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Abstract. A short proof of the “Rigidity theorem” using the sheaf theoretic model for Hilbert modules
over polynomial rings is given. The joint kernel for a large class of submodules is described. The
completion [I] of a homogeneous (polynomial) ideal I in a Hilbert module is a submodule for which
the joint kernel is shown to be of the form

{pi( ∂
∂w̄1

, . . . , ∂
∂w̄m

)K[I](·, w)|w=0, 1 ≤ i ≤ n},

where K[I] is the reproducing kernel for the submodule [I] and p1, . . . , pn is some minimal “canonical
set of generators” for the ideal I. The proof includes an algorithm for constructing this canonical set
of generators, which is determined uniquely modulo linear relations, for homogeneous ideals. A set of
easily computable invariants for these submodules, using the monoidal transformation, are provided.
Several examples are given to illustrate the explicit computation of these invariants.

1. Preliminaries

Beurling’s theorem describing the invariant subspaces of the multiplication (by the coordinate func-
tion) operator on the Hardy space of the unit disc is essential to the Sz.-Nagy – Foias model theory and
several other developments in modern operator theory. In the language of Hilbert modules, Beurl-
ing’s theorem says that all submodules of the Hardy module of the unit disc are equivalent. This
observation, due to Cowen and Douglas [6], is peculiar to the case of one-variable operator theory.
The submodule of functions vanishing at the origin of the Hardy module H2

0 (D2) of the bi-disc is not
equivalent to the Hardy module H2(D2). To see this, it is enough to note that the joint kernel of the
adjoint of the multiplication by the two co-ordinate functions on the Hardy module of the bi-disc is
1 - dimensional (it is spanned by the constant function 1) while the joint kernel of these operators
restricted to the submodule is 2 - dimensional (it is spanned by the two functions z1 and z2).

There has been a systematic study of this phenomenon in the recent past [1, 10] resulting in
a number of “Rigidity theorems” for submodules of a Hilbert module M over the polynomial ring
C[z] := C[z1, . . . , zm] of the form [I] obtained by taking the norm closure of a polynomial ideal I in
the Hilbert module. For a large class of polynomial ideals, these theorems often take the form: two
submodules [I] and [J] in some Hilbert module M are equivalent if and only if the two ideals I and J

are equal. We give a short proof of this theorem using the sheaf theoretic model developed earlier in
[2] and construct tractable invariants for Hilbert modules over C[z].

Let M be a Hilbert module of holomorphic functions on a bounded open connected subset Ω of
Cm possessing a reproducing kernel K. Assume that I ⊆ C[z] is the singly generated ideal 〈p〉. Then
the reproducing kernel K[I] of [I] vanishes on the zero set V (I) and the map w 7→ K[I](·, w) defines a
holomorphic Hermitian line bundle on the open set Ω∗I = {w ∈ Cm : w̄ ∈ Ω \ V (I)} which naturally
extends to all of Ω∗. As is well known, the curvature of this line bundle completely determines the
equivalence class of the Hilbert module [I] (cf. [4, 5]). However, if I ⊆ C[z] is not a principal ideal, then
the corresponding line bundle defined on Ω∗I no longer extends to all of Ω∗. Indeed, it was conjectured
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in [8] that the dimension of the joint kernel of the Hilbert module [I] at w is 1 for points w not in
V (I), otherwise it is the codimension of V (I). Assuming that

(a) I is a principal ideal or
(b) w is a smooth point of V (I).

Duan and Guo verify the validity of this conjecture in [11]. Furthermore if m = 2 and I is prime then
the conjecture is valid.

Thus for any submodule [I] in a Hilbert module M, assuming that M is in the Cowen-Douglas class
B1(Ω∗) and the co-dimension of V (I) is greater than 1, it follows that [I] is in B1(Ω∗I) but it doesn’t
belong to B1(Ω∗). For example, H2

0 (D2) is in the Cowen-Douglas class B1(D2 \ {(0, 0)}) but it does
not belong to B1(D2). To systematically study examples of submodules like H2

0 (D2), the following
definition from [2] will be useful.
Definition. A Hilbert module M over the polynomial ring in C[z] is said to be in the class B1(Ω∗) if

(rk) possess a reproducing kernel K (we don’t rule out the possibility: K(w,w) = 0 for w in some
closed subset X of Ω) and

(fin) The dimension of M/mwM is finite for all w ∈ Ω.
For Hilbert modules in B1(Ω), from [2], we have:

Lemma. Suppose M ∈ B1(Ω∗) is the closure of a polynomial ideal I. Then M is in B1(Ω∗) if the ideal
I is singly generated while if it is minimally generated by more than one polynomial, then M is in
B1(Ω∗I).

This Lemma ensures that to a Hilbert module in B1(Ω∗), there corresponds a holomorphic Her-
mitian line bundle defined by the joint kernel for points in Ω∗I . We will show that it extends to a
holomorphic Hermitian line bundle on the “blow-up” space Ω̂∗ via the monoidal transform under mild
hypothesis on the zero set V (I). We also show that this line bundle determines the equivalence class
of the module [I] and therefore its curvature is a complete invariant. However, computing it explicitly
on all of Ω̂∗ is difficult. In this paper we find invariants, not necessarily complete, which are easy to
compute. One of these invariants is nothing but the curvature of the restriction of the line bundle on
Ω̂∗ to the exceptional subset of Ω̂∗.

A line bundle is completely determined by its sections on open subsets. To write down the sec-
tions, we use the decomposition theorem for the reproducing kernel [2, Theorem 1.5]. The actual
computation of the curvature invariant require the explicit calculation of norm of these sections. Thus
it is essential to obtain explicit description of the eigenvectors K(i), 1 ≤ i ≤ d, in terms of the re-
producing kernel. We give two examples which, we hope, will motivate the results that follow. Let
H2(D2) be the Hardy module over the bi-disc algebra. The reproducing kernel for H2(D2) is the
Sz̈ego kernel S(z, w) = 1

1−z1w̄2

1
1−z2w̄2

. Let I0 be the polynomial ideal 〈z1, z2〉 and let [I0] denote the
minimal closed submodule of the Hardy module H2(D2) containing I0. Then the joint kernel of the
adjoint of the multiplication operators M1 and M2 is spanned by the two linearly independent vectors:
z1 = p1(∂̄1, ∂̄2)S(z, w)|w1=0=w2

and z2 = p2(∂̄1, ∂̄2)S(z, w)|w1=0=w2
, where p1, p2 are the generators

of the ideal I0. For a second example, take the ideal I1 = 〈z1 − z2, z
2
2〉 and let [I1] be the mini-

mal closed submodule of the Hardy module H2
0 (D2) containing I1. The joint kernel is not hard to

compute. A set of two linearly independent vectors which span it are p1(∂̄1, ∂̄2)S(z, w)|w1=0=w2
and

p2(∂̄1, ∂̄2)S(z, w)|w1=0=w2
, where p1 = z1 − z2 and p2 = (z1 + z2)2. Unlike the first example, the two

polynomials p1, p2 are not the generators for the ideal I1 that were given at the start, never the less,
they are easily seen to be a set of generators for the ideal I1 as well. This prompts the question:
Question: Let M ∈ B1(Ω∗) be a Hilbert module and I ⊆ M be a polynomial ideal. Assume without
loss of generality that 0 ∈ V (I). We ask

(1) if there exists a set of polynomials p1, . . . , pn such that

pi( ∂
∂w̄1

, . . . , ∂
∂w̄m

)K[I](z, w)|z=0=w, i = 1, . . . , n,

spans the joint kernel of [I];



HILBERT MODULES 3

(2) what conditions, if any, will ensure that the polynomials p1, . . . , pn, as above, is a generating
set for I?

We show that the answer to the Question (1) is affirmative, that is, there is a natural basis for the
joint eigenspace of the Hilbert module [I], which is obtained by applying a differential operator to
the reproducing kernel K[I] of the Hilbert module [I]. Often, these differential operators encode an
algorithm for producing a set of generators for the ideal I with additional properties. It is shown that
there is an affirmative answer to the Question (2) as well, if the ideal is assumed to be homogeneous.
It then follows that, if there were two sets of generators which serve to describe the joint kernel, as
above, then these generators must be linear combinations of each other, that is, the sets of generators
are determined modulo a linear transformation. We will call them canonical set of generators. The
canonical generators provide an effective tool to determine if two ideal are equal. A number of examples
illustrating this phenomenon is given.

In the following section, we describe the joint kernel. In section 3, we construct the holomorphic
Hermitian line bundle on the “blow - up ” space. In the last section, we provide an explicit calculation.

1.1. Index of notations:

C[z] the polynomial ring C[z1, . . . , zm] of m- complex variables
mw maximal ideal of C[z] at the point w ∈ Cm

Ω a bounded domain in Cm

Ω∗ {z̄ : z ∈ Ω}
D the open unit disc in C
Dm the poly-disc {z ∈ Cm : |zi| < 1, 1 ≤ i ≤ t},m ≥ 1
[I] the completion of a polynomial ideal I in some Hilbert module
Mi module multiplication by the co-ordinate function zi on [I], 1 ≤ i ≤ m
M∗i adjoint of the multiplication operator Mi on [I], 1 ≤ i ≤ m
K[I] the reproducing kernel of [I]
α, |α|, α! the multi index (α1, . . . , αm), |α| =

∑m
i=1 αi and α! = α1! . . . αm!(

α
k

)
=
∏m
i=1

(
αi
ki

)
for α = (α1, . . . , αm) and k = (k1, . . . , km)

k ≤ α if ki ≤ αi, 1 ≤ i ≤ m.
zα zα1

1 . . . zαmm
∂α, ∂̄α ∂α = ∂|α|

∂z
α1
1 ···z

αm
m
, ∂̄α = ∂|α|

∂z̄
α1
1 ···z̄

αm
m

for α ∈ Z+ × · · · × Z+

q(D) the differential operator q( ∂
∂z1

, . . . , ∂
∂zm

) ( =
∑

α aα∂
α, where q =

∑
α aαz

α)
Bn(Ω) Cowen-Douglas class of operators of rank n, n ≥ 1
q∗ q∗(z) = q(z̄)(=

∑
α āαz

α for q of the form
∑

α aαz
α)

〈 , 〉w0 the Fock inner product at w0, defined by 〈p, q〉w0 := q∗(D)p|w0 = (q∗(D)p)(w0)
SM the analytic subsheaf of OΩ, corresponding to the Hilbert module M ∈ B1(Ω∗)
Vw(F) the characteristic space at w, which is {q ∈ C[z] : q(D)f

∣∣
w

= 0 for all f ∈ F}
for some set F of holomorphic functions

2. Calculation of basis vectors for the joint kernel

The Fock inner product of a pair of polynomials p and q is defined by the rule:

〈p, q〉0 = q∗( ∂
∂z1

, . . . , ∂
∂zm

) p|0, q∗(z) = q(z̄).

The map 〈 , 〉0 : C[z]×C[z] −→ C is linear in first variable and conjugate linear in the second and for
p =

∑
α aαz

α, q =
∑

α bαz
α in C[z], we have

〈p, q〉0 =
∑
α

α!aαb̄α
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since zα(D)zβ|z=0 = α! if α = β and 0 otherwise. Also, 〈p, p〉0 =
∑

α α!|aα|2 ≥ 0 and equals 0 only
when aα = 0 for all α. The completion of the polynomial ring with this inner product is the well
known Fock space L2

a(Cm, dµ), that is, the space of all µ-square integrable entire functions on Cm,
where

dµ(z) = π−me−|z|
2
dν(z)

is the Gaussian measure on Cm (dν is the usual Lebesgue measure).
The characteristic space (cf. [3, page 11]) of an ideal I in C[z] at the point w is the vector space

Vw(I) := {q ∈ C[z] : q(D)p|w = 0, p ∈ I} = {q ∈ C[z] : 〈p, q∗〉w = 0, p ∈ I}.
The envelope of the ideal I at the point w is defined to be the ideal

Iew := {p ∈ C[z] : q(D)p|w = 0, q ∈ Vw(I)}
= {p ∈ C[z] : 〈p, q∗〉w = 0, q ∈ Vw(I)}.

It is known [3, Theorem 2.1.1, page 13] that I = ∩w∈V (I)I
e
w. The proof makes essential use of the well

known Krull’s intersection theorem. In particular, if V (I) = {w}, then Iew = I. It is easy to verify this
special case using the Fock inner product. We provide the details below after setting w = 0, without
loss of generality.

Let m0 be the maximal ideal in C[z] at 0. By Hilbert’s Nullstellensatz, there exists a positive integer
N such that mN

0 ⊆ I. We identify C[z]/mN
0 with spanC{zα : |α| < N} which is the same as (mN

0 )⊥ in
the Fock inner product. Let IN be the vector space I ∩ spanC{zα : |α| < N}. Clearly I is the vector
space (orthogonal) direct sum IN ⊕mN

0 . Let

Ṽ = {q ∈ C[z] : deg q < N and 〈p, q〉0 = 0, p ∈ IN} =
(
mN

0

)⊥ 	 IN .

Evidently, V0(I) = Ṽ ∗, where Ṽ ∗ = {q ∈ V : q∗ ∈ Ṽ }. It is therefore clear that the definition of Ṽ is
independent of N , that is, if mN1 ⊂ I for some N1, then (mN1

0 )⊥ 	 IN1 = (mN
0 )⊥ 	 IN . Thus

Ie0 = {p ∈ C[z] : deg p < N and 〈p, q∗〉0 = 0, q ∈ V0(I)} ⊕mN
0

=
(
(mN

0 )⊥ 	 Ṽ
)
⊕mN

0

= IN ⊕mN
0

showing that Ie0 = I.
Let M be a submodule of an analytic Hilbert module H on Ω such that M = [I], closure of the ideal

I in H. It is known that V0(I) = V0(M) (cf. [2, 10]). Since

M ⊆Me
0 := {f ∈ H : q(D)f |0 = 0 for all q ∈ V0(M)},

it follows that

dimH/Me
0 ≤ dimH/M = dim C[z]/I ≤ dim C[z]/mN

0

≤
N−1∑
k=0

(
k +m− 1
m− 1

)
< +∞.

Therefore, from [10], we have Me
0 ∩ C[z] = Ie0 and M ∩ C[z] = I, and hence

Me
0 = [Ie0] = [I] = M.(2.1)

Assumption: Let I ⊆ C[z] be an ideal. We assume that the module M in B1(Ω) is the completion of I

with respect to some inner product. For notational convenience, in the following discussion, we let K
be the reproducing kernel of M = [I], instead of K[I].

To describe the joint kernel ∩mj=1 ker(Mj−wj)∗ using the characteristic space Vw(I), it will be useful
to define the auxialliary space

Ṽw(I) = {q ∈ C[z] :
∂q

∂zi
∈ Vw(I), 1 ≤ i ≤ m}.
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From [2, Lemma 3.4], it follows that V (mwI) \ V (I) = {w} and Vw(mwI) = Ṽw(I). Therefore,

dim∩mj=1 ker(Mj − wj)∗ = dim M/mwM = dim I/mwI(2.2)

=
∑

λ∈V (mwI)\V (I)

dim Vλ(mwI)/Vλ(I)

= dim Ṽw(I)/Vw(I).

For the second and the third equalities, see [3, Theorem 2.2.5 and 2.1.7]. Since Ṽw(I) is a subspace of
the inner product space C[z], we will often identify the quotient space Ṽw(I)/Vw(I) with the subspace
of Ṽw(I) which is the orthogonal complement of Vw(I) in Ṽw(I). Equation (2.2) motivates following
lemma describing the basis of the joint kernel of the adjoint of the multiplication operator at a point
in Ω. This answers the question (1) of the introduction.

Lemma 2.1. Fix w0 ∈ Ω and polynomials q1, . . . , qt. Let I be a polynomial ideal and K be the
reproducing kernel corresponding the Hilbert module [I], which is assumed to be in B1(Ω∗). Then the
vectors

q∗1(D̄)K(·, w)|w=w0 , . . . , q
∗
t (D̄)K(·, w)|w=w0

form a basis of the joint kernel at w0 of the adjoint of the multiplication operator if and only if the
classes [q1], . . . , [qt] form a basis of Ṽw0(I)/Vw0(I).

Proof. Without loss of generality we assume 0 ∈ Ω and w0 = 0.
Claim 1: For any q ∈ C[z], the vector q∗(D̄)K(·, w)|w=0 6= 0 if and only if q /∈ V0(I).
Using the reproducing property f(w) = 〈f,K(·, w)〉 of the kernel K, it is easy to see (cf. [7]) that

∂αf(w) = 〈f, ∂̄αK(·, w)〉, for α ∈ Z+
m, w ∈ Ω, f ∈M.

and thus

∂αf(w)|w=0 = 〈f, ∂̄αK(·, w)〉|w=0 = 〈f, ∂̄α{
∑
β

∂βK(z, 0)
β!

w̄β}〉|w=0

= 〈f, {
∑
β≥α

∂βK(z, 0)α!
β!

w̄β−α}〉|w=0 = {
∑
β≥α
〈f, ∂

βK(z, 0)α!
β!

〉w̄β−α}|w=0

= 〈f, ∂̄αK(·, w)|w=0〉.

So for f ∈M and a polynomial q =
∑
aαz

α, we have

〈f, q∗(D̄)K(·, w)|w=0〉 = 〈q,
∑
α

āα∂̄
αK(·, w)〉|w=0 =

∑
α

aα〈f, ∂̄αK(·, w)〉|w=0(2.3)

= {
∑
α

aα∂
α〈f,K(·, w)〉}|w=0 = q(D)f |w=0.

This proves the claim.
Claim 2: For any q ∈ C[z], the vector q∗(D̄)K(·, w)|w=0 ∈ ∩mj=1 kerM∗j if and only if q ∈ Ṽ0(I).
For any f ∈M, we have

〈f,M∗j q∗(D̄)K(·, w)|w=0〉 = 〈Mjf, q
∗(D̄)K(·, w)|w=0〉 = q(D)(zjf)|w=0

= {zjq(D)f +
∂q

∂zj
(D)f}|w=0 =

∂q

∂zj
(D)f |w=0

verifying the claim.
As a consequence of claims 1 and 2, we see that q∗(D̄)K(·, w)|w=0 is a non-zero vector in the joint

kernel if and only if the class [q] in Ṽ0(I)/V0(I) is non-zero.
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Pick polynomials q1, . . . , qt. From the equation (2.2) and claim 2, it is enough to show that
q∗1(D̄)K(·, w)|w=0, . . . , q

∗
t (D̄)K(·, w)|w=0 are linearly independent if and only if [q1], . . . , [qt] are lin-

early independent in Ṽ0(I)/V0(I). But from claim 1 and equation (2.3), it follows that
t∑
i=1

ᾱiq
∗
i (D̄)K(·, w)|w=0 = 0 if and only if

t∑
i=1

αi[qi] = 0 in Ṽ0(I)/V0(I)

for scalars αi ∈ C, 1 ≤ i ≤ t. This completes the proof. �

Remark 2.2. The ‘if’ part of the theorem can also be obtained from the decomposition theorem [2,
Theorem 1.5]. For module M in the class B1(Ω∗), let SM be the subsheaf of the sheaf of holomorphic
functions OΩ whose stalk SM

w at w ∈ Ω is{
(f1)wOw + · · ·+ (fn)wOw : f1, . . . , fn ∈M

}
,

and the characteristic space at w ∈ Ω is the vector space

Vw(SM
w ) = {q ∈ C[z] : q(D)f

∣∣
w

= 0, fw ∈ SM
w }.

Since
dim SM

0 /m0S
M
0 = dim∩mj=1 kerM∗j = dim Ṽ0(I)/V0(I) = t,

there exists a minimal set of generators g1, · · · , gt of SM
0 and a r > 0 such that

K(·, w) =
t∑
i=1

gj(w)K(j)(·, w) for all w ∈ ∆(0; r)

for some choice of anti-holomorphic functions K(1), . . . ,K(t) : ∆(0; r)→M. The formula

q(D)(zαg) =
∑
k≤α

(
α

k

)
zα−k

∂kq

∂zk
(D)(g)(2.4)

gives

q∗i (D̄)K(·, w)|w=0 =
t∑

j=1

{K(j)(·, w)|w=0}{q∗i (D̄)gj(w)|w=0}

for qi ∈ Ṽ0(I), 1 ≤ i ≤ t. The proof follows from the fact that Vw(I) = Vw(M) = Vw(SM
w ).

Remark 2.3. We give details of the case where the ideal I is singly generated, namely I =< p >.
From [8], it follows that the reproducing kernel K admits a global factorization, that is, K(z, w) =
p(z)χ(z, w)p̄(w) for z, w ∈ Ω where χ(w,w) 6= 0 for all w ∈ Ω. So we get K1(·, w) = p(·)χ(·, w) for all
w ∈ Ω. The proposition above gives a way to write down this section in term of reproducing kernel.
Let 0 ∈ V (I). Let q0 be the lowest degree term in p. We claim that [q∗0] gives a non-trivial class in
Ṽ0(I)/V0(I). This is because all partial derivatives of q∗0 have degree less than that of q∗0 and hence
from (2.4)

q∗0(D)(zαg)|0 =
∂αq∗0
∂zα

(D)(p)
∣∣
0

= 0 for all multi-indices α such that |α| > 0

and thus ∂q∗0
∂zi
∈ V0(I) for all i, 1 ≤ i ≤ m, that is, q∗0 ∈ Ṽ0(I). Also as the lowest degree of p − q0 is

strictly greater than that of q0,

q∗0(D)p|0 = q∗0(D)(p− q0 + q0)|0 = q∗0(D)q0|0 =‖ q0 ‖20> 0

This shows that q∗0 /∈ V0(I) and hence gives a non-trivial class in Ṽ0(I)/V0(I). Therefore from the
proof of Lemma 2.1, we have

q0(D̄)K(·, w)|w=0 = K1(·, w)|w=0q0(D̄)p(w)|0 =‖ q∗0 ‖20 K1(·, w)|w=0.
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Let qw0 denotes the lowest degree term in z−w0 in the expression of p around w0. Then we can write

K1(·, w)|w=w0 =


K(·,w)|w=w0

p(w0) if w0 /∈ V (I) ∩ Ω
qw0 (D̄)K(·,w)|w=w0

‖q∗w0
‖2w0

if w0 ∈ V (I) ∩ Ω.
(2.5)

For a fixed set of polynomials q1, . . . , qt, the next lemma provides a sufficient condition for the
classes [q∗1], . . . , [q∗t ] to be linearly independent in Ṽw0(I)/Vw0(I). The ideas involved in the two easy
but different proofs given below will be used repeatedly in the sequel.

Lemma 2.4. Let q1, . . . , qt are linearly independent polynomials in the polynomial ideal I such that
q1, . . . , qt ∈ Ṽ0(I). Then [q∗1], . . . , [q∗t ] are linearly independent in Ṽw0(I)/Vw0(I).

First Proof. Suppose
∑t

i=1 αi[q
∗
i ] = 0 in Ṽw0(I)/Vw0(I) for some αi ∈ C, 1 ≤ i ≤ t. Thus

∑t
i=1 αiq

∗
i =

q for some q ∈ Vw0(I). Taking the inner product of
∑t

i=1 αiq
∗
i with qj for a fixed j, we get

t∑
i=1

〈qj , qi〉w0 =
( t∑
i=1

αiq
∗
i

)
(D)qj |w0 = q(D)qj |w0 = 0.

The Grammian
(
(〈qj , qi〉w0)

)t
i,j=1

of the linearly independent polynomials q1, . . . , qt is non-singular.
Thus αi = 0, 1 ≤ i ≤ t, completing the proof.
Second Proof. If [q∗1], . . . , [q∗t ] are not linearly independent, then we may assume without loss of
generality that [q∗1] =

∑t
i=2 αi[q

∗
i ] for α1, . . . , αt ∈ C. Therefore [q∗1 −

∑t
i=2 αip

∗
i ] = 0 in the quotient

space Ṽw0(I)/Vw0(I), that is, q∗1 −
∑t

i=2 αiq
∗
i ∈ Vw0(I). So, we have

(q∗1 −
t∑
i=2

αiq
∗
i )(D)q|w0 = 0 for all q ∈ I.

Taking q = q1 −
∑t

i=2 ᾱiqi we have ‖ q1 −
∑t

i=2 ᾱiqi ‖2w0
= 0. Hence q1 =

∑t
i=2 ᾱiqi which is a

contradiction. �

Suppose are p1, ..., pt are a minimal set of generators for I. Let M be the completion of I with respect
to some inner product induced by a positive definite kernel. We recall from [9] that rankC[z]M = t. Let
w0 be a fixed but arbitrary point in Ω. We ask if there exist a choice of generators q1, ..., qt such that
q∗1(D̄)K(·, w)0, . . . , q

∗
t (D̄)K(·, w)0 forms a basis for ∩mj=1 ker(Mj − w0j)∗. We isolates some instances

where the answer is affirmative. However, this is not always possible (see remark 2.12). From [9,
Lemma 5.11, Page-89], we have

dim ∩mj=1 kerMj∗ = dimM/m0M = dimM⊗C[z] C0 ≤ rankC[z]M.dimC0 ≤ t,

where m0 denotes the maximal ideal of C[z] at 0. So we have dim∩mj=1 kerM∗j ≤ t. The germs
p10, . . . , pt0 forms a set of generators, not necessarily minimal, for SM

0 . However minimality can be
assured under some additional hypothesis. For example, let I be the ideal generated by the polynomials
z1(1 + z1), z1(1 − z2), z2

2 . This is minimal set of generators for the ideal I, hence for M, but not for
SM

0 . Since {z1, z2} is a minimal set of generators for SM
0 , it follows that {z1(1 + z1), z1(1− z2), z2

2} is
not minimal for SM

0 . This was pointed out by R. G. Douglas.

Lemma 2.5. Let p1, . . . , pt be homogeneous polynomials, not necessarily of the same degree. Let
I ⊂ C[z] be an ideal for which p1, . . . , pt is a minimal set of generators. Let M be a submodule of an
analytic Hilbert module over C[z] such that M = [I]. Then the germs p10, . . . , pt0 at 0 forms a minimal
set of generators for SM

0 .

Proof. For 1 ≤ i ≤ t, let deg pi = αi. Without loss of generality we assume that αi ≤ αi+1, 1 ≤ i ≤ t−
1. Suppose the germs p10, . . . , pt0 are not minimal, that is, there exist k(1 ≤ k ≤ t), pk =

∑t
i=1,i 6=k φipi
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for some choice of holomorphic functions φi, 1 ≤ i ≤ t, i 6= k defined on a suitable small neighborhood
of 0. Thus we have

pk =
∑

i:αi≤αk

φαk−αii pi,

where φαk−αii is the Taylor polynomial containing of φi of degree αk−αi. Therefore p1, . . . , pt can not
be a minimal set of generators for the ideal I. This contradiction completes the proof. �

Consider the ideal I generated by the polynomials z1 + z2 + z2
1 , z

3
2 − z2

1 . We will see later that the
joint kernel at 0, in this case is spanned by the independent vectors p(D̄)K(·, w)|w=0, q(D̄)K(·, w)|w=0,
where p = z1 + z2 and q = (z1 − z2)2. Therefore any vectors in the joint kernel is of the form
(αp+ βq)(D̄)K(·, w)|w=0 for some α, β ∈ C. It then follows that αp+ βq and α′p+ β′q can not be a
set of generators of I for any choice of α, β, α′, β′ ∈ C. However in certain cases, this is possible. We
describe below the case where {p1(D̄)K(·, w)|w=0, ..., pt(D̄)K(·, w)|w=0} forms a basis for ∩nj=1 kerM∗j
for an obvious choice of generating set in I.

Lemma 2.6. Let p1, . . . , pt be homogeneous polynomials of same degree. Suppose that {p1, . . . , pt} is
a minimal set of generators for the ideal I ⊂ C[z]. Then the set

{p1(D̄)K(·, w)|w=0, ..., pt(D̄)K(·, w)|w=0}

forms a basis for ∩nj=1 kerM∗j .

Proof. For 1 ≤ i ≤ t, let deg pi = k. It is enough to show, using Lemma 2.1, 2.4 and 2.5, that the
polynomials p∗1, . . . , p

∗
t are in Ṽ0(I). Since ∂p∗i

∂zj
is of degree at most k − 1 for each i and j, 1 ≤ i ≤

t, 1 ≤ j ≤ m, and the the term of lowest degree in each polynomial in the ideal p ∈ I will be at least
of degree k, it follows that ∂p∗i

∂zj
(D)p|0 = 0, p ∈ I, 1 ≤ i ≤ t, 1 ≤ j ≤ m. This completes the proof. �

Example 2.7. Let M be an analytic Hilbert module over Ω ⊆ Cm, and Mn be a submodule of M

formed by the closure of polynomial ideal I in M where I = 〈zα = zα1
1 ...zαmm : αi ∈ N ∪ {0}, |α| =∑m

i=1 αi = n〉. We note that Z(τ) = {0}. Let Kn be the reproducing kernel corresponding to Mn.
Then,

(1) Mn = {f ∈M : ∂αf(0) = 0, for αi ∈ N ∪ {0}, |α| ≤ n− 1}

(2)
⋂m
j=1 ker(Mj |Mn − wj)∗ =

{
span{Kn(·,w)}, for w 6= 0;
span{∂̄αKn(·,w)|w=0 : αi ∈ N ∪ {0}, |α| = n}, for w = 0.

We now go further and show that a similar description of the joint kernel is possible even if the
restrictive assumption of “same degree” is removed. We begin with the simple case of two generators.

Proposition 2.8. Suppose {p1, p2} is a minimal set of generators for the ideal I. and are homogeneous
with deg p1 6= deg p2. Let K be the reproducing kernel corresponding the Hilbert module [I], which is
assumed to be in B1(Ω∗). Then there exist polynomials q1, q2 which generate the ideal I and

{q1(D̄)K(·, w)|w=0, q2(D̄)K(·, w)|w=0}

is a basis for ∩mj=1 kerM∗j .

Proof. Let deg p1 = k and deg p2 = k + n for some n ≥ 1. The set {p1, p2 + (
∑
|i|=n γiz

i)p1} is a
minimal set of generators for I, γi ∈ C where i = (i1, . . . , im) and |i| = i1 + . . . + im. We will take
q1 = p1 and find constants γi in C such that

q2 = p2 + (
∑
|i|=n

γiz
i)p1.

We have to show (Lemma 2.1) that {[q∗1], [q∗2]} is a basis in Ṽ0(I)/V0(I). From the equation (2.2) and
Lemma 2.4, it is enough to show that q∗2 is a in Ṽ0(I). To ensure that ∂q∗2

∂zk
∈ V0(I), 1 ≤ k ≤ m, we
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need to check:

∂|α|q∗2
∂zα

(D)pi|w=0 = 〈pi,
∂|α|q2

∂zα
〉|0 = 0,

for all multi-index α = (α1, . . . , αm) with 1 ≤ |α| ≤ n and i = 1, 2. For |α| > n, these conditions are
evident. Since the degree of the polynomial q2 is k+n, we have 〈p2,

∂|α|q2
∂zα 〉0 = 0, 1 ≤ |α| ≤ n. If n > 1,

then 〈p1,
∂|α|q2
∂zα 〉0 = 0, 1 ≤ |α| < n. To find γi, i = (i1, . . . , im), we solve the equation 〈p1,

∂|α|q2
∂zα 〉|0 = 0

for all α such that |α| = n. By the Leibnitz rule,

∂|α|q∗2
∂zα

=
∂|α|p∗2
∂zα

+
∑
ν≤α

(
α

ν

)
∂α−ν(

∑
|i|=n

γ̄iz
i)
∂|ν|p∗1
∂zν

=
∂|α|p∗2
∂zα

+
∑
ν≤α

(
α

ν

)
(

∑
|i|=n,i≥α−ν

γ̄i
i!

(i− α+ ν)!
zi−α+ν)

∂|ν|p∗1
∂zν

.

Now ∂|α|p∗

∂zα (D)pi|w=0 = 0 gives

0 =
(∂|α|p∗2
∂zα

+
∑
ν≤α

(
α

ν

)( ∑
|i|=n,i≥α−ν

γ̄i
i!

(i− α+ ν)!
zi−α+ν

)∂|ν|p∗1
∂zν

)
(D)p1|w=0(2.6)

= 〈p1,
∂|α|p2

∂zα
〉0 +

n∑
r=0

∑
|i|=n

Aαi(r)γ̄i,

where given the multi-indices α, i,

Aαi(r) =

{∑
ν

(
α
ν

)
i!

(i−α+ν)!〈
∂|ν|p1

∂zν , ∂
|i−α+ν|p1

∂zi−α+ν 〉0 |ν| = r, ν ≤ α, i ≥ α− ν;

0 otherwise.
(2.7)

Let A(r) =
((
Aαi(r)

))
be the

(
n+m−1
m−1

)
×
(
n+m−1
m−1

)
matrix in colexicographic order on α and i. Let

A =
∑n

r=0A(r) and γn be the
(
n+m−1
m−1

)
× 1 column vector (γi)|i|=n. Thus the equation (2.6) is of the

form

Āγ̄n = Γ,(2.8)

where Γ is the
(
n+m−1
m−1

)
× 1 column vector (−〈p1,

∂|α|p2

∂zα 〉0)|α|=n. Invertibility of the coefficient matrix
A then guarantees the existence of a solution to the equation (2.8). We show that the matrix A(r) is
non-negative definite and the matrix A(0) is diagonal:

A(0)αi =

{
α! ‖ p1 ‖2 if α = i

0 if α 6= i.
(2.9)

and therefore positive definite. Fix a r, 1 ≤ r ≤ n. To prove that A(r) is non-negative definite, we
show that it is the Grammian with respect to Fock inner product at 0. To each µ = (µ1, . . . , µm) such
that |µ| = n− r, we associate a 1×

(
n+m−1
m−1

)
tuple of polynomials Xr

µ, defined as follows

Xr
µ(β) =

{
µ!
(
β

β−µ
)∂|β−µ|p1

∂zβ−µ
if β ≥ µ

0 otherwise,
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where β = (β1, . . . , βm), |β| = n (β ≥ µ if and only if βi ≥ µi for all i). By Xr
µ · (Xr

µ)t, we denote the(
n+m−1
m−1

)
×
(
n+m−1
m−1

)
matrix whose αi-th element is 〈Xr

µ(α), Xr
µ(i)〉0, |α| = n = |i|. We note that∑

|µ|=n−r

1
µ!

(Xr
µ · (Xr

µ)t)αi =
∑
|µ|=n−r

1
µ!
〈Xr

µ(α), Xr
µ(i)〉0(2.10)

=
∑

|µ|=n−r,α≥µ,i≥µ

1
µ!
〈µ!
(

α

α− µ

)
∂|α−µ|p1

∂zα−µ
, µ!
(

i

i− µ

)
∂|i−µ|p1

∂zi−µ
〉0

=
∑

|ν|=r,ν≤α,i≥α−ν

(α− ν)!
(
α

ν

)(
i

i− α+ ν

)
〈∂
|α−µ|p1

∂zα−µ
,
∂|i−µ|p1

∂zi−µ
〉0

= Aαi(r).

Since Xr
µ · (Xr

µ)t is the Grammian of the vector tuple Xr
µ, it is non-negative definite. Hence A(r) =∑

|µ|=n−r
1
µ!(X

r
µ · (Xr

µ)t) is non-negative definite. Therefore A is positive definite and hence equation
(2.8) admits a solution, completing the proof. �

Let I be a homogeneous polynomial ideal. As one may expect, the proof in the general case
is considerably more involved. However the idea of the proof is similar to the simple case of two
generators. Let p1, . . . , pv be a minimal set of generators, consisting of homogeneous polynomials, for
the ideal I. We arrange the set {p1, . . . , pv} in blocks of polynomials P 1, . . . , P k according to ascending
order of their degree, that is,

{P 1, . . . , P k} = {p1
1, . . . , p

1
u1
, p2

1, . . . , p
2
u2
, . . . , pl1, . . . , p

l
ul
, . . . , pk1, . . . , p

k
uk
},

where each P l = {pl1, . . . , plul}, 1 ≤ l ≤ k consists of homogeneous polynomials of the same degree, say
nl and nl+1 > nl, 1 ≤ l ≤ k − 1. As before, for l = 1, we take q1

j = p1
j , 1 ≤ j ≤ u1 and for l ≥ 2 take

qlj = plj +
l−1∑
f=1

uf∑
s=1

γfslj p
f
s , where γfslj (z) =

∑
|i|=nl−nf

γfslj (i)zi.

Each γfslj is a polynomial of degree nl − nf for some choice of γfslj (i) in C. So we obtain another set
of polynomials {Q1, . . . , Qk} with Ql = {ql1, . . . , qlul}, 1 ≤ l ≤ k satisfying the the same property as
the set of polynomials {P 1, . . . , P k}. From Lemma 2.1 and 2.4, it is enough to check ql∗j is in Ṽ0(I).
This condition yields a linear system of equation as in the proof of Proposition 2.8, except that the
co-efficient matrix is a block matrix with each block similar to A defined by the equation (2.7). For
ql∗j in Ṽ0(I), the constants γfslj (i) must satisfy:

0 =
∂|α|ql∗j
∂zα

(D)pet |0

= 〈pet ,
∂|α|plj
∂zα

〉0 +
l−1∑
f=1

uf∑
s=1

∑
ν≤α

(
α

ν

) ∑
|i|=nl−nf ,i≥α−ν

γfslj (i)
i!

(i− α+ ν)!
〈∂
|i−α+ν|pet
∂zi−α+ν

,
∂|ν|pfs
∂zν

〉0

All the terms in the equation are zero except when |α| = nl − nd, 1 ≤ d ≤ l − 1. For e = d = f , we
have the equations

−〈pdt ,
∂|α|plj
∂zα

〉0 =
ud∑
s=1

nl−nd∑
r=0

∑
|i|=nl−nd

(
Adst(r)

)
αi
γdslj (i),(2.11)
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where (
Adst(r)

)
αi

=

{∑
ν

(
α
ν

)
i!

(i−α+ν)!〈
∂|ν|pds
∂zν ,

∂|i−α+ν|pdt
∂zi−α+ν 〉0 |ν| = r, ν ≤ α, i ≥ α− ν;

0 otherwise.

Let Adst(r) be the
(nl−nd−1+m−1

m−1

)
×
(nl−nd−1+m−1

m−1

)
matrix whose αi-th element is

(
Adst(r)

)
αi

. We
consider the block-matrix Ad(r) = (Adst(r)), 1 ≤ s, t ≤ ud.

Fix a r, 1 ≤ r ≤ nl − nd. To each µ = (µ1, . . . , µm) such that |µ| = nl − nd − r, associate a
1×

(
nl−nd+m−1

m−1

)
tuple of polynomials Xds

µr defined as follows:

Xds
µr(β) =

{
µ!
(
β

β−µ
)∂|β−µ|pds
∂zβ−µ

if β ≥ µ
0 otherwise,

where β = (β1, . . . , βm) with |β| = nl − nd. Let Xd
µr = (Xd1

µr , . . . , X
d(nl−nd)
µr ). Using same argument as

in (2.9) and (2.10), we see that the matrix

Ad(r) =
∑
|µ|=n−r

1
µ!

(Xd
µr · (Xd

µr)
t)

is non-negative definite when r ≥ 0 and Ad(0) is positive definite. Thus Ad =
∑nl−nd

r=0 Ad(r) is positive
definite. Let

γdlj = ((γd1
lj (i))|i|=nl−nd , . . . , (γ

d(nl−nd)
lj (i))|i|=nl−nd)

tr,

where each (γdslj (i))|i|=nl−nd is a
(
nl−nd+m−1

m−1

)
× 1 column vector. Define

Γdlj = ((−〈pd1,
∂|α|plj
∂zα

〉0)|α|=nl−nd , . . . , (−〈p
d
ud
,
∂|α|plj
∂zα

〉0)|α|=nl−nd).

The equation (2.11) is then takes the form Adγdlj = Γdlj , which admits a solution (as Ad is invertible)
for each d, l and j. Thus we have proved the following theorem.

Theorem 2.9. Let I ⊂ C[z] be a homogeneous ideal and {p1, . . . , pv} be a minimal set of generators
for I consisting of homogeneous polynomials. Let K be the reproducing kernel corresponding the Hilbert
module [I], which is assumed to be in B1(Ω∗). Then there exists a set of generators q1, ..., qv for the
ideal I such that the set {qi(D̄)K(·, w)|w=0 : 1 ≤ i ≤ v} is a basis for ∩nj=1 kerM∗j .

We remark that the new set of generators q1, . . . , qv for I is more or less “canonical”! It is uniquely
determined modulo a linear transformation as shown below.

Let I ⊂ C[z] be an ideal. Suppose there are two sets of homogeneous polynomials {p1, . . . , pv} and
{p̃1, . . . , p̃v} both of which are minimal set of generators for I. Theorem 2.9 guarantees the existence
of a new set of generators {q1, . . . , qv} and {q̃1, . . . , q̃v} corresponding to each of these generating sets
with additional properties which ensures that the equality

[q̃∗i ] =
v∑
j=1

αij [q∗j ], 1 ≤ i ≤ v

holds in Ṽ0(I)/V0(I) for some choice of complex constants αij , 1 ≤ i, j ≤ v. Therefore q̃∗i−
∑v

i=1 ᾱijq
∗
j ∈

V0(I). Since q̃i −
∑v

i=1 αijqj is in I, we have

0 =
(
(q̃∗i −

v∑
i=1

ᾱijq
∗
j )(D)

)(
q̃i −

v∑
i=1

αijqj
)

=‖ q̃i −
v∑
i=1

αijqj ‖20, 1 ≤ i ≤ v,

and hence q̃i =
∑v

i=1 αijqj , 1 ≤ i ≤ v. We have therefore proved the following.

Proposition 2.10. Let I ⊂ C[z] be a homogeneous ideal. If {q1, . . . , qv} is a minimal set of generators
for I with the property that {[q∗i ] : 1 ≤ i ≤ v} is a basis for Ṽ0(I)/V0(I), then q1, . . . , qv is unique up
to a linear transformation.
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We end this section with the explicit calculation of the joint kernel for a class of submodules of the
Hardy module which illustrate the methods of Proposition 2.8.

Example 2.11. Let p1, p2 be the minimal set of generators for an ideal I ⊆ C[z1, z2]. Assume that
p1, p2 are homogeneous, deg p2 = deg p1 + 1 and V (I) = {0}. As in Proposition 2.8, set q1 = p1 and
q2 = p2 + (γ10z1 + γ01z2)p1 subject to the equations(

‖ ∂1p1 ‖20 + ‖ p1 ‖20 〈∂2p1, ∂1p1〉0
〈∂1p1, ∂2p1〉0 ‖ ∂2p1 ‖20 + ‖ p1 ‖20

)(
γ10

γ01

)
= −

(
〈p1, ∂1p2〉0
〈p1, ∂2p2〉0

)
(2.12)

In this special case, the invertibility of the coefficient matrix follows from the positivity (Cauchy -
Schwarz inequality) of its determinant

‖ p1 ‖40 + ‖ ∂1p1 ‖20‖ p1 ‖20 + ‖ ∂2p1 ‖20‖ p1 ‖20
+ (‖ ∂1p1 ‖20‖ ∂2p1 ‖20 −|〈∂1p1, ∂2p1〉0|2).

Specifically, if the ideal I ⊂ C[z1, z2] is generated by z1 + z2 and z2
2 . We have V (I) = {0}. The

reproducing kernel K for [I] ⊆ H2(D2) is

K[I](z, w) =
1

(1− z1w̄1)(1− z2w̄2)
− (z1 − z2)(w̄1 − w̄2)

2
− 1

=
(z1 + z2)(w̄1 + w̄2)

2
+

∞∑
i+j≥2

zi1z
j
2w̄

i
1w̄

j
2.

The vector ∂̄2
2K[I](z, w)|0 = 2z2

2 is not in the joint kernel of P[I](M∗1 ,M
∗
2 )|[I] since M∗2 (z2

2) = z2 and
P[I]z2 = (z1 + z2)/2 6= 0. However, from the equation (2.12), we have q1 = z1 + z2 and q2 = (z1− z2)2,
we see that q1, q2 generate the ideal I and {(∂̄1 + ∂̄2)K(·, w)|0, (∂̄1− ∂̄2)2K(·, w)|0} forms a basis of the
joint kernel.

Remark on Example 2.11. Let Ĩ be the ideal generated by z1 and z2
2 . Since z1 is not a linear

combination of q1 and q2, it follows (Proposition 2.10) that I 6= Ĩ. In fact Proposition 2.10 gives an
effective tool to determine when a homogeneous ideal is monoidal. Let {q1, . . . , qv} be a canonical set
of generators for I. Let Λ be the collection of monomials in the expressions of {q1, . . . , qv}. If the
number of algebraically independent monomials in Λ is v, then I is monoidal.

Remark 2.12. If the generators of the ideal are not homogeneous then the conclusion of the theorem
2.9 is not valid. Take the ideal I ⊂ C[z1, z2] generated by z1(1 + z1), z1(1 − z2), z2

2 which is also
minimal for I. We have V (I) = {0}. We note that the stalk SM

0 at 0 is generated by z1 and z2
2 .

Similar calculations, as above, shows that {∂̄1K(·, w)|0, ∂̄2
2K(·, w)|0} is a basis of ∩2

j=1 kerM∗j . But
z1 and z2

2 can not be a set of generators for I ⊂ C[z1, z2] which has rank 3. On the other hand,
let I be the ideal generated by z1 + z2 + z2

1 , z
3
2 − z2

1 which is minimal and V (I) = {0}. In this case
{(∂̄1 + ∂̄2)K(·, w)|0, (∂̄1 − ∂̄2)2K(·, w)|0} is a basis of ∩j=1,2 kerM∗j . But z1 + z2 and (z1 − z2)2 is not
a generating set for the stalk at 0.

3. Resolution of Singularities

We will use the familiar technique of ‘resolution of singularities’ and construct the blow-up space
of Ω along an ideal I, which we will denote by Ω̂. There is a map π : Ω̂ → Ω which is biholomorphic
on Ω̂ \ π−1(V (I)). However, in general, Ω̂ need not even be a complex manifold. Abstractly, the
inverse image sheaf of SM under π is locally principal and therefore corresponds to a line bundle
on Ω̂. Here, we explicitly construct a holomorphic line bundle, via the monoidal transformation,
on π−1(w0), w0 ∈ V (I), and show that the equivalence class of these Hermitian holomorphic vector
bundles are invariants for the Hilbert module M.
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In the paper [8], submodules of functions vanishing at the origin of H(λ,µ)(D2) were studied using
the blow-up D2 \ (0, 0) ∪ P1 of the bi-disc. This is also known as the quadratic transform. However,
this technique yields useful information only if the generators of the submodule are homogeneous
polynomials of same degree. The monoidal transform, as we will see below, has wider applicability.

For any two Hilbert module M1 and M2 in the class B1(Ω) and L : M1 → M2 a module map
between them, let SL : SM1(V )→ SM2(V ) be the map defined by

SL
n∑
i=1

fi|V gi :=
n∑
i=1

Lfi|V gi, for fi ∈M1, gi ∈ O(V ), n ∈ N.

The map SL is well defined: if
∑n

i=1 fi|V gi =
∑n

i=1 f̃i|V g̃i, then
∑n

i=1 Lfi|V gi =
∑n

i=1 Lf̃i|V g̃i. Suppose
M1 is isomorphic to M2 via the unitary module map L. Now, it is easy to verify that (SL)−1 = SL

∗
.

It then follows that SM1 is isomorphic, as sheaves of modules over OΩ, to SM2 via the map SL.
Let Ki be the reproducing kernel corresponding to Mi, i = 1, 2. We assume that the dimension

of the zero sets Xi = Z(Mi) of the modules Mi, i = 1, 2, is less or equal to m − 2. Recall that the
stalk SMi

w is Ow for w ∈ Ω \X1, i = 1, 2. Let X = X1 ∪X2. From [2, Lemma 1.3] and [7, Theorem
3.7], it follows that there exists a non-vanishing holomorphic function φ : Ω \ X → C such that
LK1(·, w) = φ̄(w)K2(·, w), L∗f = φf and K1(z, w) = φ(z)K2(z, w)φ̄(w). The function ψ = 1/φ on
Ω \X (induced by the inverse of L, that is, L∗) is holomorphic. Since dimX ≤ m − 2, by Hartog’s
theorem (cf. [14, Page 198]) there is a unique extension of φ to Ω such that φ is non-vanishing on Ω
(ψ have an extension to Ω and φψ = 1 on the open set Ω\X). Thus X1 = X2. For w0 ∈ X, the stalks
are not just isomorphic but equal:

SM1
w0

= {
n∑
i=1

higi : gi ∈M1, hi ∈ mOw0 , 1 ≤ i ≤ n, n ∈ N}

= {
n∑
i=1

hiφfi : fi ∈M2, hi ∈ mOw0 , 1 ≤ i ≤ n, n ∈ N}

= {
n∑
i=1

h̃ifi : fi ∈M2, h̃i ∈ mOw0 , 1 ≤ i ≤ n, n ∈ N} = SM2
w0
.

The following theorem is modeled after the well known rigidity theorem which is obtained by taking
M = M̃. The proof below is different from the ones in [3] or [10] and uses the techniques developed in
this paper and in [2]. We note the conditions in [10, Theorem 3.6] are same as the following theorem, as
dimension of the algebraic variety V (I) for some ideal I ⊂ C[z] is same as the holomorphic dimension
by [15, Theorem 5.7.1].

Theorem 3.1. Let M and M̃ be two Hilbert modules in B1(Ω∗) consisting of holomorphic functions
on a bounded domain Ω ⊂ Cm. Assume that the dimension of the zero set of these modules is at most
m−2. Suppose there exists polynomial ideals I and Ĩ such that M = [I]M and M̃ = [Ĩ]fM. Assume that
every algebraic component of V (I) and V (Ĩ) intersects Ω. Then M and M̃ are equivalent if and only
if I = Ĩ.

Proof. For w0 ∈ Ω, we have Vw0(I) = Vw0(SM
w0

) from [2, Lemma 3.2 and 3.3], and SM
w0

= S
fM
w0

. Therefore
Vw0(I) = Vw0(Ĩ). In other words, setting Iew0

= {p ∈ C[z] : q(D)p|w0 = 0 for all q ∈ Vw0(I)(= Vw0},
as in [3], we see that Iew0

= Ĩew0
for all w0 ∈ Ω. The proof is now complete since I = ∩w0∈ΩIew0

(cf. [3,
Corollary 2.1.2]). �

Example 3.2. For j = 1, 2, let Ij ⊂ C[z1, . . . , zm], m > 2, be the ideals generated by zn1 and zkj1 z
n−kj
2 .

Let [Ij ] be the submodule in the Hardy module H2(Dm). Now, from the Theorem proved above, it
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follows that [I1] is equivalent to [I2] if and only if I1 = I2. We conclude, using Proposition 2.10, that
these two ideals are same only if k1 = k2.

3.1. The Monoidal Transformation. Let M be a Hilbert module in B1(Ω∗), which is the closure, in M,
of some polynomial ideal I. Let K denote the corresponding reproducing kernel. Let w0 ∈ Z(M). Set

t = dim SM
w0
/mw0S

M
w00 = dim∩mj=1 ker(Mj − w0j)∗ = dim Ṽw0(I)/Vw0(I).

By the decomposition theorem [2, Theorem 1.5], there exists a minimal set of generators g1, · · · , gt of
SM1

0 and a r > 0 such that

K(·, w) =
t∑
i=1

gj(w)K(j)(·, w) for all w ∈ ∆(w0; r)(3.1)

for some choice of anti-holomorphic functions K(1), . . . ,K(t) : ∆(w0; r)→M.
Assume that Z := Z(g1, . . . , gt) ∩ Ω be a singularity free analytic subset of Cm of codimension t.

We point out that Z depends on M as well as w0. Define

∆̂(w0; r) := {(w, π(u)) ∈ ∆(w0; r)× Pt−1 : uigj(w)− ujgi(w) = 0, 1 ≤ i, j ≤ t}.

Here the map π : Ct\{0} → Pt−1 is given by π(u) = (u1 : . . . : ut), the corresponding projective coordi-
nate. The space ∆̂(w0; r) is the monoidal transformation with center Z ([12, page 241]). Consider the
map p := pr1 : ∆̂(w0; r)→ ∆(w0; r) given by (w, π(z)) 7→ w. For w ∈ Z, we have p−1(w) = {w}×Pt−1.
This map is holomorphic and proper. Actually p : ∆̂(w0; r) \ p−1(Z)→ ∆(w0; r) \Z is biholomorphic
with p−1 : w 7→ (w, (g1(w) : . . . : gt(w))). The set E(M) := p−1(Z) which is Z × Pt−1, is called the
exceptional set.

We describe a natural line bundle on the blow-up space ∆̂(w0; r). Consider the open set U1 =
(∆(w0; r) × {u1 6= 0}) ∩ ∆̂(w0; r). Let uj

u1
= θ1

j , 2 ≤ j ≤ t. On this chart gj(w) = θ1
j gj(w). From the

decomposition given in the equation (3.1), we have

K(·, w) = g1(w){K(1)(·, w) +
t∑

j=2

θ̄1
jK

(j)(·, w)}.

This decomposition then yields a section on the chart U1, of the line bundle on the blow-up space
∆̂(w0; r):

s1(w, θ) = K(1)(·, w) +
t∑

j=2

θ̄1
jK

(j)(·, w).

The vectors K(j)(·, w) are not uniquely determined. However, there exists a canonical choice of these
vectors starting from a basis, {v1, . . . , vt}, of the joint kernel ∩ni=1 ker(Mj − wj)∗:

K(·, w) =
t∑

j=1

gj(w)P (w̄, w̄0)vj , w ∈ ∆(w0; r)

for some r > 0 and generators g1, . . . , gt of the stalk SM
w0

. Thus we obtain the canonical choice
K(j)(·, w) = P (w̄, w̄0)vj , 1 ≤ j ≤ t (cf. [2, Section 6]). Let L(M) be the line bundle on the blow-up
space ∆̂(w0; r) determined by the section (w, θ) 7→ s1(w, θ), where

s1(w, θ) = P (w̄, w̄0)v1 +
t∑

j=2

θ̄1
jP (w̄, w̄0)vj , (w, θ) ∈ U1.

Let M̃ be a second Hilbert module in B1(Ω∗), which is the closure of the polynomial ideal I with
respect to another inner product. Assume that M̃ is equivalent to M via a unitary module map L. In
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the proof of Theorem 1.10 in [2], we have shown that LP (w̄, w̄0) = P̃ (w̄, w̄0)L. Thus

φ(w)K̃(·, w) = LK(·, w) =
t∑

j=1

gj(w)LP (w̄, w̄0)vj =
t∑

j=1

gj(w)P̃ (w̄, w̄0)Lvj .

Therefore s1(w, θ) = 1

φ(w)
(P̃ (w̄, w̄0)Lv1 +

∑t
j=2 θ̄

1
j P̃ (w̄, w̄0)Lvj) and

Ls1(w, θ) = φ(w)s̃1(w, θ).

Hence the line bundles L(M) and L(M̃) are equivalent as Hermitian holomorphic line bundle on
∆̂(w0; r)∗ = {(w̄, π(ū)) : (w, π(u)) ∈ ∆̂(w0; r)}. Since K(j)(·, w), 1 ≤ j ≤ t are linearly independent
[2, Theorem 1.5], it follows that Z(M) ∩ ∆(w0; r) = Z. Thus if w ∈ ∆(w0; r) \ Z, then gi(w) 6= 0
for some i, 1 ≤ i ≤ t. Hence si(w, θ) = k(·,w)

gi(w)
on (∆(w0; r) × {ui 6= 0}) ∩ ∆̂(w0; r). Therefore the

restriction of the bundle L(M) to ∆̂(w0; r) \ p−1(Z) is the pull back of the Cowen-Douglas bundle for
M on ∆(w0; r) \ Z, via the biholomorphic map π on ∆̂(w0; r) \ p−1(Z). we have therefore proved the
following Theorem.

Theorem 3.3. Let M and M̃ be two Hilbert modules in B1(Ω) consisting of holomorphic functions
on a bounded domain Ω ⊂ Cm. Assume that the dimension of the zero set of these modules is at most
m − 2. Suppose there exists a polynomial ideal I such that M and M̃ are the completions of I with
respect to different inner product. Then M and M̃ are equivalent if and only if the line bundles L(M)
and L(M̃) are equivalent as Hermitian holomorphic line bundle on ∆̂(w0; r)∗.

Although in general, Z need not be a complex manifold, The restriction of s1 to p−1(w0) for w0 ∈ Z
determines a holomorphic line bundle on p−1(w0)∗ := {(w0, π(ū)) : (w̄0, π(u)) ∈ p−1(w0)}, which we
denote by L0(M). Thus s1 = s1(w, θ)|{w0}×{ui 6=0} is given by the formula

s1(θ) = K(1)(·, w0) +
t∑

j=2

θ̄1
jK

(j)(·, w0).

Since the vectors K(j)(·, w0), 1 ≤ j ≤ t are uniquely determined by the generators g1, . . . , gt, s1 is well
defined.

Theorem 3.4. Let M and M̃ be two Hilbert modules in B1(Ω) consisting of holomorphic functions
on a bounded domain Ω ⊂ Cm. Assume that the dimension of the zero set of these modules is at most
≤ m− 2. Suppose there exists a polynomial ideal I such that M and M̃ are the completions of I with
respect to different inner product. If the modules M and M̃ are equivalent, then the corresponding
bundles L0(M) and L0(M̃) they determine on the projective space p−1(w0)∗ for w0 ∈ Z, are equivalent
as Hermitian holomorphic line bundle.

Proof. Let L : M → M̃ be the unitary module map and K and K̃ be the reproducing kernels corre-
sponding to M and M̃ respectively. The existence of a holomorphic function φ on Ω \Z(M) such that
LK(·, w) = φ(w)K̃(·, w), L∗f = φf and K(z, w) = φ(z)K̃(z, w)φ(w) follows from [2, Lemma 1.3] and
[7, Theorem 3.7]. As we have pointed earlier, φ extends to a non-vanishing holomorphic function on
Ω.

Since M is in B1(Ω∗), it admits a decomposition as given in equation (3.1), with respect the
generators g̃1, . . . , g̃t of S

fM
w0

. However, we may assume that g̃i = gi for 1 ≤ i ≤ t, because SM
w0

= S
fM
w0

for all w0 ∈ Ω. Thus

K̃(·, w) =
t∑
i=1

gj(w)K̃(j)(·, w) for all w ∈ ∆(w0; r)
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For some r > 0. By applying the unitary L to equation (3.1), we get

φ(w)K̃(·, w) = LK(·, w) =
t∑
i=1

gj(w)LK(j)(·, w).

Since φ does not vanish on Ω, we may choose

K̃(j)(·, w) =
LK(j)(·, w)

φ(w)
, 1 ≤ j ≤ t, w ∈ ∆(w0; r).

From part (iii) of the decomposition theorem ([2, Theorem 1.5]), the vectors K̃(j)(·, w0), 1 ≤ j ≤ t

are uniquely determined by the generators g1, . . . , gt. Therefore K̃(j)(·, w0) = LK(j)(·,w0)

φ(w0)
. Now the

decomposition for K̃ yields a holomorphic section s̃1(θ) = K̃(1)(·, w0) +
∑t

j=2 θ
1
j K̃

(j)(·, w0) for the
holomorphic line bundle L0(M̃) on the projective space p−1(w0)∗. Therefore

Ls1(θ) = LK(1)(·, w0) +
t∑

j=2

θ̄1
jLK

(j)(·, w0)

= φ(w0){K̃(1)(·, w0) +
t∑

j=2

θ̄1
j K̃

(j)(·, w0)} = φ(w0)s̃1(θ).

From the unitarity of L, it follows that

‖ s1(θ) ‖2=‖ Ls1(θ) ‖2= |φ(w0)|2 ‖ s̃1(θ) ‖2(3.2)

and consequently the Hermitian holomorphic line bundles L0(M) and L0(M̃) on the projective space
p−1(w0)∗ are equivalent. �

The existence of the polynomials q1, ..., qt such that K(j)(·, w)|w=w0 = q∗j (D̄)K(·, w)|w=w0 , 1 ≤ j ≤ t,
is guaranteed by Lemma 2.1. The following Lemma shows that

K̃(j)(·, w)|w=w0 = q∗j (D̄)K̃(·, w)|w=w0 , 1 ≤ j ≤ t

which makes it possible to calculate the section for the line bundles L0(M) and L0(M̃) without any
explicit reference to the generators of the stalks at w0.

Lemma 3.5. Let I be a polynomial ideal with dim V (I) ≤ m − 2 and K be the reproducing kernel
of [I] which is assumed to be in B1(Ω∗). Let q1, ..., qt be the polynomials such that K(j)(·, w)|w=w0 =
q∗j (D̄)K(·, w)|w=w0. Let K̃ be a reproducing kernel of [I], completed with respect to another inner
product. Then K̃(j)(·, w)|w=w0 = q∗j (D̄)K̃(·, w)|w=w0.

Proof. For f ∈ M and 1 ≤ i ≤ m, we have 〈f, ∂̄iLK(·, w)〉 = ∂i〈f, LK(·, w)〉 = ∂i〈L∗f,K(·, w)〉 =
〈L∗f, ∂̄iK(·, w)〉 = 〈f, L∂̄iK(·, w)〉, that is, ∂̄iLK(·, w) = L∂̄iK(·, w). Thus

p(D̄)LK(·, w) = Lp(D̄)K(·, w) for any p ∈ C[z].

From equation (2.4), it follows that

LK(j)(·, w0) = L{q∗j (D̄)K(·, w)|w=w0} = {Lq∗j (D̄)K(·, w)}|w=w0

= {q∗j (D̄)LK(·, w)}|w=w0 = {q∗j (D̄)φ(w)K̃(·, w)}|w=w0

= [
∑
α

āα{q∗j (D̄)(w̄ − w̄0)αK̃(·, w)}]|w=w0

=
∑
α

āα
∂αq∗j
∂zα

(D̄)K̃(·, w)|w=w0 ,
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where φ(w) =
∑

α aα(w − w0)α, the power series expansion of φ around w0. Now for any p ∈ I we
have

〈p,
∂αq∗j
∂zα

(D̄)K̃(·, w)|w=w0〉 = 〈p,
∂αq∗j
∂zα

(D̄)K̃(·, w)〉|w=w0

=
∂αqj
∂zα

(D)p(w)|w=w0 .

Since Lemma 2.1 ensures that {[q1], . . . , [qt]} is a basis for Ṽw0(I)/Vw0(I), it follows that

〈p,
∂αq∗j
∂zα

(D̄)K̃(·, w)|w=w0〉 = 0 for all p ∈ I and α > 0.

Therefore, we have
∂αq∗j
∂zα (D̄)K̃(·, w)|w=w0 = 0 for α > 0. Hence LK(j)(·, w0) = ā0q

∗
j (D̄)K̃(·, w)|w=w0 =

φ(w0)q∗j (D̄)K̃(·, w)|w=w0and consequently K̃(j)(·, w)|w=w0 = q∗j (D̄)K̃(·, w)|w=w0 , 1 ≤ j ≤ t. �

Remark 3.6. Let M Be a Hilbert module in B1(Ω). Assume that M = [I]M for some polynomial
ideal I and the dimension of the zero set of M is m− 1. Let the polynomials p1, . . . , pt be a minimal
set of generators for M. Let q = g.c.d{p1, . . . , pt}. Then the Beurling form (cf. [3]) of I is qJ, where J

is generated by {p1/q, . . . , pt/q}. From [3, Corollary 3.1.12], dim V (J) ≤ m− 2 unless J = C[z]. The
reproducing kernels K of M is of the form K(z, w) = q(z)χ(z, w)q(w). Let M1 be the Hilbert module
determined by the non-negative definite kernel χ. The Hilbert module M is equivalent to M1. Now
M1 = [J] and Z(M1) = V (J). If V (J) = φ, then the modules M1 belongs to Cowen-Douglas class of
rank 1. Otherwise, dim V (J) ≤ m− 2 and Theorem 3.3 determines its equivalence class.

4. Examples

We illustrate, by means of some examples, the nature of the invariants we obtain from the line
bundle L0 that lives on the projective space. From Theorem 3.4, it follows that the curvature of
the line bundle L0 is an invariant for the submodule. An example was given in [8] showing that the
curvature is is not a complete invariant. However the following lemma is useful for obtaining complete
invariant in a large class of examples.

Lemma 4.1. Let H and H̃ are Hilbert modules in B1(Ω) for some bounded domain Ω in Cm. Suppose
that H and H̃ are such that they are in the Cowen-Douglas class B1(Ω \X) where dimX ≤ m − 2.
Let M and M̃ be any submodules of H and H̃ respectively, such that

(i) Vw(M) = Vw(M̃) for all w ∈ Ω and
(ii) M = ∩w∈ΩMe

w and M̃ = ∩w∈ΩM̃e
w, where as before Me

w := {f ∈ H : q(D)f |w = 0 for all q ∈
Vw(M)}.

If H and H̃ are equivalent, then M and M̃ are equivalent.

Proof. Suppose U : H→ H̃ is a unitary module map. Then U is is a multiplication operator induced
by some holomorphic function, say ψ, on Ω\X (cf. [7]). This function ψ extends non-vanishingly to all
of Ω by Hartog’s Theorem. Let w0 ∈ Ω and q ∈ Vw0(M) = Vw0(M̃). Also let ψ(w) =

∑
α aα(w−w0)α

be the power series expansion around w0. For f ∈M, we have

q(D)(Uf)|w=w0 = q(D)(ψf)|w=w0 = q(D){
∑
α

aα(w − w0)αf}|w=w0

=
∑
α

aαq(D){(w − w0)αf}]|w=w0

= {
∑
k≤α

(
α

k

)
(w − w0)α−k

∂kq

∂zk
(D)(f)}w=w0

= 0
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since ∂kq
∂zk
∈ Vw0(M) for any multi index k whenever q ∈ Vw0(M). Therefore it follows that Uf ∈ M̃.

A similar arguments shows that U∗M̃ ⊆M. The result follows from unitarity of U . �

4.1. The (α, β, θ) examples: Weighted Bergman Modules in the unit ball. Let B2 = {z = (z1, z2) ∈ C2 :
|z1|2 + |z2|2 < 1} be the unit ball in C2. Let L2

α,β,θ(B2) be the Hilbert space of all (equivalence classes
of) Borel measurable functions on B2 satisfying

‖ f ‖2α,β,θ=
∫

B2

|f(z)|2dµ(z1, z2) < +∞,

where the measure is

dµ(z1, z2) = (α+ β + θ + 2)|z2|2θ(1− |z1|2 − |z2|2)α(1− |z2|2)βdA(z1, z2)

for (z1, z2) ∈ B2, −1 < α, β, θ < +∞ and dA(z1, z2) = dA(z1)dA(z2). Here dA denote the normalized
area measure in the plane, that is dA(z) = 1

πdxdy for z = x + iy. The weighted Bergman space
A2
α,β,θ(B2) is the subspace of L2

α,β,θ(B2) consisting of the holomorphic functions on B2. The Hilbert
space A2

α,β,θ(B2) is non-trivial if we assume that the parameters α, β, θ satisfy the additional condition:

α+ β + θ + 2 > 0.

The reproducing kernel Kα,β,θ of A2
α,β,θ(B2) is given by

Kα,β,θ(z, w) =
1

α+ β + θ + 2
1

(1− z1w̄1)α+β+θ+3

×
{ +∞∑
k=0

(α+ β + θ + k + 2)(α+ θ + 2)k
(θ + 1)k

(
z2w̄2

1− z1w̄1

)k}
,

where z = (z1, z2), w = (w1, w2) ∈ B2 and (a)k = a(a+ 1) . . . (a+ k − 1) is the Pochhammer symbol.
This kernel differs from the kernel Pα,β,θ given in [13] only by a multiplicative constant. The reader
may consult [13] for a detailed discussion of these Hilbert modules.

Let IP be an ideal in C[z1, z2] such that V (IP ) = {P} ⊂ B2. We have

dim kerD(M−w)∗ =
{

1 for w ∈ B2 \ {P};
dim IP /mP IP (> 1 ) for w = P .

Hence [IP ]A2
α,β,θ(B2) (the completion of IP in A2

α,β,θ(B2)) is not equivalent to [IP ′ ]A2
α′,β′,θ′ (B

2) (the

completion of I′P in A2
α′,β′,θ′(B

2)) if P 6= P ′. Now let us determine when two modules in the set

{[IP ]A2
α,β,θ(B2) : −1 < α, β, θ < +∞ and α+ β + θ + 2 > 0}.

are equivalent. In the following proposition, without loss of generality, we have assumed P = 0.

Proposition 4.2. Suppose I is an ideal in C[z1, z2] with V (I) = {0}. Then the Hilbert modules
[I]A2

α,β,θ(B2) and [I]A2
α′,β′,θ′ (B

2) are unitarily equivalent if and only if α = α′, β = β′ and θ = θ′.

Proof. From the Hilbert Nullstellensatz, it follows that there exist an natural number N such that
mN

0 ⊂ I. Let Im,n be the polynomial ideal generated by zm1 and zn2 . Combining (2.1) with Lemma 4.1
we see, in particular, that the submodules [Im,n]A2

α,β,θ(B2) and [Im,n]A2
α′,β′,θ′ (B

2) are unitarily equivalent

for m,n ≥ N . Let Km,n be the reproducing kernel for [Im,n]A2
α,β,θ(B2). We write Kα,β,θ(z, w) =∑

i,j≥0 bijz
i
1z
j
2 where

bij =
α+ β + θ + j + 2
α+ β + θ + 2

· (α+ θ + 2)j
(θ + 1)j

· (α+ β + θ + j + 3)i
i!

.(4.1)
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Let Im,n := {(i, j) ∈ Z× Z : i, j ≥ 0, i ≥ m or j ≥ n}. We note that

Km,n(z, w) =
∑

(i,j)∈Im,n

bijz
i
1z
j
2w̄

i
1w̄

j
2.

One easily see that the set {zm1 , zn2 } forms a minimal set of generators for the sheaf corresponding to
[Im,n]A2

α,β,θ(B2). The reproducing kernel then can be decomposed as

Km,n(z, w) = w̄m1 K
m,n
1 (z, w) + w̄n2K

m,n
2 (z, w) for some r > 0 and w ∈ ∆(0; r).

Successive differentiation, using Leibnitz rule, gives

Km,n
1 (z, w)|w=0 =

1
m!
∂̄m1 Km,n(·, w)}|w=(0,0) = bm0z

m
1 and

Km,n
2 (z, w)|w=0 =

1
n!
∂̄n2Km,n(·, w)}|w=(0,0) = b0nz

n
2 .

Therefore

s1(θ1) = bm0z
m
1 + θ1b0nz

n
2 ,

where θ1 denotes co-ordinate for the corresponding open chart in P1. Thus

‖ s1(θ1) ‖2 = b2m0 ‖ zm1 ‖2 +b20n ‖ zn2 ‖2 |θ1|2 = bm0 + b0n|θ1|2.
Let am,n = b0n/bm0. Let Km,n denote the curvature corresponding to the bundle L0,m,n which is
determined on the projective space P1 by the module [Im,n]A2

α,β,θ(B2). Thus we have

Km,n(θ1) = ∂θ1∂θ̄1 ln‖ s1(θ1) ‖2 = ∂θ1∂θ̄1 ln(1 + am,n|θ1|2)

= ∂θ1
am,nθ1

1 + am,n|θ1|2
=

am,n
(1 + am,n|θ1|2)2

.

Let K′m,n denote the curvature corresponding to the bundle L′0,m,n which is determined on the pro-
jective space P1 by the module [Im,n]A2

α′,β′,θ′ (B
2). As above we have

K′m,n(θ1) =
a′m,n

(1 + a′m,n|θ1|2)2
.

Since the submodules [Im,n]A2
α,β,θ(B2) and [Im,n]A2

α′,β′,θ′ (B
2) are unitarily equivalent, from Theorem 3.4,

it follows that Km,n(θ1) = K′m,n(θ1) for θ1 in an open chart P1 and m,n ≥ N . Thus

am,n
(1 + am,n|θ1|2)2

=
a′m,n

(1 + a′m,n|θ1|2)2
.

This shows that (am,n − a′m,n)(1 + am,na
′
m,n|θ1|2) = 0. So am,n = a′m,n and hence

b0n
bm0

=
b′0n
b′m0

(4.2)

for all m,n ≥ N . This also follows from the equation (3.2). It is enough to consider the cases
(m,n) = (N,N), (N,N+1), (N,N+2) and (N+1, N) to prove the Proposition. From equation (4.2),
we have

b(N+1)0

bN0
=
b′(N+1)0

b′N0

,
b0(N+1)

b0N
=
b′0(N+1)

b′0N
and

b0(N+2)

b0(N+1)
=
b′0(N+2)

b′0(N+1)

.(4.3)

Let A = α+ β + θ,B = α+ θ and C = θ. From equation (4.1), we have

b(N+1)0

bN0
=
A+N + 3
N + 1

,
b0(N+1)

b0N
=

A+N + 3
A+N + 2

· B +N + 2
C +N + 1
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and
b0(N+2)

b0(N+1)
=

A+N + 4
A+N + 3

· B +N + 3
C +N + 2

.

From (4.3), it follows that A = A′ and

BC ′ +B(N + 1) + C ′(N + 2) = B′C +B′(N + 1) + C(N + 2),(4.4)

BC ′ +B(N + 2) + C ′(N + 3) = B′C +B′(N + 2) + C(N + 3).(4.5)

Subtracting (4.5) from (4.4), we get B − C = B′ − C ′ and thus θ = θ′. Therefore b0(N+1)

b0N
=

b′
0(N+1)

b′0N
implying B = B′ and hence α = α′. Lastly A = A′ and in consequence β = β′. �

Acknowledgement. We thank R. G. Douglas and M. Putinar for several very useful suggestions and
many hours of fruitful discussion relating to this work.

References

[1] O. P. Agrawal and N. Salinas, Sharp kernels and canonical subspaces (revised), Amer. J. Math. 110 (1988), no. 1,
23 – 47.

[2] S. Biswas, G. Misra and M. Putinar. Unitary invariants for Hilbert modules of finite rank, preprint, arXiv:0909.1902.
[3] X. Chen and K. Guo, Analytic Hilbert modules, Chapman and Hall/CRC Research Notes in Mathematics, 433.
[4] M. J. Cowen and R. G. Douglas, Complex geometry and Operator theory, Acta Math. 141 (1978), 187 – 261.
[5] , On operators possessing an open set of eigenvalues, Memorial Conf. for Féjer-Riesz, Colloq. Math. Soc. J.
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