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Abstract. The explicit description of irreducible homogeneous operators in the Cowen-Douglas
class and the localization of Hilbert modules naturally leads to the definition of a smaller class
possessing a flag structure. These operators are shown to be irreducible. It is also shown that the
flag structure is rigid, that is, the unitary equivalence class of the operator and the flag structure
determine each other. A complete set of unitary invariants, which are somewhat more tractable
than those of an arbitrary operator in the Cowen-Douglas class, are obtained.

1. Introduction

In their very influential paper [1], Cowen and Douglas initiated the study of the following
important class of operators.

Definition 1.1. For a connected open subset Ω of C and a positive integer n, let

Bn(Ω) =
{

T ∈ L(H) | Ω ⊂ σ(T ),

ran (T − w) = H for w ∈ Ω,∨
w∈Ω

ker(T − w) = H,

dim ker(T − w) = n for w ∈ Ω
}
,

where L(H) is the algebra of all bounded linear operators on a complex separable Hilbert space
H and σ(T ) is the spectrum of the operator T .

It is shown in [1, Proposition 1.12] that if T is in Bn(Ω), then it is possible to choose n eigenvec-
tors in ker(T − w), which are holomorphic as functions of w ∈ Ω. Thus w 7→ ker(T − w) defines a
rank n holomorphic Hermitian vector bundle ET over Ω. It therefore follows that the holomorphic
Hermitian vector bundle ET is the sub-bundle of the trivial holomorphic Hermitian bundle Ω×H

defined by

ET = {(w, x) ∈ Ω×H : x ∈ ker(T − w)}
with the natural projection map π : ET → Ω, π(w, x) = w (cf. [1]). Here is one of the main results
from [1].

Theorem 1.2. The operators T and T̃ in Bn(Ω) are unitarily equivalent if and only if the corre-
sponding holomorphic Hermitian vector bundles ET and E

T̃
are equivalent.
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They also find a set of complete invariant for this equivalence consisting of the curvature of ET
and its covariant derivatives. Unfortunately, these invariants are not easy to compute except when
the rank of the bundle is 1. In this case, the curvature

K(w) dw ∧ dw̄ = − ∂2 log ‖ γ(w) ‖2

∂w∂w
dw ∧ dw̄

of the line bundle ET , defined with respect to a non-zero holomorphic section γ of ET , is a complete
unitary invariant of the operator T. The definition of the curvature, in this case, is independent
of the choice of the non-vanishing section γ: If γ0 is another holomorphic (non-vanishing) section
of E, then γ0 = φγ for some holomorphic function φ on an open subset Ω0 of Ω, consequently
the harmonicity of log|φ| completes the verification. However, if the rank of the vector bundle is
strictly greater than 1, then only the eigenvalues of the curvature are independent of the choice
of the holomorphic frame. This limits the use of the curvature and its covariant derivative if the
rank of the bundle is not 1. It is difficult to determine, in general, when an operator T ∈ Bn(Ω)
is irreducible, again except in the case n = 1. In this case, the rank of the vector bundle is 1 and
therefore it is irreducible and so is the operator T .

One may therefore ask: For what class of holomorphic Hermitian vector bundles, defined on
a bounded open connected set Ω ⊆ C, of rank n, the curvature remains a complete invariant.
Refining the proof of Lemma 3.2 of [1], one may infer that the curvature is a complete invariant
for the class consisting of the n-fold direct sum of line bundles. Examples were given in [13,
Example 2.1] to show that the class of the curvature alone does not determine the class of the
vector bundle except in the case of a line bundle. The splitting of a holomorphic Hermitian vector
bundle into a direct sum is determined by the vanishing of the second fundamental form (see
[10, Proposition 6.14]). In this paper, we isolate those irreducible holomorphic Hermitian vector
bundles, namely, the ones possessing a flag structure, for which the curvature together with the
second fundamental form is a complete set of invariants. Among these, we study in detail the
ones that correspond to irreducible operators in the Cowen-Douglas class B2(Ω). All irreducible
homogeneous operators in B2(D) are in this class. We obtain, using the methods developed in this
paper, a description of all these operators. This classification was given earlier by D. Wilkins [14]
using a sophisticated mix of Riemannian geometry and operator theory. We also investigate the
case of n > 2, where together with the curvature and the second fundamental form, we find a set
n(n−1)

2 + 1 invariants, which are easy to compute. Finally, we show that these are a complete set
of unitary invariants.

We discuss this new class of operators in B2(Ω) separately and then provide the details for the
case of n > 2. One important reason for separating out the case of n = 2 is that the proofs that
appear in this case are often necessary to begin an inductive proof in the case of an arbitrary
n ∈ N.

In a forthcoming paper, we construct similarity invariants for the operators in this new class.
A generalization to the case of commuting tuples of operators is apparent which we intend to
consider in future work.

The results of this paper were announced in [7] and was the topic of a talk presented by the
last author in the Workshop “Hilbert Modules and Complex Geometry” held during Apr 20 - 26,
2014 at Oberwolfach.
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to Hebei Normal university. We thank both of these Institutions for their admirable hospitality.
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2. A new class of operators in B2(Ω)

2.1. Definitions. If T is an operator in B2(Ω), then there exists a pair of operators T0 and T1 in

B1(Ω) and a bounded operator S such that T =
(
T0 S
0 T1

)
. This is Theorem 1.49 of [8, page 48].

We show, the other way round, that two operators T0 and T1 from B1(Ω) combine with the aid of
an arbitrary bounded linear operator S to produce an operator in B2(Ω).

Proposition 2.1. Let T be a bounded linear operator of the form
(
T0 S
0 T1

)
. Suppose that the two

operators T0, T1 are in B1(Ω). Then the operator T is in B2(Ω).

Proof. Suppose T0 and T1 are defined on the Hilbert spaces H0 and H1, respectively. Elementary
considerations from index theory of Fredholm operators shows that the operator T is Fredholm
and ind(T ) = ind(T0) + ind(T1) (cf. [2, page 360]). Therefore, to complete the proof that T is
in B2(Ω), all we have to do is prove that the vectors in the kernel ker(T − w), w ∈ Ω, span the
Hilbert space H = H0 ⊕H1.

Let γ0 and t1 be non-vanishing holomorphic sections for the two line bundles E0 and E1 corre-
sponding to the operators T0 and T1, respectively. For each w ∈ Ω, the operator T0−w is surjective.
Therefore we can find a vector α(w) in H0 such that (T0 − w)α(w) = −S(t1(w)), w ∈ Ω. Setting
a(w) = α(w) + t1(w), we see that

(T − w)a(w) = 0 = (T − w)γ0(w).

Thus {γ0(w), a(w)} ⊆ ker (T −w) for w in Ω. If x is any vector orthogonal to ker(T −w), w ∈ Ω,
then in particular it is orthogonal to the vectors γ0(w) and a(w), w ∈ Ω, forcing it to be the zero
vector. �

We impose one additional condition on these operators, namely, T0S = ST1 and assume that
the operator S is non-zero. With this seemingly innocuous hypothesis, we show that (i) it is
irreducible, (ii) and that any intertwining unitary operator between two of these operators must
be diagonal and (iii) the curvature of ET0 together with the second fundamental form of the
inclusion ET0 ⊆ ET form a complete set of unitary invariants for the operator T. It is therefore
natural to isolate this class of operators.

Definition 2.2. We let FB2(Ω) denote the set of all bounded linear operators T of the form

T =
(
T0 S
0 T1

)
, where the two operators T0, T1 are assumed to be in the Cowen-Douglas class B1(Ω)

and the operator S is assumed to be a non-zero intertwiner between them, that is, T0S = T1S.

Specifically, if the operator Ti, i = 0, 1, is defined on the separable complex Hilbert space Hi,
then S is assumed to be a non-zero bounded linear operator from H1 to H0 such that T0S = T1S.
The operator T is defined on the Hilbert space H := H0 ⊕H1.

Each of the operators in FB2(Ω) is also in the Cowen-Douglas class B2(Ω) by virtue of Propo-
sition 2.1. Thus FB2(Ω) ⊆ B2(Ω).

Although, in the definition of the class FB2(Ω) given above, we have only assumed that S is
non-zero, its range must be dense as is shown below.

Proposition 2.3. Suppose T0 and T1 are two operators in B1(Ω), and S is a bounded operator
intertwining T0 and T1, that is, T0S = ST1. Then S is non zero if and only if range of S is dense
if and only if S∗ is injective.

Proof. Let γ be a holomorphic frame of ET1 . Assume that S is a non zero operator. The inter-
twining relationship T0S = ST1 implies that S ◦γ is a section of ET0 . Clearly, there exists an open
set Ω0 contained in Ω such that S ◦ γ is not zero on Ω0, otherwise S has to be zero. Since S(γ)
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is a holomorphic frame of ET0 on Ω0, it follows that the closure of the linear span of the vectors
{S(γ(w)) : w ∈ Ω0} must equal H0. Hence the range of the operator S is dense. �

The following Proposition provides several equivalent characterizations of operators in the class
FB2(Ω).

Proposition 2.4. Suppose T is a bounded linear operator on a Hilbert space H, which is in B2(Ω).
Then the following conditions are equivalent.

(i) There exist an orthogonal decomposition H0 ⊕ H1 of H and operators T0 : H0 → H0,

T1 : H1 → H1, and S : H1 → H0 such that T =

(
T0 S
0 T1

)
, where T0, T1 ∈ B1(Ω) and

T0S = ST1, that is, T ∈ FB2(Ω).
(ii) There exists a holomorphic frame {γ0, γ1} of ET such that ∂

∂w‖γ0(w)‖2 = 〈γ1(w), γ0(w)〉.
(iii) There exists a holomorphic frame {γ0, γ1} of ET such that γ0(w) and ∂

∂wγ0(w)−γ1(w) are
orthogonal for all w in Ω.

Proof. (i) =⇒ (ii): Pick any two non-vanishing holomorphic sections t0 and t1 for the line bundles
ET0 and ET1 respectively. Then

(T − w)t1(w) = (T1 − w)t1(w) + S(t1(w))

= S(t1(w).

Since T0S = ST1, it induces a bundle map from ET1 to ET0 , so S(t1(w)) = ψ(w)t0(w) for some holo-
morphic function ψ defined on Ω. Thus (T − w)t1(w) = ψ(w)t0(w). Setting γ0(w) := ψ(w)t0(w)
and γ1(w) := ∂

∂wγ0(w)− t1(w), we see that {γ0(w), γ1(w)} ⊂ ker (T − w). Now assume that

α0γ0(w) + α1γ1(w) = 0(2.1)

for a pair of complex numbers α0 and α1. Then

0 = 〈α0γ0(w) + α1γ1(w), t1(w)〉
= α1〈γ1(w), t1(w)〉
= −α1‖t1(w)‖2.(2.2)

From equations (2.1) and (2.2), it follows that α0 = α1 = 0. Thus {γ0, γ1} is a holomorphic frame
of ET . Since 〈t1(w), γ0(w)〉 = 0, we see that

∂
∂w‖γ0(w)‖2 = 〈γ1(w), γ0(w)〉.

(ii)⇐⇒ (iii) : This equivalence is evident from the definition.

(iii) =⇒ (i) : Set t1(w) := ∂
∂wγ0(w) − γ1(w). Let H0 and H1 be the closed linear span of

{γ0(w) : w ∈ Ω} and {t1(w) : w ∈ Ω}, respectively. Set T0 = T|H0
, T1 = PH1T|H1

and S = PH0T|H1
.

We see that the closed linear span of the vectors {γ0(w), t1(w) : w ∈ Ω} is H : Suppose x in
H is orthogonal to this set of vectors. Then clearly, x⊥γ0(w) and x⊥t1(w) for all w in Ω. Or,
equivalently x⊥γ0(w) and x⊥γ1(w) for all w in Ω. Therefore x must be the 0 vector. Next, we
show that the two operators T0 and T1 are in B1(Ω).

Clearly, (T1 − w) is onto. Thus index (T1 − w) = dim ker (T1 − w) and 2 = index (T − w) =
index (T0 − w) + index (T1 − w). It follows that dim ker(T1 − w) = 1 or 2.

Suppose dim ker (T1−w) = 2 and {s1(w), s2(w)} be a holomorphic choice of linearly independent
vectors in ker (T1 − w). Then we can find holomorphic functions φ1, φ2 defined on Ω such that
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S(s1(w)) = φ1(w)γ0(w) and S(s2(w)) = φ2(w)γ0(w). Setting

γ̃0(w) := γ0(w),

γ̃1(w) :=
∂

∂w
(φ1(w)γ0(w))− s1(w) and

γ̃2(w) :=
∂

∂w
(φ2(w)γ0(w))− s2(w),

we see that (T − w)(γ̃i(w)) = 0 for 0 ≤ i ≤ 2. If
∑2

i=0 αiγ̃i(w) = 0, αi ∈ C, then

α0γ0(w) + ∂
∂w

(
(α1φ1(w) + α2φ2(w))γ0(w)

)
+ α1s1(w) + α2s2(w) = 0.

It follows that α1s1(w) + α2s2(w) = 0 since H0 is orthogonal to H1. Hence α1 = α2 = 0 implying
α0 = 0. Thus we have dim ker(T − w) ≥ 3. This contradiction proves that dim ker(T0 − w) = 1
and hence T1 is in B1(Ω).

To show that T0 is in B1(Ω), pick any x ∈ H0, and note that there exist z ∈ H such that
(T −w)z = x since T −w is onto. Let zH1 and zH0 be the projections of z to the subspaces H0 and
H1, respectively. We have [(T0 − w)zH0 + S(zH1)] + (T1 − w)zH1 = x. Therefore (T1 − w)zH1 = 0
and (T0 − w)zH0 + S(zH1) = x. Since dim ker (T1 − w) = 1 , so zH1 = c1t1(w), it follows that

x = (T0 − w)zH0 + S(zH1)

= (T0 − w)zH0 + S(c1t1(w))

= (T0 − w)zH0 + c1γ0(w)

= (T0 − w)zH0 + (T0 − w)(c1
∂
∂wγ0(w))

= ((T0 − w)(zH0 + c1
∂
∂wγ0(w)).

Thus T0−w is onto. We have 2 = dim ker (T −w) = dim ker (T0−w) + dim ker (T1−w). Hence
dim ker (T0 − w) = 1 and we see that T0 is in B1(Ω).

Finally, since S(t1(w)) = γ0(w), it follows that T0S = ST1. �

2.2. Models for operators in FB2(Ω). An operator T ∈ FB2(Ω) is also in B2(Ω), therefore as
is well-known (cf. [1, 3]), it can be realized as the adjoint of a multiplication operator on some
reproducing kernel Hilbert space of holomorphic C2-valued functions. These functions are defined
on Ω∗ := {w : w̄ ∈ Ω}. An explicit description for operators in FB2(Ω) follows.

Let ET be the holomorphic Hermitian vector bundle over Ω corresponding to the operator
T. Since T is in FB2(Ω), we may find a holomorphic frame γ = {γ0, γ1} such that γ0(w) and
∂
∂wγ0(w)− γ1(w) are orthogonal for all w in Ω. Define Γ : H→ O(Ω∗,C2) as follows:

Γ(x)(z) =
(
〈x, γ0(z̄)〉, 〈x, γ1(z̄)〉

)tr
z ∈ Ω∗, x ∈ H,

where O(Ω∗,C2) is the space of holomorphic functions defined on Ω∗ which take values in C2. Here
( · , · )tr denotes the transpose of the vector ( · , · ).

The map Γ is injective and therefore transplanting the inner product from H on the range of
Γ, we make it unitary from H onto HΓ := ran Γ. Define KΓ to be the function on Ω∗ ×Ω∗ taking
values in the 2× 2 matrices M2(C) :

KΓ(z, w) =
((
〈γj(w̄), γi(z̄)〉

))1
i,j=0

=

(
〈γ0(w̄), γ0(z̄)〉 ∂

∂w̄ 〈γ0(w̄), γ0(z̄)〉
∂
∂z 〈γ0(w̄), γ0(z̄)〉 ∂2

∂z∂w̄ 〈γ0(w̄), γ0(z̄)〉+ 〈t1(w̄), t1(z̄)〉

)

=

(
K0(z, w) ∂

∂w̄K0(z, w)
∂
∂zK0(z, w) ∂2

∂z∂w̄K0(z, w)

)
+

(
0 0

0 K1(z, w)

)
,(2.3)
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where t1(w̄) = ∂
∂w̄γ0(w̄) − γ1(w̄), K0(z, w) = 〈γ0(w̄), γ0(z̄)〉 and K1(z, w) = 〈t1(w̄), t1(z̄)〉 for z, w

in Ω∗. Set (KΓ)w(·) = KΓ(·, w). It is then easily verified that KΓ has the following properties:

(1) The reproducing property: 〈Γ(x)(·), (KΓ)w(·)η〉ran Γ = 〈Γ(x)(w), η〉C2 , x ∈ H, η ∈ C2,
w ∈ Ω∗.

(2) The unitary operator Γ intertwines the operators T defined on H and M∗ defined on HΓ,
namely, ΓT ∗ = MzΓ.

(3) Each w in Ω is an eigenvalue with eigenvector (KΓ)w̄(·)η, η ∈ C2, for the operator M∗ =
ΓTΓ∗.

2.3. Rigidity. Once we represent an operator T from FB2(Ω) in this form, the possibilities for the
change of frame are limited. The admissible ones are described in the following lemma.

Lemma 2.5. Let T be an operator in FB2(Ω). Suppose {γ0, γ1}, {γ̃0, γ̃1} are two frames of the
vector bundle ET such that γ0(w)⊥( ∂

∂wγ0(w)−γ1(w)) and γ̃0(w)⊥( ∂
∂w γ̃0(w)− γ̃1(w)) for all w ∈ Ω.

If φ =

(
φ11 φ12

φ21 φ22

)
is any change of frame between {γ0, γ1} and {γ̃0, γ̃1}, that is,

{γ̃0, γ̃1} = {γ0, γ1}
(
φ11 φ12

φ21 φ22

)
,

then φ21 = 0, φ11 = φ22 and φ12 = φ′11.

Proof. Define the unitary map Γ, as above, using the holomorphic frame γ = {γ0, γ1}. The operator
T is then unitarily equivalent to the adjoint of the multiplication operator on the Hilbert space HΓ

possessing a reproducing kernel KΓ of the form (2.3). Let e1 and e2 be the standard unit vectors
in C2. Clearly, (KΓ)w(·)e1 and (KΓ)w(·)e2 are two linearly independent eigenvectors of M∗ with
eigenvalue w̄.

Similarly, corresponding to the holomorphic frame γ̃ = {γ̃0, γ̃1}, the operator T is unitarily
equivalent to the adjoint of multiplication operator on the Hilbert space HΓ̃. The reproducing

kernel KΓ̃ is again of the form (2.3) except that K0 and K1 must be replaced by K̃0 and K̃1,
respectively.

For i = 0, 1, set si(w) := (KΓ)(w)ei, and s̃i(w) := (KΓ̃)(w)ei. Let φ(w) :=

(
φ00(w) φ01(w)
φ10(w) φ11(w)

)
be the holomorphic function, taking values in 2× 2 matrices, such that

(s̃0(w), s̃1(w)) = (s0(w), s1(w))φ(w).

This implies that

s̃0(w) = φ00(w)s0(w) + φ10(w)s1(w)(2.4)

and

s̃1(w) = φ01(w)s0(w) + φ11(w)s1(w).(2.5)

From Equation (2.4), equating the first and the second coordinates separately, we have

(K̃0)w(·) = φ00(w)(K0)w(·) + φ10(w) ∂
∂w̄ (K0)w(·)(2.6)

and

∂
∂z (K̃0)w(·) = φ00(w) ∂∂z (K0)w(·) + φ10(w) ∂2

∂z∂w̄ (K0)w(·) + φ10(w)(K1)w(·).(2.7)

From these two equations, we get

φ00(w) ∂∂z (K0)w(·) + φ10(w) ∂2

∂z∂w̄ (K0)w(·) =

φ00(w) ∂∂z (K0)w(·) + φ10(w) ∂2

∂z∂w̄ (K0)w(·) + φ10(w)(K1)w(·),
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which implies that φ10 = 0. Finally, from Equation (2.5), we have

∂
∂w̄ (K̃0)w(·) = φ01(w)(K0)w(·) + φ11(w) ∂

∂w̄ (K0)w(·)(2.8)

The Equations (2.5) and (2.8) together give

φ01 = φ′00 and φ00 = φ11

completing the proof. �

A very important consequence of this Lemma is that the decomposition of the operators in the
class FB2(Ω) is unique in the sense described in the following proposition.

Proposition 2.6. Let T, T̃ ∈ FB2(Ω) be two operators of of the form
(
T0 S
0 T1

)
and

(
T̃0 S̃

0 T̃1

)
with

respect to the decomposition H = H0 ⊕H1 and H̃ = H̃0 ⊕ H̃1, respectively. Let U =
(
U11 U12
U21 U22

)
:

H0 ⊕H1 → H̃0 ⊕ H̃1 be an unitary operator such that(
U11 U12

U21 U22

)(
T0 S
0 T1

)
=

(
T̃0 S̃

0 T̃1

)(
U11 U12

U21 U22

)
,

then U12 = U21 = 0.

Proof. Let {γ0, γ1} and {γ̃0, γ̃1} be holomorphic frames of ET and ET̃ respectively with the prop-

erty that γ0 ⊥ ( ∂
∂wγ0 − γ1) and γ̃0 ⊥ ( ∂

∂w γ̃0 − γ̃1). Set t1 := ( ∂
∂wγ0 − γ1) and t̃1 := ( ∂

∂w γ̃0 − γ̃1).

Since U intertwines T and T̃ , it follows that {Uγ0, Uγ1} is a second holomorphic frame of ET̃ with

the property Uγ0 ⊥ ( ∂
∂w (Uγ0)− Uγ1) = U(t1). By Lemma 2.5, we have that

U(γ0) = φγ̃0(2.9)

and

U(γ1) = φ′γ̃0 + φγ̃1.(2.10)

From equations (2.9) and (2.10), we get

U(t1) = φ t̃1.(2.11)

From equations (2.9) and (2.11), it follows that U maps H0 to H0 and H1 to H1. Thus U is a

block diagonal from H0 ⊕H1 onto H̃0 ⊕ H̃1 �

Remark 2.7. In summary, we note that a holomorphic change of frame for the vector bundle
ET , preserving the orthogonality relation between γ0 and ∂

∂wγ0(w) − γ1(w), must be of the form(
ϕ ϕ′

0 ϕ

)
. Thus such a change of frame for the vector bundle ET induces change of frame

(
ϕ 0
0 ϕ

)
for

the vector bundle E(T0 0
0 T1

) and vice-versa.

Corollary 2.8. For i = 0, 1, let Ti be any two operators in B1(Ω). Let S and S̃ be bounded linear

operators such that T0S = ST1 and T0S̃ = S̃T1. If T =
(
T0 S
0 T1

)
and T̃ =

(
T0 S̃
0 T1

)
, then T is

unitarily equivalent to T̃ if and only if S̃ = eiθS for some real number θ.

Proof. Suppose that UT = T̃U for some unitary operator U. We have just shown that such an

operator U must be diagonal, say U =
(
U11 0
0 U22

)
. Hence we have

U11T0 = T0U11, U22T1 = T1U22, U11S = S̃U22.(2.12)

Since U11 is unitary, the first of the equations (2.12) implies that

U11 ∈ {T0, T
∗
0 }′ := {W ∈ L(H0) : WT0 = T0W and WT ∗0 = T ∗0W}.
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Since T0 is an irreducible operator, we conclude that U11 = eiθ1IH0 for some θ1 ∈ R. Similarly,

U22 = eiθ2IH1 for some θ2 ∈ R. Hence the third equation in (2.12) implies that S̃ = ei(θ1−θ2)S.

Conversely suppose that S̃ = eiθS for some real number θ. Then evidently the operator U :=(
exp
(
i
θ
2

)
IH0

0

0 exp
(
−i θ2
)
IH1

)
is unitary on H = H0 ⊕H1 and UT = T̃U. �

Corollary 2.9. For i = 0, 1, let Ti be two operators in B1(Ω). Let S be a non-zero bounded linear

operators such that T0S = ST1. If Tµ =
(
T0 µS
0 T1

)
and Tµ̃ =

(
T0 µ̃S
0 T1

)
, µ, µ̃ > 0, then Tµ is unitarily

equivalent to Tµ̃ if and only if µ = µ̃.

2.4. A complete set of unitary invariants. The following theorem lists a complete set of unitary
invariants for operators in FB2(Ω).

Theorem 2.10. Suppose that T =
(
T0 S
0 T1

)
and T̃ =

(
T̃0 S̃

0 T̃1

)
are any two operators in FB2(Ω).

Then the operators T and T̃ are unitarily equivalent if and only if KT1 = KT̃1
(or, KT0 = KT̃0

) and
‖S(t1)‖2
‖t1‖2 = ‖S̃(t̃1)‖2

‖t̃1‖2
, where t1 and t̃1 are non-vanishing holomorphic sections for the vector bundles

ET1 and ET̃1 , respectively.

Proof. On a small small open subset of Ω, we can assume that S(t1) and S̃(t̃1) are holomor-
phic frames of the bundle ET0 and ET̃0 , respectively. First suppose that ∂̄∂ log ‖S(t1)‖2 =

∂̄∂ log ‖S̃(t̃1)‖2 and ‖S(t1)‖2
‖t1‖2 = ‖S̃(t̃1)‖2

‖t̃1‖2
. Then we claim that T and T̃ are unitarily equivalent.

The equality of the curvatures, namely, ∂̄∂ log ‖S(t1)‖2 = ∂̄∂ log ‖S̃(t̃1)‖2 implies that ‖S(t1)‖2 =

|φ|2‖S̃(t̃1)‖2 for some non-vanishing holomorphic function φ on Ω. It may be that we have to
shrink, without loss of generality, to a smaller open set Ω0. The second of our assumptions gives
‖t1‖2 = |φ|2‖t̃1‖2. Let γ0(w) := S(t1(w)) and γ̃0(w) := S̃(t̃1(w)); γ1(w) := ∂

∂wγ0(w) − t1(w) and

γ̃1(w) := ∂
∂w γ̃0(w)− t̃1(w). It follows that {γ0, γ1} and {γ̃0, γ̃1} are holomorphic frames of ET and

ET̃ , respectively. Define the map Φ : ET → ET̃ as follows:

(1) Φ(γ0(w)) = φ(w)γ̃0(w),
(2) Φ(γ1(w)) = φ′(w)γ̃0(w) + φ(w)γ̃1(w).

Clearly, Φ is holomorphic. Note that

〈Φ(γ0(w)),Φ(γ1(w))〉 = 〈φ(w)γ̃0(w), φ′(w)γ̃0(w) + φ(w)γ̃1(w)〉
= 〈φ(w)γ̃0(w), φ′(w)γ̃0(w) + φ(w)( ∂

∂w γ̃0(w)− t̃1(w))〉
= 〈φ(w)γ̃0(w), ∂

∂w (φ(w)γ̃0(w))− φ(w)t̃1(w)〉
= ∂

∂w̄‖φ(w)γ̃0(w)‖2

= ∂
∂w̄‖γ0(w)‖2

and

〈γ0(w), γ1(w)〉 = 〈γ0(w), ∂
∂wγ0(w)− t1(w)〉

= ∂
∂w̄‖γ0(w)‖2.

Hence we have 〈Φ(γ0(w)),Φ(γ1(w))〉 = 〈γ0(w), γ1(w)〉. Similarly, ‖Φ(γ0(w))‖ = ‖γ0(w)‖ and
‖Φ(γ1)‖ = ‖γ1‖. Thus ET and ET̃ are equivalent as holomorphic Hermitian vector bundles. Hence

T and T̃ are unitarily equivalent by Theorem 1.2 of Cowen and Douglas.

Conversely, suppose T and T̃ are unitarily equivalent. Let U : H→ H̃ be the unitary map such

that UT = T̃U . By proposition 2.6, U takes the form
(
U1 0
0 U2

)
for some pair of unitary operators
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U1 and U2. Hence we have U1(S(t1)) = φ1(S̃(t̃1)) and U2t1 = φ2t̃1. The intertwining relation

U1S = S̃U2 implies that φ1 = φ2. Thus KT0 = KT̃0
and

‖S(t1)‖2

‖t1‖2
=
‖U1(S(t1))‖2

‖U2(t1)‖2
=
‖φ1S̃(t̃1)‖2

‖φ2t̃1‖2
=
‖S̃(t̃1)‖2

‖t̃1‖2
.

This verification completes the proof. �

2.5. The second fundamental form. We relate the invariants of Theorem 2.10 to the second fun-
damental form of the inclusion E0 ⊆ E. The computation of the second fundamental form is given
below following [6, page. 2244]. Here E0, is the line bundle corresponding to the operator T0

and E is the vector bundle of rank 2 corresponding to the operator T in FB2(Ω). Let {γ0, γ1}
be a holomorphic frame for E such that γ0 and t1 := ∂γ0 − γ1 are orthogonal. One obtains an
orthonormal frame, say, {e0, e1}, from the holomorphic frame {γ0, γ1} by the usual Gram-Schmidt
process – Set h = 〈γ0, γ0〉, and observe that

e1 = h−1/2γ0, e2 =
γ1 − γ0〈γ1,γ0〉

‖γ0‖2

(‖γ1‖2 − |〈γ1,γ0〉|
2

‖γ0‖2 )1/2

are orthogonal. The canonical hermitian connection D for the vector bundle ET is given, in terms
of e1 and e2 by the formula:

De1 = D1,0e1 +D0,1e1

= α11e1 + α21e2 + ∂̄e1

= (α11 − ∂̄(log h))e1 + α21e2

= θ11e1 + θ21e2,

where α11, α21 are (1, 0) forms to be determined. Similarly, we have

D e2 = D1,0e2 +D0,1e2

= α12e1 + α22e2 + ∂̄e2

=

α12 − h1/2 ∂̄(h−1〈γ2, γ1〉)
(‖γ2‖2 − |〈γ2,γ1〉|

2

‖γ1‖2 )1/2

 e1 +

α22 −
1

2

∂̄(‖γ2‖2 − 〈γ2,γ1〉‖γ1‖2 )

(‖γ2‖2 − 〈γ2,γ1〉‖γ1‖2 )

 e2

= θ12e1 + θ22e2,

where α12, α22 are (1, 0) forms to be determined. Since we are working with an orthonormal frame,
the compatibility of the connection with the Hermitian metric gives

〈Dei, ej〉+ 〈ei, D ej〉 = θji + θ̄ij

= 0 for 1 ≤ i, j ≤ 2.

For 1 ≤ i, j ≤ 2, equating (1, 0) and (0, 1) forms separately to zero in the equation θij + θ̄ji = 0, we

obtain α11 = ∂(log h), α12 = 0, α21 = h1/2 ∂̄(h−1〈γ1,γ0〉)
(‖γ1‖2− |〈γ1,γ0〉|

2

‖γ0‖2
)1/2

and α22 = 1
2

∂̄(‖γ1‖2− 〈γ1,γ0〉‖γ0‖2
)

(‖γ1‖2− 〈γ1,γ0〉‖γ0‖2
)

. Hence

the second fundamental form for the inclusion E0 ⊂ E is given by the formula:

θ12 = −h1/2 ∂̄(h−1〈γ1, γ0〉)(
‖γ1‖2 − |〈γ1,γ0〉|

2

‖γ0‖2
)1/2 = −

∂2

∂z∂z̄ log h dz̄( ‖1‖2
‖γ0‖2 + ∂2

∂z∂z̄ log h
)1/2 ,

where t1 = γ′0−γ1. If T =

(
T0 S
0 T1

)
is an operator in FB2(Ω) and t1 is a non-vanishing holomorphic

section of the vector bundle E1 corresponding to the operator T1, then we may assume, without
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loss of generality, that S(t1) is a holomorphic frame of E0. The second fundamental form θ12 of
the inclusion E0 ⊆ E, in this case, is therefore equal to

−
∂2

∂z∂z̄ log ‖S(t1)‖2dz̄( ‖t1‖2
‖S(t1)‖2 +

∂2

∂z∂z̄ log ‖S(t1)‖2
)1/2 .

It follows from Theorem 2.10 that the second fundamental form of the inclusion E0 ⊆ E and the
curvature of E1 form a complete set of invariants for the operator T. We restate Theorem 2.10
using the second fundamental form θ12.

Theorem 2.11. Suppose that T =
(
T0 S
0 T1

)
and T̃ =

(
T̃0 S̃

0 T̃1

)
are any two operators in FB2(Ω).

Then the operators T and T̃ are unitarily equivalent if and only if KT1 = KT̃1
(or KT0 = KT̃0

) and

θ12 = θ̃12.

2.6. Application to homogeneous operators. We use the machinery developed here to list the
unitary equivalence classes of homogeneous operators in Bn(D), n = 2. For n = 1 this was done
in [12] and in [14] for n = 2. The classification of homogeneous operators in Bn(D) was given in
[11] for an arbitrary n. The proofs of [14] and [11] use tools from Differential geometry and the
representation theory of Lie groups respectively. While the description below is very close to the
spirit of [12].

Definition 2.12. An operator T is said to be homogeneous if ϕ(T ) is unitarily equivalent to T
for all ϕ in Möb which are analytic on the spectrum of T .

Proposition 2.13 ([12]). An operator T in B1(D) is homogeneous if and only if

KT (w) = −λ(1− |w|2)−2

for some positive real number λ.

Remark 2.14. From the Proposition 2.13, it follows that T is unitarily equivalent to the adjoint
of the multiplication operator M (λ) acting on the reproducing kernel Hilbert space (H(λ),K(λ)),

where the reproducing kernel K(λ) is of the form 1
(1−zw̄)λ

, z, w ∈ D.

Proposition 2.15. Let T be an operator in FB2(D) and let t1 be a non-vanishing holomorphic
section of the bundle E1 corresponding to the operator T1. For any ϕ in Möb, set t1,ϕ = t1oϕ

−1. The

operator T is homogeneous if and only if T0, T1 are homogeneous and
‖S(t1,ϕ)‖2
‖t1,ϕ‖2 = |(ϕ−1)′|2 ‖S(t1)‖2

‖t1‖2
for all ϕ in Möb.

Proof. Using the intertwining property in the class FB2(D), we see that

ϕ(T ) =

(
ϕ(T0) Sϕ′(T1)

0 ϕ(T1)

)
.

Suppose that T is homogeneous, that is, T is unitarily equivalent to ϕ(T ) for ϕ in Möb. From
Theorem 2.10, it follows that T0 is unitarily equivalent to ϕ(T0), T1 is unitarily equivalent to ϕ(T1)
and

‖Sϕ′(T1)(t1,ϕ(w))‖2
‖t1,ϕ(w)‖2 = ‖S(t1(w))‖2

‖t1(w)‖2 .(2.13)

Now, we have

‖S ϕ′(T1)(t1,ϕ(w))‖2
‖t1,ϕ(w)‖2 =

‖Sϕ′(ϕ−1(w))(t1,ϕ(w))‖2
‖t1,ϕ(w)‖2

=
|ϕ′(ϕ−1(w))|2‖S(t1,ϕ(w))‖2

‖t1,ϕ(w)‖2

=
|(ϕ−1)′(w)|−2‖S(t1,ϕ(w))‖2

‖t1,ϕ(w)‖2 .(2.14)
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From equations (2.13) and (2.14), it follows that

‖S(t1,ϕ(w))‖2
‖t1,ϕ(w)‖2 = |(ϕ−1)′(w)|2 ‖S(t1(w))‖2

‖t1(w)‖2 .(2.15)

Conversely suppose that T0, T1 are homogeneous operators and

‖S(t1,ϕ(w))‖2
‖t1,ϕ(w)‖2 = |(ϕ−1)′(w)|2 ‖S(t1(w))‖2

‖t1(w)‖2

for all ϕ in Möb. From equations (2.14), (2.15) and Theorem 2.10, it follows that T is a homoge-
neous operator. �

Corollary 2.16. An operator T in FB2(D) is a homogeneous if and only if

(i) T0 and T1 are homogeneous operators;
(ii) KT1(w) = KT0(w) + KB∗(w), w ∈ D, where B is the forward Bergman shift;

(iii) S(t1(w)) = αγ0(w) for some positive real number α and ‖t1(w)‖2 = 1
(1−|w|2)λ+2 , ‖γ0(w)‖2 =

1
(1−|w|2)λ

.

Proof. Suppose T is a homogeneous operator. Then Proposition 2.15 shows that T0 and T1 are
homogeneous operators. We may therefore find non-vanishing holomorphic sections γ0 and t1
of E0 and E1, respectively, such that ‖γ0(w)‖2 = (1 − |w|2)−λ and ‖t1(w)‖2 = (1 − |w|2)−µ for
some positive real λ and µ. For ϕ in Möb, set γ0,ϕ = γ0 ◦ ϕ−1 and t1,ϕ = t1 ◦ ϕ−1. Clearly,

‖γ0,ϕ(w)‖2 = |(ϕ−1)′(w)|−λ‖γ0(w)‖2 and ‖t1,ϕ(w)‖2 = |(ϕ−1)′(w)|−µ‖t1(w)‖2. Let S(t1(w)) =
ψ(w)γ0(w) for some holomorphic function ψ on D. We have S(t1,ϕ(w)) = S(t1(ϕ−1(w))) =
ψ(ϕ−1(w))γ0(ϕ−1(w)) = ψ(ϕ−1(w))γ0,ϕ(w) and

‖S(t1,ϕ(w))‖2
‖t1,ϕ(w)‖2 = |(ϕ−1)′(w)|2 ‖S(t1(w))‖2

‖t1(w)‖2 .(2.16)

Combining these we see that

‖S(t1,ϕ(w))‖2
‖t1,ϕ(w)‖2 = |ψ(ϕ−1(w))|2 ‖(γ0,ϕ(w))‖2

‖t1,ϕ(w)‖2

= |ψ(ϕ−1(w))|2|(ϕ−1)′(w)|µ−λ ‖(γ0(w))‖2
‖t1(w)‖2 .(2.17)

From the equations (2.16) and (2.17), we get

|ψ(w)|2|(ϕ−1)′(w)|λ+2−µ = |ψ(ϕ−1w)|2(2.18)

Pick ϕ = ϕu, where ϕu(w) = w−u
1−ūw and put w = 0 in the equation (2.18). Then

|ψ(0)|2(1− |u|2)λ+2−µ = |ψ(u)|2.(2.19)

If ψ(0) = 0 then equation (2.19) implies that ψ(u) = 0 for all u ∈ D, which makes S = 0 leading
to a contradiction. Thus ψ(0) 6= 0. Differentiating of both sides the equation (2.19), we see that

(λ+ 2− µ) ∂2

∂u∂ū log(1− |u|2) = 0.

Hence we conclude that µ = λ+ 2. Putting µ = λ+ 2 in the equation (2.19) we find that ψ must
be a constant function. Hence there is a constant α such that S(t1(w)) = αγ0(w) for all w ∈ Ω.
Finally,

KT1(w) = ∂̄∂ log ‖t1(w)‖2

= ∂̄∂ log(1− |w|2)−µ

= ∂̄∂ log(1− |w|2)−λ−2

= ∂̄∂ log(1− |w|2)−λ + ∂̄∂ log(1− |w|2)−2

= ∂̄∂ log ‖γ0(w)‖2 + ∂̄∂ log(1− |w|2)−2

= KT0(w) + KB∗(w).
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Conversely, suppose that conditions (i), (ii) and (iii) are met. We need to show that T is a
homogeneous operator. Condition (ii) is equivalent to µ = λ + 2. By Proposition 2.15, it is
sufficient to show that

‖S(t1,ϕ(w))‖2
‖t1,ϕ(w)‖2 = |(ϕ−1)′(w)|2 ‖S(t1(w))‖2

‖t1(w)‖2 .

However, we have

‖S(t1,ϕ(w))‖2
‖t1,ϕ(w)‖2 = |α|2 ‖(γ0,ϕ(w))‖2

‖t1,ϕ(w)‖2

= |α|2|(ϕ−1)′(w)|µ−λ ‖(γ0(w))‖2
‖t1(w)‖2

= |α|2|(ϕ−1)′(w)|2 ‖(γ0(w))‖2
‖t1(w)‖2

= |(ϕ−1)′(w)|2 ‖S(t1(w))‖2
‖t1(w)‖2 .

�

2.7. Irreducibility and strong irreducibility in FB2(Ω). In this subsection, we show that an opera-
tor T in FB2(Ω) is irreducible. Furthermore, if the intertwining operator S is invertible, then T is
strongly irreducible. (Recall that an operator T is said to be strongly irreducible if the commutant
{T}′ of the operator T contains no idempotent operator.) We also provide a more direct proof of
proposition 2.6, which easily generalizes to the case of an arbitrary n.

Definition 2.17. Let T1 and T2 be any two bounded linear operators on the Hilbert space H.
Define σT1,T2 : L(H)→ L(H) to be the operator

σT1,T2(X) = T1X −XT2, X ∈ L(H).

Let σT : L(H)→ L(H) be the operator σT,T .

An operator T defined on a Hilbert space H is said to be quasi-nilpotent if limn→∞ ‖Tn‖1/n = 0.

Lemma 2.18. Suppose T is in B1(Ω) and X is a quasi-nilpotent operator such that TX = XT.
Then X = 0.

Proof. Let γ be a non-vanishing holomorphic section for ET . Since TX = XT, we see that X(γ)
is also a holomorphic section of ET . Hence X(γ(w)) = φ(w)γ(w) for some holomorphic function φ
defined on Ω. Clearly, Xn(γ(w)) = φ(w)nγ(w). Now, we have

|φ(w)|n‖γ(w)‖ = ‖φ(w)nγ(w)‖
= ‖Xn(γ(w))‖
≤ ‖Xn‖‖γ(w)‖

Thus, for n ∈ N and w ∈ Ω, we have |φ(w)| ≤ ‖Xn‖1/n implying φ(w) = 0, w ∈ Ω. Hence
X = 0. �

The following theorem from [9] is the key to an alternative proof of the proposition 2.6 and its
generalization in the following section.

Theorem 2.19. Let P, T be two bounded linear operators. If P ∈ ranσT ∩ kerσT , then P is a
quasi-nilpotent.

A second Proof of Proposition 2.6

Proof. Suppose T is unitarily equivalent to T̃ via the unitary U, namely, UT = TU. Then

U21S + U22T1 = T̃1U22(2.20)

U21T0 = T̃1U21.(2.21)



RIGIDITY OF THE FLAG STRUCTURE FOR A CLASS OF COWEN-DOUGLAS OPERATORS 13

Equivalently, we also have TU∗ = U∗T̃ , which gives an additional relationship:

T1U
∗
12 = U∗12T̃0.(2.22)

Using these equations, we compute

U21SU
∗
12S̃ = (T̃1U22 − U22T1)U∗12S̃

= T̃1U22U
∗
12S̃ − U22T1U

∗
12S̃

= T̃1U22U
∗
12S̃ − U22U

∗
12T̃0S̃

= T̃1U22U
∗
12S̃ − U22U

∗
12S̃T̃1

= σT̃1(U22U
∗
12S̃),

and

(U21SU
∗
12S̃)T̃1 = U12SU

∗
12T̃0S̃

= U21ST1U
∗
12S̃

= U21T0SU
∗
12S̃

= T̃1(U12S̃U
∗
12S̃).

Thus U21SU
∗
12S̃ ∈ ranσT̃1 ∩ kerσT̃1 . From Lemma 2.18 and Theorem 2.19, it follows that

U21SU
∗
12S̃ = 0.

Since S̃ has dense range, we have U21SU
∗
12 = 0. Let us consider the two possibilities for U∗12,

namely, either U∗12 = 0 or U∗12 6= 0. If U∗12 6= 0, then from equation (2.22), U∗12 must have dense
range. Since S also has dense range, we have U21 = 0. To complete the proof, we consider two
cases.

Case 1: Suppose U21 = 0. In this case, we have to prove that U12 = 0. From U∗U = I, we get
U∗11U11 = I and U∗12U11 = 0. From UT = T̃U , we get U11T0 = T̃0U11, so U11 has dense rang. Since
U11 is an isometry and has dense range, it follows that U11 is onto. Hence U11 is unitary. Since
U11 is unitary and U∗12U11 = 0, it follows that U12 = 0.

Case 2: Suppose U12 = 0. In this case, we have to prove that U21 = 0. We have U11U
∗
11 = I and

U21U
∗
11 = 0. The intertwining relation TU∗ = U∗T̃ gives T0U

∗
11 = U∗11T̃0. So U∗11 has dense range.

Since U∗11 is an isometry and it has dense range, we must conclude that U∗11 is onto. Hence U11 is
unitary and we have U21U

∗
11 = 0 forcing U21 to be the 0 operator. �

Proposition 2.20. Any operator T in FB2(Ω) is irreducible. Also, if T =
(
T0 I
0 T0

)
, then it is

strongly irreducible.

Proof. Let P = (Pij)2×2 be a projection in the commutant {T}′ of the operator T, that is,(
P11 P12

P21 P22

)(
T0 S
0 T1

)
=

(
T0 S
0 T1

)(
P11 P12

P21 P22

)
.

This equality implies that P11T0 = T0P11 + SP21, P11S + P12T1 = T0P12 + SP22, P21T0 = T1P21

and P21S + P22T1 = T1P22. Now

(P21S)T1 = P21(ST1) = P21(T0S) = (P21T0)S = T1(P21S).

Thus P21S ∈ ker σT1 . Also note that

P21S = T1P22 − P22T1 = σT1(P22).

Hence P21S ∈ ranσT1∩kerσT1 . Thus from Lemma 2.18 and Theorem 2.19, it follows that P21S = 0.
The operator P21 must be 0 since S has dense range.
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To prove the first statement, we may assume that the operator P is self adjoint and conclude P12

is 0 as well. Since both the operators T0 and T1 are irreducible and the projection P is diagonal,
it follows that T must be irreducible.

For the proof of the second statement, note that if P is an idempotent of the form
(
P11 P12
0 P22

)
,

both P11 and P22 must be idempotents. By our hypothesis, P11 and P22 must also commute with
T0, which is strongly irreducible, hence P11 = 0 or I and P22 = 0 or I. By using Theorem 2.19,

we see that if P =
(
I P12
0 0

)
or P =

(
0 P12
0 I

)
, then P does not commute with

(
T0 I
0 T0

)
. Thus

P =
(
I P12
0 I

)
or P =

(
0 P12
0 0

)
. Now, using the equation P 2 = P , we conclude that P12 must be

zero. Thus P = I or P = 0.

�

We now give a sufficient condition for an operator T in FB2(Ω) to be strongly irreducible.

Proposition 2.21. Let T =

(
T0 S
0 T1

)
be an operator in FB2(Ω). If the operator S is invertible,

then the operator T is strongly irreducible.

Proof. By our hypothesis, the operator X =

(
I 0
0 S

)
is invertible. Now

XTX−1 =

(
I 0
0 S

)(
T0 S
0 T1

)(
I 0
0 S

)−1

=

(
T0 I
0 ST1S

−1

)
=

(
T0 I
0 T0

)
.

Thus T is similar to a strongly irreducible operator and consequently it is strongly irreducible. �

We conclude this section with a characterization of strong irreducibility in FB2(Ω).

Proposition 2.22. An operator T =

(
T0 S
0 T1

)
in FB2(Ω) is strongly irreducible if and only if

S /∈ ran σT0,T1.

Proof. Let P be an idempotent in the commutant {T}′ of the operator T . The proof of the

Proposition 2.20 shows that P must be upper triangular:

(
P11 P12

0 P22

)
. The commutation relation

PT = TP gives us P11T0 = T0P11, P22T1 = T1P22 and

P11S − SP22 = T0P12 − P12T1.(2.23)

Since Pi+1i+1 ∈ {Ti}′ for 0 ≤ i ≤ 1, it follows that Pii can be either I or 0. If either P11 = I and
P22 = 0 or P11 = 0 and P22 = I, then S is in ran σT0,T1 contradicting our assumption. Thus P is

of the form

(
I P12

0 I

)
or

(
0 P12

0 0

)
. Since P is an idempotent operator, we must have P12 = 0.

Hence T is strongly irreducible.

Assume that the operator S is in ran σT0,T1 . In this case, we show that T cannot be strongly
irreducible completing the proof. Since S ∈ ran σT0,T1 , we can find an operator P12 such that

S = σT0,T1(P12)

= T0P12 − P12T1.(2.24)
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The operator P =

(
I P12

0 0

)
is an idempotent operator. We have(

I P12

0 0

)(
T0 S
0 T1

)
=

(
T0 S + P12T1

0 0

)
(2.25)

and (
T0 S
0 T1

)(
I P12

0 0

)
=

(
T0 T0P12

0 0

)
.(2.26)

From these equations, we have PT = TP proving that the operator T is not strongly irreducible.
�

3. Rigidity of the flag structure

We begin by describing, what one may think of as, the natural generalization of the class FB2(Ω)
to operators in Bn(Ω) for an arbitrary n ∈ N.

Definition 3.1. We let FBn(Ω) be the set of all bounded linear operators T defined on some
complex separable Hilbert space H = H0 ⊕ · · · ⊕Hn−1, which are of the form

T =


T0 S0,1 S0,2 · · · S0,n−1

0 T1 S1,2 · · · S1,n−1
...

. . .
. . .

. . .
...

0 · · · 0 Tn−2 Sn−2,n−1

0 · · · · · · 0 Tn−1

 ,

where the operator Ti : Hi → Hi, defined on the complex separable Hilbert space Hi, 0 ≤ i ≤ n−1,
is assumed to be in B1(Ω) and Si,i+1 : Hi+1 → Hi, is assumed to be a non-zero intertwining
operator, namely, TiSi,i+1 = Si,i+1Ti+1, 0 ≤ i ≤ n− 2.

Even without mandating the intertwining condition, the set of operators described above belong
to the Cowen-Douglas class Bn(Ω). An inductive proof presents no difficulty starting with the base
case of n = 2, which was proved in the previous section. Therefore, in particular, FBn(Ω) ⊆ Bn(Ω).
We begin with a preparatory Lemma for proving the rigidity theorem.

Lemma 3.2. An invertible X that intertwines two operators in FBn(Ω). Let Y = X−1. If X =((
Xi,j

))
n×n, Y =

(
(Yi,j

))
n×n are the block decompositions of the two operators X and Y, respectively,

then Xn−1,j = 0, 0 ≤ j ≤ n− 2, and Yn−1,j = 0, 0 ≤ j ≤ n− 2.

Proof. Consider the three possibilities:

(1) Xn−1,j = 0, 0 ≤ j ≤ n− 2, but Yn−1,j 6= 0 for some 0 ≤ j ≤ n− 2.
(2) Yn−1,j = 0, 0 ≤ j ≤ n− 2, Xn−1,j 6= 0 for some 0 ≤ j ≤ n− 2.
(3) Xn−1,j 6= 0 for some 0 ≤ j ≤ n− 2 and Yn−1,k 6= 0 for some 0 ≤ k ≤ n− 2.

In each of these cases, we arrive at a contradiction proving the Lemma.

Case 1: Choose l to be the smallest index such that Yn−1,l 6= 0, that is, Yn−1,i = 0 for 0 ≤ i ≤ l− 1

but Yn−1,l 6= 0. For this index l, the intertwining relation TY = Y T̃ implies Tn−1Yn−1,l = Yn−1,lT̃l.
Since Yn−1,l 6= 0 , it follows from Proposition 2.3 that Yn−1,l has dense range. From XY = I, we get
Xn−1,n−1Yn−1,l = 0 and Xn−1,n−1Yn−1,n−1 = I. Since Yn−1,l has dense range and Xn−1,n−1Yn−1,l =
0, we conclude that Xn−1,n−1 = 0. This contradicts the identity: Xn−1,n−1Yn−1,n−1 = I.

Case 2: The contradiction in this case is arrived at exactly in the same manner as in the first case
after interchanging the roles of X and Y.
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Case 3: Pick j, l to be the smallest index such that Xn−1,j 6= 0 and Yn−1,l 6= 0. We have that

XT = T̃X. Consequently,

Xn−1,jTj = T̃n−1Xn−1,j , Xn−1,jSj,j+1 +Xn−1,j+1Tj+1 = T̃n−1Xn−1,j+1.(3.1)

Since TkSk,k+1 = Sk,k+1Tk+1 for k = 0, 1, 2, · · ·n − 1, multiplying the second equation in (3.1)
by Sj+1,j+2 · · ·Sn−2,n−1, and replacing Tj+1Sj+1,j+2 · · ·Sn−2,n−1 with Sj+1,j+2 · · ·Sn−2,n−1Tn−1,
we have

Xn−1,jSj,j+1 · · ·Sn−2,n−1 +Xn−1,j+1Sj+1,j+2 · · ·Sn−2,n−1Tn−1

= T̃n−1Xn−1,j+1Sj+1,j+2 · · ·Sn−2,n−1.(3.2)

We also have TY = Y T̃ , which gives us

Tn−1Yn−1,l = Yn−1,lT̃l.(3.3)

Now, multiply both sides of the equation (3.2) by Yn−1,l, using the commutation Tn−1Yn−1,l =

Yn−1,lT̃l, then again multiplying both sides of the resulting equation by S̃l,l+1 · · · S̃n−2,n−1 and

finally using the commutation relations T̃kS̃k,k+1 = S̃k,k+1T̃k+1, 0 ≤ k ≤ n− 1, we have

Xn−1,jSj,j+1 · · ·Sn−2,n−1Yn−1,lS̃l,l+1 · · · S̃n−2,n−1

+ Xn−1,j+1Sj,j+1 · · ·Sn−2,n−1Yn−1,lS̃l,l+1 · · · S̃n−2,n−1T̃n−1

= T̃n−1Xn−1,j+1Sj+1,j+2 · · ·Sn−2,n−1Yn−1,lS̃l,l+1 · · · S̃n−2,n−1.(3.4)

Therefore, we see that

Xn−1,jSj,j+1Sj+1,j+2 · · ·Sn−2,n−1Yn−1,lS̃l,l+1 · · · S̃n−2,n−1

is in the range of the operator σT̃n−1
. Indeed it is also in the kernel of σT̃n−1

, as is evident from the

following string of equalities:

Xn−1,jSj,j+1Sj+1,j+2 · · ·Sn−2,n−1Yn−1,lS̃l,l+1 · · · S̃n−2,n−1T̃n−1

= Xn−1,jSj,j+1Sj+1,j+2 · · ·Sn−2,n−1Yn−1,lT̃lS̃l,l+1 · · · S̃n−2,n−1

= Xn−1,jSj,j+1Sj+1,j+2 · · ·Sn−2,n−1Tn−1Yn−1,lS̃l,l+1 · · · S̃n−2,n−1

= Xn−1,jTjSj,j+1Sj+1,j+2 · · ·Sn−2,n−1Yn−1,lS̃l,l+1 · · · S̃n−2,n−1

= T̃n−1Xn−1,jSj,j+1Sj+1,j+2 · · ·Sn−2,n−1Yn−1,lS̃l,l+1 · · · S̃n−2,n−1.

Thus

Xn−1,jSj,j+1Sj+1,j+2 · · ·Sn−2,n−1Yn−1,lS̃l,l+1 · · · S̃n−2,n−1 ∈ kerσT̃n−1
∩ ranσT̃n−1

.

Consequently, using Lemma 2.18 and Theorem 2.19, we conclude that

Xn−1,jSj,j+1Sj+1,j+2 · · ·Sn−2,n−1Yn−1,lS̃l,l+1 · · · S̃n−2,n−1 = 0.

By hypothesis, all the operators Sk,k+1, S̃k,k+1, k = 0, 1, · · ·n − 2 have dense range. Since
Yn−1,l 6= 0, then equation (3.3) and Proposition 2.3 ensure that Yn−1,l has dense range. Hence
Xn−1,j = 0. This contradicts the assumption Xn−1,j 6= 0. �

The following proposition is the first step in the proof of the rigidity theorem.

Proposition 3.3. If X is an invertible operator intertwining two operators T and T̃ from FBn(Ω),
then X and X−1 are upper triangular.
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Proof. The proof is by induction on n. The validity of the case n = 2, is immediate from Lemma
3.2. Let us write the two operators T, T̃ in the form of 2× 2 block matrix:

T =

(
Tn−1×n−1 Tn−1×1

0 Tn−1,n−1

)
, T̃ =

(
T̃n−1×n−1 T̃n−1×1

0 T̃n−1,n−1

)
.

Using Lemma 3.2, the operators X,Y can be written in the form of 2× 2 block matrix:

X =

(
Xn−1×n−1 Xn−1×1

0 Xn−1,n−1

)
, Y =

(
Yn−1×n−1 Yn−1×1

0 Yn−1,n−1

)
without loss of generality. Here Xn−1×n−1 and Yn−1×n−1 are the operators

((
Xi,j

))n−2

i,j=0
and((

Yi,j
))n−2

i,j=0
respectively and

Tn−1×n−1 =


T0 S0,1 S0,2 ··· S0,n−2

0 T1 S1,2 ··· S1,n−2

...
. . .

. . .
. . .

...
0 ··· 0 Tn−3 Sn−3,n−2

0 ··· ··· 0 Tn−2

 , T̃n−1×n−1 =


T̃0 S̃0,1 S̃0,2 ··· S̃0,n−2

0 T̃1 S̃1,2 ··· S̃1,n−2

...
. . .

. . .
. . .

...
0 ··· 0 T̃n−3 S̃n−3,n−2

0 ··· ··· 0 T̃n−2

 .

From the relations XT = T̃X, TY = Y T̃ and XY = Y X = I, we get Xn−1×n−1Tn−1×n−1 =
T̃n−1×n−1Xn−1×n−1, Tn−1×n−1Yn−1×n−1 = Yn−1×n−1T̃n−1×n−1 and

Xn−1×n−1Yn−1×n−1 = Yn−1×n−1Xn−1×n−1 = I.

Now, to complete the proof by induction, we assume that any invertible operator X and its inverse
X−1 intertwining two operators T, T̃ in FBk(Ω) are upper triangular for all k < n. Thus the in-
duction hypothesis guarantees that Xn−1×n−1 and Yn−1×n−1 must be upper triangular completing
the proof. �

Employing these techniques, we show that any operator X, not necessarily invertible, in the
commutant of T ∈ FBn(Ω), must be upper triangular.

Proposition 3.4. Suppose T is in FBn(Ω) and X is a bounded linear operator in the commutant
of T. Then X is upper triangular.

Proof. The proof is is by induction n. To begin the induction, for n = 2, following the method
of the proof in Proposition 2.20. we see that an operator commute with an operator in FB2(Ω)
must be upper triangular. Now, assume that any operator commute with an operator in FBk(Ω)
is upper triangular for all k < n.

Step 1: We claim that Xn−1,i = 0 for 0 ≤ i ≤ n− 2. Suppose on contrary this is not true. Then
let l, 0 ≤ l ≤ n− 2, be the smallest index such that Xn−1,l 6= 0. For this index l, the commuting
relation XT = TX implies that

Xn−1,lTl = Tn−1Xn−1,l and

l∑
k=0

Xn−1,kSk,l+1 +Xn−1,i+1Tl+1 = Tn−1Xn−1,l+1.(3.5)

From equation (3.5), we have

Xn−1,lSl,l+1S1,2 . . . Sn−2,n−1 ∈ kerσTn−1 ,

Xn−1,lSl,l+1S1,2 . . . Sn−2,n−1 = σTn−1(Xn−1,l+1Sl+1,l+2, . . . Sn−2,n−1).

Therefore Xn−1,lSl,l+1Sl+1,l+2 . . . Sn−2,n−1 is in ranσTn−1 ∩ kerσTn−1 . Combining Proposition 2.3
with Lemma 2.18 and Theorem 2.19, we conclude that Xn−1,l = 0. This contradicts the assumption
Xn−1,l 6= 0.
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Step 2: Write

X =

(
Xn−1×n−1 Xn−1×1

0 Xn−1,n−1

)
and

T =

(
Tn−1×n−1 Tn−1×1

0 Tn−1,n−1

)
,

where meaning of Xn−1×n−1 and Tn−1×n−1 are same as in Proposition 3.3. It follows from the
commuting relation XT = TX that

Xn−1×n−1Tn−1×n−1 = Tn−1×n−1Xn−1×n−1.

Now, the induction hypothesis guarantees that Xn−1×n−1 must be upper triangular completing
the proof. �

3.1. Rigidity. Finally, we prove a rigidity theorem for the operators in FBn(Ω). In other words, we
show that any intertwining unitary between two operators in the class FBn(Ω) must be diagonal.
We refer to this phenomenon as “rigidity.”

Theorem 3.5 (Rigidity). Any two operators T and T̃ in FBn(Ω) are unitarily equivalent if and

only if there exists unitary operators Ui, 0 ≤ i ≤ n− 1, such that UiTi = T̃iUi and UiSi,j = S̃i,jUj ,
i < j.

Proof. Clearly, it is enough to prove the necessary part of this statement. Let U be an unitary
operator such that UT = T̃U. By Proposition 3.3, both U and U∗ = U−1 must be upper triangular,
that is,

(a) U =
((
Uij
))n
i,j=1

, Uij = 0 whenever i > j;

(b) U∗ =
((
U∗ji
))n
i,j=1

, U∗j,i = 0 whenever i > j.

It follows that the operator U must be diagonal. �

We use the rigidity theorem just proved to extract a complete set of unitary invariants for
operators in the class FBn(Ω).

Theorem 3.6. Suppose T is an operator in FBn(Ω) and tn−1 is a non-vanishing holomorphic
section of ETn−1 . Then

(i) the curvature KTn−1 ,

(ii) ‖ti−1‖
‖ti‖ , where ti−1 = Si−1,i(ti), 1 ≤ i ≤ n− 1

(iii)
〈Si,j(tj),ti〉
‖ti‖2 , for 0 ≤ i < j ≤ n− 2 with j − i ≥ 2

are a complete set of unitary invariants for the operator T.

Proof. Suppose T, T̃ are in FBn(Ω) and that there is an unitary U such that UT = T̃U . Such an
intertwining unitary must be diagonal, that is, U = U0 ⊕ · · · ⊕ Un−1, for some choice of n unitary
operators U0, . . . , Un−1.

Since UiTi = T̃iUi, 0 ≤ i ≤ n− 1, and UiSi,i+1 = S̃i,i+1Ui+1, 0 ≤ i ≤ n− 2, we have

Ui(ti(w)) = φ(w)t̃i(w), 0 ≤ i ≤ n− 1,(3.6)

where φ is some non zero holomorphic function. Thus

KTn−1 = KT̃n−1
and

‖ti−1‖
‖t̃i−1‖

=
‖ti‖
‖t̃i‖

, 1 ≤ i ≤ n− 1.
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For 0 ≤ i < j ≤ n− 2 with j − i ≥ 2 and w ∈ Ω, we have

〈Si,j(tj(w)), ti(w)〉
‖ti(w)‖2

=
〈Ui(Si,j(tj(w))), Ui(ti(w))〉

‖Ui(ti(w))‖2

=
〈S̃i,j(Uj(tj(w))), Ui(ti(w))〉

‖Ui(ti(w))‖2

=
〈S̃i,j(φ(w)t̃j(w)), φ(w)t̃i(w)〉

‖φ(w)t̃i(w)‖2

=
〈S̃i,j(t̃j(w)), t̃i(w)〉

‖t̃i(w)‖2
.

Conversely assume that T and T̃ are operators in FBn(Ω) for which these invariants are the
same. Equality of the two curvature KTn−1 = KT̃n−1

together with the equality of the second

fundamental forms ‖ti−1‖
‖t̃i−1‖

= ‖ti‖
‖t̃i‖

, 1 ≤ i ≤ n − 1 implies that there exist a non-zero holomorphic

function φ defined on Ω (if necessary, one may choose a domain Ω0 ⊆ Ω such that φ is non zero
on Ω0) such that

‖ti(w)‖ = |φ(w)| ‖t̃i(w)‖, 0 ≤ i ≤ n− 1.

For 0 ≤ i ≤ n− 1, define Ui : Hi → H̃i by the formula

Ui(ti(w)) = φ(w)t̃i(w), w ∈ Ω.

and extend to the linear span of these vectors. For 0 ≤ i ≤ n− 1,

‖Ui(ti(w))‖ = ‖φ(w)t̃i(w)‖
= |φ(w)|‖t̃i(w)‖
= ‖ti(w)‖.

Thus Ui extend to an isometry from Hi to H̃i. Since Ui is isometric and UiTi = T̃iUi, it follows,
using Proposition 2.3, that each Ui is unitary. It is easy to see that UiSi,i+1 = S̃i,i+1Ui+1 for
0 ≤ i ≤ n− 2 also. For 0 ≤ i < j ≤ n− 2 with j − i ≥ 2 and w ∈ Ω,

〈Ui(Si,j(tj(w))), Ui(ti(w))〉 = 〈Si,j(tj(w)), ti(w)〉

= ‖ti(w)‖2
‖t̃i(w)‖2 〈S̃i,j(t̃j(w)), t̃i(w)〉

= |φ(w)|2〈S̃i,j(t̃j(w)), t̃i(w)〉
= 〈φ(w)S̃i,j(t̃j(w)), φ(w)t̃i(w)〉
= 〈S̃i,j(φ(w)t̃j(w)), φ(w)t̃i(w)〉
= 〈S̃i,j(Uj(tj(w))), Ui(ti(w))〉.

Polarizing the real analytic functions 〈Ui(Si,j(tj(w))), Ui(ti(w))〉 and 〈S̃i,j(Uj(tj(w))), Ui(ti(w))〉
to functions which are holomorphic in the first and anti-holomorphic in the second variable, we
obtain the equality:

〈Ui(Si,j(tj(z))), Ui(ti(w))〉 = 〈S̃i,j(Uj(tj(z))), Ui(ti(w))〉, z, w ∈ Ω.

Hence for w in Ω and 0 ≤ i < j ≤ n− 2 with j − i ≥ 2, we have

Ui(Si,j(tj(w))) = S̃i,j(Uj(tj(w)))

which implies that
UiSi,j = S̃i,jUj .

Now, setting U = U0⊕· · ·⊕Un−1, we see that U is unitary and UT = T̃U completing the proof. �

Proposition 3.7. If an operator T is in FBn(Ω), then it is irreducible.
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Proof. Let P be a projection in the commutant {T}′ of the operator T. The operator P must
therefore be upper triangular by Proposition 3.4. It is also a Hermitian idempotent and therefore
must be diagonal with projections Pii, 0 ≤ i ≤ n − 1, on the diagonal. We are assuming that
PT = TP, which gives

PiiSi,i+1 = Si,i+1Pi+1i+1, 0 ≤ i ≤ n− 2.

None of the operators Si,i+1, 0 ≤ i ≤ n− 2, are zero by hypothesis. It follows that Pii = 0, if and
only if Pi+1 i+1 = 0. Thus, for any projections Pii ∈ {Ti}′, we have only two possibilities:

P00 = P11 = P22 = · · · = Pn−1n−1 = I, or P00 = P11 = P22 = · · · = Pn−1n−1 = 0.

Hence T is irreducible. �

4. An application to Module tensor products

The localization of a module at a point of the spectrum is obtained by tensoring with the one
dimensional module of evaluation at that point. The localization technique has played a prominent
role in the structure theory of modules. More recently, they have found their way into the study
of Hilbert modules (cf. [4]). An initial attempt was made in [5] to see if higher order localizations
would be of some use in obtaining invariants for quotient Hilbert modules. Here we give an explicit
description of the module tensor products over the polynomial ring in one variable.

There are several different ways in which one may define the action of the polynomial ring on Ck.
The following lemma singles out the possibilities for the module action which evaluates a function
at w along with a finite number of its derivatives, say k − 1, at w. Let f be a polynomial in one
variable. Set

Jµ(f)(z) =


µ1,1f(z) 0 · · · 0

µ2,1
∂
∂zf(z) µ2,2f(z) · · · 0
...

...
. . .

...

µk,1
∂k−1

∂zk−1 f(z) µk−1,1
∂k−2

∂zk−2 f(z) · · · µk,kf(z)


where µ =

((
µi,j
))

is a lower triangular matrix of complex numbers with µi,i = 1, 1 ≤ i ≤ k.
Lemma 4.1. The following are equivalent.

(1) Jµ(fg) = Jµ(f)Jµ(g)
(2) (p+ 1− j − l)µp+1−j,l = µp+1−j,l+1 µl+1,l, 1 ≤ l ≤ p− 2, 1 ≤ j < p− l + 1

(3) µp,l µl,i =
(
p−i
l−i
)
µp,i, 1 ≤ p, l, i ≤ k, i ≤ l ≤ p

Proof. All the implications of the Lemma are easy to verify except for one, which we verify here.
For 1 ≤ i, j ≤ k and i ≤ j, note that

(Jµ(f)(z)Jµ(g)(z))i,j =

i−j∑
l=0

µi,j+l µj+l,j(
∂i−j−l

∂zi−j−l
f(z))( ∂

l

∂zl
g(z))

=

i−j∑
l=0

(
i−j
i−j−l

)
µi,j(

∂i−j−l

∂zi−j−l
f(z))( ∂

l

∂zl
g(z))

= µi,j

i−j∑
l=0

(
i−j
i−j−l

)
( ∂

i−j−l

∂zi−j−l
f(z))( ∂

l

∂zl
g(z))

= µi,j
∂i−j

∂zi−j
(fg)(z)

= (Jµ(fg)(z))i,j .

For i > j,
(Jµ(f)(z)Jµ(g)(z))i,j = (Jµ(fg)(z))i,j = 0.
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Hence we have
Jµ(fg) = Jµ(f)Jµ(g).

�

For x in Ck, and f in the polynomial ring P [z], define the module action as follows:

f · x = Jµ(f)(w)x.

Suppose T0 : M → M is an operator in B1(Ω). Assume that the operator T has been realized
as the adjoint of a multiplication operator acting on a Hilbert space of functions possessing a
reproducing kernel K. Then the polynomial ring acts on the Hilbert space M naturally by point-
wise multiplication making it a module. We construct a module of k - jets by setting

JM =
{ k−1∑
l=0

∂i

∂zi
h⊗ εi+1 : h ∈M

}
,

where εi+1, 0 ≤ i ≤ k − 1, are the standard basis vectors in Ck. There is a natural module action
on JM, namely, (

f,

k−1∑
l=0

∂i

∂zi
h
)
7→ J(f)

( k−1∑
l=0

∂i

∂zi
h⊗ εi+1

)
, f ∈ P [z], h ∈M,

where

J(f)i,j =

{(
i−1
j−1

)
∂i−jf if i ≥ j,

0 otherwise.

The module tensor product JM⊗A(Ω) Ckw is easily identified with the quotient module N⊥, where
N ⊆M is the sub-module spanned by the vectors{ k∑

l=1

(Jf · hl ⊗ εl − hl ⊗ (Jµ(f))(w) · εl) : hl ∈ JM, εl ∈ Ck, f ∈ P [z]
}
.

Following the proof of the lemma 4.2 in [5, Lemma 4.1], we can prove:

Lemma 4.2. The module tensor product JM⊗P [z]Ckw is spanned by the vector ep(w) in JM⊗A(Ω)

Ckw, where

ep(w) =

p∑
l=1

bp,lJK(·, w)εp−l+1 ⊗ εl, 1 ≤ p ≤ k

and for a fixed p,

bp,l =
µp−j+1,l(

p−l
j−1

) bp,p−j+1, l + j < p+ 1.

The set of vectors {ep(w) : w ∈ Ω∗, 1 ≤ p ≤ k} define a natural holomorphic frame for a
vector bundle, say Jloc(E). This vector bundle also inherits a Hermitian structure from that of
JM⊗A(Ω) Ckw, which furthermore defines a positive definite kernel on Ω× Ω :

JlocK(z, w) =
((
〈ep(w), eq(z)〉

))
=

k∑
l=1

D(l)Jk−l+1K(z, w)D(l),

where JrK(z, w) =

(
0k−r×k−r 0k−r×r
0r×k−r J̃rK(z, w)

)
and D(l) is diagonal. Moreover, D(l)m,m = bm+l−1,l

and
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J̃rK(z, w) =


K(z, w) ∂

∂w̄K(z, w) · · · ∂r−1

∂w̄r−1K(z, w)
∂
∂zK(z, w) ∂2

∂z∂w̄K(z, w) · · · ∂r

∂z∂w̄r−1K(z, w)
...

...
. . .

...
∂r−1

∂zr−1K(z, w) ∂r

∂zr−1∂w̄
K(z, w) · · · ∂2r−2

∂zr−1∂w̄r−1K(z, w)

 .

The two Hilbert spaces M and M⊗Ck may be identified via the map Jk−l+1, which is given by
the formula

Jk−l+1(h) =

k−l∑
p=0

bp+l−1,l
∂p

∂zph⊗ εp+l.

Since Jk−l+1 is injective, we may choose an inner product on Jp−l+1M making it unitary.

Proposition 4.3. [5, Proposition 4.2] The Hilbert module Jloc(M) admits a direct sum decompo-
sition of the form ⊕kl=1Jk−l+1M, and the corresponding reproducing kernel is the sum

k∑
l=1

D(l)Jk−l+1K(z, w)D(l).

Let γ0 be a non-vanishing holomorphic section for the line bundle E corresponding to the
operator T0. Put b1,1t0(w) = γ0(w) and for 1 ≤ l ≤ k − 1, let

(1) tl(w) :=
∑k−l−1

i=0 bl+1+i,l+1
∂i

∂zi
K(·, w)⊗ εl+1+i,

(2) γl(w) =
∑l+1

i=1 bl+1,i
∂l+1−i

∂w̄l+1−i ti−1(w).

Now, {γ0, γ1, · · · , γk−1} are eigenvectors of the operator M∗z − w̄ acting on the Hilbert space Mloc.

Since (M∗z − w̄)γ1(w) = 0, it follows that (M∗z − w̄)t1(w) = − b2,1
b2,2

t0(w), which is equivalent to

(M∗z − w̄)t1(w) = −µ2,1t0(w).

Suppose (M∗z − w̄)tl(w) = −µl+1,ltl−1(w) for 1 ≤ l ≤ r. Again, since (M∗z − w̄)γr+1(w) = 0, it
follows that

(M∗z − w̄)tr+1(w)

= 1
br+2,r+2

{
(−(r + 1)br+2,1∂̄

rt0(w))

−
r+1∑
i=2

br+2,i(−µi,i−1∂̄
r+2−iti−2(w) + (r + 2− i)∂̄r+1−iti−1(w))

}
= 1

br+2,r+2

{ r∑
i=1

(−(r + 2− i)br+2,i + br+2,i+1µi+1,i)∂̄
r+1−iti−1(w)− br+2,r+1tr(w)

}
=

br+2,r+1

br+2,r+2
tr(w)

= µr+2,r+1tr(w)

Let Γ := Jk ⊕ Jk−1 ⊕ . . .⊕ J1, be the unitary from M̃ := M0 ⊕ · · ·Mk−1 to Mloc, where each of
the summands M0, . . . ,Mk−1 is equal to M. Let Kl(·, w) := J∗k−ltl(w) = K(·, w), 0 ≤ l ≤ k − 1.
Now, we describe the operator T := Γ∗M∗Γ, where M is the multiplication operator on Mloc. For
1 ≤ l ≤ k − 1, set Tl := PMl

T|Ml
and note that

T (Kl(·, w)) = (Γ∗M∗Γ)Kl(·, w)

= Γ∗M∗z tl(w)

= Γ∗(w̄tl(w) + µl+1,ltl−1(w))

= w̄Kl(·, w) + µl+1,lKl−1(·, w).
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Now,

Tl(Kl(·, w)) = PMl
T|Ml

(Kl(·, w))

= PMl
T (Kl(·, w))

= PMl
(w̄Kl(·, w) + µl+1,lKl−1(·, w))

= w̄Kl(·, w).

Let Sl−1,l : Ml → Ml−1 be the bounded linear operator defined by the rule Sl−1,l(Kl(·, w)) :=
µl+1,lKl−1(·, w), 1 ≤ l ≤ k − 1. Since Ml = Ml−1 = M, it follows that Sl−1,l = µl+1,lI. Hence the
operator T has the form:

T =



T0 µ2,1I 0 · · · 0 0
0 T0 µ3,2I · · · 0 0

0 0 T0
. . .

...
...

...
...

...
. . . µk−1,k−2I 0

0 0 0 · · · T0 µk,k−1I
0 0 0 · · · 0 T0


.

Thus T is in FBk(Ω) and defines, up to unitary equivalence via the unitary Γ, the module action
in Mloc. In consequence, setting Ckw[µ] to be the Hilbert module with the module action induced
by Jµ(f)(w), we have the following theorem as a direct application of Theorem 3.6.

Theorem 4.4. The Hilbert modules corresponding to the localizations JM ⊗P [z] Ckw[µi], i = 1, 2,
are in FBk(Ω) and they are isomorphic if and only if µ1 = µ2.

Appendix: Frames

As in Remark 2.7, we attempt to relate the frame of the holomorphic vector bundle ET , T in
FBn(Ω), to that of the direct sum of the line bundles ET0 ⊕ · · · ⊕ Tn−1. Let t = {t0, t1, . . . , tn−1}
be a set of non-vanishing holomorphic sections for the line bundles ET0 , . . . , ETn−1 , respectively.
Suppose that a suitable linear combination of these non-vanishing sections ti, i = 0, . . . , n − 1,
and their derivatives produces a holomorphic frame γ := {γ0, . . . , γn−1} for the vector bundle ET ,
that is,

γi = t
(i)
0 + µ1,it

(i−1)
1 + · · ·+ µi−1,it

(1)
i−1 + ti

for some choice of non-zero constants µ1,i, . . . , µi−1,i, 0 ≤ i ≤ k − 1. The existence of such an
orthogonal frame is not guaranteed except when n = 2.. Assuming that it exists, the relationship
between these vector bundles can be very mysterious as shown below. This justifies, to some
extent, the choice of the smaller class of operators in the next section. If t̃ is another set of non-
vanishing sections for the line bundles ET1 , . . . , ETn−1 , then the linear combination of these with
exactly the same constants µij is a second holomorphic frame, say γ̃ of the vector bundle ET . Let

Φk be a change of frame between the two sets of non-vanishing orthogonal frames t and t̃, and
Ψk be a change of frame between γ and γ̃. We now describe the relationship between Φk and Ψk

explicitly:

(1) Φk(i, j) := φi,j = ψi,j := Ψk(i, j) = 0, i > j, that is, Φk and Ψk are upper-triangular.
(2) For 0 ≤ i ≤ k − 1, we have φi,i = ψi,i = φ0,0, and for i < k − 1, we have

ψi,k−1 = Cik−1φ
(k−1−i)
0,0 + · · ·+ Cik−1−jµj,k−1φ

(k−1−j−i)
0,j + · · ·+ µk−1−i,k−1φ0,k−1−i,

where Cnr stands for the binomial coefficient
(
n
r

)
.

(3) In particular, for 1 ≤ i ≤ k− 1, if we choose φ0,i, then ψi,k−1 = Cik−1φ
(k−1−i)
0,0 . In this case,

we have



24 JI, JIANG, KESHARI, AND MISRA

(a)

Ψk =



ψ ψ(1) ψ(2) · · · ψ(k−2) ψ(k−1)

ψ 2ψ(1) · · · C1
k−2ψ

(k−3) C1
k−1ψ

(k−2)

ψ
. . .

...
...

. . .
. . .

...

ψ Ck−2
k−1ψ

(1)

ψ


;

(b) and there are (k−2)(k−1)
2 equations in (k−1)k

2 variables, namely, µi j , 1 ≤ i < j, j ≤ k−1.
Thus these coefficients are determined as soon we make an arbitrary choice of the
coefficients µ1,k−1, . . . , µk−2,k−1.

We prove the statements (1) and (2) by induction on k. These statements are valid for k = 2
as was noted in Remark 2.7. To prove their validity for an arbitrary k ∈ N, assume them to
be valid for k − 1. Let Φi

k and Ψi
k denote the ith row of Φ and Ψ, respectively. Suppose that

(t̃0, t̃1, · · · , t̃k) = (t0, t1, · · · , tk)Φk and (γ̃0, γ̃1, · · · , γ̃k) = (γ0, γ1, · · · , γk)Ψk. Then we have

t̃j = (t0, t1, · · · , tk−1)Φj
k−1 + tkψk,j , j < k.

For any i < k, we have

γ̃i = (γ0, γ1, · · · , γk−1)Ψi
k−1 + γkψk,i

= (γ0, γ1, · · · , γk−1)Ψi
k−1 + (t

(k)
0 + µ1,kt

(k−1)
1 + · · ·+ µi,kt

(k−i)
i + · · ·+ tk)ψk,i

and

γ̃i = t̃
(i)
0 + µ1,it̃

(i−1)
1 + · · ·+ µi−1,it̃

(1)
i−1 + t̃i, i < k.

From these equations, it follows that

(γ0, γ1, · · · , γk−1)Ψi
k−1 + (t

(k)
0 + µ1,kt

(k−1)
1 + · · ·+ µi,kt

(k−i)
i + · · ·+ tk)ψk,i

= t̃
(i)
0 + µ1,it̃

(i−1)
1 + · · ·+ µi−1,it̃

(1)
i−1 + t̃i.

We Note that µi,kψk,it
(k−i)
i appears only once in this equation to conclude ψk,i = 0, i < k.

Comparing the coefficients of ti on both sides of the equation, we also conclude that ψk,i =
φk,i, i < k completing the induction step for the first statement of our claim.

Our assumption that (t̃0, t̃1, · · · , t̃k) = (t0, t1, · · · , tk)Φk and (γ̃0, γ̃1, · · · , γ̃k) = (γ0, γ1, · · · , γk)Ψk

gives

k∑
i=0

(ti0 + µ1,it
(i−1)
1 + · · ·+ µi−1,it

(1)
i−1 + ti)ψi,k =

k∑
i=0

µi,k(t0φ0,i + · · ·+ tiφ0,0)(k−i), i < k.

A comparison of the coefficients of t
(i)
0 leads to

ψi,k = Cikφ
(k−i)
0,0 + · · ·+ Cik−jµj,kφ

(k−j−i)
0,j + · · ·+ µk−i,kφ0,k−i, i < k

completing the proof of the second statement. For the third statement, from the equations

k−1∑
i=0

(ti0 + µ1,it
(i−1)
1 + · · ·+ µi−1,it

(1)
i−1 + ti)ψi,k−1

=
k−1∑
i=0

µi,k−1(t0φ0,i + · · ·+ tiφ0,0)(k−1−i), i < k − 1,
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setting φ0,i = 0, and comparing the coefficients of ti, i > 0, we have that φi,k−1 = ci,k−1φ
(k−1−i)
0,0

for some ci,k−1 ∈ C. Putting this back in the equation given above, we obtain (k−2)(k−1)
2 equations

involving (k−1)k
2 coefficients. This completes the proof of the third statement.
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