theorem 4.3 The modules P (JlocM) and JM are isomorphic, where P is the or-
thogonal projection of JlocM on JkM. The quotient module Mq is isomorphic to the
module RP (JlocM), where R denotes restriction to the hypersurface Z.

In the case k = 1, which was discussed in [6], it was possible to identify the quotient
module without the auxiliary construction involving the jets. Indeed, the quotient
module was obtained from the localization simply by restricting. However, we have seen
above that if k > 1, then to construct the quotient module, we cannot simply restrict
the bundle obtained from the localization. Let Gr(JlocM, k) denote the Grassmanian
manifold of rank k, the set of all k - dimensional subspaces of JlocM. As pointed out in
[4, section 2], the bundle JlocE is the pull-back of the tautological bundle S(JlocM, k) on
the Grassmanian Gr(JlocM, k) via the map t : Ω∗ → G(JlocM, k), t(w) = JlocK(·, w)x,
x ∈ Ck. Clearly, the projection operator P : JlocM→ JkM induces a map, which we
denote again by P , fromGr(JlocM, k) toGr(JkM, k). The pull-back of the tautological
bundle S(JkM, k) on the Grassmanian Gr(JkM, k) under the map P ◦ t : Ω∗ →
Gr(JkM, k) will be denoted by PJlocE . Similarly, we obtain the bundles Jloc,0E and
Jloc,qE from the localization of the modules (JM)0 and (JM)q respectively. As shown
in section 2, there exists a holomorphic hermitian bundle JE associated with the module
JM. What we have established above is the fact that the bundle JE is identical with
the bundle P (JlocE). The fact thatMq is isomorphic to (JM)res shows that the bundle
associated with the quotient moduleMq is the restriction of PJlocE to the zero variety
Z.

Again, in the case k = 1, it was shown in [6], that invariants for the quotient module
may be defined via the map

X(w)
def
= X ⊗A(Ω) I :M0 ⊗A(Ω) Cw →M⊗A(Ω) Cw,

where X : M0 → M is the inclusion. One of the key results in that paper was that
if K(K) and K(K0) represent the curvatures determined by the metrics K and K0
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respectively, then the alternating sum

m∑

i,j=1

∂2

∂wi∂w̄j
(X(w)∗X(w))dwi ∧ dw̄j −K(K0) +K(K)

represents the fundamental class [Z]. Even in the case k > 1, if we localize using the
one dimensional module Cw, then it is easy to see, using the factorization (2.6), that
the alternating sum defined above represents k[Z].

It was hoped that we will be able to find an analogue of the alternating sum dis-
cussed above corresponding to each of the localizations using higher dimensional mod-
ules Cj

w, 1 ≤ j ≤ k. Some results of Donaldson (cf. [11], page 24, eqn.(1.9.1)) helped in
the identification of such an alternating sum. We suspect that it is enough to consider
the case j = k. This remark is justified, to some extent, by the theorem at the end of
this paper.

For any module map X : (JM)0 → JM, define

X̃(w)
def
= X ⊗A(Ω) I : (JM)0 ⊗A(Ω) Ck

w → JM⊗A(Ω) Ck
w,

where X̃(w) is obtained by first restricting the map X⊗I to (JM)0⊗A(Ω) C
k
w and then

compressing to JM⊗A(Ω)C
k
w. However, we can restrict X̃(w) further to P ((JM)0⊗A(Ω)

Ck
w) and then compress to P (JM⊗A(Ω) Ck

w). Let X(w) = PX̃(w)R, where R denotes
the restriction. Assume that X is the inclusion map. Then X(w)∗ is represented by the
identity matrix with respect to the basis {J0K(·, w)εi : 1 ≤ i ≤ k} in (JM)0⊗A(Ω) Ck

w

and the corresponding basis {JK(·, w)εi : 1 ≤ i ≤ k} in JM⊗A(Ω) Ck
w. Let V and W

be finite dimensional vector spaces with inner products P and Q respectively, that is,〈
u, v

〉
V

= v̄trPu and
〈
w, z

〉
W

= z̄trQw. If T : (V, P ) → (W,Q) is a linear map with

matrix representation τ then T ∗ = P−1τ̄ trQ. From this remark, it follows that the
X(w) is represented by the matrix JK(w,w)−1J0K(w,w). Therefore, X(w)∗X(w) =
JK(w,w)−1J0K(w,w).

Let E be a holomorphic bundle with a hermitian metric H. Let θ(H) denote
the unique connection compatible with the metric H and let ∂H denote the covari-
ant differentiation with respect to the metric connection θ(H). In matrix notation,
∂H(X) = ∂X +Xθ(H)− θ(H)X. Let H0 be another metric on E and set h = H−1H0.
We note that

θ(H0)− θ(H) = H−1
0 ∂H0 −H−1∂H

= h−1H−1∂(Hh)−H−1∂H

= h−1H−1
(
(∂H)h+H∂h

)
−H−1∂H

= h−1H−1∂Hh+ h−1∂h−H−1∂H

= h−1
{
H−1∂Hh+ ∂h− hH−1∂H

}

= h−1∂Hh.

It follows that
−∂̄

(
h−1∂Hh

)
= K(H0)−K(H),
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where K(H) = −∂(H−1∂̄H) (resp. K(H0)) denotes the curvature of the bundle E with
respect to the metric H (resp. H0).

Theorem 4.4 The alternating sum

−∂̄
(
(X∗X)−1∂JK(X∗X)

)
+K(JK)−K(J0K)

is zero when evaluated on any open set U ⊆ Ω which does not intersect Z.

Proof: Recall that the adjoint of the map X⊗A(Ω) I : (JM)0⊗A(Ω)C
k
w → JM⊗A(Ω)

Ck
w identifies (as holomorphic bundles) the two bundles P (JlocE) = JE and P (JlocE)0 =

(JE)0 obtained from localizing (JM)0. Let IE denote either of these bundles. Since the
identification via X∗⊗A(Ω) I is not isometric, it is clear that IE has two natural metrics
on it. One of these is the metric JK and the other is J0K. The proof is completed by
setting H0 = J0K and H = JK. In this case, h(w) = X(w)∗X(w), where, as before,
X(w) = P (X ⊗A(Ω) I)R. 2

Unfortunately, we have not been able to evaluate the alternating sum in the theorem
above, as a (1, 1) form with distributional coefficients on all of Ω. Nevertheless, we
are able to evaluate a certain alternating sum obtained naturally by considering the
determinant bundles. Recall that to any rank k bundle E , we may associate a line
bundle det E , called the determinant bundle. If gUV denotes the transition functions
for E , then the transition functions det gUV determine det E . If G denotes the metric
on E , then the metric on the determinant bundle det E is detG.

Consider the bundle det IE with the two metrics det JK and det J0K. Clearly,
the metric det J0K vanishes on Z. However, the curvature of det IE with respect to
det J0K can be calculated on any open subset of Ω which does not intersect Z. Since the
coefficient of the curvature form is a real analytic function on Ω, it is enough to calculate
it on any open set. The factorization (2.6) implies that the curvature K(det J0K) =∑m

i,j=1
∂2

∂wi∂w̄j
log det(J χ)dwi ∧ dw̄j. Also, det(X∗X) = (det JK)−1|ϕ|2k det(J χ). It

follows that the alternating sum in the following theorem is nothing but k times the
current

m∑

i,j=1

∂2

∂wi∂w̄j
log |ϕ|2dwi ∧ dw̄j.

Since the Poincare-Lelong formula [8, p. 388] asserts that the current displayed above
represents the fundamental class [Z] of the hypersurface Z, the proof of the theorem
below is complete.

Theorem 4.5 The alternating sum

−∂̄∂ log(detX∗X) +K(det JK)−K(det J0K)

represents k[Z].
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