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Abstract. A natural class of weighted Bergman spaces on the symmetrized polydisc is isometrically
embedded as a subspace in the corresponding weighted Bergman space on the polydisc. We find an
orthonormal basis for this subspace. It enables us to compute the kernel function for the weighted
Bergman spaces on the symmetrized polydisc using the explicit nature of our embedding. This family
of kernel functions include the Szegö and the Bergman kernel on the symmetrized polydisc.

1. Introduction

Let ϕi, i ≥ 0, be the elementary symmetric function of degree i, that is, ϕi is the sum of all
products of i distinct variables zi so that ϕ0 = 1 and

ϕi(z1, . . . , zn) =
∑

1≤k1<k2<...<ki≤n
zk1 · · · zki .

For n ≥ 1, let s : Cn −→ Cn be the function of symmetrization given by the formula

s(z1, . . . , zn) =
(
ϕ1(z1, . . . , zn), . . . , ϕn(z1, . . . , zn)

)
.

The image Gn := s(Dn) under the map s of the unit polydisc Dn := {z ∈ Cn : ‖z‖∞ < 1} is known
as the symmetrized polydisc. The restriction map s|res Dn : Dn → Gn is a proper holomorphic map
[6]. The Bergman kernel for the symmetrized polydisc is computed explicitly in [4]. It is obtained
from the transformation rule for the Bergman kernel under proper holomorphic maps [1, Theorem
1].

Here we realize (isometrically) the Bergman space A2(Gn) of the symmetrized polydisc as a sub-
space of the Bergman space A2(Dn) on the polydisc using the symmetrization map s. Indeed, the
map Γ : A2(Gn)→ A2(Dn) defined by the formula

(Γf)(z) = (f ◦ s)(z)Js(z), z ∈ Dn,

where Js is the complex Jacobian of the map s, is an isometric embedding. The image ran Γ ⊆ A2(Dn)
consists of anti-symmetric functions:

ran Γ := {f : f(zσ) = sgn(σ)f(z), σ ∈ Σn , f ∈ A2(Dn)},
where Σn is the symmetric group on n symbols. The range of Γ is a subspace of A2(Dn), we let
A2

anti(Dn) be this subspace. An orthonormal basis of A2
anti(Dn) may then be transformed in to an

orthonormal basis of the A2(Gn) via the unitary map Γ∗. It is then possible to compute the Bergman
kernel for the symmetrized polydisc Gn by evaluating the sum∑

k≥0

ek(z)ek(w), z,w ∈ Gn,

for some choice of an orthonormal basis in A2(Gn).
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This scheme works equally well for a class of weighted Bergman spaces A(λ)(Dn), λ > 1, determined
by the kernel function

B(λ)
Dn (z,w) =

n∏
i=1

(1− ziw̄i)−λ, z = (z1, . . . , zn), w = (w1, . . . , wn) ∈ Dn,

defined on the polydisc and the corresponding weighted Bergman spaces A(λ)(Gn) on the symmetrized
polydisc.

The limiting case of λ = 1, as is well-known, is the Hardy space on the polydisc. We show that
the reproducing kernel for the Hardy space of the symmetrized polydisc is of the form

S(1)
Gn(s(z), s(w)) =

n∏
i,j=1

(1− ziw̄j)−1, z,w ∈ Dn.

This is a consequence of the determinantal identity [5, (4.3), pp. 63]. Indeed, along the way, we
obtain a generalization of this well-known identity. We also point out that the Hardy kernel is not
a power of the Bergman kernel unlike the case of bounded symmetric domains.

2. Weighted Bergman spaces on the symmetrized polydisc

For λ > 1, let dV (λ) be the probability measure
(
λ−1
π

)n(∏n
i=1(1− ri)λ−2ridridθi

)
on the polydisc

Dn. Let dV (λ)
s be the measure on the symmetrized polydisc Gn obtained by the change of variable

formula: ∫
Gn
f dV

(λ)
s =

∫
Dn

(f ◦ s) |Js|2dV (λ), λ > 1

where Js(z) =
∏

1≤i<j≤n(zi−zj) is the complex Jacobian of the symmetrization map s. Let ‖Js‖2λ =∫
Dn |Js|2dV (λ) be the the norm of the jacobian determinant Js in the Hilbert space L2(Dn, dV (λ)).

By a slight abuse of notation, we let dV (λ)
s be the measure ‖Js‖−2

λ dV
(λ)
s , λ > 1, on the symmetrized

polydisc Gn. The weighted Bergman space A(λ)(Gn), λ > 1, on the symmetrized polydisc Gn is the
subspace of the Hilbert space L2(Gn, dV

(λ)
s ) consisting of holomorphic functions. It coincides with

the usual Bergman space for λ = 2. The norm of f ∈ A(λ)(Gn) is given by ‖f‖2 =
∫

Gn |f |
2dV

(λ)
s . We

have normalized the volume measure on Gn to ensure ‖1‖ = 1.
For λ > 1, let Γ : A(λ)(Gn) −→ A(λ)(Dn) be the operator defined by the rule:

(Γf)(z) = ‖Js‖−1
λ Js(z)(f ◦ s)(z), f ∈ A(λ)(Gn), z ∈ Dn.

It is clear from the definition of the norm in A(λ)(Gn) that Γ is an isometry. The image of A(λ)(Gn)
under the isometry Γ in A(λ)(Dn) is the subspace A(λ)

anti(Dn) of anti-symmetric functions since Js(zσ) =
sgn(σ)Js(z), σ ∈ Σn. Every function g in A(λ)

anti(Dn) is of the form Jsh for some symmetric function
h. For instance, take h = J−1

s g on the open set {(z1, . . . , zn) ∈ Dn : zi 6= zj , i 6= j}. It follows that
g = Js(f ◦ s) for some function f defined on Gn. Therefore, the range of the isometry coincides with
the subspace A(λ)

anti(Dn). Now, it is easily verified that Γ∗g = ‖Js‖λ f , where f is chosen satisfying
g(z) = Js(z)(f ◦ s)(z). The operator Γ : A(λ)(Gn) −→ A(λ)

anti(Dn) is evidently unitary. The Hilbert
spaces A(λ)(Gn), λ > 1, are the weigheted Bergman spaces on the symmetrized polydisc Gn.

Since the subspace A(λ)
anti(Dn) is invariant under the multiplication by the elementary symmetric

function ϕi, 1 ≤ i ≤ n, we see that it admits a module action via the map

(p, f) 7→ p(ϕ1, . . . , ϕn)f, f ∈ A(λ)
anti(D

n), p ∈ C[z]

over the polynomial ring C[z]. The polynomial ring acts naturally via multiplication by the coor-
dinate functions on the Hilbert space A(λ)(Gn) making it a module over the polynomial ring C[z].
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The unitary operator Γ intertwines the multiplication by the elementary symmetric functions on
the Hilbert space A(λ)

anti(Dn) with the multiplication by the co-ordinate functions on A(λ)(Gn). Thus
A(λ)(Gn) and A(λ)

anti(Dn) are isomorphic as modules via the unitary map Γ. Moreover, since A(λ)(Gn)
is a submodule of the L2(Gn, dV

(λ)
s ), it follows that the map

(p, f) 7→ p · f, f ∈ A(λ)(Gn), p ∈ C[z]

is contractive. It therefore extends to a continuous map of the function algebra A(Gn) obtained by
taking the closure of the polynomial ring with respect to the supremum norm on the symmetrized
poly-disc.

2.1. Orthonormal basis and kernel function. A partition p is any finite sequence p := (p1, . . . , pn)
of non-negative integers in decreasing order, that is,

p1 ≥ · · · ≥ pn.

We let [n] denote the set of all partitions of size n. If a partition p also has the the property
p1 > p2 > · · · > pn ≥ 0, then we may write p = m + δ, where m is some partition in [n] and
δ = (n− 1, n− 2, . . . , 1, 0). Let [[n]] be the set of all partitions of the form m+ δ for m ∈ [n].

Let zm := zm1
1 · · · zmnn , m ∈ [n], be a monomial. Consider the polynomial am obtained by

anti-symmetrizing the monomial zm:

am(z) :=
∑
σ∈

P
n

sgn(σ) zmσ ,

where zmσ = z
mσ(1)

1 · · · zmσ(n)
n . Thus for any p ∈ [[n]], we have

ap(z) = am+δ(z) =
∑
σ∈

P
n

sgn(σ) z(m+δ)σ ,

m ∈ [n] and it follows that

ap(z) = am+δ(z) = det
(

((zpji ))ni,j=1

)
, p ∈ [[n]].

The following Lemma clearly shows that the functions ap, p ∈ [[n]], are orthogonal in the Hilbert
space A(λ)(Dn).

Lemma 2.1. The set S := {mσ(k)−m′ν(k) : σ, ν ∈ Σn,mi > mj ,m
′
i > m′j for i < j,m1 6= m′1, 1 ≤ k ≤

n} 6= {0}.

Proof. If there exist σ, ν ∈ Σn such that σ(k) = ν(k) = 1 for some k, 1 ≤ k ≤ n, then mσ(k)−m′ν(k) =
m1 −m′1 6= 0. Therefore, in this case, S 6= {0}.

Now suppose that there exists no k, 1 ≤ k ≤ n, for which σ(k) = ν(k) = 1. In this case, if
possible, let S = {0}. Fix σ, ν ∈ Σn. Then there exists k such that σ(k) = 1 and ν(k) = j > 1. Now,
mσ(k) −m′ν(k) = m1 −m′j . Pick k′ 6= k such that σ(k′) = j, ν(k′) = `, ` 6= j. Thus mσ(k′) −m′ν(k′) =
mj − m′`. Choose k′′ 6= k such that ν(k′′) = 1, σ(k′′) = r > 1 and mσ(k′′) − mν(k′′) = mr − m′1.
However, we have m1 − m′j = mj − m′` = mr − m′1 = 0. Clearly, mr = m′1 > m′j = m1. Hence
mr > m1 with r > 1, which is a contradiction. �

For λ > 1, the preceding Lemma says that the vectors zpσ are orthogonal, and hence the set
{ap : p ∈ [[n]]} consists of mutually orthogonal vectors in A(λ)(Dn). The linear span these vectors is
dense in the Hilbert space A(λ)

anti(Dn). For p = (p1, . . . , pn) ∈ [[n]]. The norm of the vector ap is easily
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calculated:

‖ap‖A(λ)(Dn) =
∥∥∥det

(
((zpji ))ni,j=1

)∥∥∥
A(λ)(Dn)

=
∥∥∥ ∑
σ∈Σn

sgn(σ)
n∏
k=1

z
pσ(k)

k

∥∥∥
A(λ)(Dn)

=

√
n!p!
(λ)p

,

where p! =
∏n
j=1mj ! and (λ)p =

∏n
j=1(λ)mj . Putting cp =

√
(λ)p

n!p! , we see that

{ep = cp ap : p ∈ [[n]]}

is an orthonormal basis for A(λ)
anti(Dn). So the reproducing kernel K(λ)

anti for A(λ)
anti(Dn) is given by

K
(λ)
anti(z,w) =

∑
p∈[[n]]

ep(z)ep(w), for z,w ∈ Dn.

For all σ ∈ Σn, we have eσ(p)(z)eσ(p)(w) = ep(z)ep(w), z,w ∈ Dn. Therefore, it follows that

K
(λ)
anti(z,w) =

∑
p∈[[n]]

ep(z)ep(w) =
1
n!

∑
p≥0

ep(z)ep(w),(2.1)

where p ≥ 0 stands for all multi-indices p = (p1, . . . , pn) ∈ Zn with the property that each pi ≥ 0 for
1 ≤ i ≤ n.

Proposition 2.2. The reproducing kernel K(λ)
anti is given explicitly by the formula:

K
(λ)
anti(z,w) =

1
n!

det
(((

(1− zjw̄k)−λ
))n
j,k=1

)
, z,w ∈ Dn.

Proof. For z,w in Dn, we have∑
p≥0

ep(z)ep(w) =
1
n!

∑
p≥0

(λ)p
p!

det
(

((zpjk ))nj,k=1

)
det
(

((w̄pjk ))nj,k=1

)
=

1
n!

∑
p≥0

(λ)p
p!

( ∑
σ∈Σn

sgn(σ)
n∏
i=1

z
pσ(i)

i

)( ∑
ν∈Σn

sgn(ν)
n∏
i=1

w̄piν(i)

)
=

1
n!

∑
p≥0

(λ)p
p!

∑
σ,ν∈Σn

sgn(σ)sgn(ν)
n∏
i=1

(ziw̄νσ(i))
pσ(i)

=
1
n!

∑
σ,ν∈Σn

sgn(νσ)
∑
p≥0

(λ)p
p!

n∏
i=1

(ziw̄νσ(i))
pσ(i)

=
1
n!

∑
σ,ν∈Σn

sgn(νσ)
n∏
i=1

(1− ziw̄νσ(i))
−λ

=
1
n!

∑
ψ∈Σn

sgn(ψ)
∑
νσ=ψ

σ,ν∈Σn

n∏
i=1

(1− ziw̄νσ(i))
−λ

=
∑
ψ∈Σn

sgn(ψ)
n∏
i=1

(1− ziw̄ψ(i))
−λ

= det
(

(((1− zjw̄k)−λ))nj,k=1

)
The desired equality follows from (2.1). �
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2.2. Schur function. The determinant function am+δ is divisible by each of the difference zi − zj ,
1 ≤ i < j ≤ n and hence by the product∏

1≤i<j≤n
(zi − zj) = det

(
((zn−ji ))ni,j=1

)
= aδ(z).

The quotient Sp := am+δ/aδ, p = m+ δ, is therefore well-defined and is called the Schur function
[5, pp. 40]. The Schur function Sp is symmetric and defines a function on the symmetrized polydisc
Gn. Since the Jacobian of the map s : Dn → Gn coincides with aδ, it follows from Lemma 2.1 that
the Schur functions {Sp := am+δ/aδ : p ∈ [[n]]} is a set of mutually orthogonal vectors in A(λ)(Gn).
The linear span of these vectors is dense in A(λ)(Gn). Also, the norms of these vectors coincide with
those of ap in A(λ)(Gn), modulo the normalizing constant ‖Js‖λ, via the unitary map Γ. Hence

‖Sp‖ =
√

n!p!
‖Js‖λ(λ)p

, p ∈ [[n]]. The set {êp = cp Sp : p ∈ [[n]]} is an orthonormal basis for A(λ)(Gn),

where cp =
√
‖Js‖λ(λ)p

n!p! . Thus we have proved:

Theorem 2.3. For λ > 0, the reproducing kernel B(λ)
Gn for the weighted Bergman space A(λ)(Gn) on

the symmetrized poly-disc is given by the formula:

B(λ)
Gn(s(z), s(w)) =

∑
p∈[[n]]

c2
p Sp(z)Sp(w)(2.2)

=
‖Js‖2λ
n!

det
(

(((1− zjw̄k)−λ))nj,k=1

)
aδ(z)aδ(w)

(2.3)

for z,w in Dn.

The case λ = 2 corresponds to the Bergman space on the symmetrized polydisc. In this case,
‖Js‖2 = 1 and the formula for the the Bergman kernel, except for the constant factor 1

n! , was found
in [4]. (The factor 1

n! appears in our formula because we have chosen the normalization ‖1‖ = 1 for
the constant function 1 in the Hilbert space A(λ)(Gn). However, as we will see below, it disappears
for the Hardy space on the symmetrized polydisc Gn.) However, the methods of this paper are very
different form that of [4], and we hope it sheds some light on the nature of these kernel functions.

Corollary 2.4. The Bergman kernel on the symmetrized polydisc in C2 is given by the formula

B(2)
Gn(u,v) =

1
2

2(1 + u2v̄2)− u1v̄1

((1− u2v̄2)2 − (u1 − u2v̄1)(v̄1 − v̄2u1))2
,

u = (u1, u2),v = (v1, v2) ∈ Gn.

This corollary gives an explicit formula for the Bergman kernel function for the symmetrized
polydisc which is independent of the symmetriztion map s. It is possible to write down similar
formulae for n > 2 using the Jacob-Trudy identity [3, pp. 455].

3. The Hardy space and the Szegö kernel for the symmetrized polydisc

Let dΘ be the normalized Lebesgue measure on the torus Tn, where T = {α : |α| = 1} is the unit
circle. Let dΘs be the measure on the symmetrized polydisc Gn obtained by the change of variable
formula: ∫

∂Gn
f dΘs =

∫
Tn

(f ◦ s) |Js|2dΘ,

where, as before, Js(z) is the complex Jacobian of the symmetrization map s. The Hardy space
H2(Gn) on the symmetrized polydisc Gn consists of holomorphic functions on Gn with the property:

sup 0<r<1

∫
Tn
|f ◦ s(r eiΘ)|2|Js(r eiΘ)|2dΘ <∞, eiΘ ∈ Tn.
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We set the norm of f ∈ H2(Gn) to be

‖f‖ = ‖Js‖−1
{

sup0<r<1

∫
Tn
|f ◦ s(r eiΘ)|2|Js(r eiΘ)|2dΘ

}1/2
,

where ‖Js‖2 =
∫

Tn |Js|2dΘ. This ensures, as before, ‖1‖ = 1. Let H2(Dn) be the Hardy space on the
polydisc Dn. The operator Γ : H2(Gn) −→ H2(Dn) given by Γ(f) = ‖Js‖−1Js (f ◦s) for f ∈ H2(Gn)
is then easily seen to be an isometry. The subspace of anti-symmetric functions H2

anti(Dn) in the
Hardy space H2(Dn) coincides with the image of H2(Gn) under the isometry Γ. Thus the operator
Γ : H2(Gn) −→ H2

anti(Dn) is onto and therefore unitary.
The functions ap, p ∈ [[n]] continue to be an orthogonal spanning set for the subspace H2

anti(Dn).
All of the vectors ap have the same norm, namely,

√
n!. Consequently, the set of vectors {ep(z) :=

1√
n!
ap(z) : p ∈ [[n]]} is an orthonormal basis for the subspace H2

anti(Dn) of the Hardy space on

the polydisc, while the set {êp := ‖Js‖√
n!
Sp : p ∈ [[n]]} forms an orthonormal basis for the Hardy

space H2(Gn) of the symmetrized polydisc Gn via the unitary map Γ. However, ‖Js‖ =
√
n! and

consequently, êp = Sp. Thus computations similar to the case λ > 1 yields an explicit formula for
the reproducing kernel K(1)

anti(z,w) of the subspace H2
anti(Dn). Indeed,

K
(1)
anti(z,w) =

1
n!

det
(

(((1− zjw̄k)−1))nj,k=1

)
.

This is the limiting case, as λ→ 1.
Let SGn be the Sz̈ego kernel for the symmetrized polydisc Gn. Clearly,

SGn(s(z), s(w)) =
det
(

(((1− zjw̄k)−1))nj,k=1

)
Js(z)Js(w)

, z,w ∈ Dn.

Now, using the well-known identity due to Cauchy [5, (4.3) pp 63], we have

SGn(s(z), s(w)) =
∑
p∈[[n]]

Sp(z)Sp(w) =
n∏

j,k=1

(1− zjw̄k)−1, z,w ∈ Dn.

Therefore, we have a formula for the Sz̈ego kernel of the symmetrized polydisc Gn, which we sepa-
rately record below.

Theorem 3.1. The Sz̈ego kernel SGn of the symmetrized polydisc Gn is given by the formula

SGn(s(z), s(w)) =
n∏

j,k=1

(1− zjw̄k)−1, z,w ∈ Dn.

4. An alternative approach to the computation of the kernel function

Recall that the weighted Bergman space A(λ)(Dn) on the polydisc Dn is the n-fold tensor product
⊗ni=1A(λ)(D) of the weighted Bergman spaces A(λ)(D) on the unit disc D. The equivalence class
Σ̂n of finite dimensional irreducible representations of the permutation group Σn on n symbols is
parametrized by the partitions p ∈ [n]. Let (Vp,p) be a representation corresponding to the partition
p. Then we have the decomposition

A(λ)(Dn) = ⊕p∈[n]A(λ)(Dn,p),

where
A(λ)(Dn,p) =

{
f ∈ A(λ)(Dn, Vp) : τ(s)f(s−1 · z) = f(z), s ∈ Σn

}
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and A(λ)(Dn,p) ∼= A(λ)(D, V ′p)⊗ V ′p. The orthogonal projection Pp : A(λ)(Dn)→ A(λ)(Dn,p) is given
by the formula

(Ppf)(z) =
χp(1)
n!

∑
τ

χ(τ)f(τ−1 · z),

where the sum is over all τ in Σn and χp is the character corresponding to the representation Vp.
Schur orthogonality relations ensure that P2

p = Pp and it follows that Pp is a projection. Let Vsgn be
the sign representation of the permutation group Σn and Psgn be the corresponding projection.

Theorem 4.1. The reproducing kernel K(λ)
sgn of the Hilbert space A(λ)(Dn, sgn) is given by the formula

K(λ)
sgn(z,w) =

(
Psgn ⊗ P∗sgn

)( n∏
i=1

(1− ziw̄i)−λ
)

=
aδ(z)aδ(w)

n!

∑
p∈[[n]]

(λ)m+δ

(m+ δ)!
Sp(z)Sp(w),

where Sp is the Schur function with p = m+ δ.

Proof. Recall that K(λ)(z,w) =
∑∞
m≥0

(λ)m

m! (zw̄)m, λ > 1, is the reproducing kernel of the weighted
Bergman spaces A(λ)(Dn). Therefore, we have(

Psgn ⊗ I
)
K

(λ)
w (z) =

∞∑
m≥0

(λ)m
m!

w̄mPsgn

(
zm
)
.

However, Psgn

(
zm) = 1

n! det
(

((zmji ))
)

which is zero unless m is in the orbit under Σn of the weight
p in [[n]]. So, we conclude that(

Psgn ⊗ P∗sgn

)
K(λ)(z,w) =

∞∑
m≥0

(λ)m
m!

Psgn

(
zm
)
Psgn

(
w̄m

)
=

∑
p∈[[n]]

γp
(λ)p
p!

ap(z)ap(w)

= aδ(z)aδ(w)
∑
p∈[[n]]

γp
(λ)p
(p)!

Sp(z)Sp(w).

It is then easy to see that γp = 1
n! completing the proof. �

Clearly, the two kernel functions K(λ)
sgn and K

(λ)
anti are equal. As before, the kernel function K

(λ)
sgn,

via the unitary map Γ, gives a kernel function for the weighted Bergman spaces A(λ)(Gn) on the
symmetrized polydisc Gn. Further more, if λ = 1, then

SGn
(
s(z), s(w)

)
=

n!
aδ(z)aδ(w)

K(1)
sgn(z,w)

=
∑
p∈[[n]]

Sp(z)Sp(w)

=
n∏

i,j=1

(1− ziw̄j)−1, z,w ∈ Dn,

where the last equality is the formula [5, (4.3), pp. 63].
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