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One approach to the study of multi-variate operator theory is through the study of Hilbert

modules, that is, Hilbert spaces on which an algebra acts. Early work on this approach is

presented in [8] and focuses on the commutative case in which the algebra consists of a natural

space of holomorphic functions. Although there are some general results, most of the results

to date concern concrete examples, in part because of our rather meager knowledge of what

is possible and what might be true. Perhaps the most natural example of a Hilbert module

over an algebra A of holomorphic functions on a domain Ω in Cn is a kernel Hilbert space K
over Ω which is closed under multiplication by A. The critical property of a kernel Hilbert

space of holomorphic functions is that evaluation at points in Ω is continuous in the Hilbert

space norm.

The Hardy spaces and the Bergman spaces over any bounded domain Ω in Cn form natural

families of examples over A(Ω), the supremum norm closure of the functions holomorphic on

some neighborhood of the closure of Ω. Other natural examples are obtained by considering

submodules of such kernel Hilbert modules. Specifically, we recall Beurling’s characterisation

of a submodule M of the Hardy module H2(D) which states that the submodule M must

be of the form θH2(D), where θ is an inner function. It is then not hard to see, using the von

Neumann - Wold decomposition for isometries, that all of these submodules of the Hardy

module are isomorphic. If we enlarge the scope to include Hardy spaces of vector valued

functions, there is a generalisation of Beurling’s theorem due to Halmos and Lax which

implies that a submodule is determined completely in this case by its multiplicity. Never

the less, the quotient modules H2(D)/M for M ⊆ H2(D) are not isomorphic. Indeed, one

way of describing the model theory of Sz.-Nagy and Foias is to say that a large class of

contractive modules arise as such quotient modules. It is then natural to ask when two of

these quotient modules are isomorphic and find complete invariants. This is done in the work

of Sz-Nagy and Foias in the context of contractive modules over the disk algebra. In contrast

to what happens in the case of the Hardy module for the disk, a great profusion of different

examples is obtained in this manner in the several variables case as the rigidity phenomenon

demonstrates [9]. If we attempt to obtain an appropriate generalisation of the Sz.-Nagy and

Foias model to the multi-variate context then the following issues become aparent.

a) Describe all the submodules of a given module.

b) Decide if any of these are isomorphic.
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c) Describe the quotient modules.

d) Find invariants for the quotient using the pair M0 ⊆M.

The first two issues have been addressed in the paper [9]. In this exposition, we assume that

we are working with a fixed Hilbert module and a naturally occuring family of submodules.

We describe some results concerning the quotient Hilbert modules in which the submodules

are closely tied to the geometry of the domain Ω. In [5], some results in this direction were

described using brute force calculations. Let us briefly elaborate.

Consider the bidisk Hardy module H2(D2) over the bidisk algebra A(D2) and let w and

z designate the two variables. Then [w] and [z] denote the closed submodules in H2(D2)

generated by the functions w and z, respectively. They can also be viewed as the closures

of the principal ideals in C[w, z] generated by w and z, respectively.

The quotients H2(D2)/[w] and H2(D2)/[z] can be readily described. The first module can

be identified as the one-variable Hardy space of functions on the subvariety in D2 determined

by w = 0 with the action of w being zero and the action of z being the usual one on the

Hardy module. The quotient H2(D2)/[z] is the same with the roles of w and z interchanged.

But what about the quotient module H2(D2)/[w − z] in which [w − z] is the closure of the

principal ideal generated by the function w − z? This requires a little more work and was

the principal result in [5].

Let Pk for k = 0, 1, 2 . . . be the homogeneous polynomials in C[w, z] of degree k. A simple

calculation shows that dimPk = k + 1, dimPk ∩ [w− k] = k, and Pk/Pk ∩ [w− k] = {ek} =

{wk + wk−1z + . . . + zk}. Moreover,

H2(D2)/[w − z] = P0 ⊕ P1/P1 ∩ [w − z]⊕P2/P2 ∩ [w − z]⊕ . . . .

Further, ‖ek‖ =
√

k + 1 and hence {ek}√
k+1

is an orthonormal basis for H2(D2)/[w − z]. These

calculations enable us to determine the module action on the quotient. In particular, multi-

plication by w and z coincide and

w · ek√
k + 1

= z · ek√
k + 1

=

√
k + 1

k + 2

ek+1√
k + 2

which is identical to that of the Bergman Hilbert module on the disk. In a different guise

this result was first obtained by Rudin [11].

Another way to look at this result is by introducing new coordinates u and v, where

u = w+z
2

and v = w−z
2

. Now the quotient module H2(D2)/[w − z] can be identified with the

one-variable Bergman module on the disk v = 0 with the usual action by the variable u and

the zero action by v.

If one considers quotient modules defined by the closures of principal modules such as

(w− z)n, then more elaborate calculations enable one to describe the quotient modules and

the actions but this approach is inadequate for the consideration of quotients by more general
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principal ideals. Nonetheless, analogous results hold in great generality. To tackle the more

general situation, we must give up brute force calculation and introduce other techniques.

Let Ω be a bounded domain in Cn and A(Ω) be the algebra obtained as the supremum

norm closure of the functions holomorphic in some neighborhood of the closure of Ω. Now

let M be a kernel Hilbert module over A(Ω). Thus

1) M consists of holomorphic functions on Ω;

2) there is a reproducing kernel function K(www,zzz) : Ω × Ω −→ C which is holomorphic

in www and anti-holomorphic in zzz;

3) K(·, zzz) is in M for zzz in Ω and 〈f,K(·, zzz)〉M = f(zzz) for f in M and zzz in Ω; and

4) A(Ω) · M ⊂M.

A natural family of examples for the disk algebra are the modules H(λ)(D), λ > 0, which

has the kernel function

K(λ)(w, z) =
1

(1− wz̄)λ
, λ > 0.

The familiar Hardy and Bergman modules correspond to λ = 1 and λ = 2 respectively.

One may take tensor products of these modules to obtain H(λ,µ)(D2), λ, µ > 0, which are

examples of modules over the bidisk algebra. These possess the kernel function

K(λ,µ)(www,zzz) =
1

(1− w1z̄1)λ

1

(1− w2z̄2)µ
, λ, µ > 0.

Notice that λ = 1 = µ corresponds to the usual Hardy module H2(D2) over the bi-disk

algebra.

Now let Z be an analytic hyper-surface in Ω of the form Z = {zzz ∈ Ω|ϕ(zzz) = 0}, where

ϕ is a non-zero holomorphic function on Ω. Let M0 be the submodule {f ∈ M | f |Z ≡ 0}
of functions in M vanishing identically on Z and Mq be the quotient module M/M0. For

Ω = D2, M = H2(D2) and the functions ϕ1(w, z) = w, ϕ2(w, z) = z, and ϕ3(w, z) = w − z,

one obtains the quotient modules H2(D2)/[w], H2(D2)/[z], and H2(D2)/[w − z] studied

earlier.

One can appeal to an extension of an earlier result of Aronszajn [[1] to analyze the quotient

module Mq. Set Mres = {f |Z | f ∈M} and ‖f |Z‖res = inf{‖g‖M | g ∈M, g|Z ≡ f |Z}.
Theorem (Aronszajn). 1) Mres is a kernel Hilbert module over Z with Kres(·, zzz) =

K(·, zzz)|Z for zzz in Z.

2) Mq is isometrically isomorphic to Mres.

In [6] this result was applied to the quotient H2(D2)/[w − z] to obtain the earlier result

as follows. Since the kernel function for H2(D2) is 1
(1−w1z̄1)

1
(1−w2z̄2)

, restricting the kernel

function to w − z = 0 and using the (u, v) coordinates, we obtain that Kq(u, u′) = 1
(1−uū′)2

for u, u′ in {w − z = 0}. This is a multiple of the kernel function for the Bergman space

A(Ω). Hence, the quotient module is isometrically isomorphism to the Bergman module
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since multiplication by a constant doesn’t change the isomorphism class of a kernel Hilbert

module.

Thus the extension of Aronszajn’s result enables one to obtain the kernel function for the

quotient module and from it, one can construct the Hilbert space itself. However, different

kernel functions can determine the same Hilbert module. To obtain invariants one approach

is to appeal to an earlier theory obtained a couple of decades ago by the first author with

M. Cowen [4] (cf. also [3]). A class B1(Ω) of k-tuples of operators was introduced from which

a Hermitian holomorphic vector bundle could be constructed. The coordinate functions for

a kernel Hilbert module define a k-tuple which belongs to B1(Ω). Thus the results from [4]

apply to yield a complete set of unitary invariants which determine this k-tuple and hence

the Hilbert module up to unitary equivalence. Without providing details, one can show for

a kernel Hilbert space that www → K(·,www) determines an anti-holomorphic cross-section of the

associated Hermitian holomorphic vector bundle. The invariant in this case is the curvature

K(www) =
k∑

i,j=1

∂2

∂wi∂w̄j

log ‖K(·,www)‖dwi ∧ dw̄j

which is a complete unitary invariant.

To obtain the curvature for the quotient Hilbert module Mq, there are two approaches.

The first is to use the kernel function forMq obtained from the Aronszajn result. The second

approach uses the curvature for M directly and restricts it to obtain the curvature for Mq.

Restricting the curvature function for M to the subvariety Z involves two steps. First, one

restricts the function to Z. Second, one must also project the values of the curvature which

lie in the two-forms defined by the tangent bundle to Ω to the corresponding two-forms for

Z. Combining the preceding results on restriction of kernel functions and the curvature,

one obtains a complete and effective method of describing quotient Hilbert modules of the

form M/M0, where M is a kernel Hilbert module and M0 is the submodule of functions

vanishing on a hyper-surface.

Suppose we consider quotients by submodules of higher multiplicity. Simple examples

of this phenomenon are H2(D2)/[w2], H2(D2)/[z2], and H2(D2)/[(w − z)2]. The first two

examples present little difficulty. For the first one, we obtain the orthogonal direct sum of

two copies of the one-variable Hardy space on the disk with the z-action being the usual one

while the w-action is a nilpotent shift of order two taking the first space to the second and

the second space to zero. The second example is the same except the roles of w and z are

interchanged. But what about the quotient by [(w − z)2]?

Proceeding as before using the spaces Pk of homogeneous polynomials, we again have

H2(D2)/[(w − z)2] = Σ⊕ Pk/Pk ∩ [(w − z)2] and Pk/Pk ∩ [w − z] ⊆ Pk/Pk ∩ ([w − z]2).



CHARACTERIZING QUOTIENT HILBERT MODULES 5

In this case

dimPk/Pk ∩ [(w − z)2] = 2 for k > 0

and one can identify H2(D2)/[(w − z)2] as the non-orthogonal direct sum of two copies of

the Bergman module. Again using the new coordinates one sees that the u-action is given

by the matrix

( q
k+1
k+2

0
q

3
(k+2)(k+3)

q
k

k+3

)
and the v-action is nilpotent of order two.

This calculation also appears in [5]. One can guess what happens for H2(D2)/[wk],

H2(D2)/[zk] and H2(D2)/[(w − z)k] but the calculation in the last case, or for that mat-

ter, in the case of H(λ,µ)(D2)/[(w − z)k] would be formidable. Again this kind of result is

true in great generality but one must extend and develop further the earlier ideas, including

some new ones, to show that. We will attempt to describe these results.

Again, let M be a kernel Hilbert module over the algebra A(Ω) for Ω a bounded domain

in CN but this time let Mk be the submodule of functions in M vanishing to order k > 0 on

the analytic hyper-surface Z in Ω which is the zero set of a holomorphic function ϕ in A(Ω).

A function f on Ω is said to vanish to order k on Z if it can be written f = ϕkg for some

holomorphic function g. We seek to characterize the quotient module Mq = M/Mk. Now

Mq no longer satisfies the hypotheses of the Aronszajn result and hence it doesn’t apply.

To proceed we must generalize this approach to allow vector-valued kernel Hilbert modules.

The basic result in [7] is that Mq can be characterized as such a vector-valued kernel Hilbert

space over the algebra A(Ω)|Z of the restriction of functions in A(Ω) to Z and multiplication

by ϕ acts as a nilpotent operator of order k.

The definition of a vector-valued kernel Hilbert space over A(Ω) is straightforward. For a

fixed integer n > 0, M consists of Cn-valued holomorphic functions, and there is an Mn(C)-

valued function K(www,zzz) on Ω×Ω which is holomorphic in www and anti-holomorphic in zzz such

that

(1) K(·, zzz)v is in M for zzz in Ω and v in Cn;

(2) 〈f, K(·, zzz)v〉M = 〈f(zzz), v〉Cn for f in M, zzz in Ω and v in Cn; and

(3) A(Ω)M⊂M.

Natural examples are the Hardy and Bergman spaces of Cn-valued holomorphic functions

or, equivalently, the orthogonal direct sum of k-copies of H2(Dn) or B2(Dn).

Let M be a vector-valued kernel Hilbert module over A(Ω) for Ω a bounded domain in

Cn,Z an analytic hyper-surface in Ω, and M0 be the submodule of functions in M that

vanish identically on Z. Let Mq be the quotient module M/M0 and Mres the restriction

module defined as before. One can extend the Aronszajn theorem to this case as follows:

Theorem ([7]). 1) Mres is a vector-valued kernel Hilbert module over Z with kernel

function Kres(·, zzz) = K(·, zzz)|Z for z in Z.

2) Mq is isometrically isomorphic to Mres.
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Although this extension is rather routine, applying it to the higher-multiplicity case we

have been considering is not so obvious. In particular, the kernel Hilbert module H2(D2) is

not presented as a vector-valued kernel Hilbert module but the submodule [(w − z)2] does

not consist of all functions vanishing on {(w, z) | w− z = 0} either. We solve both problems

by showing that H2(D2) can also be realized as a vector-valued kernel Hilbert space. In this

representation, the submodule will also have the desired form. To accomplish that we define

the J operator

J : H(λ,µ)(D2) −→ H(λ,µ)(D2)+̇H(λ,µ)(D2),

where the symbol +̇ denotes a non-orthogonal direct sum, such that

Jf = f+̇
∂f

∂v

and ∂
∂v

is the normal derivative in the direction orthogonal to the zero set {(z, w)|ϕ(z, w) =

z − w = 0}. The inner product on the space JH(λ,µ)(D2) of vector-valued holomorphic

functions is obtained by requiring that the map J be isometric. Now, the kernel function,

denoted JK(λ,µ), for this space is obtained as follows

JK(λ,µ) : D2 × D2 −→ M2(C)

(JK(λ,µ))i+1,j+1(www,zzz) =

(
∂i

∂vi

∂j

∂vj
K(λ,µ)

)
(www,zzz), 0 ≤ i, j ≤ 1.

Finally, the module action for JH(λ,µ)(D2) is defined via the map (f, Jh) →
(

f 0
∂f
∂v

f

)(
h
∂h
∂v

)
,

for f in the bi-disk algebra. Clearly, the module H(λ,µ)(D2) and the range JH(λ,µ)(D2) of J

in H(λ,µ)(D2)+̇H(λ,µ)(D2) are isomorphic via the module map J .

We now set

(JH(λ,µ)(D2))0 =

{
f+̇

∂f

∂v
:

(
f+̇

∂f

∂v

)∣∣∣∣
u=0

≡ 0

}

and observe that the space equals the image of J(H(λ,µ)(D2)0) under J of the space of

functions in H(λ,µ)(D2) which vanish to order 2 along the analytic hyper-surface {(w, z)|w−
z = u = 0}. The generalization of the Aronszajn theorem states that

H(λ,µ)(D2)/[(w − z)2] ∼= JH(λ,µ)(D2)/(JH(λ,µ)(D2))0
∼= JH(λ,µ)(D2)|res(u=0).

A calculation shows that

JH(λ,µ)(D2)|res(u=0) = H(λ,µ)(D2)|res u=0+̇
∂

∂v
H(λ,µ)(D2)|res u=0.

Hence we see that the quotient module H(λ,µ)(D2)/[(w− z)2] is isomorphic to the direct sum

of the modules H(λ+µ)(D) and H(λ+µ+2)(D) in one-variable in which the u action is the direct

sum of weighted shifts and the v action is the shift of summands followed by ∂
∂v

. One can

calculate the reproducing kernel for the vector-valued kernel Hilbert space using the formula

above.
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Again it is possible to use the work of [4] to attempt to characterize this quotient module

H2(D2)/[(w−z)2] as the case considered in which the vector bundle has rank two. One would

need to generalize that work, however, since it does not take into account the nilpotent v-

action. In work currently in progress, we believe, we know how to do this and plan to present

it in a subsequent paper. Along similar lines, but in a different language, these questions or

closely related ones were considered by Martin and Salinas in [10].

In the preceding paragraphs, we have described how to characterize quotient modules for

submodules obtained as the closure of prime ideals in A(Ω) or powers of prime ideals. If one

considers other principal ideals, the same approach applies but Z is a reducible hypersurface.

An illustrative example is obtained by considering the submodule [wz] in H2(D2). In this

case the quotient module H2(D2)/[wz] is isometrically isomorphic to the direct sum of two

copies of the one-variable Hardy module H2(D) with w acting on one and z acting on the

other both as unilateral shifts, but in which one takes the quotient by the vector which is

the difference of the two constant functions. In particular, the quotient module is a kernel

Hilbert module over the zero set {zw = 0} = {w = 0} ∪ {z = 0} with the kernel function

given by restriction.

Finally, characterizing quotient modules by submodules obtained as the closure of non-

principal ideals poses more serious issues although for those for which the zero set is a

complete intersection the issue is largely one of notation and providing an effective description

rather than conceptual. However, the general case seems to pose some interesting challenges.

Finally, the question of quotients by more general submodules, especially those defined by

boundary behavior, is particularly daunting. In particular, consider the quotient of H2(D)

by θH2(D) for a simple singular inner function. One knows multiplication by z is nearly

unitary in various senses but whether the generalization to several variables yields Hilbert

modules supported on the boundary in some sense remains to be seen.

We now give an application of these ideas to produce an alternative description of a class

of operators first studied by Wilkins [12].

Let Möb denote the group of bi-holomorphic automorphisms of the unit disc D. Then it

is easy to see that Möb = {ϕα,β : α ∈ T, β ∈ D}, where ϕα,β(z) = α z−β
1−β̄z

, z ∈ D.

An operator T is called homogeneous if ϕ(T ) is unitarily equivalent to T for all ϕ in Möb

which are analytic on the spectrum of T .

Most of the results on homogeneous operators are discussed in a recent survey article [2].

The operator M (λ), λ ≥ 0 of multiplication by the coordinate function on H(λ)(D) are

examples of homogeneous operators. The adjoints of these operators are the only homoge-

neous operators of rank 1 in the Cowen-Douglas class of D. Let W (λ,µ) be the compression

of the operator M ⊗ I to the quotient H(λ,µ)(D2)/[(w − z)2. Recalling the identification

H(λ,µ)(D2)/[(w − z)2] ∼= JH(λ,µ)(D2)|res(u=0) and the explicit calculation of the reproducing
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kernel for JH(λ,µ)(D2)|res(u=0), we find that the adjoint operators W (λ,µ)∗ match the descrip-

tion of homogeneous operators of rank 2 in the Cowen-Douglas class given in [12]. However,

this method also produces examples of homogeneous operators of rank k by simply com-

pressing M ⊗ I to the quotient H(λ,µ)(D2)/[(w − z)k. The details are given in [2].
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