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Let Ω be a bounded open connected set in Cm and M be a Hilbert module
over the function algebra A(Ω) (see [6]). The study of the natural class Bn(Ω),
discussed below, was initiated in [1, 2]. A different approach was given in [3]. Let
DT : M → M⊕ · · · ⊕M be the operator f 7→

(
T1f, . . . , Tmf

)
, where Ti is the

operator determined by the adjoint of the module action (zi, f) 7→ zi ·f , 1 ≤ i ≤ m,
f ∈M. Let Bn(Ω) be the set of those Hilbert modules M for which ranDT−w is
closed, spanw∈Ω kerDT−w is dense and dim kerDT−w = n for all w ∈ Ω. A Hilbert
module M in Bn(Ω) determines a holomorphic Hermitian vector bundle on Ω. It
is then proved that isomorphic Hilbert modules correspond to equivalent vector
bundles and vice-versa (see [1, 2]). Also, these papers provide a model for the
Hilbert modules in Bn(Ω) by showing that they can be realized as a Hilbert space
consisting of holomorphic functions on Ω possessing a reproducing kernel. The
module action is then simply the pointwise multiplication. Examples are Hardy
and the Bergman modules over the ball and the poly-disc in Cm. However, many
natural examples of Hilbert modules fail to be in the class Bn(Ω). For instance,
H2

0 (D2) := {f ∈ H2(D2) : f(0) = 0} is not in Bn(D2). The problem is that the
dimension of the joint kernel K(w) := kerDT−w is no longer a constant (cf. [4]):

dimH2
0 (D2)⊗A(D2) Cw =

{
1 if w 6= (0, 0)
2 if w = (0, 0).

Here Cw is the one dimensional module over the algebra A(D2), where the module
action is given by the map (f, w) 7→ f(w) for f ∈ A(D2) and w ∈ C. We outline an
attempt to systematically study examples like the one given above using methods
of complex analytic geometry.

For a Hilbert module M over a function algebra A(Ω), not necessarily in the
class B1(Ω), motivated by the correspondence of vector bundles with locally free
sheaf, we construct a sheaf of modules SM(Ω) over O(Ω) corresponding toM. We
assume that M possesses all the properties for it to be in the class B1(Ω) except
that the dimension of the joint kernel K(w) need not be constant. We note that
sheaf models have occured, as a very useful tool, in the study of analytic Hilbert
modules (cf. [7]). Although, the model we describe below is somewhat different.

Let SM(Ω) be the subsheaf of the sheaf of holomorphic functions O(Ω) whose
stalk at w ∈ Ω is

{
(f1)wOw + · · · + (fn)wOw : f1, . . . , fn ∈ M

}
, or equivalently,

SM(U) =
{∑n

i=1

(
fi|U

)
gi : fi ∈M, gi ∈ O(U)

}
for U open in Ω.

Proposition 1. The sheaf SM(Ω) is coherent.

Proof. The sheaf SM(Ω) is generated by the set of functions {f : f ∈ M}. Let
SMJ (Ω) be the subsheaf generated by the set of functions J = {f1, . . . , f`} ⊆ M ⊆
O(Ω). Thus SMJ (Ω) is coherent. An application of Noether’s Lemma [8] then
guarantees that SM(Ω) = ∪

J finiteS
M
J (Ω) is coherent. �
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We note that the coherence of the sheaf implies, in particular, that the stalk
(SM)w at w ∈ Ω is generated by a finite number of elements g1, . . . , gn from O(Ω).

If K is the reproducing kernel forM and w0 ∈ Ω is a fixed but arbitrary point,
then for w in a small neighborhood U of w0, we obtain the following decomposition
theorem.

Theorem 1. Suppose g0
i , 1 ≤ i ≤ n, be a minimal set of generators for the stalk

(SM)0 := (SM)w0 . Then we have

K(·, w) := Kw = g0
1(w)K(1)

w + · · ·+ g0
n(w)K(n)

w ,

where K(p) : U → M, 1 ≤ k ≤ n, is anti-holomorphic. Moreover, the elements
K

(p)
w0 , 1 ≤ p ≤ n are linearly independent in M, they are eigenvectors for the

adjoint of the action of A(Ω) on the Hilbert module M at w0 and are uniquely
determined by these generators.

We also point out that the Grammian G(w) = ((〈K(p)
w ,K

(q)
w 〉))n

p,q=1 is invertible
in a small neighborhood of w0 and is independent of the generators g1, . . . , gn.
Thus t : w 7→ (K(1)

w , . . . ,K
(n)
w ) defines a holomorphic map into the Grassmannian

G(H, n) on the open set U . The pull-back E0 of the canonical bundle on G(H, n)
under this map then define a holomorphic Hermitian bundle on U . Clearly, the
decomposition of K given in our Theorem is not canonical in anyway. So, we
can’t expect the corresponding vector bundle E0 to reflect the properties of the
Hilbert module M. However, it is possible to obtain a canonical decomposition
following the construction in [3]. It then turns out that the equivalence class of
the corresponding vector bundle E0 obtained from this canonical decomposition is
an invariant for the isomorphism class of the Hilbert moduleM. These invariants
are by no means easy to compute. At the end of this note, we indicate, how to
construct invariants which are more easily computable.

For now, the following Corollary to the decomposition theorem is immediate.

Corollary 1. The dimension of the joint kernel K(w) is greater or equal to the
number of minimal generators of the stalk (SM)w at w ∈ Ω.

Now is the appropriate time to raise a basic question. Let mw ⊆ A(Ω) be the
maximal ideal of functions vanishing at w. Since we have assumed mwM is closed,
it follows that the dimension of the joint kernel K(w) equals the dimension of the
quotient module M/(mwM). However it is not clear if one may impose natural
hypothesis on M to ensure

dimM/(mwM) = dim K(w) = dim(SM)w/(m(Ow)(SM)w),

where m(Ow) is the maximal ideal in Ow, as well.
More generally, suppose p1, . . . , pn generate M. Then dim K(w) ≤ n for all

w ∈ Ω. If the common zero set V of these is {0} then (p1)0, . . . , (pn)0 need not
be a minimal set of generators for (SM)0. However, we show that they do if we
assume p1, . . . , pn are homogeneous of degree k, say. Further more, basis for K(0)
is the set of vectors:{

p1(∂̄)}K(·, w)|w=0, . . . , pn(∂̄)}K(·, w)|w=0

}
,
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where ∂̄ = (∂̄1, . . . , ∂̄m).
Going back to the example of H2

0 (D2), we see that it has two generators, namely
z1 and z2. Clearly, the joint kernel K(w) := kerD(M∗

1−w̄1,M∗
2−w̄2) at w = (w1, w2)

is spanned by {z1⊗A(D2) 1w, z2⊗A(D2) 1w} = {w1KH2
0 (D2)(z, w), w2KH2

0 (D2)(z, w)}
which consists of two vectors that are linearly dependent except when w = (0, 0).
We also easily verify that(

SH2
0 (D2)

)
w
∼=

{
Ow w 6= (0, 0)
m (O0) w = (0, 0).

Since the reproducing kernel

KH2
0 (D2)(z, w) = KH2(D2)(z, w)− 1 =

z1w̄1 + z2w̄2 − z1z2w̄1w̄2

(1− z1w̄1)(1− z2w̄2)
,

we find there are several choices for K(1)
w and K

(2)
w , w ∈ U . However, all of these

choices disappear if we set w̄1θ1 = w̄2 for w1 6= 0, and take the limit:

lim
(w1,w2)→0

KH2
0 (D2)(z, w)
w̄1

= K
(1)
0 (z) + θ1K

(2)
0 (z) = z1 + θ1z2

because K(1)
0 and K

(2)
0 are uniquely deteremined by Theorem 1. Similarly, for

w̄2θ2 = w̄1 for w2 6= 0, we have

lim
(w1,w2)→0

KH2
0 (D2)(z, w)
w̄2

= K
(2)
0 (z) + θ2K

(1)
0 (z) = z2 + θ2z1.

Thus we have a Hermitian line bundle on the complex projective space P1 given
by the frame θ1 7→ z1 + θ1z2 and θ2 7→ z2 + θ2z1. The curvature of this line bundle
is then an invariant for the Hilbert module H2

0 (D2) as shown in [5]. This curvature
is easily calculated and is given by the formula K(θ) = (1 + |θ|2)−2.

The decomposition theorem yields similar results in many other examples.
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