RESOLUTION OF SINGULARITIES FOR A CLASS OF HILBERT MODULES

SHIBANANDA BISWAS AND GADADHAR MISRA

ABSTRACT. A short proof of the “Rigidity theorem” using the sheaf theoretic model for Hilbert modules
over polynomial rings is given. The joint kernel for a large class of submodules is described. The
completion [J] of a homogeneous (polynomial) ideal J in a Hilbert module is a submodule for which
the joint kernel is shown to be of the form

Pi(3% s 50 ) Ky (- )| w=0, 1 < < n},
where K[jj is the reproducing kernel for the submodule [J] and p1,...,p, is some minimal “canonical
set of generators” for the ideal J. The proof includes an algorithm for constructing this canonical set
of generators, which is determined uniquely modulo linear relations, for homogeneous ideals. A set of

easily computable invariants for these submodules, using the monoidal transformation, are provided.
Several examples are given to illustrate the explicit computation of these invariants.

1. PRELIMINARIES

Beurling’s theorem describing the invariant subspaces of the multiplication (by the coordinate func-
tion) operator on the Hardy space of the unit disc is essential to the Sz.-Nagy — Foias model theory and
several other developments in modern operator theory. In the language of Hilbert modules, Beurl-
ing’s theorem says that all submodules of the Hardy module of the unit disc are equivalent. This
observation, due to Cowen and Douglas [6], is peculiar to the case of one-variable operator theory.
The submodule of functions vanishing at the origin of the Hardy module HZ(ID?) of the bi-disc is not
equivalent to the Hardy module H?(D?). To see this, it is enough to note that the joint kernel of the
adjoint of the multiplication by the two co-ordinate functions on the Hardy module of the bi-disc is
1 - dimensional (it is spanned by the constant function 1) while the joint kernel of these operators
restricted to the submodule is 2 - dimensional (it is spanned by the two functions z; and z3).

There has been a systematic study of this phenomenon in the recent past [1, 10] resulting in
a number of “Rigidity theorems” for submodules of a Hilbert module M over the polynomial ring
Clz] := C[z1, ..., zm] of the form [J] obtained by taking the norm closure of a polynomial ideal J in
the Hilbert module. For a large class of polynomial ideals, these theorems often take the form: two
submodules [J] and [J] in some Hilbert module M are equivalent if and only if the two ideals J and g
are equal. We give a short proof of this theorem using the sheaf theoretic model developed earlier in
[2] and construct tractable invariants for Hilbert modules over C[z].

Let M be a Hilbert module of holomorphic functions on a bounded open connected subset Q of
C™ possessing a reproducing kernel K. Assume that J C C[z] is the singly generated ideal (p). Then
the reproducing kernel K\ of [J] vanishes on the zero set V/(J) and the map w +— Ky (-, w) defines a
holomorphic Hermitian line bundle on the open set 0 = {w € C™ : w € @\ V(J)} which naturally
extends to all of Q*. As is well known, the curvature of this line bundle completely determines the
equivalence class of the Hilbert module [J] (cf. [4, 5]). However, if J C C|z] is not a principal ideal, then
the corresponding line bundle defined on §25 no longer extends to all of £2*. Indeed, it was conjectured
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in [8] that the dimension of the joint kernel of the Hilbert module [J] at w is 1 for points w not in
V(J), otherwise it is the codimension of V' (J). Assuming that

(a) J is a principal ideal or

(b) w is a smooth point of V(7).
Duan and Guo verify the validity of this conjecture in [11]. Furthermore if m = 2 and J is prime then
the conjecture is valid.

Thus for any submodule [J] in a Hilbert module M, assuming that M is in the Cowen-Douglas class
B1(£*) and the co-dimension of V'(J) is greater than 1, it follows that [J] is in B1(€2j) but it doesn’t
belong to B1(Q2*). For example, H3(D?) is in the Cowen-Douglas class B1(D? \ {(0,0)}) but it does
not belong to By(D?). To systematically study examples of submodules like HZ(D?), the following
definition from [2] will be useful.

Definition. A Hilbert module M over the polynomial ring in Clz] is said to be in the class B1(Q*) if

(rk) possess a reproducing kernel K (we don’t rule out the possibility: K(w,w) = 0 for w in some
closed subset X of Q) and
(fin) The dimension of M/m,,M is finite for all w € Q.

For Hilbert modules in %1(£2), from [2], we have:

Lemma. Suppose M € B(Q*) is the closure of a polynomial ideal J. Then M is in By (2*) if the ideal
J is singly generated while if it is minimally generated by more than one polynomial, then M is in
B1(€3).

This Lemma ensures that to a Hilbert module in %B(Q2*), there corresponds a holomorphic Her-
mitian line bundle defined by the joint kernel for points in 25. We will show that it extends to a
holomorphic Hermitian line bundle on the “blow-up” space Q* via the monoidal transform under mild
hypothesis on the zero set V(J). We also show that this line bundle determines the equivalence class
of the module [J] and therefore its curvature is a complete invariant. However, computing it explicitly
on all of O* is difficult. In this paper we find invariants, not necessarily complete, which are easy to
compute. One of these invariants is nothing but the curvature of the restriction of the line bundle on
Q* to the exceptional subset of Q.

A line bundle is completely determined by its sections on open subsets. To write down the sec-
tions, we use the decomposition theorem for the reproducing kernel [2; Theorem 1.5]. The actual
computation of the curvature invariant require the explicit calculation of norm of these sections. Thus
it is essential to obtain explicit description of the eigenvectors K, 1 < ¢ < d, in terms of the re-
producing kernel. We give two examples which, we hope, will motivate the results that follow. Let
H?(D?) be the Hardy module over the bi-disc algebra. The reproducing kernel for H?(D?) is the
Siego kernel S(z,w) = —= L Let Jo be the polynomial ideal (z1, 22) and let [Jo] denote the

1—z1w2 1—2z0w2 *
minimal closed submodule of the Hardy module H?(ID?) containing Jy. Then the joint kernel of the
adjoint of the multiplication operators M and My is spanned by the two linearly independent vectors:
2] = pl(ﬁl,ﬁg)S(z,w)‘wFO:w and z9 = pg((’?l,@g)S(z,w)ml:O:wZ, where p1,ps are the generators
of the ideal Jy. For a second example, take the ideal J; = (21 — 29, 23) and let [J;] be the mini-
mal closed submodule of the Hardy module HZ(D?) containing J;. The joint kernel is not hard to
compute. A set of two linearly independent vectors which span it are p1 (0, 52)S(z,w)|w1:0:w2 and
p2(01, 52)S(z,w)|m:0:w2, where p; = 21 — 20 and py = (21 + 22)%. Unlike the first example, the two
polynomials p1, po are not the generators for the ideal J; that were given at the start, never the less,
they are easily seen to be a set of generators for the ideal J; as well. This prompts the question:
Question: Let M € B;(Q*) be a Hilbert module and 3 C M be a polynomial ideal. Assume without
loss of generality that 0 € V(J). We ask

(1) if there exists a set of polynomials py, ..., p, such that

pl(%a R %)K[fﬂ(zaw)k:o:w’ t=1,...,n,

spans the joint kernel of [J];
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(2) what conditions, if any, will ensure that the polynomials p,...,pn, as above, is a generating
set for J7

We show that the answer to the Question (1) is affirmative, that is, there is a natural basis for the
joint eigenspace of the Hilbert module [J], which is obtained by applying a differential operator to
the reproducing kernel K[y of the Hilbert module [J]. Often, these differential operators encode an
algorithm for producing a set of generators for the ideal J with additional properties. It is shown that
there is an affirmative answer to the Question (2) as well, if the ideal is assumed to be homogeneous.
It then follows that, if there were two sets of generators which serve to describe the joint kernel, as
above, then these generators must be linear combinations of each other, that is, the sets of generators
are determined modulo a linear transformation. We will call them canonical set of generators. The
canonical generators provide an effective tool to determine if two ideal are equal. A number of examples
illustrating this phenomenon is given.

In the following section, we describe the joint kernel. In section 3, we construct the holomorphic
Hermitian line bundle on the “blow - up ” space. In the last section, we provide an explicit calculation.

1.1. Index of notations:

Clz] the polynomial ring C[z1,. .., 2] of m- complex variables
my, maximal ideal of C[z] at the point w € C™
Q a bounded domain in C™
o {z:2€Q}
D the open unit disc in C
D™ the poly-disc {z € C™ : |z < 1,1 <i<t},m>1
[9] the completion of a polynomial ideal J in some Hilbert module
M; module multiplication by the co-ordinate function z; on [J], 1 <i <m
My adjoint of the multiplication operator M; on [J], 1 <7< m
K the reproducing kernel of [J]
a,|al,a!  the multi index (a1,...,am), |of =Y 1%, o and a! = aq!. .. ap!
(%) =11, (2‘;) for a = (a1, ..., am) and k = (k1, ..., kn)
kSCM ifkiﬁai,lgigm.
2 20t 20m
80‘,50‘ 8“2%,5a:%f0ra€z+x-~x2+
0zy * 2™ 0z 2™
q(D) the differential operator q((%l, ceey B?m) (=>,0a0% where ¢ =" aq2®)
B,(©2)  Cowen-Douglas class of operators of rank n, n > 1
q* 7*(2) = q(2)(= X2, @az® for q of the form 3° aqz®)
(, )w,  the Fock inner product at wy, defined by (p, ¢)w, := ¢*(D)p|w, = (¢*(D)p)(wo)
§M the analytic subsheaf of Oq, corresponding to the Hilbert module M € 9B1(Q*)

Vw(F)  the characteristic space at w, which is {q € Cl[z] : q(D)f‘w =0 forall feJ}
for some set F of holomorphic functions

2. CALCULATION OF BASIS VECTORS FOR THE JOINT KERNEL
The Fock inner product of a pair of polynomials p and ¢ is defined by the rule:
P, 0)0 = ' (3%, -, 32) plo, ¢"(2) = q(2).

The map (, )o : C[z] x C[z] — C is linear in first variable and conjugate linear in the second and for
P=,0a2% q=,baz" in C[z], we have

<pa Q>0 = Z a!aal_)a
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since 2%(D)2%|,—¢ = a! if @ = B and 0 otherwise. Also, (p,p)o = Y., &!laa|? > 0 and equals 0 only
when a, = 0 for all . The completion of the polynomial ring with this inner product is the well
known Fock space L2(C™, du), that is, the space of all u-square integrable entire functions on C™,
where
du(z) = w_me_“z'Qdu(z)
is the Gaussian measure on C™ (dv is the usual Lebesgue measure).
The characteristic space (cf. [3, page 11]) of an ideal J in C[z] at the point w is the vector space

Vw(@) :={qeClz] : q(D)plyy =0,p€I} = {qeClz]:(p,¢")=0,p€T}.

The envelope of the ideal J at the point w is defined to be the ideal

Jo = {peClz]: q(D)plw =0, ¢ € Vu(J)}

= {p € (C[Z] : <p, q*>w =0,q¢ Vw(j)}

It is known [3, Theorem 2.1.1, page 13] that J = N,ey (55, The proof makes essential use of the well
known Krull’s intersection theorem. In particular, if V(J) = {w}, then J¢, = J. It is easy to verify this
special case using the Fock inner product. We provide the details below after setting w = 0, without
loss of generality.

Let mg be the maximal ideal in C[z] at 0. By Hilbert’s Nullstellensatz, there exists a positive integer
N such that m{Y C J. We identify C[z]/m)} with spanc{z® : |a| < N} which is the same as (m}’)* in
the Fock inner product. Let Iy be the vector space J N spanc{z® : || < N}. Clearly J is the vector
space (orthogonal) direct sum Jy & m{Y. Let

V:{QEC[g] :deg ¢ < N and (p,q)o=0,p €In} = (mév)lef]N.

Evidently, Vo(J) = V*, where V* = {q € V : ¢* € V}. It is therefore clear that the definition of V' is
independent of N, that is, if m™ C J for some Ny, then (m{™)*+ & Iy, = (m))* © Iy. Thus

5 = {peClz]:degp < N and (p,q*)o =0, qGVO(J)}@méV
= (mHreV)om)
= jN@mév

showing that J§ = J.
Let M be a submodule of an analytic Hilbert module 3 on €2 such that M = [J], closure of the ideal
Jin H. It is known that Vy(J) = Vo(M) (cf. [2, 10]). Since

MCMG:={feH:q(D)flo=0 for all ¢ € Vo(M)},
it follows that
dimJ/M§ < dimH/M = dimC[z]/J < dim C[z]/m{’

Nl(k+m—1)
Z < +00.
m—1

<
k=0
Therefore, from [10], we have M§ N C[z] = J§ and M N C[z] = J, and hence
1) M; = 95 = ] =

Assumption: Let J C C[z] be an ideal. We assume that the module M in %B;(€2) is the completion of J
with respect to some inner product. For notational convenience, in the following discussion, we let K
be the reproducing kernel of M = [J], instead of K[y.

To describe the joint kernel N7 ker(M; —w;)* using the characteristic space V,,(J), it will be useful
to define the auxialliary space

Vu(d) = {g€Clz: % € V(D) 1 <i<mb.



HILBERT MODULES 5

From [2, Lemma 3.4], it follows that V(m,J) \ V(J) = {w} and V,,(m,J) = V,,(J). Therefore,
(2.2) dim ML ker(M; —wj)* = dimM/m,M = dimJ/m,J

= > dimVy(my,d)/VA(9)

AeV (my, N)\V ()

= dim V(7)) / V(7).
For the second and the third equalities, see (3, Theorem 2.2.5 and 2.1.7]. Since Vu(J) is a subspace of
the inner product space C[z], we will often identify the quotient space V,,(J)/V,,(J) with the subspace
of V,,(J) which is the orthogonal complement of V,,(J) in V,,(J). Equation (2.2) motivates following

lemma describing the basis of the joint kernel of the adjoint of the multiplication operator at a point
in . This answers the question (1) of the introduction.

Lemma 2.1. Fiz wy € Q and polynomials q1,...,q:.. Let J be a polynomial ideal and K be the
reproducing kernel corresponding the Hilbert module [J], which is assumed to be in B1(2*). Then the
vectors

4 (D)K (-, 0) [w=wos - - » @ (D) K (-, 0) o=
form a basis of the joint kernel at wo of the adjoint of the multiplication operator if and only if the
classes [q1], . .., [qt] form a basis of Vi, (3)/Vu, (7).

Proof. Without loss of generality we assume 0 € © and wy = 0.
Claim 1: For any ¢ € Clz], the vector ¢*(D)K (-, w)|w=0 # 0 if and only if ¢ ¢ V(7).
Using the reproducing property f(w) = (f, K(-,w)) of the kernel K, it is easy to see (cf. [7]) that

0%f(w) = (f,0°K(-,w)), fora € Z}, w e Q, feM.
and thus

BK(2,0)

P fW)wo = (F K (w0 = <f,6*a{2a 0 o

— f7{zm 0 N umo = (> 6KZO ) 75} o

B>a ﬁ B>a
= (f, 5@}((.’ W)|w=0)-
So for f € M and a polynomial ¢ = > anz%, we have

(2'3) <f7 q*(D)K("w)‘w:0> = szaaaa[{ |w =0 — Zaa<fa 5QK('7w)>|w:O

«

= Z%@“ FLEC0)) o = ¢(D) fluw—o-

This proves the claim. - R
Claim 2: For any g € C[z], the vector ¢*(D)K (-, w)|w=0 € NJL; ker M if and only if g € Vo(J).
For any f € M, we have

(f, Mjq"(D)K (-, w)lw=0) = (M;f,q"(D)K(;w)lw=0) = a¢(D)(2;f)lw=0

= {a(D >f+@< D)} umo = o2 S (D) o

verifying the claim. B
As a consequence of claims 1 and 2, we see that ¢*(D)K (-, w)|,=0 is a non-zero vector in the joint
kernel if and only if the class [¢] in V((J)/V((J) is non-zero.
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Pick polynomials ¢i,...,q. From the equation (2.2) and claim 2, it is enough to show that
GG(D)K (-, w)|w=0,---,q (D)K(-,w)|w=0 are linearly independent if and only if [¢1],...,[¢] are lin-
early independent in Vo(J)/Vo(J). But from claim 1 and equation (2.3), it follows that

ZozlqZ w)|w=0 = 0 if and only if Zaz @] = 0in Vo(7)/Vo(9)
i=1

for scalars «; € (C, 1 <1 < t. This completes the proof. O
Remark 2.2. The ‘if” part of the theorem can also be obtained from the decomposition theorem [2,
Theorem 1.5]. For module M in the class B1(Q*), let 8™ be the subsheaf of the sheaf of holomorphic
functions O whose stalk 8M at w € Q is

{(fl)wow++(fn)wow : fla"'?fn € M}v

and the characteristic space at w € €0 is the vector space
Vu(8Y) = {g€Clzl: a(D)f], =0, fu €83}
Since
dim 83 /mo8)" = dim N7, ker M7 = dim Vo (3)/Vo(9) =,

there exists a minimal set of generators gp,--- , g of S%VE and a r > 0 such that

Zg] w) for all w € A(0;7)
for some choice of anti-holomorphic functions K1, ..., K® : A(0;7) — M. The formula

a k
(2.4 (D)0 =3 (1) o

k<«

gives
¢ (D)K (-, w)|w=0 = Z{K D (e w)lw=0 Hai (D) g (w)lw=0}

for g; € Vo(J), 1 < i < t. The proof follows from the fact that Vo, (J) = V,, (M) = V,,(8M).

Remark 2.3. We give details of the case where the ideal J is singly generated, namely J =< p >.
From [8], it follows that the reproducing kernel K admits a global factorization, that is, K(z,w) =
p(2)x(z, w)p(w) for z,w € Q where x(w,w) # 0 for all w € Q. So we get K;(-,w) = p(-)x (-, w) for all
w € Q). The proposition above gives a way to write down this section in term of reproducing kernel.
Let 0 € V(7). Let go be the lowest degree term in p. We claim that [¢]] gives a non-trivial class in
Vo(7)/Vo(J). This is because all partial derivatives of ¢f have degree less than that of ¢ and hence
from (2.4)

0°q;
0z%

and thus gizb: € Vo(J) for all i, 1 < i < m, that is, ¢ € Vo(J). Also as the lowest degree of p — g is
strictly greater than that of qq,

40(D)(2%g)lo =

(D)(p)‘0 = 0 for all multi-indices « such that |«| > 0

a5 (D)plo = ¢ (D) (p — g0 + q0)lo = a5 (D)qolo = qo [|2> 0

This shows that ¢f ¢ Vo(J) and hence gives a non-trivial class in Vo(J)/Vo(J). Therefore from the
proof of Lemma 2.1, we have

qo(D)K (-, w)|w=0 = K1(-;w)|w=0q0(D)p(w)lo =l g 15 K1 (-, w)|w=0-
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Let ¢y, denotes the lowest degree term in z — wy in the expression of p around wp. Then we can write

. . Lot o, ifwo ¢ V(I) NQ
. W) |w= = _
(2:5) 10 o= = 4 g DKWy V(I nQ.
lato g

For a fixed set of polynomials ¢i,...,q, the next lemma provides a sufficient condition for the
classes [¢]], ..., [gf] to be linearly independent in V,,,(J)/Vy,(J). The ideas involved in the two easy
but different proofs given below will be used repeatedly in the sequel.
Lemma 2.4. Let qi,...,q: are linearly independent polynomials in the polynomial ideal I such that
qQs---5q € Vo(9). Then [qf],...,[q;] are linearly independent in Vi, (J)/ Vi, ().

First Proof. Suppose >¢_; a;[gi] = 0 in Vi, (7)/ Vi, (J) for some a; € C, 1 < i < t. Thus S b_, cugf =
q for some g € V,,,(J). Taking the inner product of Z?Zl a;qf with g; for a fixed j, we get

t
Z (@55 Gi)wo Zaz% D)q;jlw, = ¢(D)gjlw, = 0.
i=1

The Grammian ((<q],q,>w0)) i j=1 of the linearly independent polynomials ¢1,...,¢: is non-singular.
Thus a; =0, 1 <14 < t, completing the proof.

Second Proof. If [qf],...,[¢;] are not linearly independent, then we may assume without loss of
generality that [¢f] = S°_, aig}] for au,...,q € C. Therefore [gf — >.'_, a;p}] = 0 in the quotient

space Vi, (3)/ Vi, (9), that is, gf — S2'_, cigl € Ve (). So, we have
Zaqu D)q|y, =0 for all g € J.

Taking ¢ = q1 — >.._o @iq; we have || ¢ — >0, g |2,= 0. Hence q = S, a;q which is a
contradiction. O

Suppose are p1, ..., p; are a minimal set of generators for J. Let M be the completion of J with respect
to some inner product induced by a positive definite kernel. We recall from [9] that rankc[z]M = ¢. Let
wg be a fixed but arbitrary point in 2. We ask if there exist a choice of generators ¢, ..., ¢; such that
GG (D)K (- ,w)o, ..., qf (D)K(-,w)o forms a basis for N7 ker(M; — wp;)*. We isolates some instances
where the answer is affirmative. However, this is not always p0551b1e (see remark 2.12). From [9,
Lemma 5.11, Page-89], we have

dim ﬂ;nzl ker Mj* = dimM/moM = dimM ®C[§} Cy < rank(c[é]M.dim(Co <t,

where my denotes the maximal ideal of C[z] at 0. So we have dim Njzy ker M7 < t. The germs
P10, - - -, Pro forms a set of generators, not necessarily minimal, for S%V[. However minimality can be
assured under some additional hypothesis. For example, let J be the ideal generated by the polynomials
21(1 + 21),21(1 — 22), 23. This is minimal set of generators for the ideal J, hence for M, but not for
8% Since {z1, 22} is a minimal set of generators for 8}, it follows that {z1(1 + 21), 21(1 — 22), 23} is
not minimal for S%Vt. This was pointed out by R. G. Douglas.

Lemma 2.5. Let py,...,p:r be homogeneous polynomials, not necessarily of the same degree. Let
J C Clz] be an ideal for which pi,...,p; is a minimal set of generators. Let M be a submodule of an
analytic Hilbert module over C|z] such that M = [J]. Then the germs pio, ..., pw at 0 forms a minimal
set of generators for S%V[.

Proof. For 1 <i <t,let deg p; = a;. Without loss of generality we assume that o; < 11, 1 <@ <t—
1. Suppose the germs pyg, . .., pro are not minimal, that is, there exist k(1 < k <), px, = Zle’i#k Oipi
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for some choice of holomorphic functions ¢;, 1 <1 < t,7 # k defined on a suitable small neighborhood

of 0. Thus we have
=Y, ¢,

i:aigak
where ¢;* " is the Taylor polynomial containing of ¢; of degree a;, — ;. Therefore py, ..., ps can not
be a minimal set of generators for the ideal J. This contradiction completes the proof. O

Consider the ideal J generated by the polynomials 21 + 29 + 2%, 25 — 22. We will see later that the
joint kernel at 0, in this case is spanned by the independent vectors p(D)K (-, w)|w=0, (D) K (-, w)|w=0,
where p = 27 + 20 and ¢ = (21 — 22)?. Therefore any vectors in the joint kernel is of the form
(ap + Bq)(D)K (-, w)|w=0 for some a, 3 € C. It then follows that ap + 3¢ and o’p + 3'q can not be a
set of generators of J for any choice of a, 3,a’, 3’ € C. However in certain cases, this is possible. We
describe below the case where {p1(D)K (-, w)|y=0, -, pt(D) K (-, w)|w=0} forms a basis for M7 ker M7

for an obvious choice of generating set in J.

Lemma 2.6. Let p1,...,p; be homogeneous polynomials of same degree. Suppose that {pi1,...,pi} is
a minimal set of generators for the ideal 3 C Clz]. Then the set

{pl(D)K(‘,W)|w:0, "'7pt(D)K("w)|w:0}
forms a basis for N7_; ker M.

Proof. For 1 < i <, let deg p; = k. It is enough to show, using Lemma 2.1, 2.4 and 2.5, that the

polynomials pj,...,p; are in @0(3)- Since g"j

is of degree at most kK — 1 for each 7 and j, 1 < i <

t, 1 <7 <m, and the the term of lowest degree in each polynomial in the ideal p € J will be at least

gzg_ (D)plo=0,pe T, 1 <i<t 1<j<m. This completes the proof. [

of degree k, it follows that

Example 2.7. Let M be an analytic Hilbert module over 2 C C™, and M,, be a submodule of M
formed by the closure of polynomial ideal J in M where J = (2® = 2{"..25m : a; € NU {0}, |a| =
Yoty a; = n). We note that Z(7) = {0}. Let K, be the reproducing kernel corresponding to M,.
Then,
(1) M, ={f eM:0*f(0) =0, for ; € NU{0}, || < — 1}
m A _ e ) ospan{Ka(-, W)}, for w # 0;
(2) (= ker(Mjlo, —wy)* = { span{0“Ky (-,w)|w=0 : a5 € NU {0}, |a| =n}, for w=0.

We now go further and show that a similar description of the joint kernel is possible even if the
restrictive assumption of “same degree” is removed. We begin with the simple case of two generators.

Proposition 2.8. Suppose {p1,p2} is a minimal set of generators for the ideal J. and are homogeneous
with deg p1 # deg pa. Let K be the reproducing kernel corresponding the Hilbert module [J], which is
assumed to be in B1(Q*). Then there exist polynomials q1,qe which generate the ideal I and

{a(D)K (-, w)|w=0, ¢2(D)K (-,w)|w=0}
is a basis for N7, ker M.
Proof. Let deg p1 = k and deg po = k + n for some n > 1. The set {p1,p2 + (Zmzn vz )p1} is a

minimal set of generators for J, ; € C where i = (i1,...,4y) and |i| = i1 + ... + ip,. We will take
q1 = p1 and find constants ; in C such that

@ =p2+ () vz p
li|=n

We have to show (Lemma 2.1) that {[g}], [¢3]} is a basis in V(J)/Vo(J). From the equation (2.2) and
Lemma 2.4, it is enough to show that ¢} is a in Vo(J). To ensure that g% € Vo(J),1 <k <m, we
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need to check:

0°lg; 01*lg
0 (D)pilw=0 = (pi, WHO =0,

for all multi-index o = (a1, ..., ) with 1 < |a| < n and ¢ = 1,2. For |a| > n, these conditions are

evident. Since the degree of the polynomial ¢, is k+n, we have (po, 8‘8;32 )0=0,1<|of < n Ifn >1,

then (p1, 8z‘g2>0 =0,1<|a| <n. Tofind v, i=(i1,...,im), we solve the equation (p;, 2 Bz"‘ 230 =0
for all a such that || = n. By the Leibnitz rule,

alolgs ala\p2 - o ps
0z 0z Z( >8 Z% ozv

v<a

8|a‘p2 x = il i—a+v ah/lpl
o 9ze +Z<V>( Z %(i—a—i-u)!z )8,2”

r<a li|=ni>a—v

Now 8‘8(25* (-D)pi|w:0 =0 giVQS

co 0= (FEZ 0 B ) FE e

v<a li|=n,i>a—v
dlolpy " ~
= (p1, WN + Z Z Aai(r)7i,
r=0|i|=n
where given the multi-indices a7,
il alvl gli—a+v| .
(27) Aai("f’) = ZV (105) (i—t)zt-i—l/)!( 8z€1’ Bzi*a+51 >0 ’l/‘ =nrvSa,i2a—v;
0 otherwise.

Let A(r) = ((Aai(r))) be the (njn"_lzl) X (n:rnrﬁzl) matrix in colexicographic order on « and i. Let

A=3%"A(r) and v, be the (";;Tf;l) x 1 column vector (7;)ij=n- Thus the equation (2.6) is of the
form

(2'8) A’?n =T,

where T is the (";’f;l) x 1 column vector (—(p1, 82;2‘52 )0)|a|=n- Invertibility of the coefficient matrix
A then guarantees the existence of a solution to the equation (2.8). We show that the matrix A(r) is
non-negative definite and the matrix A(0) is diagonal:

! 2 fa=i
(2.9) ) = { ¢ I I =1
0 if  #14.

and therefore positive definite. Fix a r, 1 < r < n. To prove that A(r) is non-negative definite, we
show that it is the Grammian with respect to Fock inner product at 0. To each p = (p1, ..., fm) such
that |u| =n —r, we associate a 1 x ("+m 1) tuple of polynomials X, defined as follows

1 B 9P Hp . >
X3(5) = {g-(m) st P2

otherwise,
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where 8 = (B1,...,8m), |Bl =n (8 > pif and only if 8; > p; for all 7). By X, - (X;;)t, we denote the

(";Zf;l) X (”jn”jzl) matrix whose ai-th element is (X7 («), X},(i))o, [a| = n = |i|. We note that

(2.10) Y

lp|=n—r

LG e = Y Xe), XL

! “
|lu|=n—r

. Z i< | o ala_ulpl | 17 ali_ulp1>
N ! e a—p) Oz H o i—p) 0zin /0

|ul=n—r,a>p,i>p

o Z (aiy)' le% Z <a|afu|p1 aliflj“p1>
B ry<oia \v)U—atv)  gzan gyi-n /0

= Aoﬂ'(T).

Since X, - (X;)t is the Grammian of the vector tuple X}, it is non-negative definite. Hence A(r) =
D lul=n—r %(X; - (X)) is non-negative definite. Therefore A is positive definite and hence equation
(2.8) admits a solution, completing the proof. O

Let J be a homogeneous polynomial ideal. As one may expect, the proof in the general case
is considerably more involved. However the idea of the proof is similar to the simple case of two
generators. Let p1,...,p, be a minimal set of generators, consisting of homogeneous polynomials, for
the ideal J. We arrange the set {p1, ..., p,} in blocks of polynomials P!, ..., P¥ according to ascending
order of their degree, that is,

k l l k k
{Plv"'ap} = {p%a"wpzlLl?p%a"'7p121,27"'7p17'"7pul7"'7p17"'7puk}7

where each P! = {pll, ceey pgl}, 1 <[ < k consists of homogeneous polynomials of the same degree, say
n; and ng41 > ng, 1 <1<k — 1. As before, for [ = 1, we take qjl- :pjl.7 1 <j <wp and for [ > 2 take

—1 uy
_pj + ZZ’)’U p87 Where ’yl]s(z) — Z 7{75( ) i
f=1s=1 Py

Each ’ylfjs is a polynomial of degree n; — ny for some choice of fylfjs(z') in C. So we obtain another set
of polynomials {Q!,...,Q*} with Q' = {¢}, ... ,qf”}, 1 <1 < k satisfying the the same property as
the set of polynomials {P",..., P*}. From Lemma 2.1 and 2.4, it is enough to check qé.* is in V(7).

This condition yields a linear system of equation as in the proof of Proposition 2.8, except that the

co-efficient matrix is a block matrix with each block similar to A defined by the equation (2.7). For

l* in Vo(J), the constants fyfjs(i) must satisfy:

a|a‘ql.*
azaj (D)p?’(]

3|O‘|p Y il plimatvipe glvly!
= ¢ ] Tsiey : by Ds
S~ TR 95 35 91 () D DINNETACE s T e I

f=1s=1v<a li|=n;—ny,i>a—v

0:

All the terms in the equation are zero except when |a] =n; —ng, 1 <d <Il—1. Fore =d = f, we
have the equations

(2.11) —{pt s :ZZ > (Ad(r) ks (),

s=1 r=0 [i|=n;—ng
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where Vi il
i\ olv d oli—atv N . .
(A%() = >, () (ifclt+u)!< gt a0 l=rv<ai>a—;
st i .
0 otherwise.
Let A%(r) be the ("~ "d-1fm=1) s (m=na-1tm=1) matrix whose i-th element is (AL(r)),;- We
consider the block-matrix A%(r) = (A% (7)), 1 < s,t < uy.
Fixar, 1 <r <mn —mng. Toeach u = (p1,...,4m) such that |u| = n; — ng — r, associate a

1 % (m—nd—l—m—l

Ty ) tuple of polynomials ngi defined as follows:

3 olIB—nl ;l .
Xdi(ﬁ) — M!(g_#) azﬂfﬁ if ﬁ 2 19
a 0 otherwise,

where 8 = (81, ..., Bm) with |3| = n; —ng. Let Xffr = (X;ﬂ, . ,Xﬁﬁnl_nd)). Using same argument as
in (2.9) and (2.10), we see that the matrix
1
Ad(T) = Z E(Xgr ’ (Xgr)t)

| =n—r

is non-negative definite when 7 > 0 and A4(0) is positive definite. Thus A% = """ "* A4(r) is positive

definite. Let » )
T OV () [N G () [ L

n;—ng+m—1

where each (’yldjs(i))|l-|:m,nd isa ("7 % 1 column vector. Define

8‘a|pl. 8‘a|pl
Fldj = (<_<pil7 8Taj>0)|o¢\:nl—nda SRR (—<pﬁd7 azaj >0)|a\:nl—nd)'

The equation (2.11) is then takes the form Ad'yldj = I‘dj, which admits a solution (as A? is invertible)
for each d,l and j. Thus we have proved the following theorem.

Theorem 2.9. Let I C Clz] be a homogeneous ideal and {pi,...,py} be a minimal set of generators
forJ consisting of homogeneous polynomials. Let K be the reproducing kernel corresponding the Hilbert
module [J], which is assumed to be in B1(2*). Then there exists a set of generators qi, ..., qy, for the
ideal J such that the set {q;(D)K (-, w)|w=0: 1 <i < v} is a basis for Nj_ ker M.

We remark that the new set of generators qi, ..., q, for J is more or less “canonical”! It is uniquely
determined modulo a linear transformation as shown below.

Let J C C[z] be an ideal. Suppose there are two sets of homogeneous polynomials {pi,...,p,} and
{P1,...,Pv} both of which are minimal set of generators for J. Theorem 2.9 guarantees the existence
of a new set of generators {q1,...,qy} and {qi,..., G} corresponding to each of these generating sets
with additional properties which ensures that the equality

v
7] = Zaij[qﬂ, 1<i<w
j=1

holds in V(J)/Vo(J) for some choice of complex constants a;, 1 < i,j < v. Therefore i —> v Gij q; €
Vo(J). Since ¢; — Y ;4 @;jq; is in I, we have

v v v
0=((@ =D ayg) (D)) (@ — Y ijgy) =ll G — D> aias [I§, 1<i <,
=1 =1 =1

and hence ¢; = Y7 ; @i;jq;, 1 < i < v. We have therefore proved the following.

Proposition 2.10. Let I C C[z] be a homogeneous ideal. If {q1,...,q,} is a minimal set of generators
for I with the property that {[¢}] : 1 <1i < v} is a basis for Vo(3)/Vo(J), then qu,...,q, is unique up
to a linear transformation.
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We end this section with the explicit calculation of the joint kernel for a class of submodules of the
Hardy module which illustrate the methods of Proposition 2.8.

Example 2.11. Let p;, p2 be the minimal set of generators for an ideal J C C[z1, z2]. Assume that
p1,p2 are homogeneous, degps = degp; + 1 and V(J) = {0}. As in Proposition 2.8, set ¢ = p; and
g2 = p2 + (71021 + Y0122)p1 subject to the equations

(2.12) ( |01 1§+ | p1 I (D2p1, Dipr)o > < Y10 > _ ( (p1,01p2)0 >
(O1p1, O2p1)o | @apr 15 + | p1 1l o1 (1, 92p2)o
In this special case, the invertibility of the coefficient matrix follows from the positivity (Cauchy -
Schwarz inequality) of its determinant
o1 115+ 1l D1p1 311 21 11 + 1| dopr 151 o1 113
+ (Il 01p1 131l D2p1 1§ —1(O1p1, Bapr)ol?).-

Specifically, if the ideal 3 C C[z1, 22] is generated by z; + 22 and z3. We have V(J) = {0}. The

reproducing kernel K for [J] C H?(D?) is

1 (21 — 2’2)(71)1 — ’LDQ)
K, = — -1
[j](Z’ w) (1 — Zlﬁ)l)(l — ZQ’II)Q) 2
(21+22)(w1+w2) e S
- 5 + Z 2\ Zwiwd.
i+j>2

The vector 95K5(z, w)|o = 223 is not in the joint kernel of Pugj(M;, Ms )| since M3 (23) = 2 and
Pgjz2 = (21 + 22)/2 # 0. However, from the ﬁqua‘gion (2.12), Weihavia q1 =21+ 2z and qo = (21 — 22)2,
we see that q1, g2 generate the ideal J and {(01 + 02) K (-, w)]o, (01 — 02)? K (-, w)|o} forms a basis of the
joint kernel.

Remark on Example 2.11. Let 7 be the ideal generated by z; and z3. Since 21 is not a linear
combination of ¢; and gg, it follows (Proposition 2.10) that J # J. In fact Proposition 2.10 gives an
effective tool to determine when a homogeneous ideal is monoidal. Let {qi,...,q,} be a canonical set
of generators for J. Let A be the collection of monomials in the expressions of {qi,...,q,}. If the
number of algebraically independent monomials in A is v, then J is monoidal.

Remark 2.12. If the generators of the ideal are not homogeneous then the conclusion of the theorem
2.9 is not valid. Take the ideal 3 C Cl[z1, z2] generated by 21(1 + 21),21(1 — 22), 25 which is also
minimal for 3. We have V(J) = {0}. We note that the stalk $)' at 0 is generated by z; and 23.
Similar calculations, as above, shows that {01 K (-,w)|o, 03K (-,w)|o} is a basis of ﬂ?:1 ker M7. But
z1 and z% can not be a set of generators for J C C[z1, 22] which has rank 3. On the other hand,
let J be the ideal generated by 21 + 29 + 27, 25 — 2% which is minimal and V(J) = {0}. In this case
{(O1 + R)K(-,w)o, (O — B)2K (-,w)|o} is a basis of Nj—1 2 ker M. But 21 + 22 and (21 — 22)? is not
a generating set for the stalk at 0.

3. RESOLUTION OF SINGULARITIES

We will use the familiar technique of ‘resolution of singularities’ and construct the blow-up space
of  along an ideal J, which we will denote by €. There is a map 7 : {0 — Q which is biholomorphic
on O\ 7~ 1(V(J)). However, in general, {2 need not even be a complex manifold. Abstractly, the
inverse image sheaf of 8™ under 7 is locally principal and therefore corresponds to a line bundle
on . Here, we explicitly construct a holomorphic line bundle, via the monoidal transformation,
on 1 (wp), wop € V(J), and show that the equivalence class of these Hermitian holomorphic vector
bundles are invariants for the Hilbert module M.
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In the paper [8], submodules of functions vanishing at the origin of H*#)(ID?) were studied using
the blow-up D? \ (0,0) UP! of the bi-disc. This is also known as the quadratic transform. However,
this technique yields useful information only if the generators of the submodule are homogeneous
polynomials of same degree. The monoidal transform, as we will see below, has wider applicability.

For any two Hilbert module M; and My in the class B1(Q2) and L : M; — My a module map
between them, let 8 : M1 (V) — §M2(V) be the map defined by

$YY " filvgi ==Y Lfilvgi, for fi € My, gi € O(V), n €N,
i=1 =1

The map SL is well defined: if Z?:l f,-]vg,; = Z?:l fi‘\/gi, then Z?:l Lfilvgi = Z?:l sz‘vgz Suppose
M is isomorphic to My via the unitary module map L. Now, it is easy to verify that (8¢)~! = 8%,
It then follows that 8™ is isomorphic, as sheaves of modules over Oq, to M2 via the map S.

Let K; be the reproducing kernel corresponding to M;, i = 1,2. We assume that the dimension
of the zero sets X; = Z(M;) of the modules M;, i = 1,2, is less or equal to m — 2. Recall that the
stalk 8 is O, for w € Q\ X1, i = 1,2. Let X = X; U Xp. From [2, Lemma 1.3] and [7, Theorem
3.7], it follows that there exists a non-vanishing holomorphic function ¢ : Q\ X — C such that
LK (-, w) = ¢p(w)Ka(-,w), L*f = ¢f and K1(z,w) = ¢(2)Ka(z,w)d(w). The function ¢ = 1/¢ on
2\ X (induced by the inverse of L, that is, L*) is holomorphic. Since dim X < m — 2, by Hartog’s
theorem (cf. [14, Page 198]) there is a unique extension of ¢ to € such that ¢ is non-vanishing on
(1 have an extension to 2 and ¢ = 1 on the open set 2\ X). Thus X; = X». For wy € X, the stalks
are not just isomorphic but equal:

n
St = {D_higit g9i € M1, hi € ;mOuy, 1 < i<y €N}
i=1

= {Zhiqbf,- : fi € Mo, hy € 10Oy, 1 <i<n,neN}
i=1

= {Zillfl c fi € Mg,ili S mOwO,l <i1<n,n € N} = Szxg?.
i=1
The following theorem is modeled after the well known rigidity theorem which is obtained by taking
M = M. The proof below is different from the ones in [3] or [10] and uses the techniques developed in
this paper and in [2]. We note the conditions in [10, Theorem 3.6] are same as the following theorem, as

dimension of the algebraic variety V' (J) for some ideal 3 C Clz] is same as the holomorphic dimension
by [15, Theorem 5.7.1].

Theorem 3.1. Let M and M be two Hilbert modules in B1(Q*) consisting of holomorphic functions
on a bounded domain 2 C C™. Assume that the dimension of the zero set of these modules is at most
m —2. Suppose there exists polynomial ideals J and J such that M = [J]pe and M = [J]5;. Assume that

every glgebmz’c component of V(J) and V(3J) intersects Q2. Then M and M are equivalent if and only
ifI=1.

Proof. For wg € Q, we have V,,,(J) = VwO(S%) from [2, Lemma 3.2 and 3.3], and Sg}f([) = Swﬁo. Therefore

Vo () = Voo (J). In other words, setting Jg, = {p € C[z] : ¢(D)plw, = 0 for all ¢ € Vi, (I)(= Vi },
as in [3], we see that J5, =I5, for all wg € Q. The proof is now complete since J = Nyyends, (cf. [3,
Corollary 2.1.2]). O

n—k;

Example 3.2. For j = 1,2, let J; C Clz1,...,2n], m > 2, be the ideals generated by z{ and zsz2
Let [J;] be the submodule in the Hardy module H%(D™). Now, from the Theorem proved above, it



14 BISWAS AND MISRA

follows that [J1] is equivalent to [Jo] if and only if 3 = J5. We conclude, using Proposition 2.10, that
these two ideals are same only if k1 = ko.

3.1. The Monoidal Transformation. Let M be a Hilbert module in B1(Q*), which is the closure, in M,
of some polynomial ideal J. Let K denote the corresponding reproducing kernel. Let wg € Z(M). Set

t = dim 8 /mu, S = dim N7 ker(M; — wo;)* = dim Vi, (3)/Vuy, (9).

0

By the decomposition theorem [2, Theorem 1.5], there exists a minimal set of generators g1, - , g of
ngh and a r > 0 such that

t

(3.1) K(,w) =Y gj(w)KY (- w) for all w € A(wo;r)
i=1
for some choice of anti-holomorphic functions KM, ... K® . A(wg;r) — M.

Assume that Z := Z(g1,...,9:) N be a singularity free analytic subset of C™ of codimension t.
We point out that Z depends on M as well as wg. Define

ﬁ(wo;r) = {(w,7(u)) € Awo; ) x P11 wigi(w) — ujgi(w) =0, 1 < i,j < t}.

Here the map 7 : C*\ {0} — P*~1is given by 7(u) = (u1 : ... : uz), the corresponding projective coordi-
nate. The space ﬁ(wo; r) is the monoidal transformation with center Z ([12, page 241]). Consider the
map p := pr; : A(wg;r) — A(wp;r) given by (w,m(2)) — w. For w € Z, we have p~!(w) = {w} x P=1,
This map is holomorphic and proper. Actually p : ﬁ(wo; )\ p~H(Z) — A(wo;r) \ Z is biholomorphic
with p~! : w — (w, (g1 (w) : ... : g(w))). The set E(M) := p~1(Z) which is Z x P*~1 is called the
exceptional set.

We describe a natural line bundle on the blow-up space ﬁ(wo;r). Consider the open set U; =
(A(wo;r) x {ug # 0}) N A(we; 7). Let Z—i = 0}, 2 < j <t. On this chart gj(w) = Hjl»gj(w). From the
decomposition given in the equation (3.1), we have

K(w) = g (w){KW( w) + ) 6K (,w)}.
j=2

This decomposition then yields a section on the chart Uy, of the line bundle on the blow-up space
A(wo;T):

t
j=2

The vectors K@) (-,w) are not uniquely determined. However, there exists a canonical choice of these
vectors starting from a basis, {v1,..., v}, of the joint kernel N}, ker(M; — w;)*:

t

K(,w)= Zgj(w)P(ﬂ),wo)vj, w € Awp;r)

for some r > 0 and generators gi,...,g; of the stalk S%. Thus we obtain the canonical choice
KU)(-,w) = P(w,w0)vj, 1 < j <t (cf. [2, Section 6]). Let £L(M) be the line bundle on the blow-up
space ﬁ(wo; r) determined by the section (w, 6) — s;(w,#), where
¢
sl(w, 0) = P(QD, 1170)1)1 + Z éjl-P(w, wO)Uj, (U), 0) e U;.
j=2
Let M be a second Hilbert module in B (Q*), which is the closure of the polynomial ideal J with
respect to another inner product. Assume that M is equivalent to M via a unitary module map L. In
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the proof of Theorem 1.10 in [2], we have shown that LP(w, @) = P(w,wo)L. Thus
t

d(WK (-, w) = LK (-, w) = Zgj(w)LP(zD,wo)vj = Zgj(w)ﬁ(w,wo)mj.

Therefore s1(w, ) = (P(w wo) Ly + Z Hlp( wy)Lvj) and

¢() J=27

Lsi(w,0) = d(w)31(w, 6).

Hence the line bundles £(M) and L(M) are equivalent as Hermitian holomorphic line bundle on
Awg;r)* = {(w,7(@)) : (w,m(u)) € A(wg;r)}. Since KW (-, w),1 < j < t are linearly independent
[2, Theorem 1.5], it follows that Z(M) N A(wg;r) = Z. Thus if w € A(wop;r) \ Z, then g;(w) # 0

for some i, 1 < i < t. Hence s;(w,0) = % on (A(wo;r) x {u; # 0}) N A(we;r). Therefore the

restriction of the bundle £(M) to A(wo;r) \ p~*(Z) is the pull back of the Cowen-Douglas bundle for
M on A(wp;7) \ Z, via the biholomorphic map 7 on A(wg;7) \ p~1(Z). we have therefore proved the
following Theorem.

Theorem 3.3. Let M and M be two Hilbert modules in B1(Q) consisting of holomorphic functions
on a bounded domain 2 C C™. Assume that the dimension of the zero set of these modules is at most

— 2. Suppose there exists a polynomial ideal J such that M and M are the completions of I with
respect to different inner product. Then M and M are equivalent if and only if the line bundles L(M)
and L(M) are equivalent as Hermitian holomorphic line bundle on A(wg;r)*.

Although in general, Z need not be a complex manifold, The restriction of s; to p~!(wq) for wg € Z
determines a holomorphic line bundle on p~!(wq)* := {(wo, 7(@)) : (W, 7(u)) € p~(wp)}, which we
denote by Lo(M). Thus s1 = s1(w, 0) w1 x{u;20} 15 given by the formula

t
51(0) = KD (-, wo) + 3 0LEKD (- wo).
j=2

Since the vectors K )(', wp), 1 < j <t are uniquely determined by the generators g1, ..., g, $1 is well
defined.

Theorem 3.4. Let M and M be two Hilbert modules in B1(Q2) consisting of holomorphic functions
on a bounded domain Q C C™. Assume that the dimension of the zero set of these modules is at most
< m — 2. Suppose there exists a polynomial ideal J such that M and M are the completions of J with
respect to different inner product. If the modules M and M are equivalent, then the corresponding
bundles Lo(M) and LO(JT/[) they determine on the projective space p~!(wo)* for wo € Z, are equivalent
as Hermitian holomorphic line bundle.

Proof. Let L : M — J\N/[ be the unitary module map and K and K be the reproducing kernels corre-
sponding to M and M respectively. The existence of a holomorphic function ¢ on 2\ Z(M) such that
LK(-,w) = p(w)K(-,w), L*f = ¢f and K(z,w) = ¢(2) K (2, w)p(w) follows from [2, Lemma 1.3] and
[7, Theorem 3.7]. As we have pointed earlier, ¢ extends to a non-vanishing holomorphic function on
Q.

Since M is in B1(Q*), it admits a decomposition as given in equation (3.1), with respect the
— M

generators gi, ..., G; of 8%. However, we may assume that g; = g; for 1 < i < ¢, because S,LJZ([)
for all wg € Q. Thus

Zgj VKU (-, w) for all w € A(wg;r)
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For some r > 0. By applying the unitary L to equation (3.1), we get

S(w)K (- w) = Zgj JLED (- w).
Since ¢ does not vanish on €2, we may choose
- LK.

K(J)(',w) = &, 1<y <t,we A(wo;r).
P(w)

From part (iii) of the decomposition theorem ([2, Theorem 1.5]), the vectors KU (- wp), 1 < j < ¢

are uniquely determined by the generators gi,...,g;. Therefore K @ (-, wg) = M. Now the
decomposition for K yields a holomorphic section 3;(8) = KM (-, wg) + Z] —9 ] G)(-,wp) for the

holomorphic line bundle LO(J\N/[) on the projective space p~!(wp)*. Therefore

t
Lsi(0) = LKW (- w)+> LKD) (- wp)
j=2

= p(wo){KD(-,wo) + Y O;KD (- ,wo)} = d(wo)51(0).

=2
From the unitarity of L, it follows that
(3.2) I'51(8) 7=l Ls1(8) [I*= lé(wo)l* || 51(6) ||
and consequently the Hermitian holomorphic line bundles £o(M) and Lo(M) on the projective space
p~H(wp)* are equivalent. O

The existence of the polynomials g1, ..., ¢; such that K@) (-, w)|y—w, = =q; H(DYK (-, w0)|w=wg, 1 < § <,
is guaranteed by Lemma 2.1. The following Lemma shows that

KD () lw=uo = ¢} (D) (-, w)hw=u, 1 < j <t
which makes it possible to calculate the section for the line bundles Ly(M) and Lo(ﬁ[) without any

explicit reference to the generators of the stalks at wy.

Lemma 3.5. Let J be a polynomial ideal with dim V(J) < m — 2 and K be the reproducing kernel
of [ which is assumed to be in B1(Q*). Let qi,...,q be the polynomials such that KO (4 w) ey =
q]’f(D)K(-,w)\w:wO. Let K be a reproducing kernel of [J], completed with respect to another inner

product. Then IN((j)(-,w)\w:wO = q;(D)I?(~,w)\w:wO.

Proof. For f € M and 1 < i < m, we have (f,0;LK(-,w)) = 0;(f, LK(-,w)) = 0;(L*f, K(-,w)) =
(L*f, 0;K(-,w)) = (f, LO; K (-,w)), that is, O; LK (-,w) = LO; K (-,w). Thus

p(D)LEK(-,w) = Lp(D)K (-, w) for any p € C[z].
From equation (2.4), it follows that
LK (- wo) = L{gj(D)K (-, w)lw=uo} = {La}(D)K (-, 0)} =,
= {G(D)LK (w0 wmwy = {4}(D)(w)K (-, )} w=up
= > aa{qj(D)(@ — w0)* K (-, 0) Hlw=uq

_ 0% o~
= z@;aa 82‘3 (D)K (W) |w=wp>
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where ¢(w) = > aa(w — wp)®, the power series expansion of ¢ around wy. Now for any p € J we
have

"9 DR "9 DR
<p7 020 ( ) ('7w)|w=w0> - <p’ 22 ( ) ('vw)>‘w=w0
0%qj
820‘] (D)p(w)]w=uw-
Since Lemma 2.1 ensures that {[q1], ..., [g]} is a basis for V,,(7)/Vu,(9), it follows that
0%q;

(p, 550 (D)K (-, w)|1yeuw,) = 0 for all p € J and o > 0.

Therefore, we have aa : (D) (-, w)|w=w, = 0 for @ > 0. Hence LKU )( ,wp) = doq}‘(l—))k(',w)]w:wo =
qb(wo)qj (D)E (-, w) |w—w,and consequently K@) (-, w)]y—w, = =q; (DK (-, w) ey, 1 < j < t. O

Remark 3.6. Let M Be a Hilbert module in %B1(€2). Assume that M = [J]5 for some polynomial
ideal J and the dimension of the zero set of M is m — 1. Let the polynomials pq,...,p; be a minimal
set of generators for M. Let ¢ = g.c.d{p1,...,p:}. Then the Beurling form (cf. [3]) of J is ¢J, where J
is generated by {p1/q,...,p:/q}. From [3, Corollary 3.1.12], dim V(J) < m — 2 unless § = C[z]. The
reproducing kernels K of M is of the form K(z,w) = q(2)x(z,w)q(w). Let My be the Hilbert module
determined by the non-negative definite kernel y. The Hilbert module M is equivalent to M;. Now
My =[d] and Z(M;) =V (J). If V(J) = ¢, then the modules M; belongs to Cowen-Douglas class of

rank 1. Otherwise, dim V' (J) < m — 2 and Theorem 3.3 determines its equivalence class.

4. EXAMPLES

We illustrate, by means of some examples, the nature of the invariants we obtain from the line
bundle Ly that lives on the projective space. From Theorem 3.4, it follows that the curvature of
the line bundle Ly is an invariant for the submodule. An example was given in [8] showing that the
curvature is is not a complete invariant. However the following lemma is useful for obtaining complete
invariant in a large class of examples.

Lemma 4.1. Let H and K are Hilbert modules in B1(Q) for some bounded domain Q in C™. Suppose
that H and H are such that they are in the Cowen-Douglas class B1(Q2\ X) where dim X < m — 2.
Let M and M be any submodules of H and H respectively, such that
(i) V(M) = Vi (M) for allw € Q and
(il) M = NyeaMs, and M=n GQM
Vi (M)}

If H and H are equivalent, then M and M are equivalent.

where as before MS, := {f € H : q(D)flw =0 for all q €

w?

Proof. Suppose U : H — His a unitary module map. Then U is is a multiplication operator induced
by some holomorphic function, say 1, on Q\ X (cf. [7]). This function ¢ extends non-vanishingly to all

of Q by Hartog’s Theorem. Let wg € 2 and ¢ € V,,, (M) = Vy, (M). Also let 1h(w) = Y o Ga(w —wp)®
be the power series expansion around wg. For f € M, we have

q(D)U flw=w, = a(D)W®f)|lw=wy = Q(D){Z aa(w — wo)® f Huw=wq
= > aad(D){(w — wo)* fHlw=uq

a k
= 0 ()= w0 SO b

k<a
=0
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since g—ig € Vo (M) for any multi index k whenever g € V,,,(M). Therefore it follows that U f € M.
A similar arguments shows that U *M C M. The result follows from unitarity of U. U

4.1. The (o, 3,6) examples: Weighted Bergman Modules in the unit ball. Let B2 = {z = (21, 22) € C?:
2112+ |22/% < 1} be the unit ball in C2. Let L? 3 »(B?) be the Hilbert space of all (equivalence classes

of ) Borel measurable functions on B? satisfying

17 po= [ 1 EPduCer,20) < +oc
where the measure is
du(z1,22) = (0 + B+ 0+ 2) 22/ (1 = |1 — |222)° (1 — |222)PdA(z1, 22)

for (z1,22) € B%, —1 < a, 3,0 < +00 and dA(z1, 20) = dA(21)dA(z2). Here dA denote the normalized
area measure in the plane, that is dA(z) = %dxdy for z = x + ity. The weighted Bergman space
.Aiﬂﬁ(IB%Q) is the subspace of Liﬁﬁ(IB%z) consisting of the holomorphic functions on B?. The Hilbert
space .Ai 3 G(IB%Q) is non-trivial if we assume that the parameters «, 3, 6 satisfy the additional condition:

a+B+0+2>0.
The reproducing kernel K, 54 of Ai7ﬁ79(]B%2) is given by

1 1
a+ B+4+60+2 (1 — zpwp)xtAHo+3

X{§§01+6+0+k+2Xa+9+mk< @w2>k}

(9+1)k 11—z

Ka’ﬁ70 (Z7 w)

k=0

where z = (21, 22),w = (w1, w2) € B? and (a)y = a(a+1)...(a+ k — 1) is the Pochhammer symbol.
This kernel differs from the kernel P, ¢ given in [13] only by a multiplicative constant. The reader
may consult [13] for a detailed discussion of these Hilbert modules.

Let Jp be an ideal in C[21, 2] such that V(Jp) = {P} C B2 We have

1 for w € B2\ {P};

dimker Das—w)- = { dimJp/mpJp (>1) for w=P.

Hence [jp]ﬂiﬁyg(ﬁz) (the completion of Jp in ‘Ai,ﬁ,é)(B2)) is not equivalent to [Jp/]ﬂi,ﬂ/ﬂ/

completion of I in .Ai,7 3.0 (B?)) if P # P'. Now let us determine when two modules in the set

(]BQ) (the

{[Tp] 42 5o(B2) ¢ —1<a,B,0 <+ooand a+ [F+0+2> 0}
are equivalent. In the following proposition, without loss of generality, we have assumed P = 0.

Proposition 4.2. Suppose J is an ideal in Clz1, 23] with V(J) = {0}. Then the Hilbert modules
[9] 42 50(B2) and [J] 42, o or(B2) OTE unitarily equivalent if and only if o« =o', =" and 6 = 0'.

Proof. From the Hilbert Nullstellensatz, it follows that there exist an natural number N such that
mév C J. Let I, 5, be the polynomial ideal generated by z{* and 2. Combining (2.1) with Lemma 4.1
we see, in particular, that the submodules [J,, ] 42 5.0(B?) and [Jp,n) 42 (82) are unitarily equivalent
«,3, o, B0
for m,n > N. Let K,,, be the reproducing kernel for [J,, ] 42 50(B2)" We write Ky pg0(z,w) =
> ii>0 bijz 2} where
at+f+0+j+2 (a+60+2); (a+B+0+5+3)
a+3+0+2 6 +1); il '

(4.1) bij =
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Let Iy :={(i,j) €Z xZ:i,j>0,i>mor j >n}. We note that

Kpn(z,w) = Z b2k 2wkl
(4,)E€Im,n
One easily see that the set {z]", 25} forms a minimal set of generators for the sheaf corresponding to
[Tim.n) 42 50(B2)° The reproducing kernel then can be decomposed as
Kimn(z,w) = 0" K" (z,w) + wy K3"" (2, w) for some 7 > 0 and w € A(0;7).

Successive differentiation, using Leibnitz rule, gives

K0z = 107 Ko )} ey = bruo2 and
K5 (5 w)homo = 08 Ko 0) o 00) = bon -
Therefore
$1(01) = bmoz]" + 01bon 2y,
where #; denotes co-ordinate for the corresponding open chart in P'. Thus
Fs1(01) 117 = big Il 21 12 +03, | 25 17 161° = bmo + boal6r]*.

Let ampn = bon/bmo. Let Ky, , denote the curvature corresponding to the bundle L,y , which is
determined on the projective space P! by the module [Trn.n) 42 5.0(B2)- Thus we have

Kinn(01) = 09,051 s1(61) |> = 8,0, In(1 + @ n|01]?)

am,nel Am,n

0 = )
T amnl0i2 (1 F amnl01]?)?

Let X7, , denote the curvature corresponding to the bundle L, , which is determined on the pro-

jective space P! by the module [J,, ] 2, (B As above we have

a/

K (60) = mn__|
me®) = g, PP

(B2) are unitarily equivalent, from Theorem 3.4,

Since the submodules [jmv”]ﬂi,g,g(ﬁz) and [jm’n]‘Ai’,g’,el

it follows that Iy, ,,(61) = fK’myn(Ql) for A1 in an open chart P! and m,n > N. Thus

!/

Umn Amon

L+ amal6r1[)> (14 ap, ,1011%)%

This shows that (amm — al, ,)(1 + @Gmnap, ,1011*) = 0. S0 amy = aj,,, and hence

(4.2) bon. — bon
bmo b{mO
for all m,n > N. This also follows from the equation (3.2). It is enough to consider the cases
(m,n) = (N,N),(N,N+1),(N,N+2) and (N +1, N) to prove the Proposition. From equation (4.2),
we have
bin+1o binino  bov+n) B Bo(N-+1) bov+2) Bo(n+2)
(4.3) = =—= and = :
bno bno bon bon bo(n+1) bO(N+1)

Let A=a++60,B=a+6and C = 0. From equation (4.1), we have

bvino _ A+ N+3 bowiy  A+N+3 B+ N+2
byvo N+1 7 by  A+4N+2 C+N+1
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and
bo(N+2) B A+N+4 B+N+3

bonty A+N+3 C+N+2
From (4.3), it follows that A = A’ and

(4.4) BC'+B(N+1)+C'(N+2) = BC+B'(N+1)+C(N +2),
(4.5) BC'+ B(N +2)+C'(N+3) = B'C+ B'(N+2)+C(N +3).
b/
Subtracting (4.5) from (4.4), we get B — C' = B’ — C’ and thus § = ¢’. Therefore boélo\’;l) = A
ON
implying B = B’ and hence oo = o/. Lastly A = A’ and in consequence 3 = 3. O
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