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Chapter 0

Introduction

0.1 Motivation: Discrete groups in complex analysis

and mathematical physics

0.1.1 Universal covering of Kähler manifolds

A complex Kähler manifold M (not necessarily compact) has a universal covering man-

ifold D = M̃ such that

M = D/Γ

where Γ = π1(M) is a discrete group of holomorphic deck transformations acting on

D. Thus complex analysis on M is related to ’automorphic’ analysis on D. We call Γ

co-compact if the quotient space M = D/Γ is compact. More generally, we call Γ of

finite covolume if D/Γ has finite volume under the volume form induced by the Kähler

metric. For ’hyperbolic’ Kähler manifolds, D can often be realized as a bounded domain

in Cd, and in important cases as a bounded symmetric domain

D = K\G,

where G is a semi-simple real Lie group and K is a maximal compact subgroup. In this

case we have a discrete subgroup

Γ⊂G

which is called a lattice if it is co-compact. In the 1-dimensional case a compact

Riemann surface M is hyperbolic iff it has genus > 1. By the uniformization theorem,

D = M̃ is the unit disk (or upper half-plane). Therefore

Γ⊂G = SL2(R)

becomes a discrete group of Möbius transformations. One (i.e., Poincaré) calls Γ of

Klein type if it is co-compact and of Fuchs type if it has finite co-volume. Thus the
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all-important modular group

SL2(Z) = {
(
a b

c d

)
∈ Z2×2 : ad− bc = 1}

is Fuchsian, but not Kleinian. In higher dimensions, there exist differential geomet-

ric criteria for M to ensure that D = M̃ is the unit ball in Cd, or more generally a

bounded symmetric domain. These criteria involve important geometric invariants of

the underlying Kähler manifold.

0.1.2 Teichmüller space

For a compact Riemann surface X the Teichmüller space

T (X) = Conf(X)/Diff0(X)

consists of all conformal structures on X modulo equivalence by diffeomorphisms which

are isotopic to the identity. Via Beltrami differentials, T (X) can be realized as a convex

bounded domain. However, the ’true’ moduli space

M(X) = Conf(X)/Diff(X)

consists of all conformal structures modulo equivalence by the full diffeomorphism group.

Thus

M(X) = T (X)/Γ

where

Γ = Diff(X)/Diff0(X)

is the discrete group of components of Diff(X), also called the mapping class group.

The Teichmüller space becomes the universal covering

T (X) = M̃(X).

As an important step, this moduli space has to be compactified to a projective algebraic

variety (or stack) by adding points at infinity, soM(X) becomes a Zariski-open (dense)

subset of the compactification. Actually, the important case is where X is not compact,

but arises from a compact Riemann surface by removing finitely many punctures. Then

the compactification Mg,n is the Mumford-Deligne moduli space.

0.1.3 String theory duality groups

In the preceeding two examples, Γ is a discrete group of holomorphic transformations.

These give rise to automorphic forms, which are better regarded as sections of a holo-

morphic line bundle (therefore ’forms’ instead of ’functions’). On the other hand, in
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number theory (Langlands program) and mathematical physics one encounters discrete

subgroups of ’real’ Lie groups which give rise to real automorphic (or better, invariant)

functions. For example, for a metric g on a pseudo-Riemannian manifold of Minkowski

signature, the Einstein field equation

Ric(g) = 0

arises from a variational principle under the Einstein-Hilbert action

L(g) =

∫
X

dV olg Scal(g).

Extending this concept to super-gravity in 10 dimensions, the corresponding solutions,

when compactified on tori Tn of dimension 0 6 n 6 10 have scalar moduli which

transform under the super-gravity duality groups

An(R), Dn(R), En(R),

the real forms of algebraic groups of ADE-type. Now super-gravity is regarded as the

low-energy limit of string theory. Passing to string theory, which is a quantum field

theory, one expects again that the corresponding solutions have scalar moduli which

transform under the super-string duality groups

An(Z), Dn(Z), En(Z),

which form a lattice within the real duality groups. More precisely, for string-theory

backgrounds of the form

R1,9−d ×Td

we obtain the following duality groups

SUR
2 \SLR

2 /SLZ
2 , d = 0

SUR
2 \GLR

2 /GLZ
2 , d = 1

(SUR
2 × SUR

3 )\(SLR
2 × SLR

3 )/(SLZ
2 × SLZ

3 ), d = 0

SUR
5 \SLR

5 /SLZ
5 , d = 3

(SUR
5 ×Z2 SUR

5 )\SUR
5,5/SUZ

5,5, d = 4

(UH
4 /Z2)\ER

6 /E
Z
6 , d = 5

(SUC
8 /Z2)\ER

7 /E
Z
7 , d = 6

(SUR
16/Z2)\ER

8 /E
Z
8 , d = 7

In general these can be written as the series Ed+1 with Dynkin diagram
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0.1.4 Free group von Neumann algebras

For any free group Γ in `-generators (more generally, every group with only infinite

conjugacy classes) the group von Neumann algebra W ∗(Γ) = Γ′′ (bicommutant) is a von

Neumann factor of type II1. We will show that this arises in the Berezin quantization

on weighted Bergman spaces H2
ν (D) over the unit disk (or upper half-plane), where ν

becomes the number of generators.

0.2 Basic concepts

0.2.1 Holomorphic automorphism groups

For a complex manifold D (or even more general, a complex analytic space) we let

Aut(D) denote the ’automorphism’ group of all biholomorphic transformations of D,

acting from the right: (z, g) 7→ z · g. It is known that for a bijective holomorphic map

g : D → D the inverse map g−1 : D → D is also holomorphic.

If D is a locally compact and locally connected topological space, then Arens has

shown that the homeomorphism group Top(X), endowed with the so-called compact-

open topology, is a topological group and the evaluation map D × G → D is jointly

continuous. In particular, for a domain D⊂Cd we consider the identity component

G = Aut(D)0

of the holomorphic automorphism group Aut(D)⊂Top(D). By Arens’ result this is a

connected topological group. In general, it is not a Lie group. For example, Aut(C2)

has infinite dimension, since for every entire function f : C→ C the mapping

Φf (z, w) := (z, w + f(z))

is an automorphism of C2, with inverse Φ−1
f = Φ−f . On the other hand, if D⊂Cd is a

bounded domain, then G is a (finite-dimensional) Lie group by a deep theorem of H.

Cartan. The first step in the proof is the following:

Lemma 1. Let A,B⊂D be compact subsets of D. Then the set

GA,B := {g ∈ G : A.g ∩B 6= ∅}

is compact.

Proof. By separability, it is enough to show that GA,B is sequentially compact. Consider

a sequence gn ∈ GA,B. Then there exist sequences an ∈ A, bn ∈ B such that an ·gn = bn.

Since g±n are bounded holomorphic maps on D we may choose by Montel’s theorem

convergent subsequences satisfying g±n → g± : D → D. Since A,B are compact, taking
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further subsequences we may assume in addition that an → a ∈ A, bn → b ∈ B. Then

a · g+ = b, b · g− = a since the evaluation map D×G→ D is jointly continuous. Choose

open sets a ∈ U ⊂W ⊂⊂D, b ∈ V ⊂⊂D satisfying U · g+⊂V and V · g−⊂W.Then

joint continuity implies g+ ◦ g−|V = id, g− ◦ g+|U = id. A similar argument shows that

D · g±⊂D.

Corollary 2. For every a ∈ D the isotropy subgroup

Ga := Ga,a = {g ∈ G : a · g = a}

is compact.

Let D be a complex manifold, for example a bounded domain D⊂Cd. A group

Γ⊂Aut(D) of holomorphic transformations of D is called properly discontinuous if

for all compact subsets A,B⊂D the set

ΓA,B := {γ ∈ Γ : Aγ ∩B 6= ∅}

is finite. Note that in general this is only a subset of Γ. For A = B we obtain a (finite)

subgroup

ΓA := ΓA,A = {γ ∈ Γ : Aγ ∩ A 6= ∅}.

In particular, for each point a ∈ D the isotropy subgroup

Γa := Γa,a = {γ ∈ Γ : aγ = a}

is finite. The same concepts apply to more general ’analytic spaces’ which may have

singularities.

Proposition 3. For a bounded domain D, every discrete subgroup Γ⊂Aut(D) acts

properly discontinuous on D

Proof. For all compact subsets A,B⊂D the set

ΓA,B = Γ ∩GA,B

is compact and discrete, hence finite.

0.2.2 Holomorphic automorphic forms

Consider first a connected complex manifold D and a properly discontinuous group

Γ⊂Aut(D).An automorphic cocycle J : Γ×D → C consists of holomorphic functions

Jγ : D → C which satisfy the cocycle property

Jγγ′(z) = Jγ(γ
′z) Jγ′(z).
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The standard example, for a domain D, is given by the Jacobian

Jg(z) := det g′(z)

where g′(z) is the holomorphic derivative of g ∈ Aut(D) at z ∈ D. Relative to the

cocycle J , a holomorphic function f : D → C is called an m-automorphic form if

Jγ(z)m f(γz) = f(z)

for all γ ∈ Γ and all z ∈ D. This means that f is a holomorphic section of the m-th

power of a line bundle determined by J. For m = 0 one would say invariant function, but

typically automorphic forms exist for large m. Let OmΓ (D,C) denote the vector space of

all m-automorphic forms. Then OmΓ (D,C) · OnΓ(D,C)⊂Om+n
Γ (D,C) and hence

OΓ(D,C) :=
∑
m>0

OmΓ (D,C)⊂O(D,C)

is a graded subalgebra of holomorphic functions.

0.2.3 Holomorphic Eisenstein series on bounded domains

Let D⊂Cd be a bounded domain and Γ⊂Aut(D) a discrete, hence properly discon-

tinuous, subgroup. Let f ∈ H∞(D) be a holomorphic function. For m > 2 define the

Poincaré-Eisenstein series

fmΓ (z) :=
∑
γ∈Γ

Jγ(z)m f(zγ).

Note that Γ is acting from the right.

Proposition 4. For m > 2 the series

1mΓ (z) :=
∑
γ∈Γ

Jγ(z)m

is compactly | · |-convergent on D.

Proof. Let A⊂⊂B⊂⊂D be compact subsets. Then for each z ∈ A there exists an

open polydisk (product of disks) Pz ⊂B. If Pzσ ∩ Pz · τ 6= ∅ then B · (στ−1) ∩ B⊃Pz ·
(στ−1) ∩ Pz 6= ∅ and hence στ−1 ∈ ΓB. Therefore the collection (Pzγ)γ∈Γ covers D at

most |ΓB| times. This implies for the volume | · |∑
γ∈Γ

|Pzγ| 6 |ΓB| |D|.

The mean value theorem and integral transformation formula imply

|Jγ(z)|2 6 1

|Pz|

∫
Pz

dw|Jγ(w)|2 =
|Pzγ|
|Pz|

11



since |Jγ(w)|2 is the real Jacobian determinant. It follows that∑
γ∈Γ

|Jγ(z)|2 6
∑
γ∈Γ

|Pzγ|
|Pz|

6
1

|Pz|
|ΓB| |D|.

Since A is covered by finitely many polydisks Pz, this proves uniform convergence on A

for m = 2. This in turn implies supz∈A |Jγ(z)| < 1 for almost all γ ∈ Γ and therefore

|Jγ(z)|m 6 |Jγ(z)|2 of m > 2.

Corollary 5. If f ∈ H∞(D) is a bounded holomorphic function, then for m > 2 the

series

fmΓ :=
∑
γ∈Γ

Jmγ γ · f, fΓ
m(z) :=

∑
γ∈Γ

Jγ(z)m f(zγ)

is compactly | · |-convergent on D.

Proof. ∑
γ∈Γ

|Jγ(z)|m |f(zγ)| 6 sup
D
|f |

∑
γ∈Γ

|Jγ(z)|m

In case D⊂Z is a bounded domain, all polynomials f ∈ P(Z) restricted to D are

bounded.

0.2.4 Poincaré series on Lie groups

Proposition 6. Let G be a unimodular group and f ∈ L1(G) be integrable (could be

vector-valued). Then the Poincaré series

fΓ :=
∑
γ∈Γ

γ · f, fΓ(g) :=
∑
γ∈Γ

f(gγ)

‖ · ‖-converges compactly on G and is bounded.

Proof. Since Γ is discrete there exists a symmetric compact e-neighborhood P ⊂G such

that Γ ∩ P 2 = {e}. By a deep result of Harish-Chandra [1, Theorem 19, p. 154] there

exists a ’Dirac’ like function δ ∈ C∞(G) with compact support supp(δ)⊂P (which is

K-invariant δ(k−1gk) = δ(k) ∀ k ∈ K) and satisfies the convolution equation

f ∗ δ = f.

Putting h′ = hγ, it follows that

f(gγ) = (f ∗ δ)(gγ) =

∫
G

dh′ f(gγh′−1) δ(h′)

12



=

∫
G

dh f(gh−1) δ(hγ) =

∫
Pγ−1

dh f(gh−1) δ(hγ)

Therefore

‖f(gγ)‖ 6
∫

Pγ−1

dh ‖f(gh−1)‖ |δ(hγ)| 6 sup
G
|δ|

∫
Pγ−1

dh ‖f(gh−1)‖

If γ1, γ2 ∈ Γ are distinct, then Pγ−1
1 ∩ Pγ−1

2 = ∅. Putting h′′ = gh−1, it follows that

‖f‖Γ(g) :=
∑
γ∈Γ

‖f(gγ)‖ 6 sup
G
|δ|
∑
γ∈Γ

∫
Pγ−1

dh ‖f(gh−1)‖

6 sup
G
|δ|
∫
G

dh ‖f(gh−1)‖ = sup
G
|δ|
∫
G

dh′′ ‖f(h′′)‖ = sup
G
|δ| ‖f‖1

using that G is unimodular. This shows that the series converges normally on G. Since

f is integrable, for any ε > 0 there exists a compact set Q⊂G such that∫
G∼Q

dh ‖f(h)‖ 6 ε.

For any compact subset C ⊂G the set

A := {γ ∈ Γ : CγP ∩Q 6= ∅}

is finite. For γ ∈ Γ ∼ A the sets gγP are pairwise disjoint and contained in G ∼ Q.

Therefore, for any g ∈ C∑
γ∈Γ∼A

‖f(gγ)‖ 6 sup
G
|δ|

∑
γ∈Γ∼A

∫
gγP

dh ‖f(h)‖ 6 sup
G
|δ|

∫
G∼Q

dh ‖f(h)‖ 6 ε sup
G
|δ|.

Hence the series converges uniformly on C

In general, it is difficult to decide whether these Poincaré series do not vanish iden-

tically. This can be studied, e.g., by Fourier expansions to be considered later.
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Chapter 1

Quotients of Complex Analytic

Spaces

1.1 Overview

The quotient space D/Γ of a complex manifold D (e.g., a domain D⊂Z = Cd) by

a properly discontinuous group Γ is in general not a complex manifold, because of

singularities arising at fixed points a ∈ D where the (finite) isotropy group Γa is not

trivial. Nevertheless, it will be shown that D/Γ is always a so-called analytic space.

More precisely,

• The quotient Z/Γ by a finite linear group Γ⊂GL(Z) = GLn(C) (not necessarily

a reflection group) is a complex analytic space.

• As a consequence, the quotient D/Γ of any complex analytic space D by a prop-

erly discontinuous group Γ⊂Aut(D) (not necessarily finite or linear) is again

a complex analytic space.

• If D is a bounded domain and Γ⊂Aut(D) is a co-compact discrete subgroup,

then D/Γ is a projective algebraic variety. This deep result of H. Cartan was a

primary motivation for Kodaira’s embedding theorem.

• If D = K\G is a bounded symmetric domain and Γ⊂G is an ’arithmetic’

discrete subgroup (of finite co-volume) then D/Γ is a Zariski-dense open subset of

a projective algebraic variety.

In this chapter we prove the first three assertions. The fourth assertion (Satake com-

pactification) lies deeper and will be proved later.
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1.2 Commutative algebra

1.2.1 Integral closure and Krull topology

We consider unital commutative rings A. For an integral domain A let

A := {a
b

: a, b ∈ A, b 6= 0}

denote its field of fractions. For a commutative ring extension A⊂B let

A
B

:= {b ∈ B : A[b] = A〈fin〉}

denote the integral closure of A in B. This shorthand notation means that the algebra

A[b] generated by A and b ∈ A (in short, the A-algebra generated by b) is a finitely

generated A-module. One can show that

A⊂AB ⊂B

is a subring of B. We define the notion of integrally closed and integrally dense by

looking at the extreme cases

A
int
⊂

closed
B ⇔ A = A

B
,

A
int
⊂

dense
B ⇔ A

B
= B.

An integral domain A is called normal if

A = A
A int
⊂

closed
AA

is integrally closed in its field of fractions. Consider a group Γ⊂Aut(A) of ring auto-

morphisms of A. Then

AΓ := {a ∈ A : γ · a = a ∀ γ ∈ Γ}

is a subring of A.

Lemma 7. Let A be a normal ring. Then the subring

AΓ := {a ∈ A : γ · a = a ∀ γ ∈ Γ}

is also normal.

Proof. Since A is an integral domain, its subring AΓ is also an integral domain. Now let

f = p
q
∈ AΓ

AΓ

, where p, q ∈ AΓ and q 6= 0. Then f ∈ AA = A and for all γ ∈ Γ we have

γ · f =
γ · p
γ · q

=
p

q
= f

Therefore f ∈ AΓ and hence AΓ = AΓ
AΓ
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Lemma 8. Let A be a noetherian ring, and M = A〈fin〉 a finitely generated A-module.

Then every A-submodule N ⊂M is also finitely generated, N = A〈fin〉.

The following integrality criterion will often be used.

Proposition 9. Let A⊂B be a commutative ring extension. Then B = A〈fin〉 is a

finitely generated A-module if and only if B = A[fin] is a finitely generated A-algebra

and B = A
B
. In short,

B = A〈fin〉 ⇔ B = A[fin] = A
B

Now we study ring completions under the so-called Krull topology. For any ring

A and ideal mCA the m-closure of an ideal aCA is given by

a =
⋂
n>0

(a + mnA)

More generally, a submodule N ⊂M of an A-module M has the m-closure

N =
⋂
n>0

(N + mnM)

The following closure criterion is proved in [Zariski-Samuel, p. 262, Theorem 9].

Proposition 10. Consider a noetherian ring A and an ideal mCA contained in every

maximal ideal. An equivalent condition is that

1 + m⊂ Å

is invertible. Then every ideal aCA is m-closed

a =
⋂
n>0

(a + mnA)

More generally, every submodule N ⊂M = A〈fin〉 of a finitely generated A-module M

is m-closed:

N =
⋂
n>0

(N + mnM)

An important special case is a (noetherian) local ring A with a unique maximal

ideal

m = A ∼ Å.

Here Å denotes the group of units in A.
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1.2.2 Power series and germs of analytic functions

For a field K and indeterminates x = (z1, . . . , zn) we denote by

K[z] = K[z1, . . . , zn]

K|z| = K|z1, . . . , zn|

C{z} = C{z1, . . . , zn}

the ring of polynomials/formal power series/convergent power series

f(z) =
∑
ν∈Nn

fν x
ν

with coefficients fν ∈ K. These rings are integral domains (no zero divisors). Putting

x = (z1, zn) = (z′, zn),

with z′ = (z1, . . . , zn−1), we have

K[z] = K[z′][zn]

K|z| = K|z′||zn|

C{z} = C{z′}{zn}

The Weierstrass division theorem states

Theorem 11. Let f, g ∈ K|z| such that f(0, zn) 6= 0, i.e., o(f(0′, zn)) = k < ∞. Then

there exist unique q ∈ K|z| and r ∈ K|z′|[zn] such that the order

o(g(0′, zn)− r(0′, zn)) > k

and

f = qg + r.

Similarly for convergent power series.

Thus the Taylor coefficients in the zn-variable satisfy gi(0
′) = ri(0

′) for 0 6 i < k.

Corollary 12. We have

f = q zkn + r

with q(0) 6= 0, i.e., q is a unit.

Proposition 13. The rings K|z| and C{z} are noetherian.

Proof. Use induction on n and, in the convergent setting, the Weierstrass theorem.

Proposition 14. The rings K[z], K|z|, C{z} are normal.

17



For any a ∈ Cn let

Oa = OCn

a ≈ C{z − a}

denote the local ring of germs of analytic functions at a.Given an open subset U ⊂Cn

a closed subset X ⊂U is called analytic if for every a ∈ X there exist a ∈ Ua⊂open U

and holomorphic functions hi ∈ O(Ua), i ∈ I such that

X ∩ Ua = {z ∈ Ua : hi(z) = 0 ∀ i ∈ I}.

By the noetherian property, one may always choose I to be a finite set. For an analytic

set X we denote by OXa the ring of germs of analytic functions on X. We write

X ⊂
ana
U ⊂

open
Cn

There are two basic ways to construct local rings of analytic functions. Suppose first

that π : D → D/Γ is a quotient map. Endow D/Γ with the quotient topology, and for

a ∈ D, let CD/Γπa denote the ring of germs of continuous functions. Then we define

OD/Γπa := {f ∈ CD/Γπa : f ◦ π ∈ ODa } =: π∗(ODa ).

On the other hand, for an analytic subset X ⊂U, with inclusion map ι : X → U, and

b ∈ X we define

OXb := {f |X = f ◦ ι : f ∈ OUb } =: ι∗OUb .

The maximal ideal m in the local power series ring K|z|/C{z} are the power series

f without constant term, i.e. f(0) = 0. Given power series fi ∈ C{z} without constant

term we put

f∗ = (f1, . . . , fm).

Since f∗0 = 0 we have the substitution homomorphism

C{z} ◦f∗←−− C{w}, g(w) 7→ g(f∗z)

for z near 0, inducing a commuting diagram

C{z} C{w}◦f∗oo

��
C{f∗}

OO

C{w}/◦f∗≈
oo

where the range

C{f∗} = C{f1, . . . , fm} := C{w} ◦ f∗

is a subring of C{z} and the kernel

◦f∗ := ker(◦f∗) = {g ∈ C{w} : g ◦ f∗ = 0}CC{w}

18



is called the ideal of analytic relations between f1, . . . , fm.

For a polynomial ideal I CK[z] we denote by

I � := {z ∈ Z : f(z) = 0 ∀ f ∈ I}

the algebraic variety in Z = Kd. If f∗ = (f1, . . . , fm) we also write

f �

∗ = K[z]〈f∗〉 � = {z ∈ T : fi(z) = 0 ∀ i}

by considering the ideal K[z]〈f∗〉 generated by the fi. For convergent power series fi ∈
C{z} we have instead the analytic variety (germ)

f �

∗ := {z : f1(z) = . . . = fm(z) = 0}

near 0. Then 0 ∈ f �

∗ and f∗ defines an analytic mapping into ◦f∗ �.
The following Zariski criterion is proved in [1, Corollary, p. 19].

Proposition 15. 0 is isolated in f �

∗ if and only if the ring C{z} is integral over its

subring C{f∗}, i.e.,

C{f∗}
int
⊂

dense
C{z} = C{f∗}

C{z}

1.3 Quotient by a finite linear group

Let Γ⊂GLd(C) be a finite group of linear transformations. More generally, let K be a

field, not necessarily of characteristic 0 or algebraically closed. We often write Z = Kd

(resp., Z = Cd) since the coordinates play no distinguished role. Thus Γ⊂GL(Z).

Via substitution

(γ · p)(z) := p(zγ)

the group Γ acts by ring automorphisms on the polynomials K[z]. Consider the invariant

subalgebra

K[z]Γ := {p ∈ K[z] : γ · p = p ∀ γ ∈ Γ}.

Since the Γ-action preserves degrees, the homogeneous terms of a Γ-invariant polynomial

are also Γ-invariant. It follows that K[z]Γ is a graded K-algebra.

Lemma 16. The ring extension K[z]Γ⊂K[z] is integral, i.e.

K[z]Γ
int
⊂

dense
K[z] = K[z]Γ

K[z]

Proof. For p ∈ K[z] the monic polynomial

p̂(t) =
∏
γ∈Γ

(t− γ · p) = (t− p)
∏

16=γ∈Γ

(t− γ · p) ∈ K[z]Γ[t]

satisfies p̂(p) = 0. Therefore p ∈ K[z]Γ
K[z]

.
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Lemma 17.

K[z] = K[z]Γ〈fin〉

is a finitely generated K[z]Γ-module.

Proof. Since

K[z] = K[fin] = K[z]Γ[fin] = K[z]Γ
K[z]

,

the assertion follows from the ’integrality criterion’.

The ’polynomial’ finite generation theorem is

Theorem 18. There exist finitely many homogeneous polynomials p∗ = (p1, . . . , pm)

such that

K[z]Γ = K[p1, . . . , pm] = K[p∗]

is a finitely generated K-algebra. Thus the substitution homomorphism

K[z]Γ
◦p∗←−− K[w], f(w) 7→ f ◦ p∗(z)

is surjective and induces a commuting diagram

◦p∗
0

yy ��
K[z]Γ K[w]

◦p∗oo

��
K[w]/◦p∗

≈

ee

where

◦p∗ = {f ∈ K[w] : f ◦ p∗ = 0}CK[w]

denotes the kernel of the substitution homomorphism.

Proof. Applying (??) to the coordinate functions zi we obtain

ẑi(t) =
∑
n>0

tn zi,n ∈ K[z]Γ[t]

where zi,n ∈ K[z]Γ. Define the unital K-algebra

A := K[zi,n]⊂K[z]Γ.

For each i we have zi ∈ A
K[z]

since ẑi(t) ∈ A[t] by definition of A. Since the integral

closure A
K[z]

is a subring and even a K-subalgebra, it follows that

K[z] = A
K[z]

. (1.3.1)
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Therefore

K[z] = K[fin] = A[fin] = A
K[z]

and the ’integrality criterion’ implies that

K[z] = A〈fin〉 (1.3.2)

is a finitely generated A-module. Now A is a homomorphic image of a polynomial ring,

hence noetherian. By (2.1.2) it follows that K[z] is a noetherian A-module. Hence the

A-submodule K[z]Γ⊂K[z] is also noetherian. Now the Lemma implies

K[z]Γ = A〈fin〉 = K[fin]〈fin〉 = K[fin]

This yields finitely many algebra-generators p1, . . . , pm, which may be assumed homoge-

neous, since K[z]Γ is a graded algebra.

Corollary 19. The quotient ring K[w]/◦p∗ is normal.

Proof. This follows from K[w]/◦p∗ ≈ K[z]Γ.

For 1 6 1 6 m define

dj = deg pj > 0.

For any multi-index µ = (µ1, . . . , µm) of length m put

d · µ :=
∑
j

djµj.

A polynomial of the form

φ(w) =
∑
d·µ=k

φµw
µ

for some integer k is called k-isobaric. Let

(j) := (0, . . . , 0, 1j, 0, . . . , 0).

Lemma 20. Let φ ∈ K[w] be k-isobaric. If there exists 1 6 j 6 m with coefficient

φ(j) 6= 0, then

φ− φ(j)wj ∈ K[w1, . . . , ŵj, . . . , wm]

Proof. If φ(j) 6= 0, then dj = k. Now

φ− φ′(0) =
∑
|µ|>1

φµw
µ.

Let |µ| > 1 satisfy µj > 0. If µj > 1 then d · µ > djµj > k. Therefore φµ = 0. If µj = 1

there is another index i 6= j such that µi > 0. Then d ·µ > dj +diµi > dj = k. Therefore

φµ = 0
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We say that a set of generators p∗ = (p1, . . . , pm) of K[z]Γ is reduced if every isobaric

polynomial φ ∈ K[w] satisfying φ ◦ p∗ = 0 has a vanishing linear term φ′(0) = 0.

Lemma 21. Every homogeneous set p1, . . . , pm of generators of K[z]Γ contains a reduced

set of generators.

Proof. If p1, . . . , pm is not reduced, there exists an isobaric polynomial φ ∈ K[w], satis-

fying φ ◦ p∗ = 0, with non-vanishing linear term φ′(0) 6= 0. Hence φ(j) 6= 0 for some j.

By the Lemma we have

0 = φ(p∗) = (φ− φ(j)wj)(p1, . . . , p̂j, . . . , pm) + φ(j)pj.

Since φ(j) 6= 0 it follows that pj ∈ K[p1, . . . p̂j, . . . , pm]. Therefore p1, . . . p̂j, . . . , pm is a

smaller set of generators. Repeating this argument, we obtain a reduced set of generators.

From now on we assume that the generators p∗ are homogeneous and reduced.

Lemma 22. Let A⊂Z be a finite set of Γ-inequivalent elements. For each a ∈ A let

φa ∈ K[z]Γa satisfy oa(φa) > r. Then there exists ψ ∈ K[z]Γ such that oa(ψ − φa) > r

for all a ∈ A.

Proof. For each b ∈ A, the finite set AΓ ∼ b is Γb-invariant. There exists a polynomial

pb such that

ob(pb − 1) > r, oAΓ∼b(pb) > r.

The polynomial

qb :=
∏
γ∈Γb

γ · pb ∈ K[z]Γb

has the same vanishing properties, since

p1 · · · pn − 1 = (p1 − 1)p2 · · · pn + (p2 − 1)p3 · · · pn + . . .+ pn − 1

Define

ψb :=
∑
Γb\Γ

γ · (φbqb) = φbqb +
∑
bγ 6=b

γ · (φbqb) ∈ K[z]Γ.

Then∑
b

ψb − φa = ψa − φa +
∑
b6=a

ψb = φa(qa − 1) +
∑
aγ 6=a

γ · (φaqa) +
∑
b 6=a

∑
Γb\Γ

γ · (φbqb).

For the first term we have

oa(φa(qa − 1)) > oa(qa − 1) > r.

For the second term, if aγ 6= a then aγ ∈ AΓ ∼ a and therefore

oa(γ · (φaqa)) = oaγ(φaqa) > oaγ(qa) > min oAΓ∼a(qa) > r.
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For the third term, if b 6= a we have aγ ∈ AΓ ∼ b since a, b are Γ-inequivalent. Therefore

oa(γ · (φbqb)) = oaγ(φbqb) > oaγ(qb) > min oAΓ∼b(qb) > r.

In summary, oa(
∑
b∈A

ψb − φa) > r.

Lemma 23. For 0 6= a ∈ Z there exists q ∈ K[x]Γa such that

o0(q) > 0, oa(q − 1) > 0.

Proof. Take any polynomial p ∈ K[x] and let

q =
∏
γ∈Γa

γ · p = p
∏

e 6=γ∈Γa

γ · p ∈ K[x]Γa

Then o0(q) > o0(p) > 0. With Γa = {γ1, . . . , γN} we have q =
N∏
i=1

(γi · p) and hence

q − 1 =
N∏
i=1

(γi · p− 1)(γi+1 · p) · · · (γN · p).

For each i we have

oa

(
(γi · p− 1)(γi+1 · p) · · · (γN · p)

)
> oa(γi · p− 1) = oa(γi · (p− 1)) = oaγi(p− 1) > 0

since aγi = a. This implies oa(q − 1) > 0.

For every a 6= 0 there exists p ∈ K[z]Γ such that o0(p) > 0, i.e., p ∈ I, and

oa(p− 1) > 0, i.e., p(a) = 1. Hence

V(p1, . . . , p`) = V(I) = {0}

showing that p1, . . . , p` have no common zero 6= 0. By Zariski’s theorem, the ring exten-

sion K[p1, . . . , p`]⊂K[z] is integral. Therefore, the ring extension K[z]Γ⊂K[z] is also

integral, proving the first assertion. Similarly, the ring extension K[p1, . . . , p`]⊂K[z]Γ

is integral and K[p1, . . . , p`] is noetherian. Therefore

K[z]Γ = K[p1, . . . , p`]〈p`+1, . . . , pm〉 = K[p1, . . . , pm]

is a finitely generated K-algebra.

Next we obtain the ’power series’ finite generation theorem.

Theorem 24. For formal/convergent power series we have

K|z|Γ = K|p∗| / C{z}Γ = C{p∗}.
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Thus for every f(z) ∈ K|z|Γ / C{z}Γ there exists f̂ ∈ K|w| / C{w} such that

f(z) = f̂(p∗z).

Equivalently, the substitution homomorphism

K|z|Γ ◦p∗←−− K|w| / C{z}Γ ◦p∗←−− C{w}

is surjective and induces a commuting diagram

◦p∗
0

yy ��
K|z|Γ K|w|◦p∗oo

��
K|w|/◦p∗

≈

ee

◦p∗
0

xx ��
C{z}Γ C{w}◦p∗oo

��
C{w}/◦p∗

≈

ff

.

Note that p∗0 = 0 is needed to define these rings.

Proof. The assertion for formal power series follows from the expansion into homoge-

neous terms. In the convergent setting C{p∗}⊂C{z}Γ, Taylor expansion into homoge-

neous terms shows that

C[p∗] = C[z]Γ
m
⊂

dense
C{z}Γ

in the topology induced by the powers of the maximal ideal

m = {f ∈ C{z} : f(0) = 0}CC{z}.

A fortiori, we obtain

C{p∗}
m
⊂

dense
C{z}Γ.

We will now show that C{p∗} is also m-closed in C{z}Γ. For any f ∈ C{z}Γ consider

the algebra C{p∗}[f ]. Then (??) implies

C{p∗}
m
⊂

dense
C{p∗}[f ].

Since C{z} is a noetherian ring, its homomorphic image C{p∗} is also noetherian. Since

0 is isolated in V (p∗), the ’Zariski criterion’ implies

C{p∗}
int
⊂

dense
C{z} = C{p∗}

C{z}

is integrally dense in C{z}. A fortiori,

C{p∗}
int
⊂

dense
C{p∗}[f ] = C{p∗}

C{p∗}[f ]

24



is also integrally dense in the subring C{p∗}[f ]⊂C{z}. Thus

C{p∗}[f ] = C{p∗}[fin] = C{p∗}
C{p∗}[f ]

and the ’integrality criterion’ implies that

C{p∗}[f ] = C{p∗}〈fin〉

is a finitely generated C{p∗}-module. Applying the ’closure criterion’ to the noetherian

ring C{p∗} and its maximal ideal m ∩C{z} it follows that the C{p∗}-submodule

C{p∗}
m
⊂

closed
C{p∗}[f ]

is m-closed. Since it is also m-dense, we obtain C{p∗} = C{p∗}[f ]. Therefore f ∈ C{p∗}.
Since f ∈ C{z}Γ is arbitrary, it follows that C{p∗} = C{z}Γ.

Proposition 25. Consider power series q1, . . . , qm ∈ K|z|Γ / C{z}Γ which satisfy

o(qj − pj) > dj.

Then there exist power series Λj(w) ∈ K|w| / C{w} such that

Λ∗ ◦ p∗ = q∗, Λj(p∗z) = qj(z)

and the linear term Λ′∗(0) is invertible. Here we put

q∗(z) := (q1(z), . . . , qm(z)), Λ∗(w) := (Λ1(w), . . . ,Λm(w)).

Proof. We may assume that d1 6 . . . 6 dm. Write

qi(z) =
∑
n>0

q
(n)
i (z)

where q
(n)
i ∈ K[z]Γ is n-homogeneous. Then q

(n)
i ∈ K[z]Γ can be (non-uniquely) written

as

q
(n)
i =

∑
d·µ=n

ani,µ p
µ
∗

with coefficients ani,µ ∈ K. Define formal power series

Λi(w) :=
∑
µ

ad·µi,µ wµ ∈ K|w|.

Then

Λi(p∗z) =
∑
µ

ad·µi,µ (p∗z)µ =
∑
n

q
(n)
i (z) = qi(z).

For each fixed i the assumption

o(Λi ◦ p∗ − pi) = o(qi − pi) > di
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implies that the isobaric polynomial

φ(w) :=


∑
d·µ=n

ani,µ w
µ n < di∑

d·µ=di

adii,µ w
µ − wi

satisfy φ ◦ p∗ = 0. By reducedness, the linear term vanishes:

0 = φ′(0)y =


∑
dj=n

ani,(j)wj n < di∑
dj=di

adii,(j)wj − wi
.

Therefore {
ani,(j) = 0 ∀ dj = n n < di

adii,(i) = 1 adii,(j) = 0 ∀ j 6= i, dj = di
. (1.3.3)

We claim that the linear terms

Λ′i(0)y =
∑
j

a
dj
i,(j)wj

form a unipotent upper triangular matrix. On the diagonal we have adii,(i) = 1 by

(2.1.2). Now let j < i. Then dj 6 di. If dj < di, then a
dj
i,(j) = 0 by (2.1.2). If dj = di,

then a
dj
i,(j) = aidi,(j) = 0 by (2.1.2).

Note that this argument needs coordinates w1, . . . , wm (instead of just a complex

vector space W of dimension m) in order to define upper triangular matrices. The

deeper reason is that the degrees dj of the generators pj will in general be distinct.

Corollary 26. For formal/convergent power series we have

K|z|Γ = K|q∗| / C{z}Γ = C{q∗}.

Thus for every f(z) ∈ K|z|Γ / C{z}Γ there exists f̃ ∈ K|w| / C{w} such that

f(z) = f̃(q∗z).

Equivalently, the substitution homomorphism

K|z|Γ ◦q∗←−− K|w| / C{z}Γ ◦q∗←−− C{w}

is surjective and induces a commuting diagram

◦q∗
0

yy ��
K|z|Γ K|w|◦q∗oo

��
K|w|/◦q∗

≈

ee

, ◦q∗
0

xx ��
C{z}Γ C{w}◦q∗oo

��
C{w}/◦q∗

≈

ff

.

Note that q∗0 = 0 is needed to define these rings.
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Proof. Since the power series map

w 7→ Λ∗(w) = (Λ1(w), . . . ,Λm(w))

satisfies Λ∗(0) = 0 and Λ′∗(0) is invertible, the inverse mapping theorem for formal/convergent

power series implies that the (composition) inverse Λ−1
∗ (w) exists as a formal/convergent

power series near 0. Now the ’power series’ finite generation theorem implies

f = f̂ ◦ p∗ = f ◦ (Λ−1
∗ ◦ q∗) = (f ◦ Λ−1

∗ ) ◦ q∗ = f̃ ◦ q∗

with f̃ = f̂ ◦ Λ−1
∗ ∈ K|z| / C{z}.

1.3.1 Z/Γ as an algebraic variety

Let π : Z = Kd → Z/Γ be the canonical projection. The map p∗ := (p1, . . . pm) : Z →
Km is Γ-invariant and therefore has a factorization

Z
p∗ //

π
��

Km

Z/Γ
p∗

<<

Consider the associated affine algebraic variety

◦p∗ � := {w ∈ Km : ◦p∗(w) = 0}

Lemma 27. The map p∗ : Z/Γ→ Km is injective.

Proof. Let π(a) 6= π(b). Then aΓ ∩ bΓ = ∅. Choose a polynomial φ ∈ K[z] such that

φ(aΓ) = 0 and φ(bΓ) = 1. Then

f(z) :=
∏
γ∈Γ

φ(zγ) ∈ K[z]Γ

satisfies f(aΓ) = 0 and f(bΓ) = 1. The ’polynomial’ finite generation theorem implies

f(z) = f̃(p∗z) for some f̃ ∈ K[w]. Therefore p∗a 6= p∗b.

Theorem 28. Suppose that K is algebraically closed. Then the range

p∗(Z/Γ) = p∗Z = ◦p∗ �

is the algebraic variety determined by the ideal ◦p∗.

Proof. Let a ∈ Z and f ∈ ◦p∗. Then f ◦ p∗ = 0 and therefore

f(p∗(πa) = f(p∗a) = (f ◦ p∗)(a) = 0.
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It follows that p∗Z ⊂◦p∗ �. Conversely, let b ∈ ◦p∗ �. Then ◦p∗(b) = 0. Hence there is a

commuting diagram

◦p∗
0

yy ��
K K|w|εboo

��
K[z]Γ

OO

K[w]/◦p∗

εb

ee

◦p∗
≈oo

for the evaluation map εb. Hence

ker εb C
max

K[w]/◦p∗

which implies

m := ker(εb ◦ p∗) = (ker εb) ◦ p∗ C
max

K[z]Γ

We claim that K[z]mCK[z] is a proper ideal. In fact, if 1 =
∑
i

uiai with ai ∈ K[z] and

ui ∈ m then for each γ ∈ Γ we have 1 = γ · 1 =
∑
i

ui(γ · ai) and therefore

1 =
1

|Γ|
∑
γ∈Γ

∑
i

ui(γ · ai) =
1

|Γ|
∑
i

ui
∑
γ∈Γ

γ · ai ∈ m

since
∑
γ∈Γ

γ · ai ∈ K[z]Γ. This contradiction shows 1 /∈ K[z]m. By Zorn’s Lemma there

exists a maximal ideal

K[z]mC n C
max

K[z].

Then m⊂ n ∩K[z]ΓC 6=K[z]Γ, since 1 /∈ n ∩K[z]Γ. It follows that

(ker εb) ◦ p∗ = m = n ∩K[z]Γ.

Since K is algebraically closed, Hilbert’s Nullstellensatz implies n = ker εa for some

a ∈ Z. For each j the affine polynomial λ(w) := wj − bj belongs to ker εb, showing

that λ ◦ p∗ ∈ n = ker εa. Therefore 0 = (λ ◦ p∗)(a) = pj(a) − bj for all j showing that

p∗a = b.

Together with Lemma ?? it follows that the continuous map

Z/Γ
p∗−→ ◦p∗ �

is bijective.

Proposition 29. For K = C the map p∗ in the diagram

Z
p∗

""
π
��

Cm

Z/Γ
p∗
≈
// ◦p∗ �

ι

OO

is a homeomorphism for the quotient topology on Z/Γ and the relative topology on ◦p∗ �.
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Proof. For t > 0 define homotheties

ρt(z) := tx, σt(wj)
m
j=1 := (tdjwj)

m
j=1.

Then the diagram

Z/Γ
p∗ //

ρt

��

◦p∗ �

σt

��
Z/Γ

p∗

// ◦p∗ �

commutes. Let C ⊂Z be a compact 0-neighborhood. Then there exists r > 0 such that

{z ∈ Z : ‖z‖ 6 r}⊂C.

Suppose there exists a sequence w` ∈ p∗Z ∼ p∗C such that w` → 0. Then w` = p∗z` for

some z` ∈ Z ∼ C. Hence ‖z`‖ > r and r z`
‖z`‖
∈ C has a convergent subsequence

r
z`
‖z`‖

→ a ∈ C

with ‖a‖ = r > 0. Then p∗(πa) 6= 0 since 0 is the only common zero of p∗. On the other

hand,

p∗(r
z`
‖z`‖

) = p∗(ρr/‖z`‖z`Γ) = σr/‖z`‖p∗(z`Γ) = σr/‖z`‖w` → 0

since r
‖z`‖

< 1. This contradiction shows that p∗C is a neighborhood of 0 ∈ ◦p∗ �. Since

p∗ is bijective and continuous, it follows that πC
p∗−→ p∗C is a homeomorphism. Using

the homotheties again, we can reach any point in Z, and the assertion follows.

1.3.2 Z/Γ as a ringed space

The preceding theorem shows that Z/Γ is isomorphic to a normal affine algebraic variety

◦p∗ �⊂Km as a set. We will now show that this isomorphism holds on the level of ringed

analytic spaces, if K is an algebraically closed, non-discrete, complete valuation field,

e.g. K = C. This more difficult part of Cartan’s theorem proceeds by investigating the

isotropy subgroups

Γa := {γ ∈ Γ : aγ = 0}

at all points a ∈ Z. Since Γa is also a finite linear group, the preceding results apply to

Γa as well. Note that Γ0 = Γ.

We make Z/Γ into a ringed topological space. For an open subset V ⊂Z/Γ define

OZ/ΓV := {f : V → C : f ◦ π : π−1(V )→ C holomorphic}

This yields a (pre)sheaf on Z/Γ. The local ring OZ/Γπa can be described as follows. The

translation action

taφ(x) := φ(x− a)
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yields an isomorphism

OΓa
a

ta←−
≈

C{z}Γa = OΓa
0

On the other hand, the averaging

fΓa\Γ :=
∑

γ∈Γa\Γ

γ · f, fΓa\Γ(x) :=
∑

γ∈Γa\Γ

f(xγ)

is a surjective map

OZ/Γπa

(·)Γa\Γ

←−−−− OΓa
a .

Thus we have

OΓa
a

(·)Γa\Γ

zz

OZ/Γπa C{z}Γaoo

ta≈

OO

and

OZ/Γπa = {f̃ : f ∈ C{z}Γa}.

consists of all germs

f̃(πz) :=
∑

γ∈Γa\Γ

f(zγ − a),

where f ∈ C{z}Γa , since (f̃ ◦ π)(z) = f̃(πz) is holomorphic near a.

On the other hand, the (affine) algebraic variety ◦p∗ � has the regular functions

K[◦p∗ �] := K[w]/◦p∗.

At any point b ∈ ◦p∗ � we may form the localization

K[◦p∗ �]b := {φ
ψ

: φ, ψ ∈ K[◦p∗ �], ψ(b) 6= 0}

These local rings form a coherent sheaf over ◦p∗ �. Passing to convergent power series,

the algebraic variety Y := ◦p∗ �⊂Cm is a ringed space with local rings

O◦p∗

�

b := {(tbψ)|Y : ψ ∈ C{w}},

where we define

tbψ(y) := ψ(y − b)

For each a ∈ Z define a ring homomorphism Λa by the commuting diagram

C{z}Γa

ta ≈
��

C{w}Λaoo

≈ tp∗a
��

OΓa
a OCm

p∗a◦p∗
oo

where t denotes the translation actions. Similarly, for formal power series.
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Theorem 30. For any a ∈ Z the homomorphism Λa is surjective: If f ∈ K|z|Γa / C{z}Γa ,

there exists f̃ ∈ K|w| / C{w} such that

f(x− a) = f̃(p∗x− p∗a)

In other words, we have

taf = (tp∗af̃) ◦ p∗

Proof. Applying the ’polynomial’ finite generation theorem to Γa it follows that

K[z]Γa = K[r∗]

for a finite reduced set of homogeneous polynomials r∗(z) = (r1(z), . . . , rma(z)). By

Lemma (??), there exist invariant polynomials task ∈ K[z]Γ with

o(sk − rk) = oa(task − tark) > deg rk.

Then sk ∈ K[z]Γa ⊂K|z|Γa . It follows from Proposition (??) applied to Γa that

rk = hk ◦ s∗

for some power series hk ∈ K|z| / C{z}. Since task ∈ K[z]Γ we can write

sk(x− a) = (task)(x) = gk(p∗x− p∗a)

for polynomials gk ∈ K[w]. Note that p∗x − p∗a (unlike p∗(x − a)) is still a set of

(inhomogeneous) Γ-invariant generators. Then

gk(0) = gk(r∗a− r∗a) = sk(0) = 0.

Thus we may form the formal power series r̃k = hk ◦ g∗ and obtain

rk(x− a) = hk(s∗(x− a)) = hk(g∗(p∗x− p∗a)) = (hk ◦ g∗)(p∗x− p∗a) = r̃k(p∗x− p∗a).

This proves the assertion for the generators rk. Since K|z|Γa = K|r∗| / C{z}Γa = C{r∗}
by the ’power series’ finite generation theorem applied to Γa, this suffices for the assertion

in general.

Corollary 31. For each a ∈ Z there is a ring isomorphism

OZ/Γπa = π∗OZa
◦p∗←−−
≈
O◦p∗

�

p∗a = ι∗OCm

p∗a .

Here Z
π−→ Z/Γ and ◦p∗ �

ι−→ Cm denote the canonical projection/injection, respectively.
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Proof. Every germ ψ ∈ O◦p∗

�

p∗a is of the form

ψ(y) = (tp∗ag)(y) := g(y − p∗a)

where g ∈ C{w}. Thus we have

O◦p∗

�

p∗a
ι∗←−−

onto
OCm

p∗a

tp∗a←−−
≈

C{w}

Then the convergent power series

fa(z) := g(p∗(z + a)− p∗a) ∈ C{z}Γa

satisfies

(ψ ◦ p∗)(x) = g(p∗x− p∗a) = fa(x− a)

Proposition 32. At any point b = p∗a ∈ Y the power series completion

K|Y |b := K̂[Y ]b ≈ K|z|Γa

is normal.

Proof. The formal power series ring K|z| is normal. By Lemma, its subring K|z|Γa is

also normal.

1.4 Quotients of Analytic Spaces

A topological ringed space D is called an analytic space if around every a ∈ D there

exists an isomorphism

D ⊃
open

U
σ−→
≈
σU ⊂

ana
V ⊂

open
Z

for some vector space Z, such that σ(a) = 0. In short, D is locally isomorphic (as

a topological ringed space) to an analytic subset of an open subset in some Cd. We

sometimes write

D ⊃
open

U
σ−→
≈
σU

loc
⊂
ana
Z.

A group Γ acting by holomorphic transformations on D is called properly discontin-

uous if the following two conditions hold:

aΓ ∩ bΓ = ∅ ⇒ ∃neighborhoods a ∈ U, b ∈ V : UΓ ∩ V Γ = ∅

Moreover every isotropy group Γa is finite, and there exists a neighborhood U = UΓa
such that

ΓU = Γa.
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The first condition means that D/Γ is a Hausdorff space. The second condition means

that the canonical projection π : D → D/Γ satisfies

π(U) = U/Γa

It follows that the local structure of D/Γ is determined by quotients of the form U/Γa,

where U is again a complex analytic space invariant under the finite group Γa, which

leaves the ’base point’ a ∈ U fixed. The main idea is now to realize Γa as a linear group.

Consider first the easy case that a ∈ D is a regular point, i.e., not a singularity. The

set of regular points is an open dense subset of D. Around a regular point a the above

simplifies to

D ⊃
open

U
σ−→
≈
σU ⊂

open
Z.

Lemma 33. Let Γ be a finite group acting on an open set 0 ∈ U ⊂Z = Cd and fixing

0. Then there exists an isomorphism U
σ−→ U ′ onto an open set 0 ∈ U ′⊂Z such that the

diagram

U σ //

γ

��

U ′

γ′0
��

U σ
// U ′

commutes, i.e., we have

σ(zγ) = σ(z)γ′0

for all γ ∈ Γ.

Proof. Define σ : U → Z by

σ(z) :=
1

|Γ|
∑
γ∈Γ

(zγ) γ′−1
0

Then

σ′0 =
1

|Γ|
∑
γ∈Γ

γ′0 γ
′−1
0 = id

Hence σ is a local isomorphism on an open set 0 ∈ U ⊂Z. Put U ′ := σ(U). Now let

γ ∈ Γ. Putting τ = γβ ∈ Γ, with τ ′0 = γ′0β
′
0 we obtain

σ(zγ) =
1

|Γ|
∑
β∈Γ

((zγ)β) β′−1
0 =

1

|Γ|
∑
τ∈Γ

(zτ) τ ′−1
0 γ′0 = σ(z) γ′0.

For arbitrary, not necessarily regular points a ∈ D, one uses the following ’lineariza-

tion trick’ due to Serre. For Z := Cd let ZΓa denote the finite-dimensional vector space

of all maps ψ : Γa → Z, γ 7→ ψγ, endowed with the linear right action

ZΓa × Γa → ZΓa , (ψγ̃)β := ψγβ.
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induced by permutation of the ’coordinates’ β ∈ Γa. For any subset V ⊂Z we define the

invariant subset

V Γa = {ψ : Γa → V }⊂ZΓa

If D is a complex analytic space, then for each a ∈ D there is an open Γa-invariant

set a ∈ U ⊂D and an injective holomorphic map σ : U → Z into a complex vector space

Z wich σ(a) = 0, such that

U
σ−→
≈
σU ⊂

ana
V ⊂

open
Z.

Lemma 34. Define an analytic map σ̃ : U → ZΓa by

(σ̃z)γ := σ(zγ).

Then the diagram

U
σ̃ //

γ

��

V Γa
⊂
//

γ̃
��

ZΓa

γ̃
��

U σ
// V Γa

⊂
// ZΓa

commutes, i.e., for all γ ∈ Γa we have σ̃(zγ) = (σ̃z)γ̃, and

σ̃U ⊂
ana
V Γa ⊂

open
ZΓa .

Proof. Let β ∈ Γa. Then

(σ̃(zγ))β = σ((zγ)β) = σ(z(γβ)) = (σ̃z)γβ = ((σ̃z)γ̃)β.

Since β is arbitrary, the equivariance property (??) follows. We claim that

σ̃U = {ψ ∈ (σU)Γa : (σ−1(ψγ))β = σ−1(ψγβ)}.

In fact, let ψ = σ̃(z) for some z ∈ U. Then ψγ = (σ̃z)γ = σ(zγ) and hence

(σ−1(ψγ))β = (zγ)β = z(γβ).

On the other hand, we have ψγβ = (σ̃z)γβ = σ(z(γβ)) and hence σ−1(ψγβ) = z(γβ).

This proves the claim. It follows that

σ̃U ⊂
ana

(σU)Γa ⊂
ana
V Γa ⇒ σ̃U ⊂

ana
V Γa

Note that by the linearization trick the embedding dimension of the underlying an-

alytic set increases considerably, so will not be optimal anymore. Also, the notion of

analytic subset is well-adapted to this process, since all one has to check is the analytic

equations of the image.
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Theorem 35. The quotient D/Γ of any complex analytic space D by a properly discon-

tinuous group Γ⊂Aut(D) (not necessarily finite or linear) is again a complex analytic

space.

Proof. Keeping the above notation, for each fixed a ∈ D, consider the linear action of

the finite group Γa on ZΓa . Since σ̃ is Γa-equivariant, it induces an isomorphism

U/Γa
σ̃−→
≈

(σ̃U)/Γ̃a

for the ringed structure induced by the projection. By Theorem ?? we have a polynomial

map pa∗

π(U) = U/Γa
σ̃−→
≈

(σ̃U)/Γ̃a ⊂
ana
V Γa/Γ̃a ⊂

open
ZΓa/Γ̃a

pa∗−→
≈
◦pa∗

� ⊂
alg

Cm

1.5 Compact Quotients of Bounded Domains

We now specialize to a bounded domain D⊂Z = Cd and a properly discontinuous

group Γ⊂Aut(D). Consider an automorphic cocycle Jγ(z). Then for each a ∈ D the

map γ 7→ Jγ(a) is a character of Γa. Since this is a finite group by assumption, there

exists an integer ȧ ∈ N (for example, the order |Γa|) such that

Jγ(a)ȧ = 1

for all γ ∈ Γa. By the linearization Lemma, the isotropy group Γa acts by linear transfor-

mations in a local chart near a. In this chart the Jacobian Jγ(z) for γ ∈ Γa is independent

of z. Therefore we have

Jγ(z)ȧ = 1

for all γ ∈ Γa and z in a neighborhood of a ∈ D. Consider a graded subalgebra

A =
∑
m>0

Am⊂O(D,C),

where Am⊂OmΓ (D,C) consists of m-automorphic forms relative to the cocycle J. To

ease notation, we sometimes write

A`q := A`q.

We assume that the following two conditions hold:

(∗) ∀ a, b ∈ D, π(a) 6= π(b), ∀integer` > `a,b ∀ α, β ∈ C

∃ f ∈ A`
ȧ∨ḃ : f(a) = α, f(b) = β.
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Here m ∨ n = l.c.m.(m,n) denotes the least common multiple of integers m,n. The

second condition is

(∗∗) ∀ a ∈ D ∀ d ∈ N ∀integer` > `da ∀h ∈ OΓa
a

∃ f ∈ A`ȧ : oa(f − h) > d.

Example 36. For a bounded domain D⊂Z := Cd consider Poincaré-Eisenstein series

φmΓ :=
∑
γ∈Γ

Jmγ γ · φ, φmΓ (z) :=
∑
γ∈Γ

Jmγ (z) φ(zγ)

where m > 2 and φ ∈ P(Z) is a polynomial. Define

Am :=
∑

m1+...+mk=m

P(Z)m1
Γ · · · P(Z)mkΓ

= 〈(φ1)m1
Γ · · · (φk)

mk
Γ : φi ∈ P(Z), mi > 2, m1 + . . .+mk = m〉.

Then the conditions (*) and (**) are satisfied.

Proposition 37. For all a, b ∈ D there exist D⊃open U 3 a, b and `0 ∈ N such that for

all ` > `0 there exists f ∈ A`
ȧ∨ḃ with 0 /∈ f(U).

Proof. By (*) there exists `′ and f1 ∈ A`
′

ȧ∨ḃ, f2 ∈ A`
′+1

ȧ∨ḃ such that f1/2(a) = f1/2(b) = 1.

Hence there exists D⊃open U 3 a, b such that 0 /∈ f1/2(U). Every integer ` > `0 :=

`′(1 + `′) can be written as ` = m1`
′ +m2(`′ + 1) for positive integers m1/2. Then

f := fm1
1 fm2

2 ∈ Am1`′

ȧ∨ḃ A
m2(`′+1)

ȧ∨ḃ ⊂A`
ȧ∨ḃ

satisfies 0 /∈ f(U).

Proposition 38. Suppose a1, a2 ∈ D are not Γ-equivalent. Then there exist D⊃open Ui 3
ai and `′ ∈ N such that for all ` > `′ there exist fi ∈ A`ȧ1∨ȧ2

with fi(ai) 6= 0 and for

i 6= j

|fj|Ui < |fi|Ui

Proof. By (*) there exist `′ and hi ∈ A`
′
ȧ1∨ȧ2

such that hi(ai) = 1, hj(ai) = 0 if j 6= i.

By Proposition ?? there exists D⊃open U 3 a1, a2 and `0 > `′ such that for all ` > `0

there exists f ∈ A`−`′ȧ1∨ȧ2
with 0 /∈ f(U). Choose smaller neighborhoods U ⊃open Ui 3 ai

with |hi(Ui)| > 1
2
> |hj(Ui)|. Then

fi := f hi ∈ A`ȧ1∨ȧ2

satisfies the requirements.
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Proposition 39. For each a ∈ D⊂Z there exists D⊃open Ua 3 a and `a ∈ N such that

for all ` > `a there exist finitely many hai ∈ A`ȧ, 0 6 i 6 na with 0 /∈ ha0(Ua) and the

homogeneous coordinates yield an isomorphic embedding

[ha0 : . . . : hana ] = [ha∗] : π(Ua)→ Pna

onto a locally analytic subset of projective space.

Proof. By Proposition ?? there exist

D ⊃
open

U = UΓa
σ−→
≈
σ(U) ⊂

open
Z

around a such that σ(a) = 0 and Γ′a := σ ◦ Γa ◦ σ−1⊂GLd(C) is a (finite) linear group

leaving σ(U) invariant. By the ’polynomial finite generation theorem’ there exist finitely

many homogeneous polynomials p1, . . . , pm ∈ P(Z) such that

P(Z)Γ′a = C[pi] = C[p∗].

Put di = deg pi and choose `dia as in condition (**). Since pi ◦σ ∈ OΓa
a it follows that for

`0 > max `dia there exist fi ∈ A`0ȧ such that

o0(fi ◦ σ−1 − pi) = oa(fi − pi ◦ σ) > di.

In particular, fi(a) = 0 for all i. For any D⊃open U 3 a the intersection
⋂

Γ∈Γa
Uγ is

Γa-invariant and still open, since Γa is finite. It follows that Γa-invariant neighborhoods

form a neighborhood basis, so we may by Proposition ?? assume that f∗ = (f1, . . . , fm)

defines an isomorphic embedding

π(U) = U/Γa ≈
σ //

f∗

<<σ(U)/Γ′a
(f◦σ−1)∗ // Cm

onto a locally analytic subset of Cm. The f∗ may still have a common zero in U. For each

` > `0 there exist h0 ∈ A`ȧ and h ∈ A`−`0ȧ with 0 /∈ h0(UΓ)∪h(UΓ). Then hi := hfi ∈ A`ȧ
and (h0, hf∗) has no common zero on U, so that the projectivation

[h0, hf∗] : π(U)→ Pm

defines an isomorphism onto a locally analytic set in Pm. More precisely, if the range

f∗(U) is defined by the equations hj(w1, . . . , wm) = 0, for (w1, . . . , wm) ∈ Cm then the

range

[h0(z) : h(z)f1(z) : . . . : h(z)fm(z)] = [
h0(z)

h(z)
: f1(z) : . . . : fm(z)]

is described by the additional equation

w0 =
h0(f−1

∗ (w1, . . . , wn))

h(f−1
∗ (w1, . . . , wn)

in m+ 1-variables w0, w1, . . . wm. Here f−1
∗ is a local analytic inverse for f∗.
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Remark 40. The last, somewhat cumbersome, argument can be avoided in case D/Γ is

compact. In this case we produce an injective holomorphic map [f∗] : D/Γ→ PN whose

range, by the proper mapping theorem, is automatically an analytic (in fact, algebraic)

subset of PN .

Lemma 41. For 1 6 j 6 k let f j∗ = (f j0 , . . . , f
j
nj

) be Γ-automorphic of weight mj. Take

all monomials

f ′ =
∏
j=1k

nj∏
i=0

(f ji )α
j
i

of total weight
k∑
j=1

mj

nj∑
i=0

αji = m′

Then if one of the family f j∗ has no common zero on a subset U ⊂D, then f ′∗ also has

no common zero on U, and moreover the projectivation [f ′∗] : D/Γ → Pn′ is injective

wherever [f j∗ ] : D/Γ→ Pnj is injective.

Proof. For any 0 6 i 6 nj let αj
′

i′ := m′ δii′δ
j′

j . Then (f ji )m
′

is an allowed monomial

and the monomials (f ji )m
′

have no common zero on D, proving the first assertion. Now

assume that the full monomial family f ′∗ satisfies [f ′∗(a)] = [f ′∗(b)] for some a, b ∈ D. Then

there exists a non-zero λ ∈ C such that f ′(a) = λf ′(b) for all admissible mononomials

f ′. In particular,

(f ji (a))m
′
= λ (f ji (b))m

′

and more generally, for the same j

nj∏
i=0

(f ji (a))αi =

nj∏
i=0

(f ji (b))αi

whenever
nj∑
i=0

αi = m′. This implies f ji (a) = λ f ji (b), so that [f j∗ (a)] = [f j∗ (b)]. This proves

the second assertion.

Let us call the preceding procedure the monomial construction.

Proposition 42. Assume that D/Γ is compact. Then for large enough m > m0 there

exists finitely many f0, . . . , fN ∈ AmΓ (D) without common zero on D. Hence the projec-

tivation

[f0, . . . , fN ] : D/Γ→ PN

is a well-defined holomorphic map.

Proof. Since D/Γ is compact there exists a compact set K ⊂D such that π(K) = D/Γ.

Equivalently, KΓ = D. There exists a finite covering K ⊂
⋃
U
U of open sets U ⊂D such
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that for each U ∈ U there exist automorphic forms fU∗ = (fU0 , . . . , f
U
nU

) ∈ AmU without

common zero on U so that the projectivation

[fU∗ ] = [fU0 : . . . : fUnU ] : π(U)→ PnU

is a holomorphic isomorphism onto a locally analytic subset of PnU . By increasing the

weights if necessary, or by applying the ’monomial construction’ to the finitely many

families fU∗ we obtain family f ′∗ without common zeros on K. Since KΓ = D it follows

that the projectivation

[f ′∗] : D/Γ→ PN

is a well-defined holomorphic map.

Theorem 43. Assume that D/Γ is compact. Then for large enough m > m0 there exists

finitely many f0, . . . , fN ∈ AmΓ (D) without common zero on D such that the projectivation

[f0, . . . , fN ] : D/Γ→ PN

is an injective holomorphic map, hence an isomorphism onto an analytic (in fact, alge-

braic) subset of PN .

Proof. Let F denote the collection of all maps [f∗] = [f0, . . . , fn] : D/Γ → Pn, where

fi ∈ AmΓ (D,C) are automorphic of the same weight m (depending on f∗) and have no

common zeros on D. Define

(K ×K)f∗ := {(z, w) ∈ K ×K : [f∗(z)] = [f∗(w)]}.

By Proposition ?? F is non-empty. Now assume [f∗] ∈ F is not injective. Then there

exist a1, a2 ∈ K not Γ-related, such that [f∗(a1)] = [f∗(a2)]. In other words, (a1, a2) ∈
(K ×K)f∗ . By Proposition ?? there exist D⊃open Ui 3 ai and automorphic forms hi of

the same weight m such that for {i, j} = {1, 2} we have

|hj|Ui < |hi|Ui .

Applying the ’monomial construction’ to the two families (h1, h2) and f∗, we obtain

a new family f ′∗ with a common weight which has no common zeros on D, and the

(well-defined) projectivation

[f ′∗] : D/Γ→ Pn′

is injective where [f∗] is injective, i.e., (K×K)f ′∗ ⊂(K×K)f∗. Since [h1, h2] separates a1

and a2, Lemma ?? asserts that

[f ′∗(a1)] 6= [f ′∗(a2)].

It follows that (a1, a2) ∈ (K × K)f∗ ∼ (K × K)f∗., so that (K × K)f ′∗ ⊂(K × K)f∗ is

a proper subset. Now assume by contradiction, that there is no injective holomorphic
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map [f0, . . . , fN ] : D/Γ → PN . Then the above construction produces a sequence [fk∗ ]

for k ∈ N such that

(K ×K)f0
∗ ⊃6=(K ×K)f1

∗ ⊃6= . . .⊃6=(K ×K)fn∗ ⊃6=(K ×K)fn+1
∗
⊃
6=
. . .

On the other hand this is a decreasing sequence of analytic subsets meeting a compact set

K ×K, which therefore must become stationary (noetherian property). Contradiction!

Theorem 44. Assume in addition that D/Γ is compact. Then there exist hi ∈ Am with-

out common zero on D such that the projective map associated with h∗ = (h0, . . . , hN)

gives an isomorphism

D/Γ
[h∗]−−→
≈

[h∗](D/Γ) ⊂
alg

PN

onto a locally analytic (in fact, algebraic) subset of PN .

Proof. It remains to construct a global injective embedding. For any finite subset

A := {a1, . . . , ak}⊂D of pairwise inequivalent points there exist neighborhoods ai ∈
Ui⊂open D and, for ` > `A, there exist fi ∈ A`∨ȧi with |fi||Ui > |fj||Uj for all j 6= i. By

Proposition ?? we may assume that

π(Ui)
[hi0:...:hini ]−−−−−−→
≈

[hi∗](πUi) ⊂
ana
Vi ⊂

open
Pni ,

where all hij ∈ A`∨ȧi have the same weight as fi. Since D/Γ is compact, we may assume

that UiΓ, 1 6 i 6 k cover all of D. This implies that the functions f1, . . . , fk have no

common zero on D and thus we may form the projective map

[f1 : h1
∗ : f2 : h2

∗ : . . . : fk : hk∗] : D/Γ→ PN .

We claim that this map is injective and hence an isomorphism. Let z, w ∈ D satisfy

(f1(z), h1
∗(z), . . . , fk(z), hk∗(z)) = λ(f1(w), h1

∗(w), . . . , fk(w), hk∗(w))

for some non-zero λ ∈ C. If z, w ∈ Ui for some i then [hi∗(z)] = [hi∗(w)] implies π(z) =

π(w) since [hi∗] is an embedding when restricted to π(Ui). Now suppose z ∈ Ui, w ∈ Uj
with i 6= j. Since fi(z) = λfj(z) we obtain |λ| |fj(z)| = |fi(z)| > |fj(z)| and |λ| |fj(w)| =
|fi(w)| < |fj(w)|. This contradiction shows that (??) is an embedding.

Lemma 45. There exist an open neighborhood Ua⊂D of a which is invariant under the

isotropy group Γa and a local chart φa : Ũa → Ua from a 0-neighborhood Ũa such that

J(0, φa) = id and for each γ ∈ Γa the transformation γ̃ := φ−1
a ◦ γ ◦ φa is linear.

For each a ∈ D there exists a biholomorphic map λa : Ua → U ′a⊂open Z with aλa = 0

such that Ua is Γa-stable and for each γ ∈ Γa the diagram

Ua
λa //

γ

��

U ′a

γ′a
��

Ua λa
// U ′a
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commutes, where γ′a ∈ GL(Z) is linear. Putting z = ζλ this implies

λ′a(ζ) γ′(ζλ) = (λaγ)′(ζ) = (γ′aλa)
′(ζ) = γ′a(λa)

′(ζγ′a)

and hence for the Jacobians

Jλa(ζ) Jγ(ζλ) = det(γ′a) Jλa(ζγ
′
a).

Taking m-th powers we obtain

Jmλa(ζ) Jmγ (ζλa) = det(γ′a)
m Jmλa(ζγ

′
a) = Jmλa(ζγ

′
a)

since m is a multiple of |Γa|. Put Γ′a := {γ′a : γ ∈ Γa} = λΓaλ
−1. Then λa defines an

isomorphism

OΓ′a
0

Λa←− OΓa,m
a

by putting

(Λaf)(ζ) := Jmλa(ζ) f(ζλa)

This isomorphism preserves the respective maximal ideals and their higher powers, and

is therefore bicontinuous in the Krull topology. The finite-dimensional quotient space

OΓa,m
a /(mΓa,m

a )`+1

consists of all jets at a up to order `.

Proposition 46. Let A⊂D be a finite set of Γ-inequivalent points. Let a ∈ A and

φa ∈ OΓ′a
0 . Choose ` ∈ N. Then there exists p ∈ C[z] such that for all a ∈ A we have

oa(p
Γ
m − fa) > `. Here we write φa ∈ OΓ′a

0 as φa = Λafa for a unique germ fa ∈ OΓa,m
a

and m is any large multiple of all ȧ, a ∈ A.

Proof. Let a ∈ Ua⊂open D be a linearizing neighborhood around a and let Va⊂⊂Ua.
Then

ηa := min
z∈Va
|Jλa(z)| 6 1

since |Jλa(0)| = 1. The set (not a group)

Γa := {γ ∈ Γ : ∃ z ∈ Va, |Jγ(z)| > ηa
2
}

is finite since supz∈Va |Jγ(z)| < ηa
2

for almost all γ ∈ Γ. Moreover, Γa⊂Γa, since for

γ ∈ Γa we have Jγ(a)|Γa| = 1 and therefore |Jγ(a)| = 1 > 1
2
> ηa

2
. For each a ∈ A the set

AΓa ∼ a is finite and Γa-invariant. There exists a polynomial p ∈ C[z] such that for all

a ∈ A
oa(p− fa) > `, oAΓa∼a(p) > `.

Consider the m-weighted average

pmΓa − |Γa| fa = (pmΓa − |Γa| fa) + pmΓa∼Γa .
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For the first term we have

oa(p
m
Γa − |Γa| fa) > `

since the m-automorphy of fa under Γa implies

pmΓa − |Γa| fa =
∑
γ∈Γa

Jmγ (γ · p− γ · fa)

and for each γ we have

oa(J
m
γ (γ · p− γ · fa) > oa(γ · p− γ · fa) = oaγ(p− fa) = oa(p− fa) > `.

For the second term we have aγ 6= a and therefore

oa(J
m
γ γ · p) > oa(γ · p) = oaγ(p) > min o(aΓa)∼a(p) > `.

It follows that pmΓa − |Γa| fa vanishes of order > ` at a. Therefore the `-jet (Taylor

polynomial up to order `) at a satisfies

j`a

(
pmΓ − |Γa|fa

)
= j`a

(
pmΓ∼Γa + pmΓa − |Γa|fa

)
= j`a

(
pmΓ∼Γa

)
+ j`a

(
pmΓa − |Γa|fa

)
= j`a p

m
Γ∼Γa

since the second term has vanishing Taylor polynomial. In order to estimate the first

term, for all z ∈ Va and γ ∈ Γ ∼ Γa we have |Jγ(z)| 6 η
2

by definition, and therefore

|1mΓ∼Γa(z)| =
∑

γ∈Γ∼Γa

|Jmγ (z)| 6
(η

2

)m−2 ∑
γ∈Γ∼Γa

|J2
γ (z)| 6M 2−m

uniformly for z ∈ Va. Since p is bounded on D we also have

|pmΓ∼Γa(z)| 6M ′ 2−m

for all z ∈ Va. Thus for any ε > 0 there exists a multiple m of all ȧ, a ∈ A, such that

the `-th Taylor polynomial of pmΓ∼Γa at a has norm 6 ε. The same holds therefore for

pmΓ −|Γa|fa. Now consider the finite-dimensional vector space
∏
a∈A

j`a OΓa,m
a and the linear

mapping ∏
a∈A

j`a OΓa,m
a

Λ←− C[z]

given by

Λp := (j`a p
m
Γ )a∈A

We have proved that this map has a dense linear range. By finite dimension, Λ is

surjective. Hence for any given fa, a ∈ A there exists p ∈ C[z] such that for all a ∈ A
we have j`afa = j`ap

m
Γ , i.e., oa(p

m
Γ − fa) > `. Now (*) and (**) are easy consequences.
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Proof. Let A⊂⊂D be compact. For each a ∈ A there exists a polynomial p and a

weight d such that pΓ
d (a) 6= 0. More generally, there exists polynomials pi and weights di

such that

(p0)Γ
d0
, . . . , (pk)

Γ
dk

have no common zeros on A. Put d := l.c.m.(di). Then

(pΓ,d0

1 )d/d0 , . . . , (pΓ,dk
k )d/dk

have no common zeros on A and are automorphic of the same weight d. Thus we obtain

a holomorphic map

D′ → Pk, z 7→ [(pΓ,d0

1 (z))d/d0 , . . . , (pΓ,dk
k (z))d/dk ]

defined on an open neighborhood A⊂D′⊂D. Now suppose

F : D′ → Pk, z 7→ [(f1(z), . . . , fk(z)]

is given by automorphic forms f0, . . . fk of the same weight d. Suppose that this map

is not injective on A and let a, b ∈ A not Γ-related satisfy fi(a) = fi(b) for 0 6 i 6 k.

Choose polynomials p1, p2 and weights d1, d2 such that

pΓ,d1

1 (a) = 0 = pΓ,d2

2 (b), pΓ,d1

1 (b) 6= 0 6= pΓ,d2

2 (a).

Let d̃ = l.c.m.(d, d1, d2) and consider all monomials in f0, . . . , fk, p
Γ,d1

1 , pΓ,d2

2 of total

weight d̃. These finitely many monomials g0, . . . g` define a holomorphic map

G : D′′ → P`, z 7→ [g0(z), . . . , g`(z)]

in the algebra generated by Poincaré series which satisfies

F (z) 6= F (w)⇒ G(z) 6= G(w)

and, in addition, G(a) 6= G(b). The first fact follows since the powers f
d̃/di
i occurs as a

monomial. The second fact follows since pΓ,d1

1 (aj) 6= pΓ,d2

2 (aj) and the power (p
Γ,dj
j )d̃/dj

occurs as a monomial. Repeating this process, we obtain an injective map

G : D′′ → Pm, z 7→ [h0(z), . . . , hm(z)]

since A is met by only finitely many Γ-orbits.
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Chapter 2

Construction of Automorphic forms

2.1 Automorphic forms on semi-simple Lie groups

Let G be a semi-simple real Lie group of non-compact type. Its Lie algebra g is identified

with the right-invariant vector fields on G, by associating with X ∈ g the first order

differential operator

(X∂f)(g) := ∂0
t f(g exp(tX)).

It follows that the universal enveloping algebra ĝ is identified with the right-invariant

differential operators (of any order) on G. Its center ĝ◦ is the commutative subalgebra

of all bi-invariant differential operators on G. By Chevalley, this is a free polynomial

algebra with rank(G) generators. For any function f ∈ C∞(G, V ) into some vector

space V, the set

(ĝ◦)⊥f := {Y ∈ ĝ◦ : Y ∂f = 0}

is an ideal (since (XY )∂ = X∂Y ∂ and the center is commutative) called the annihilator

ideal of f. The linear evaluation map

ĝ◦
εf−→ (ĝ◦)∂f, Y 7→ Y ∂f

induces a commuting diagram

ĝ◦

��

εf

%%

(ĝ◦)⊥f

0
��

oo

ĝ◦/(ĝ◦)⊥f ≈
// (ĝ◦)∂f

.

We say that f is ĝ◦-finite if

codim (ĝ◦)⊥f = dim ĝ◦/(ĝ◦)⊥f = dim (ĝ◦)∂f <∞.
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In the important case when the annihilator ideal has codimension 1 there exists a

character (unital algebra homomorphism)

ĝ◦

��

χf

$$

(ĝ◦)⊥f

0

��

oo

ĝ◦/(ĝ◦)⊥f ≈
// C

such that (ĝ◦)⊥f = kerχf and

X∂f = εf (X) = χf (X)f

for all X ∈ ĝ◦. Thus f is an eigenfunction under ĝ◦.

Let K ⊂G be a maximal compact subgroup, so that K\G is a Riemannian symmetric

space. Let κ : K → U(Kκ) be a unitary representation of K on V := Kκ. Let Γ⊂G
be a discrete subgroup of finite co-volume. A smooth function f : G/Γ → V is called

automorphic if it satisfies the following three conditions: The first is an invariance

condition

f(kgγ) = kκ f(g) ∀ k ∈ K, γ ∈ Γ. (2.1.1)

The second is a finiteness condition

codim (ĝ◦)⊥f = dim (ĝ◦/(ĝ◦)⊥f <∞. (2.1.2)

The third is a growth condition at ∞

‖f(g)‖ 6 c · trg(Ad∗gAdg)
m/2 (2.1.3)

for some c > 0 and m ∈ N. Here Ad : G→ GL(g) is the adjoint representation and the

adjoint

g∗ = θ(g−1)

where θ is the Cartan involution. These conditions make sense for distributions, but one

can show that automorphic forms are automatically real-analytic. Here the finiteness

condition (2.1.2) is essential. We note that there exist the important special scalar case

where V = C is 1-dimensional and codim (ĝ◦)⊥f = 1.

In order to understand the condition (2.1.1) in geometric terms, consider the associ-

ated vector bundle

G×K V = {[g, v] = [kg, kκv] : k ∈ K}

over K\G. Define

C∞K (G, V ) = {Ψ ∈ C∞(G, V ) : Ψ(kg) = kκ Ψ(g) ∀ k ∈ K}.

Every smooth section ψ ∈ C∞(G×K V ) has a ’homogeneous lift’ ψ̃ : G→ V defined by

ψKg = [g, ψ̃(g)].
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Then [kg, ψ̃(kg)] = ψKg = [g, ψ̃(g)] = [kg, kψ̃(g)]. Hence ψ̃ ∈ C∞K (G, V ) and we obtain a

linear isomorphism

C∞K (G, V )
≈←− C∞(G×K V ).

The first part of (2.1.1) says that f is the homogeneous lift of a (unique) section ψ ∈
C∞(G×K V ). Now consider the left action

(γ ·Ψ)(g) := Ψ(gγ)

of γ ∈ G on C∞(G, V ), which leaves the subspace C∞K (G, V ) invariant, since (γ.Ψ)(kg) =

Ψ(kgγ) = kκ Ψ(gγ) = kκ (γ · Ψ)(g). Via the isomorphism (??) we obtain a left action

(γ, ψ) 7→ γ · ψ of G on C∞(G×K V ) which is indirectly determined by

ψKh = [h, (γ · ψ̃)(hγ−1)]

for all h ∈ G. The second part of (2.1.1) says that the section corresponding to f is Γ-

invariant under this action. In summary, automorphic forms are Γ-invariant sections of

a homogeneous vector bundle, which are generalized eigensections and satisfy a growth

condition.

To make contact with the standard notion using cocycles, consider a right action

X × G → X of G on a (smooth/real-analytic/complex analytic) space X, and a group

H with a linear representation ρ : H → GL(V ) on some complex vector space V. Consider

a map

J : G×X → H, (g, z) 7→ Jg(z)

satisfying the cocycle condition

Jgg′(z) = Jg(z) Jg′(zg)

for all z ∈ X and g.g′ ∈ G. Note that H is non-commutative, so that the order is

important. Then a (smooth/real-analytic/holomorphic) function f : X → V is called

J-automorphic if it satisfies

f(z) = Jγ(z)ρ f(zγ)

for all z ∈ X and γ ∈ G. Let AJΓ(X, V ) denote the vector space of all J-automorphic

functions. The assignment

(z, v) · γ := (zγ, Jγ(z)−1v)

defines a right action of G on X ×G since

((z, v) · γ) · γ′ = (zγ; Jγ(z)−1v) · γ′ = ((zγ)γ′, Jγ′(zγ)−1Jγ(z)−1v)

= ((zγ)γ′, (Jγ(z) Jγ′(zγ))−1v) = (z(γγ′), Jγγ′(z)−1v) = (z, v) · (γγ′)

Let

X ×Γ V := (X × V )/Γ = {[z, v] = [zγ, Jγ(z)−1v]}
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denote the quotient, regarded as a bundle overX/Γ via the mapX×ΓV → X/Γ, [z, v] 7→
zΓ. Its sections C∞(X ×Γ V ) can be identified with

C∞Γ (X, V ) := {Φ : X → V : Φ(zγ) = Jγ(z)−1Φ(z)}

by putting

φz = [z, φ̃(z)

for all φ ∈ C∞(X ×Γ V ) and z ∈ X. Comparison with (??) shows that J-automorphic

functions are just the (homogeneous lifts of) (smooth/real-analytic/holomorphic) sec-

tions of X ×JΓ V.
Now consider the special case X = K\G endowed with its natural right G-action.

Lemma 47. The H-valued automorphy factors on K\G are in 1-1 correspondence with

homomorphisms j : K → H together with a cross-section (= trivialization) θ of the

associated (principal) H-bundle

G×K H = {[g, h] = [kg, jk h] : g ∈ G, h ∈ H, k ∈ K}

such that θ̃(k) = jk.

Proof. Let J be a factor of automorphy. Then for k, k′ ∈ K and the fixed point o :=

K ∈ K\G we obtain

Jkk′(o) = Jk(o) Jk′(ok) = Jgg′(z) = Jk(o) Jk′(o).

It follows that k 7→ Jk(o) is a homomorphism K → H. Consider the associated (princi-

pal) H-bundle

P = G×K H = {[g, h] = [kg, Jk(o)h] : g ∈ G, h ∈ H, k ∈ K}.

The cross sections C∞(G×K H) are identified with

C∞K (G,H) = {Θ : G→ H : Θ(kg) = Jk(o)Θ(g)}

by putting

ϑg = [g, ϑ̃(g)]

for all ϑ ∈ C∞(G×K H). The map G 3 g 7→ Jg(o) ∈ H satisfies

Jkg(o) = Jk(o) Jg(ok) = Jk(o) Jg(o)

and hence belongs to C∞K (G,H). It follows that

θKg = [g, Jg(o)]

defines a cross-section of G×K H such that θ̃(g) = Jg(o). In particular, θ̃(k) = Jk(o).
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Conversely, let j : K → H be a homomorphism. Then the cross sections C∞(G×KH)

are identified with

C∞K (G,H) = {Θ : G→ H : Θ(kg) = jk Θ(g)}

by putting

ϑg = [g, ϑ̃(g)]

for all ϑ ∈ C∞(G ×K H). Assume there is a cross-section θ such that its homogeneous

lift θ̃ ∈ C∞K (G,H) satisfies θ̃(k) = jk. Define

Jγ(og) := θ̃(g)−1θ̃(gγ) ∈ H

Then

Jγ(okg) := θ̃(kg)−1θ̃(kgγ) = (j(k)θ̃(g))−1 j(k)θ̃(gγ) = θ̃(g)−1 θ̃(gγ) = Jγ(og)

so that J : G×K\G→ H is well-defined, and satisfies Jk(o) = θ̃(e)−1θ̃(k) = j(e)−1j(k) =

j(k). Moreover, the automorphy property becomes

Jγ(z) Jγ′(zγ) = Jγ(og) Jγ′(ogγ) = θ̃(g)−1θ̃(gγ)θ̃(gγ)−1θ̃(gγγ′) = θ̃(g)−1θ̃(gγγ′) = Jγγ′(og) = Jγγ′(z).

In view of the above Lemma, we write the homomorphism j : K → H as j(k) = Jk(o)

for a (unique) H-valued cocycle J.

Lemma 48. The map

(Kg, h) 7→ [g, Jg(o)h]

induces a trivialization

K\G×H ≈ G×K H

as a principal H-bundle.

Proof. This map is well-defined, since [kg, Jkg(o)h] = [kg, Jk(o)Jg(o)h] = [g, Jg(o)H] for

all k ∈ K. By construction, the map is also H-equivariant.

Lemma 49. The map

(Kg, v) 7→ [g, Jg(o)
ρv]

induces a vector bundle trivialization

K\G× V ≈ G×K V ≈ (G×K H)×H V.

The induced isomorphism on the sections

C∞(G, V )idK ←− C∞(K\G, V )
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has the form f̃(g) = Jg(o)
ρ f(Kg) for all f ∈ C∞(K\G, V ). Moreover, for the right

translation action

(g · f̃)(g′) := f̃(g′g)

on C∞(G, V )idK , and the G-action on CL∞(K\G, V ) induced by

(K\G× V )×G→ K\G× V, (z, v) · g := (zg, Jg(z)−ρv),

the isomorphism (??) is G-equivariant.

Proof. This map is well-defined, since [kg, Jkg(o)
ρ v] = [kg, (Jk(o)Jg(o))

ρ v] = [kg, Jk(o)
ρ Jg(o)

ρ v] =

[g, Jg(o)
ρv] for all k ∈ K.

Thus every section of (G ×K H) ×H V over (G ×K H)/H ≈ K\G is of the form

θ̃[g, h] = h−ρ f(Jg(o)) for some function f : K\G → V. There is a left action of G on

these sections by

g′ · θ̃[g, h] := θ̃[g′g, h]

Put

f ◦ π(g) := f(Kg)

where π : G → K\G is the canonical projection. Then the automorphy condition

becomes

(f ◦ π)(g) = f(Kg) = Jγ(Kg)ρ f(Kgγ) = Jγ(Kg)ρ (f ◦ π)(gγ).

Equivalently,

(f ◦ π)(gγ) = Jγ(Kg)−ρ (f ◦ π)(g)

which shows that f ◦ π ∈ C∞Γ (G, V ) or, equivalently, its homogeneous lift is Γ-invariant

under the action specified in Lemma ??.

*** Now assume in addition that H has a representation ρ : H → GL(V ) and

consider the associated vector bundle

(G×K H)×HV = {[p, v] = [ph, h−ρv] : p ∈ P, v ∈ V, h ∈ H}

over P/H, whose cross-sections C∞(P ×HV )) are identified with

C∞H (P, V ) = {Θ ∈ C∞(P, V ) : Θ(ph) = h−ρΘ(p)}

via the assignment

ϑpH = [h, ϑ̃(p)].

On the other hand, the representation k 7→ Jk(o)
ρ allows to form the associated vector

bundle

G×K V = {[g, v] = [kg, Jk(o)
ρv] : g ∈ G, v ∈ V, k ∈ K}
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over K\G, whose cross-sections C∞(G×K V )) are identified with

C∞K (G, V ) = {Σ ∈ C∞(G, V ) : Σ(kg) = Jk(o)
ρΣ(g)}

via the assignment

σKg = [g, σ̃(g)].

Let [g, h]h′ := [g, hh] be the canonical right H-action on G×K H. Then the map

Kg 7→ [g, Jg(o)]H

is an isomorphism of the quotient spaces K\G→ (G×K H)/H.

There is a natural identification

G×K V = (G×K H)×H V.

Then P/H = K\G. Now let f : K\G→ V and write f̃(g) := f(og) where o = K ∈ K\G
is the midpoint. Then the automorphy condition is

f̃(g) = f(og) = Jγ(og)ρf(ogγ) = Jγ(og)ρf̃(gγ)

with

Jgγ(o) = Jg(o) Jγ(og).

Thus we obtain Jg(o)
ρf̃(g) = Jgγ(o)

ρf̃(gγ) so that ***

The space of all automorphic functions (with values in Kκ) of type I, resp. χ, is

denoted by

C∞χ (G/Γ, Kκ), C∞I (G/Γ, Kκ),

One has to show that this space has finite dimension (and to compute its dimension).

This was done (in the codim 1 case) by Selberg for SLZ
2 ⊂ SLR

2 , by Gelfand-Pjatetski-

Shapiro (GPS) for SLZ
n ⊂ SLR

n , and in the holomorphic case by Siegel for SpZ
2n⊂ SpR

2n.

The general case is due to Langlands.

2.1.1 The holomorphic case

Let K\G be a hermitian bounded symmetric domain. The Cartan decomposition

g = k⊕ p

into the ±-eigenspaces of the symmetry so at the origin o = K ∈ K\G induces a splitting

gC = kC ⊕ p+ ⊕ p−

where kC consists of linear vector fields on D = k\G⊂ J, in its Harish-Chandra realiza-

tion

D 7→ p+, tanh(v) 7→ ∂v (v ∈ J),
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p+ consists of all constant vector fields, and p− contains all quadratic vector fields induced

by the Jordan triple product. Considering the associated subgroups of the conformal

group GC we have

P−KCP+ ⊂
open

GC.

Every g ∈ G has a unique decomposition

g = h g′(o) tg(o)

with h ∈ P−. This follows from the properties h(0) = 0, h′(0) = 0 of h ∈ P−. Therefore

G⊂P−KCP+.

Proposition 50. The assignment

Jg(z) := g′(z) ∈ KC

defines a holomorphic factor of automorphy with values in the complex Lie group KC.

Proof. The automorphy condition

Jgg′(z) = Jg(z) Jg′(zg)

follows since we use the right action (z, g) 7→ zg.

The above decomposition shows that the anti-holomorphic tangent space

T o(D) = p−.

Regarding p− as complexified vector fields on D, let Y ∂f for each Y ∈ p− denote the

anti-holomorphic Wirtinger derivative of functions f : D → V. Then

O(D, V ) = {f ∈ C∞(D, V ) : Y ∂f = 0 ∀ Y ∈ p−} = C∞(D, V )⊥p− .

Proposition 51. Let f be a holomorphic automorphic function with respect to J. Then

its homogeneous lift

f̃(g) := Jg(o) f(og)

is automatically ĝ◦-finite (a generalized eigenfunction)

Proof. One first shows that satisfies

(Y ρ̇f̃)(g) = Jg(o) (Y ∂f)(Kg)

Thus for holomorpic f we have

Y ρ̇f̃ = 0
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for all Y ∈ p−. The decomposition (??) induces a vector space decomposition

ĝ = ĝC = p̂
− ⊗ k̂⊗ p̂

+

with p̂
±

actually symmetric algebras, since p± is abelian. Therefore every Y ∈ ĝ has a

finite representation

Y =
∑
i

p− ki p
+
i .

One shows that for Y ∈ ĝ◦ the terms p±i occur always both ore not, so there is a linear

map

λ : ĝ◦k

such that

Y − λY ∈ ĝ⊗ p̂
−

By holomorphy, this implies

(Y − λY )ρ̇f̃ = 0.

Since f̃ is supposed to be K-finite, it follows that the annihilator ideal k̂
⊥
f̃ has finite

codimension. By (??) the same is true for (ĝ◦)⊥
f̃
.

2.1.2 Poincaré and Eisenstein series

In the holomorphic case, let J : K\G×G→ GL(V ) be a (holomorphic) automorphy

factor, and let φ : K\g → V be holomorpihc, but not necessarily Γ-invariant. We know

that f̃ is automatically ĝ◦-finite. Then the series

φJΓ(z) :=
∑
γ∈Γ

Jγ(z) φ(zγ)

if convergent, defines a holomorphic J-automorphic function on K\G. If V = C, we can

also take

φmΓ (z) :=
∑
γ∈Γ

Jmγ (z) φ(zγ)

since in this case Jm is again a (holomorphic) automorphy factor. If φ is already invariant

under a subgroup Γ∞⊂Γ and Jγ = 1 for γ ∈ Γ∞, then we take instead

φΓ/Γ∞(z) :=
∑

γ∈Γ/Γ∞

Jγ(z) φ(zγ)

In the homogeneous case let f : G → V be K-equivariant and ĝ◦-finite, but not

necessarily Γ-invariant. Then the series

fΓ(g) :=
∑
γ∈Γ

f(gγ)
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if convergent, defines an automorphic function on G. If f is already invariant under a

subgroup Γ∞⊂Γ, then we take instead

fΓ/Γ∞(g) :=
∑

γ∈Γ/Γ∞

f(gγ)

Theorem 52. Let f ∈ L1(G, V ) be left K-finite and ĝ◦-finite. Then

fΓ(g) :=
∑
γ∈Γ

f(gγ)

converges absolutely and uniformly on compact subsets.

Proof. Since ∫
G

dg|f(g)| =
∫
G/Γ

dg
∑
γ∈Γ

|f(gγ)| <∞

it follows that
∑
γ∈Γ

|f(gγ)| converges in L1(G/Γ), in particular almost everywhere. Now

the two finiteness conditions imply that f is annihilated by an elliptic operator L. By

general (closed graph) principles this implies that the series
∑
γ∈Γ

|f(gγ)| converges in the

C∞-topology, hence also uniformly on compact subsets. For the second assertion, assume

that f is right K-finite. By Harish-Chandra’s Lemma, for any e-neighborhood U there

exists δ ∈ C∞c (U) invariant under Int(K) such that

f(g) = (f ∗ δ)(g) =

∫
G

ds f(gs−1) δ(s)

For γ ∈ Γ it follows that

f(gγ) =

∫
G

ds f(gγs−1) δ(s) =

∫
G

dt f(gt−1) δ(tγ)

If U

2.1.3 Root decomposition and parabolic subgroups

For any torus S⊂G, with character group S], we have the root decomposition

g = s⊕
∑
α∈S]g

gαS

where, for α ∈ S], we put

gαS := {X ∈ g : AdsX = sα X ∀ s ∈ S}

53



and

S]g := {α ∈ S] : gαS 6= 0}.

For an algebraic group G a subgroup P ⊂G is called parabolic if G/P is projectively

algebraic. Then we have a Levi decomposition

P = SP>

where S⊂G is a torus and P> is the unipotent radical. For the Lie algebra this means

p = s⊕ p>.

The minimal parabolic (Borel) subgroups contain a maximal torus T ⊂G. Consider

the associated root decomposition

g = t⊕
∑
α∈T ]g

gαT .

The Weyl group G•T/G
◦
T acts simply transitively on the set of minimal parabolic sub-

groups by selecting a Weyl chamber. Thus

p = t⊕
∑
α∈T ]n

gαT

where T ]n ⊂T ]g denotes the set of positive roots. Choose a subset T˜]n⊂T ]n of simple

(positive) roots. For any subset Θ⊂T˜]n we define a subtorus

TΘ :=
⋂
α∈Θ

kerα⊂T

of dimension rk(G)− |Θ| and obtain the standard parabolic

PΘ = 〈G◦TΘ , U〉 = G◦TΘP
Θ
>

with

nΘ =
∑

α∈T ]n∼〈Θ〉

gαT .

In the real case G = GR we have A⊂T ⊂G for some maximal R-split torus T and

obtain

G•A = G•T = K•AA

G◦A = K◦AA

It follows that

G•A/G
◦
A = K•A/K

◦
A

and

G = KAN ⊃K◦AAN

is a minimal parabolic.
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2.2 Eisenstein series

For a matrix x ∈ Cn×n we put

‖x‖2 := tr(x∗x)1/2.

If g ∈ GLC
n we have ‖g‖ > 1 and ‖g−1‖2 6 c ‖g‖N for some c and N. Let G be a

connected semi-simple Lie group with finite center and Lie algebra g. We regard G as

the group of real points of some algebraic subgroup of GLC
n .

To construct such automorphic functions, consider the Iwasawa decomposition

G = KAN

of G. For example, if G = SLR
n , then K = SUR

n , A ≈ Rn
+ is realized as diagonal matrices

and N =

(
1 ∗
0 1

)
consists of all unipotent upper triangular matrices. Writing g = kan

we put a =: gA, k =: gK . By [6, p.4] we have

dg = a2ρdk da dn

where ρ : a → R is the half-sum of positive restricted roots. Now fix λ ∈ a∗C (linear

dual) and define the ’conical’ function Nλ : G/N → End(Kκ) by

Nλ(g) := gκK gλ−ρA .

Here we use (gn)K = gK , (gn)A = gA. Then there exists a character

χλ : U◦g → C,

satisfying χsλ = χλ for all s ∈ W = K•A/K
◦
A (Weyl group), such that

X∂Nλ = χλ(X) Nλ

for all X ∈ U◦g . The Γ-invariant Eisenstein series is now (formally) defined by

N
(Γ∩N)\Γ
λ (g) =

∑
γ∈(Γ∩N)\Γ

Nλ(gγ) =
∑

γ∈(Γ∩N)\Γ

(gγ)κK (gγ)λ−ρA

Then we still have

X∂N
(Γ∩N)\Γ
λ = χλ(X) N

(Γ∩N)\Γ
λ

since X is acting from the left. One first proves convergence for λ in a non-empty open

subset of a∗C. However, for these λ the associated character χλ is not the infinitesimal

character of a unitary representation of G. Thus one needs analytic continuation as a

meromorphic function in λ ∈ a∗C and prove unitarity on a suitable ’imaginary’ subspace.
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2.3 Siegel domains

Let P ⊂G be a cuspidal parabolic subgroup. By [6, p. 5] we have decompositions

G = KP,

P = MAU Langlands decomposition

where the A-component of g = kmau is uniquely determined. Put

At := {a ∈ A : ΣO| log a 6 t}

For a bounded domain Ω⊂PO the associated Siegel domain is defined by

S := KAtΩ⊂G.

A subgroup Γ⊂GQ which is commensurable with GZ is called arithmetic. By a theo-

rem of Borel [6, p. 5] the double quotient

PQ\GQ/Γ

is finite and for a (finite) subset Λ ∈ GQ we have

G = SΛΓ

for a Siegel domain S ⊂G if and only if

GQ = PQΛΓ.

2.4 Theta Functions

In this section we generalize the classical theta function and its transformation properties

to a multi-variable setting. Let X be a euclidean Jordan algebra of rank r, with positive

definite cone X́, and tube domain

Ú = X + iX́ = {z + iy : y > 0}

in the complexification U = X ⊗ C. Let V be a hermitian vector space, with inner

product (v|b), endowed with a conjugation v 7→ v and real form

VR := {v ∈ V : v = v}.

Define the Fourier transform L2(VR)→ L2(V ]
R) by

f̂(β) :=

∫
VR

db e−2πi(b|β) f(b).
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The inverse Fourier transform L2(V ]
R)→ L2(VR) is given by

φ̌(b) :=

∫
V ]R

dζ e2πi(b|β) φ(β).

Consider the dual lattice

L] := {λ ∈ V ]
R : (L|λ)⊂Z}.

Then we have the Poisson summation formula

|L|1/2
∑
`∈L

f(`) = |L]|1/2
∑
λ∈L]

f̂(λ)

Here |L| = Vol(VR/L) is the volume of a fundamental domain for L in VR.

The set H(VR) of all self-adjoint endomorphisms of VR is a euclidean Jordan algebra

under the anti-commutator product. Consider an injective unital representation

ρ : X → H(VR), z 7→ ρx = x̃

of X on VR, satisfying x̃2 = x̃2 for all z ∈ X. Let u 7→ ũ ∈ Endsym(V ) be the C-

linear extension. Every simple euclidean Jordan algebra X 6= H3(O) has such a faithful

representation.

A positive definite w ∈ H+(VR) is called an intertwiner if

w ũ = ũ w

for all u ∈ U.
Let w : VR → V ]

R be a linear isomorphism, such that for all u ∈ U the bilinear form

(ũv)(wb) = (ũb)(wv)

on V is symmetric, and is positive definite when u ∈ X́.. For the unit element u = c we

obtain in particular

v(wb) = b(wv).

Let L⊂VR be a lattice and define the multi-variable theta function

ΘL
w(u, v) := |L|1/2

∑
`∈L

eπi(ũ`+2v)·w̃`

for all u ∈ Ú and v ∈ V. This series |.|-converges compactly on Ú × V since for u =

z + iy ∈ Ú we have y ∈ X́ and therefore

iũ` · w̃` = iz̃` · w̃`− ỹ` · w̃`
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with ỹ` · w̃` positive definite and eπiz̃`·w̃` of modulus 1. For the special case v = 0 we

obtain the theta nullwerte

ΘL
w(u, 0) := |L|1/2

∑
`∈L

eπiũ`·w̃`

as a holomorphic function on Ú , which is also called the theta function of the lattice

L.

Consider the inverse isomorphism w−1 : V ]
R → VR and the dual action ũ] on V ]

R

defined by

v(ũ]ν) = (ũv)ν

for all v ∈ VR, ν ∈ V ]
R.

Lemma 53.

(w−1β)(wb) = bβ.

(w−1β)(ũ]ν) = (w−1ν)(ũ]β)

Proof. In fact, put v := w−1β. Then (w−1β)(wb) = v(wb) = b(wv) = bβ. For the second

assertion, put w−1ν = v and w−1β = b. Then

(w−1β)(ũ]ν) = (ũw−1β)ν = (ρub)(w̃v)

is symmetric in (b, v) by (??) and hence symmetric in β, ν.

By Lemma (??), we can also define the dual theta function

ΘL]

w−1(u, ν) = |L]|1/2
∑
λ∈L]

eπi(w
−1λ|ũλ+2ν)

for all u ∈ Ú and ν ∈ V ].

Lemma 54.

ΘL
w(u, v) = detw−1/4 Θw1/2L

id (u,w1/2v)

Proof. Use the formulas

(ũ`+ 2v|w`) = (w1/2ũ`+ 2w1/2v|w1/2`) = (ũw1/2`+ 2w1/2v|w1/2`)

and

|VR/w1/2L| = detw1/2 |VR/L|
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For example,

(MZn×1)] = M−TZn×1.

An automorphism of ρ is a pair σ ∈ GL(X), τ ∈ GL(V ) satisfying

ρσ(z) = τρ(z)τT

for all z ∈ X.

Proposition 55. For an automorphism (σ, τ) of ρ we have

ΘL
w(u, v) = det τ 1/2 ΘτTL

τTwτ (u, v)

For v, b ∈ VR we have

(ũv|w∗b) = (ũb|w∗v),

since both sides are C-linear in u ∈ U, and for z ∈ X we have (v|w∗x̃b) ∈ R and

(x̃v|w∗b) = (wx̃v|b) = (x̃wv|b) = (wv|x̃b) = (x̃b|wv).

Proposition 56. For ` ∈ L and λ ∈ L] the translation formulas

ΘL
w(u, v) = ΘL

w(u, v + w−1λ) = eπi(ũ`+2v|w∗`) ΘL
w(u, v + ũ`)

hold.

Proof. Let ` ∈ L and λ ∈ L]. Then (??) implies (w−1λ|w`) = (`|λ) ∈ Z. Hence the first

assertion follows from

(ũ`+ 2(v + w−1λ|w∗`) = (ũ`+ 2v|w∗`) + 2(w−1λ|w∗`) = (ũ`+ 2v|w∗`) + 2(`|λ).

For `, `′ ∈ L we have (ũ`|w∗`′) = (ũ`′|w∗`) by (??). Hence the second assertion follows

from

(ũ`+ 2v|w∗`) + (ũ`′ + 2(v + ũ`)|w∗`′)

= (ũ`|w∗`) + (ũ`′|w∗`′) + 2(ũ`|w∗`′) + 2(v|w∗`+ w∗`′)

= (ũ(`+ `′)|w∗(`+ `′)) + 2(v|w∗(`+ `′)) = (ũ(`+ `′) + 2v|w∗(`+ `′))

using `+ L = L.

Proposition 57. We have the inversion formula

ΘL]

w−1(−u−1, ũ−1wv) = |w|1/2 |ρ(−iu)|1/2 eπi(ũ−1v|w∗v) ΘL
w(u, v)
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Proof. Consider the function

f(b) = eπi(iw̃
−1b−2iw̃−1w̃v)·w̃−1b = e−πw̃

−1·w̃−1b e2πw̃−1w̃v·w̃−1b = e−π(w̃ỹ)−1b·b e2πw̃−1v·b

for b ∈ VR. Applying [?, Theorem 1, p. 256] to the matrix (w̃ỹ)−1 and the vector

β + iw̃−1v, we obtain the Fourier transform

f̂(β) =

∫
VR

db e−2πiβ·b f(b)

=

∫
VR

db e−2πiβ·b e−π(w̃ỹ)−1b·b e2πw̃−1v·b =

∫
VR

db e−2πi(β+iw̃−1v)·b e−π(w̃ỹ)−1b·b

= |w̃ỹ|1/2 e−π(β+iw̃−1v)·w̃ỹ(β+iw̃−1v) = |w̃ỹ|1/2 e−π(β+iw̃−1v)·w̃(ỹβ+iv)

= |w̃ỹ|1/2 eπw̃−1v·w̃v e−πβ·w̃ỹβ e−2πiβ·w̃v = |w̃ỹ|1/2 eπw̃−1v·w̃v eπi(iỹβ+2v)·w̃β

The Poisson summation formula yields

ΘL
w−1(−iw−1, w̃−1w̃v) = |L|1/2

∑
`∈L

f(`) = |L]|1/2
∑
λ∈L]

f̂(λ)

= |w̃ỹ|1/2 |L]|1/2 eπw̃−1v·w̃v
∑
λ∈L]

eπi(iỹλ+2v)·w̃λ = |w̃ỹ|1/2 eπw̃−1v·w̃v ΘL]

w (iy, v).

Let Z be a J∗-triple, with triple product {u; v;w} =: uvw. Any idempotent c ∈ Z of

rank k 6 r induces a Peirce deomposition

Z = Zc
2 ⊕ Zc

1 ⊕ Zc
0.

One can show that the mapping

ũv := ucv = {u; c; v}

defines a homomorphism Zc
2 → End(Zc

1). For each w ∈ Zc
0 and v, b ∈ Zc

1 put

v(w̃b) := (vwb|c) = (vcb|w).

Lemma 58. For each invertible w ∈ Z̊
c

0 the transformation w̃ : Zc
1 → Zc]

1 is an isomor-

phism, with inverse w̃−1. Moreover

(ucv)(w̃b) = (vu∗b|w)
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Proof. Consider matrices u =

(
u 0

0 0

)
, v =

(
0 v1

v2 0

)
, b =

(
0 b1

b2 0

)
, w =

(
0 0

0 w

)
.

Then

ucv = uv + vu =

(
0 uv1

v2u 0

)
,

vwb = vw∗b+ bw∗v =

(
v1w

∗b2 + b1w
∗v2 0

0 0

)
.

Therefore

v(w̃b) = (

(
v1w

∗b2 + b1w
∗v2 0

0 0

)
|
(

1 0

0 0

)
) = (v1w

∗b2 + b1w
∗v2|1) = tr(v1w

∗b2 + b1w
∗v2)

This implies

(ucv)(w̃b) =

(
0 uv1

v2u 0

)
(w̃b) = tr(uv1w

∗b2+b1w
∗v2u) = tr(v1w

∗b2u+ub1w
∗v2) = (ucb)(w̃v).

The identity

vub = vu∗b+ bu∗v =

(
0 0

0 v2u
∗b1 + b2u

∗v1

)
shows that

(vub|w) =
((0 0

0 v2u
∗b1 + b2u

∗v1

)
000|

(
0 0

0 w

))
= (v2u

∗b1 + b2u
∗v1|w)

= tr(v2u
∗b1 + b2u

∗v1)w∗ = tr(b1w
∗v2u

∗) + tr(b2u
∗v1w

∗b2)

It follows that

(vu∗b|w) = (ucv)(w̃b)

for all u ∈ Zc
2, v, b ∈ Zc

1 and w ∈ Zc
0.

hence obtain the theta function

ΘL
w(u, v) = |L|1/2

∑
`∈L

eπi(`u∗`+2vc`|w)

Note that `u∗`+ 2vc` ∈ Zc
0.

Let L⊂X be a lattice, with dual lattice

L′ := {λ ∈ X : (L|λ)⊂ 2Z}.

Assume that ` ∈ L⇒ `2 ∈ L. Put Li := L ∩Xc
i and suppose the lattice Lc1 is self-dual.

Now fix ω ∈ X́
c

0.
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Proposition 59. Consider the O(Ź
c

2)-moduleM consisting of all holomorphic functions

ϑ : Ź
c

2 × Zc
1 → C which satisfy the two invariance properties

ϑ(u, v) = ϑ(u, v + `) = eπi(P`u+{`;e;v}) ϑ(u, v + {u; e; `})

for all ` ∈ L1. Then

dimO(Ź
c
2)M =

|{L1; e;ω}|
|L1|

.

Define the theta function

Θµ(v, w) :=
∑
ν∈L]1

eπi(
{λ;w;λ}

2
+{v;e−c;λ}|µ)

Note that {λ;w;λ} ∈ {Z1;Z0;Z1}⊂Z2 and {v; e− c;λ} ∈ {Z1;Z0;Z1}⊂Z2.

Proposition 60. The functions

(u, v) 7→ eπi(v|`) Θω(u, v + {ω−1; e; {v; e; `}}),

for ` ∈ L1/{L1; e;ω}, form a basis of M over O(Ź
c

2). For ` = 0 we obtain the standard

Θ-function.

The theta function has the following invariance properties

Θω(u, v) = Θω(u+ `2, v) = Θω(u, v + `1)

= eπi(P`1u+{`1;e;v}|ω) Θω(u, v + {u; e; `1}) = Θgω(gu, gv)

whenever `2 ∈ L′2, `1 ∈ L1 = L′1 and g ∈ GL(X́) satisfies Pgz = g Pz g
+, g(Xc

i ) =

Xc
i , g

+L1 = L1 and g|Xc
0

is a Jordan algebra automorphism, equivalently, g(e−c) = e−c.
The important inversion formula is

Θ(ω−1)(−u−1, {u−1; e; {v; e;ω}}) = N(e−c−iu)d/r−d2/k N(c+ω)d/r−d0/(r−k) eπi(Pvu
−1|ω) Θω(u, v)

2.5 Algebraic groups

Let V be a finite-dimensional vector space defined by linear equations over Q. Thus VQ
is a Q-vector space and we put

VK := VQ ⊗K

for any field K ⊃Q. A subgroup G⊂GL(V ) defined by algebraic equations with rational

coefficients is called a (linear) algebraic group defined over Q. We define

GK := GQ ⊗K ⊂GL(VK)
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defined by the same equations over K ⊃Q. Examples are the full linear group and

the orthogonal/symplectic subgroups, but not the unitary group. A discrete subgroup

lL⊂VQ is called a lattice if VR/lL is compact. This means that Λ is a free abelian

group of full rank. Put

GΛ := {g ∈ G : gΛ = Λ}

A subgroup Γ⊂G is called an arithmetic subgroup if Γ is commensurable with GΛ

for some lattice Λ⊂V Q.

Now assume that G is of hermitian type. Equivalently, G is the conformal group of

a hermitian Jordan triple. Then we have

G0
R = Aut0(D)

for some bounded symmetric domain D. The image Γ⊂G0
R of an arithmetic subgroup

is a discrete subgroup and hence acts properly discontinuous on D. It follows that the

quotient space D/Γ is a Zariski-open subset of an algebraic projective variety.

2.6 Satake compactification

Let Γ⊂G = Aut(D)0 be an arithmetic discrete subgroup. Let c ∈ Z be a rational

tripotent and F = c + Dc
0⊂ ∂QD be the associated rational boundary component. The

Cayley transformation γc maps D onto the Siegel domain

Dc := γc(D) = {(u, v, w) ∈ Zc
2 ⊕ Zc

1 ⊕ Zc
0 : Im(u)− Lw(u, u) ∈ X́2}.

For an open neighborhood ζ ∈ U ⊂F and a ∈ X́2 we consider the cylindrical set

Da,U
c := {(u, v, w) ∈ Zc

2 ⊕ Zc
1 ⊕ Zc

0 : Im(u)− Lw(u, u) ∈ a+ X́
c

2}

in Dc. There exist finitely many rational boundary components Zi⊂ ∂QD such that

F ⊂ ∂QEi, and for every rational boundary component Z ⊂ ∂QD such that F ⊂ ∂QZ
there exists γ ∈ Γ such that Z = Eiγ for some i. Write

Zi = ci) +Dci
0

where ci is a rational tripotent covered by c. The Peirce 0-space Zci
0 has itself a Peirce

decomposition

Zci
0 = Zc−ci

2 ⊕ Zc−ci
1 ⊕ Zc

0

with respect to the rational tripotent c−ci ∈ Zci
0 . Consider the Siegel domain realization

(Dci
0 )c−ci := γc−ci(D

ci
0 ) = {(u, v, w) ∈ Zc−ci

2 ⊕ Zc−ci
1 ⊕ Zc

0 : Im(u)− Lw(u, u) ∈ X́
c−ci
2 }.

Choosing ai ∈ X́
c−ci
2 for each i, we may consider cylindrical sets

(Dci
0 )ai,Uc−ci := {(u, v, w) ∈ Zc−ci

2 ⊕ Zc−ci
1 ⊕ Zc

0 : Im(u)− Liw(u, u) ∈ ai + X́
c−ci
2 }
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Note that U is unchanged and independent of i.ci 0 0

0 c− ci 0

0 0 Dc
0


Then a basis of open neighborhoods of ζΓ ∈ (D ∪ ∂QD)/Γ is given by(

U ∪Da,U
c ∪

⋃
i

ci + (Dci
0 )ai,Uc−ci

)
Γ

where ζ ∈ U ⊂Dc
0, a ∈ X́

c

2 and ai ∈ X́
c−ci
2 .

2.7 Siegel domains

Let u ∈ X̊2, x, y ∈ X1. By Lemma 4.1 we have

ue(u
−1
e x) = x

Therefore also u−1
e (uex) = x. Moreover, the Jordan triple identity yields

ze(weu)− we(zeu) = (zey)eu− wexeu

Since exe = 0 and zey ∈ X2 ⊕X0 it follows that

ze(weu)− we(zeu) ∈ X2.

Replacing z 7→ u−1
e x yields

(u−1
e x)e(uey)− wex = (u−1

e x)e(uey)− we(u(u
−1
e x)) ∈ X2.

Replacing z 7→ uex, u 7→ u−1 yields

(uex)e(u
−1
e y)− wex = (uex)e(u

−1
e y)− we(u−1

e (uex)) ∈ X2.

Now the assertion follows by subtraction.

[*]

2.8 Automorphic Forms on Bounded Symmetric Do-

mains

2.8.1 Harish-Chandra realization

Every g ∈ G can be represented as g = t̃b ·h · ta with a = 0 ·g and h = 0g. Now let z ∈ D
and g ∈ G. Choose

γ = t̃z ·B1/2
z,z · tz
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and

γg = t̃b · h · tzγ

Then we have

h = 0γg = 0γ · zg = B1/2
z,z · zg

Therefore

γg = t̃b · (B1/2
z,z · zg) · tzγ

and
zg = B−1/2

z,z · h = Adp+(B−1/2
z,z · h)

2.9 Boundary Components and Fourier-Jacobi Se-

ries

2.9.1 Boundary components

The boundary components of D have the form

F = c+ Ž
c

0

where c ∈ Sk is a non-zero tripotent and Ž
c

0 is the open unit ball of the Peirce 0-space

Zc
0 of rank r − k. The associated Cayley transform is defined by

γc = exp(
π

4
(c+ c∗)) = tc ◦B1/2

c,−c ◦ t̃c

Under the Peirce decomposition

Z = Zc
2 ⊕ Zc

1 ⊕ Zc
0 3 (u, v, w)

the Cayley transform has the explicit rational realization

γc(u, v, w) = (c+u)◦(c−u)−1,
√

2D((c−u)−1, c)v, w+Pv(c−u)−1) = ({c+u; c; ; (c−u)−1,
√

2{(e−u)−1; e; v}, w+Pv(c−u)−1).

The Siegel domain of type III is

Dc := {(u, v, w) : w ∈ Žc

0, u−
1

2
{v; (id +Qc,w)−1; v} ∈ X́c}

where the conjugate-linear endomorphism Qc,wv := {c; v;w} acting on V has norm < 1

since ‖w‖ < 1. The Cayley transform satisfies

γc(0) = c

The Peirce 0-projection

γc(Ž)
P c0−→ Ž

c

0, (u, v, w) 7→ w
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yields a holomorphic projection

Ž
(c+P c0 )◦γc−−−−−−→ c+ Ž

c

0

which is equivariant under N(c + Ž
c

0). For any boundary component F of D the nor-

malizer N(F ) is a parabolic subgroup of G0
R, realized as a semi-direct product

N(F ) = U(F )× Z(SF )

of its unipotent radical U(F ) and the centralizer of a 1-dimensional R-split torus SF . Let

αF be the positive simple R-root onG such that αF |SF is non-trivial. Let AF = (SF )0
R be

the identity component of the group of real points of SF . Then AF acts on DF := cF (D)

by

(u, v, w) · a = (αiF (a)u, αJF (a)v, w)

where i, j > 0. This implies

J(u+ v + w, a) = αmF (a)

for some m < 0. Now let Γ⊂G0
R be an arithmetic subgroup. Then N(F )∩Γ is arithmetic

in N(F )R. For each γ ∈ X ∩ Γ the action on DF is

(u+ v + w)γ := (u+ `γ, v, w)

for some translation vector `γ ∈ X. These vectors span a lattice

XZ := {`γ : γ ∈ X ∩ Γ}⊂X

such that X/XZ is compact. Consider the dual lattice

Λ := {λ ∈ X : (λ|XZ) ∈ Z}⊂X = X].

2.9.2 Fourier-Jacobi series

Consider a Γ-automorphic form f on DF . Then we have

f(u, v, w) = f((u, v, w)γ) = f(u+ `, v, w)

for all ` ∈ L2. Therefore we obtain a Fourier-Jacobi expansion

f(u, v, w) =
∑
µ∈L]2

f •µ(v, w) e2πi(u|µ)

over the dual lattice L]2. If dimZ > 1, i.e., Z 6= C, then ’Koecher’s principle’ asserts

that

f(u, v, w) =
∑
µ∈Λ+

f •µ(v, w) e2πi(u|µ),
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where

Λ+ := L] ∩ X́
−
2

is the intersection of L] with the closed convex cone X́
−
2 := X́2 associated with the

Jordan algebra X2. Moreover, the 0-th Fourier coefficient satisfies

f •0 (v + α,w) = f •0 (v, w)

for a lattice U∩Γ in V = Zc
1. By Liouville it follows that f •0 (v, w) = f •0 (w) is independent

of v. Now consider the ’cylindrical’ set

S := {(u, v, w) ∈ DF : Im(u)− 1

2
Lw(v, v) ∈ ω + X́, ‖v‖ 6 K, w ∈ Q}

where ωX́, K <∞ and Q⊂ Žc

0 is compact. One can show that the constants

Mλ := sup
(u,v,w)∈S

|f •λ(v, w) e2πi(u|λ)|

satisfy ∑
λ∈Λ+

Mλ <∞.

2.9.3 Jacobi Forms

The functions f •µ occurring in (??) are called ’Jacobi forms’. In general, let VR be a real

vector space endowed with a symmetric bilinear form (v|v′) and let VZ⊂VR be an even

lattice, satisfying (`|`) ∈ 2Z for all ` ∈ Z. Let

V ]
Z := {λ ∈ VR : (VZ|λ)⊂Z}

be the dual lattice in V ]
R = VR (via the inner product). A holomorphic function

f : VC × Ć→ C

is called a Jacobi k-form if for all

(
a b

c d

)
∈ Γ := PSL2(Z) and for all `1, `2 ∈ VZ we

have

f(v, w) = (cw + d)−k f(
aw + b

cw + d
) exp(−πi c(v|v)

cw + d
) = f(v + w`1 + `2, w),

and there is a Fourier expansion

f(v, w) =
∑
ν∈V ]Z

f •ν e
2πi(

(ν|ν)
2

w+(v|ν))
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Example 61. Let Z = Cr×r
sym be the J∗-triple of symmetric matrices. Write the elements

of Z as

z =

(
u v

v+ w

)
where u ∈ C, v ∈ Cr−1 and w ∈ C

(r−1)×(r−1)
sym . A k-automorphic function f(z), under

Γ := Sp2r(Z), has a Fourier-Jacobi expansion

f

(
u v

v+ w

)
=
∑
µ>0

flm
•(v, w) e2πitr(uµ).

If µ > 0 is positive definite, then f •µ(v, w) is a Jacobi k-form on Cr−1× Ć, for the inner

product

(v1|v2) := 2v+
1 µv2

Example 62. Let Z = Cr×r be the J∗-triple of square matrices. Write the elements of

Z as

z =

(
u v1 + iv2

v∗1 + iv∗2 w

)
where u ∈ C, v1, v2 ∈ Cr−1 and w ∈ C(r−1)×(r−1). A k-automorphic function f : Ź → C,

under the imaginary quadratic field K, has a Fourier-Jacobi expansion

f

(
u v1 + iv2

v∗1 + iv∗2 w

)
=
∑
ω>0

f •ω(u, v1 + iv2) e2πitr(wω).

If ω > 0 is positive definite, then f •ω(u, v1 + iv2) is a Jacobi k-form on Ć× (Cr−1×C
r−1

,

for the inner product

(v1 + iv2|v′1 + iv′2) := (v∗1 − iv∗2)ω(v′1 + iv′2) + (v′∗1 − iv′∗2 )ω(v1 + iv2)

Example 63. Similar for Z = C2r×2r
asym

Example 64. Let Z = H3(O) ⊗C be the exceptional J∗-triple of tube type. Write the

elements of Z as

z =

(
u v1 + iv2

v∗1 + iv∗2 w

)
where u ∈ C, v1, v2 ∈ O2

R and w ∈ H2(O)⊗C. A k-automorphic function f : Ź → C,

under the integer Cayley numbers OZ, has a Fourier-Jacobi expansion

f

(
u v1 + iv2

v∗1 + iv∗2 w

)
=
∑
ω>0

f •ω(u, v1 + iv2) e2πi(w|ω).

If ω > 0 is positive definite, then f •ω(u, v1 + iv2) is a Jacobi 18k-form on Ć ×O2
C, for

the inner product

(a|b) := (ab∗ + ba∗|ω).
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Example 65. Let R be an even unimodular positive definite 2k × 2k-matrix, and let

G ∈ Z2k×n have rank n. Then the theta series

ΘR,G(u, v) :=
∑

λ∈Z2k×1

eπiλ
+R(λu+2Gv)

is a Jacobi k-form for VC = Cn×1 and (a|b) := a+G+RGb.

Now define the level

q := min{0 < n ∈ N :
n

2
(`|`) ∈ Z ∀ ` ∈ VZ}

and put

Γq := {γ ∈ Ż
G

2 : γ − 1 ∈ (qZ)2×2}

Then every Jacobi k-form f(u, v) has a theta expansion

f(u, v) =
∑

µ∈Λ]/Λ

f •µ(u) ϑµ(u, v)

where

fµ(u) =
∑

06m∈q(Z−(µ|µ)/2)

f •m/q+(µ|µ)/2,µ e
2πium/q

ϑµ(u, v) =
∑
λ∈µ+Λ

e2pi(u(λ|λ)/2)+(v|λ)

Choose representatives µ1, . . . , µd of Λ]/Λ, where d = [Λ] : Λ]. Then there exists a

linear isomorphism

J Λ
k (Ć× VC)


ϑµ1

...

ϑµd


←−−−−−− {F ∈ dMΓq

k−n/2(Ć) : γk−n/2F = χ(γ)F ∀ γ ∈ Γ}

Here χ : Γ → U(d) and MΓq
k (Ć) is the finite-dimensional vector space of all elliptic

modular k-forms on Ć.
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Chapter 3

Automorphic forms in

Toeplitz-Berezin quantization

3.1 II1-factors and discrete groups

A von Neumann algebra M ⊂B(H) carries the ultraweak topology generated by the

seminorms

a 7→
∞∑
i=1

|(ζi|aηi)|

where ζi, ηi ∈ H satisfy
∞∑
i=1

‖ζi‖2 < ∞,
∞∑
i=1

‖ζi‖2 < ∞. Any equivalent representation of

M induces the same ultraweak topology, and every ∗-representation of M on a separable

Hilbert space is ultraweakly continuous.

A II1-factor is a von Neumann algebra M with trivial center C · 1 and a normal

faithful finite trace τ : M → C, normalized by τ(1) = 1. Let

M τ = L2(M, τ)

be the GNS-Hilbert space with inner product

(a|b)τ := τ(a∗b).

Then M acts on M τ by left multiplication, and the commutant

M ′ := {T ∈ L(M τ ) : [M,T ] = 0}

is again a II1-factor. If M is a II1-factor, with a ∗-representation M → B(H) there

exists a formal dimension dimM H of H as a left Hilbert module over M. For H = M τ

we obtain

dimM M τ = 1.
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Example 66. A group Γ is called an icc-group (infinite conjugacy classes) if for each

e 6= γ ∈ Γ the conjugacy class {gγg−1 : g ∈ Γ} is infinite. For each icc group Γ the left

group von Neumann algebra

M := W ∗
λ (Γ)⊂B(`2(Γ))

is a II!-factor, with trace

τ
∑
γ∈Γ

aγγ := ae.

In this case we have

M τ = `2(Γ)

and therefore

dimW ∗λ (Γ) `
2(Γ) = 1.

The commutant

W ∗
λ (Γ)′ = {T ∈ B(`2(Γ)) : [T,W ∗

λ (Γ)] = 0} = W ∗
ρ (Γ)

is the right convolution W ∗-algebra.

For a semisimple, non-compact Lie group G a subgroup Γ⊂G is called a lattice if

G/Γ has finite volume (with respect to Haar measure)

Proposition 67. A lattice Γ in a semi-simple Lie group G with trivial center is an icc

group.

Proof. G is an algebraic group (more precisely, its real points) and for each h ∈ Γ the

map

αh : G→ G, αh(g) := ghg−1

is Zariski-continuous. Let Ch := αh(Γ) = {γhγ−1 : γ ∈ Γ} be the conjugacy class of

h in Γ. Then αh(Γ)⊂Ch. Now suppose that Ch is finite, hence Zariski-closed. Since a

lattice Γ is Zariski-dense in G [Borel-Zimmer] this implies αh(G)⊂Ch. Therefore the

centralizer

G◦h := {g ∈ G : gh = hg}

is a closed subgroup of finite index in G. Since G is Zariski-connected, it follows that

G◦h = G. Hence h belongs to the center of G and therefore h = e.

For a discrete series representation π : G→ U(Hπ) the formal dimension dπ ∈ R+

is defined by Schur orthogonality∫
G

dg (ξ|gπη)(gπσ|τ) =
(ξ|τ)(σ|η)

dπ

for all ξ, η, σ, τ ∈ Hπ. Equivalently, dπ is the Plancherel measure of the atom π ∈ G].
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Theorem 68. Let G be a semi-simple Lie group with a discrete series representation

π : G→ U(Hπ). Let Γ⊂G be a lattice subgroup. Then

dimW ∗λ (Γ)Hπ = dπ · |G/Γ|

where |G/Γ| denotes the covolume of Γ⊂G.

Proof. We may assume that there is an isometry u : H → L2(G) such that u∗u = idH
and p := uu∗ : L2(G)→ H is the orthogonal projection. Identify

L2(G) = `2(Γ)⊗ L2(D) = M τ ⊗ L2(D)

for a fundamental domain D⊂G. Then

aπ = aλ ⊗ id

for all a ∈ M. The commutant B(L2(G))◦M of M ⊂B(L2(G)) is a II1-factor containing

p. By definition,

dimM H = trB(L2
G)◦M

(p)

for the normalized trace on B(L2(G))◦M . The commutant is generated by finite sums

x =
∑
γ∈Γ

ργ ⊗ aγ, where ργ = JλγJ ∈ EndM(M τ ) and

aγ =
∑
m,n

am,nγ eme
∗
n ∈ F(L2

D)

are finite rank operators, for an orthonormal basis en ∈ L2
D. It follows that

trB(L2
G)◦M

(z) =
∑
γ∈Γ

trM(λγ)trL2
D

(aγ) = trL2
D

(ae) =
∑
n

an,ne .

The restriction map

q : L2
G → L2

D, f 7→ f |D

is a co-isometry satisfying

trL2
G(q∗yq) = trL2

D
(w)

for all y ∈ B(L2
D) which are positive or have finite rank. It follows that

trB(L2
G)◦M

(z) = trL2
D

(ae) = trL2
G

(q∗aeq) = tr(ι⊗ q)∗x(ι⊗ q).

Since traces are normal functionals, (??) holds for positive 0 6 z ∈ B(L2
G)◦M since x is a

monotone limit of elements of the form (??) with ae > 0. In particular,

dimM H = trB(L2
G)◦M

(p) = trL2
G

(q∗pq) =
∑
n

(en|q∗pqen) =
∑
n

(qen|pqen) =
∑
n

(en|pen) =
∑
n

‖pen‖2,
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since qen = en. The isometry q∗ : L2
D → L2

G associates to f ∈ L2
D its trivial extension to

G which is zero outside of D. Consider the unitary transformation

`2
Γ ⊗ L2

D
�−→ L2

G, δγ ⊗ en 7→ γλ(q∗en).

Now let ζ ∈ Hπ be a unit vector. Then pξ = ξ and

1 = ‖gλζ‖2 = ‖gλpζ‖2 =
∑
γ∈Γ

∑
n∈N

|(γλq∗en|gλpξ)|2

=
∑
γ∈Γ

∑
n∈N

|(q∗en|(γ−1g)λpξ)|2

Therefore

|G/Γ| =
∫
D

dg =

∫
D

dg‖gλζ‖2 =
∑
γ∈Γ

∑
n∈N

∫
D

dg |(q∗en|(γ−1g)λpξ)|2

=
∑
n∈N

∫
G

dg |(q∗en|gλpξ)|2 =
∑
n∈N

∫
G

dg |(q∗en|p gπξ)|2

=
∑
n∈N

∫
G

dg |(pq∗en|gπξ)|2 =
∑
n∈N

∫
G

dg (pq∗en|gπξ)(gπξ|pq∗en)

=
∑
n∈N

‖pq∗en‖2 ‖gπζ‖2

dπ
=
∑
n∈N

‖pq∗en‖2

dπ
=

1

dπ
dimM Hπ.

Let Ź be the right half-space. For ν > p−1 consider the discrete series Hilbert space

H2
s(Ź). Then ∫

Ź•

dg |(ξ|gνη)|2 =
Γ(ν − d

r
)

πd
‖ζ‖2 ‖η‖2

Therefore

πs(Γ)′ ∼= W ∗(Γ)t

where

t =
ν − d

r

πd
Vol(G/Γ)

3.2 Hecke operators

Let α ∈ GQ = PGLQ
2 /{±1}. Put Γα := Γ ∩ (αΓα−1). Since Γ is an ’almost normal

subgroup’ of GQ there exists a finite set γi ∈ Γ, 1 6 i 6 k, such that the double cosets

ΓαΓ =
k⋃
i=1

Γαγi.
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Now consider intertwining operators

LΓ(Hs,Ht) := {A ∈ L(Hs,Ht) : γtA = Aγs ∀ γ ∈ Γ}.

Define

LΓ(Hs,Ht)
Φα←− LΓ(Hs,Ht)

by

ΦαA :=
1

k

k∑
i=1

(αγi)
−tA(αγi)

s

for all A ∈ LΓ(Hs,Ht). For s = t we obtain the commutant von Neumann algebra

LΓ(Hs) := {A ∈ L(Hs) : [Γs, A] = 0} = (Γs)′ = W ∗(Γs)′

and

ΦαA :=
1

k

k∑
i=1

(αγi)
−sA(αγi)

s.

On the other hand, consider the von Neumann algebra L∞(Ć)Γ of all bounded Γ-

invariant functions f on Ć. For f ∈ L∞(Ć)Γ let f

�

s denote the associated Toeplitz

operator acting on Hs. Then

Proposition 69.

(Γs)′ = W ∗{f

�

s : f ∈ L∞(Ć)Γ}

On the level of symbols, Φα is given by

(Φαf)(z) =
1

k

k∑
i=1

f(αγi)
−1z)

Then the diagram

L∞(Ć)Γ

�

s //

Φα
��

LΓ(Hs)

Φα
��

L∞(Ć)Γ

�

s // LΓ(Hs)

commutes.

For m > 0 let

Z2×2
m := {

(
a b

c d

)
∈ Z2×2 : ad− bc = m}⊂GL2(Q) =: GQ.

Then Z2×2
1 := SL2(Z) =: Γ. The group Γ acts by left multiplication (γ, α) := γα on

Z2×2
m . A system of (right) representatives is given by the matrices

γd,b :=

(
m/d b

0 d

)
∈ Z2×2, 0 < d|m, 0 6 b < d.
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The Hecke operator, acting on k-automorphic forms, becomes

(Tmf)(u) = mk−1
∑

a b

c d

∈Γ\Z2×2
m

(cu+ d)−k f
(au+ b

cu+ d

)

= mk−1
∑
d|m

d−k
d−1∑
b=0

f
(au+ b

d

)
= mk−1

∑
d|m

d−k
d−1∑
b=0

f
(mu+ bd

d2

)
.

For a prime number m = p this simplifies to

(Tpf)(u) = pk−1 f(pu) +
1

p

p−1∑
b=0

f
(u+ p

p

)
An Γ-intertwiner A : Hs → Ht has an integral kernel

A\(z, w) = (Ktz|AKsw)

which is sesqui-holomorphic and has the invariance property

A\(γz, γw) = J(γ, z)s A\(z, w) J(γ, w)

Consider the intertwiners

Hs+p

g

�

s+p ##

Hs

f

�

s||

g

�

s+p f

�

s
oo

Hs+q

,

where f is q-automorphic and g is q − p-automorphic. For p = q, g is constant. Then

we have

Lemma 70. The intertwiner g

�

f

�

has the integral kernel given by the Berezin transform

(fg)�

Proof.

(Kz|g

�

f

�

Kw) = (g

�

Kz|f

�

Kw) = (gKz|fKw) =

∫
Ź

µs(dζ)g(ζ)Kz(ζ)f(ζ)Kw(ζ)

=

∫
Ź

µ0(dζ)

K(ζ, ζ)
g(ζ) K(z, ζ) f(ζ) K(ζ, w)

= K(z, w)

∫
Ź

µ0(dζ)K(z, ζ)K(ζ, w)

K(z, w)K(ζ, ζ)
f(ζ) g(ζ)

More directly,

(Kz|g

�

f

�

Kz) = (Kz|(gf)

�

Kz) = Kz,z((gf)

�

) �z = Kz,z(gf)�z
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3.3 Berezin quantization

For f ∈ C∞(Ź) let f

�

∈ B(H2
s(Ź)) be the Toeplitz operator. Conversely, for A ∈

B(H2
s(Ź)) let

A �(z, w) =
(Kz|A Kw)

Kz,w
be the Berezin symbol. Then

tr(A f

�

) =

∫
Ź

µ́(dz)A �(z) f(z)

where µ́ is a Haar measure on Ź. The adjoint operator A∗ has Berezin symbol

A∗ �z,w = A �

w,z

Consider the unitary projective representation

(g−sφ)(z) = (det g′z)
s/p φ(gz)

Then

(gsAg−s) � = A � ◦ g−1

Lemma 71. The restricted symbol A �

| has sup-norm ‖A �‖∞ 6 ‖A‖, i.e.,

sup
z∈Ź
|A �

z,z| 6 ‖A‖

Proof. By Cauchy-Schwarz we have |(Kz|AKz)| 6 ‖Kz‖ ‖AKz‖ 6 ‖A‖ ‖Kz‖2 and there-

fore

|A �

z,z| =
(Kz|AKz)
‖Kz‖2

6 ‖A‖.

Proposition 72. With respect to the probability measure µs, a bounded operator A ∈
B(H2

s(Ź)) has the integral kernel A �

z,wKz,w. Thus the Berezin symbol A � determines the

operator via

(Aφ)(z) =

∫
Ź

µs(dw) φ(w) A �

z,w Kz,w

Proof. The reproducing property impliew

(Aφ)(z) = (Kz|Aφ) = (Kz|A
∫
Ź

µs(dw) φ(w) Kw)

=

∫
Ź

µs(dw) φ(w) (Kz|AKw) =

∫
Ź

µs(dw) φ(w) A �

z,w Kz,w

76



Proposition 73. For each w ∈ Ź the holomorphic function Kw A �

w belongs to H2
s(Ź)

and has norm

‖Kw A �

w‖s 6 ‖A‖ K1/2
w,w

Proof. For the first relation we have

Kw A �

w(z) = Kz,w A �

z,w = (Kz|AKw)

and hence, by Cauchy-Schwarz,

|Kw A �

w(z)| = |(Kz|AKw)| 6 ‖Kz‖ ‖AKw‖ = ‖A‖ ‖Kz‖ ‖AKw‖ = ‖A‖ K1/2
z,z K1/2

w,w.

Proposition 74. Let A > 0 be a positive operator. Then we have matrix inequalities

(0)i,j 6
(
A �

zi,zj
Kzi,zj

)
i,j
6
(
‖A‖Kzi,zj

)
i,j

for all z1, . . . , zn ∈ Ź.

Proof. Let λi ∈ C. Putting f =
∑
i

λiKzi ∈ H2
s(Ź) we have∑

i,j

λi λj Azi,zjKzi,zj =
∑
i,j

λi λj (Kzi|AKzj) = (
∑
i

λiKzi |A
∑
j

λjKzj)

= (f |Af)

> 0

6 ‖f‖‖Af‖ 6 ‖A‖(f |f) = ‖A‖
∑
i,j

λi λj Kzi,zj

Proposition 75. If A is positive, then

|A �

z,w|
|Kz,w|

‖Kz‖‖Kw‖
6 sup

ζ∈Ź
|A �

ζ,ζ | 6 ‖A‖

If A is bounded, then

|A �

z,w|
|Kz,w|

‖Kz‖‖Kw‖
6 4‖A‖

Proof. For z, w ∈ Ź the positive matrix(
A �

z,zKz,z A �

z,wKz,w
A

�

z,wKz,w A �

w,wKw,w

)
has determinant > 0 showing that

A �

z,zKz,z A

�

w,wKw,w > |A

�

z,wKz,w|2

Taking square roots, it follows that

|A �

z,w|
|Kz,w|
K1/2
z,z K1/2

w,w

6
√
A �

z,z

√
A �

w,w 6 sup
ζ∈Ź
|A �

ζ,ζ | 6 ‖A‖

Writing A ∈ B(H2
s(Ź)) into real/imaginary and positive/negative parts, the second

assertion follows.
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3.3.1 Fundamental domains

A closed subset F ⊂ Ź is called a fundamental domain for a discrete subgroup Γ⊂ Ź•
if ∂F = F ∼ F̊ has measure zero, and

Ź =
⋃
γ∈Γ

γ(F )

γ(F̊ ) ∩ F̊ 6= ∅ ⇒ γ = 1.

Then the disjoint union
⋃
γ∈Γ

γ(F̊ ) is an open dense subset of Ź whose complement is a

zero-set. For each function φ : F̊ → C denote by φ̃ : Ź → C the zero-extension of φ.

Conversely, for a function Φ : Ź → C let Φ˜ : F → C denote the restriction of Φ to F.

Then Φ˜ ∈ Cc(F̊ ) if Φ ∈ Cc(
⋃
γ∈Γ

γ(F̊ )). We have

(Φ˜|ψ) = (Φ|ψ̃)

for all Φ ∈ L2
s(Ź), ψ ∈ L2

s(F ).

Let eγ(σ) := δγσ be the standard basis of `2(Γ). Consider the left-regular representa-

tion

(λγf)(σ) := f(γ−1σ)

of Γ on `2(Γ). Then

λγeσ = eγσ

since

(λγeσ)(τ) = eσ(γ−1τ) = δσγ−1τ = δγστ = eγσ(τ)

Proposition 76. Define a map V : `2(Γ)⊗ L2
s(F )→ L2

s(Ź) by

V (eσ ⊗ φ) := σsφ̃

Then V is unitary, with adjoint

U(Φ) =
∑
σ∈Γ

eσ ⊗ σ−sΦ
˜

Proof. Since (φ̃|γsψ̃) = 0 if 1 6= γ ∈ Γ we obtain

(V (eσ ⊗ φ)|V (eτ ⊗ ψ)) = (σsφ̃|τ sψ̃) = (φ̃|σ−sτ sψ̃) = (φ̃|(σ−1τ)sψ̃)

= δτσ(φ̃|ψ̃) = δτσ(φ|ψ) = (eσ|eτ )(φ|ψ) = (eσ ⊗ φ|eτ ⊗ ψ)

Thus V is isometric. Moreover,

(UΦ|eτ ⊗ ψ) =
∑
σ∈Γ

(eσ ⊗ σ−sΦ
˜

|eτ ⊗ ψ) =
∑
σ∈Γ

(eσ|eτ )(σ−sΦ
˜

|ψ)

=
∑
σ∈Γ

δστ (σ−sΦ
˜

|ψ) = (τ−sΦ
˜

|ψ) = (τ−sΦ|ψ̃) = (Φ|τ sψ̃) = (Φ|V (eτ ⊗ ψ))

It follows that U = V ∗ and therefore V is a unitary operator.
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Proposition 77.

γs ◦ V = V ◦ λγ

Proof.

γsV (eσ ⊗ φ) = γs(σsφ̃) = (γσ)sφ̃ = V (eγσ ⊗ φ) = V λγ(eσ ⊗ φ)

For any f ∈ L∞(Ź) let f

�

∈ B(H2
s(Ź)) be the associated Toeplitz operator. Then

(Kz|f

�

Kw) = (Kz|fKw) =

∫
Ź

µs(dζ)Kz(ζ) f(ζ) Kw(ζ)

=

∫
Ź

µs(dζ)Kz,ζ f(ζ) Kζ,w =

∫
Ź

µ0(dζ)

Kζ,ζ
Kz,ζ f(ζ) Kζ,w

It follows that the Berezin transform f� := (f

�

) � is given by

f�z,w =
(Kz|f

�

Kw)

Kz,w
=

1

Kz,w

∫
Ź

µ0(dζ)

Kζ,ζ
Kz,ζ f(ζ) Kζ,w =

∫
Ź

µ0(dζ)
�ζz,w f(ζ),

where

�ζz,w:=
Kz,ζ Kζ,w
Kz,w Kζ,ζ

In particular,

�ζz:=�
ζ
z,z=

|Kz,ζ |2

Kz,z Kζ,ζ
=
( |Kz,ζ |
‖Kz‖‖Kz‖

)2

By Cauchy-Schwarz we have

| �ζz,w | 6 1 (z, w ∈ Ź)

3.3.2 Berezin star product

The (weak/passive) Berezin star product of two symbol functions A �, B � is defined by

Kz,w(A �
(B

�)z,w =

∫
Ź

µ́s(dζ)Kz,ζA �

z,ζKζ,wB

�

ζ,w

Equivalently,

(A �
(B

�)z,w =

∫
Ź

µ́0(dζ)A �

z,ζ

Kz,ζKζ,w
Kζ,ζKz,w

B �

ζ,w

Proposition 78.

(AB) � = A �
(B

�
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Proof. Applying the reproducing kernel identity to BKw ∈ H2
s(Ź) we obtain

Kz,w(AB) �z,w = (Kz|ABKw) = (Kz|A
∫
Ź

µ́s(dζ)(BKw)(ζ)Kζ)

=

∫
Ź

µ́s(dζ)(Kz|AKζ)(Kζ |BKw) =

∫
Ź

µ́s(dζ)Kz,ζA �

z,ζ Kζ,wB

�

ζ,w

Let f, g be automorphic functions of weight pk. Then Mf : H2
s(Ź) → H2

s+pk(Ź) is a

bounded operator, and MgM
∗
f ∈ B(Hs+pk(Ź)).

Lemma 79.

(MgM
∗
f ) �z,w =

g(z)f(w)

Kpkz,w

Proof. We have

M∗
fKs+pkz = f(z)Ksz

and therefore

(MgM
∗
f ) �z,w =

(Ks+pkz |MgM
∗
fKs+pkw )s+pk

Ks+pkz,w

=
(M∗

gKs+pkz |M∗
fKs+pkw )s

Ks+pkz,w

=
(g(z)Ksz|f(w)Ksw)s

Ks+pkz,w

= g(z)f(w)
Ksz,w
Ks+pkz,w

=
g(z)f(w)

Kpkz,w

3.3.3 trace

Let A ∈ (Γs)′ commute with Γs. Then γsAγ−s = A and therefore A �

γz = A �

z . Polarization

yields

A �

γz,γw = A �

z,w (γ ∈ Γ).

Proposition 80.

τ(A) =
1

|F |

∫
F

µ0(dz)A �

z,z

defines a positive faithful trace on Γs
′ ⊂B(H2

s(Ź))

Proof. We have

(Kz|ABKw) = (Kz|A
∫
Ź

µs(dζ)(BKw)(ζ)Kζ)
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=

∫
Ź

µs(dζ)(BKw)(ζ)(Kz|AKζ) =

∫
Ź

µs(dζ)(Kz|AKζ)(Kζ |BKw)

and therefore

(AB) �z,w =
(Kz|ABKw)

Kz,w
=

1

Kz,w

∫
Ź

µ0(dζ)

Kζ,ζ
A �

z,ζKz,ζB

�

ζ,wKζ,w =

∫
Ź

µ0(dζ)A �

z,ζB

�

ζ,w

Kz,ζKζ,w
Kz,wKζ,ζ

.

Put

f(z, w) := |A �

z,w|2
|Kz,w|2

Kz,zKw,w
.

Then

(AA∗) �z,z =

∫
Ź

µ0(dζ)A �

z,ζA

�

z,ζ

Kz,ζKζ,z
Kz,zKζ,ζ

=

∫
Ź

µ0(dζ)|A �

z,ζ |2
|Kz,ζ |2

Kz,zKζ,ζ
=

∫
Ź

µ0(dζ)f(z, ζ)

and, similarly,

(A∗A) �z,z =

∫
Ź

µ0(dζ)A

�

ζ,zA

�

ζ,z

Kz,ζKζ,z
Kz,zKζ,ζ

=

∫
Ź

µ0(dζ)|A �

ζ,z|2
|Kζ,z|2

Kz,zKζ,ζ
=

∫
Ź

µ0(dζ)f(ζ, z).

It follows that

τ(AA∗) =
1

|F |

∫
F

µ0(dz)(AA∗) �z,z =
1

|F |

∫
F

µ0(dz)

∫
Ź

µ0(dζ)f(z, ζ) =
1

|F |

∫
F

µ0(dz)
∑
γ∈Γ

∫
F

µ0(dζ)f(z, γζ)

and

τ(A∗A) =
1

|F |

∫
F

µ0(dz)(A∗A) �z,z =
1

|F |

∫
F

µ0(dz)

∫
Ź

µ0(dζ)f(ζ, z) =
1

|F |

∫
F

µ0(dz)
∑
γ∈Γ

∫
F

µ0(dζ)f(γζ, z).

Since f(γζ, z) = f(ζ, γ−1z), the assertion follows.

Proposition 81.

For automorphic forms f, g of weight pk, the inner product

τs(M
∗
fMg) = (f |g)2k

agrees with the Petersson inner product.

Proof.

τs(M
∗
fMg) = τs+pk(MgM

∗
f ) =

1

|F |

∫
F

µ́0(dz)(MgM
∗
f ) �z,z

=
1

|F |

∫
F

µ́0(dz)
f(z)g(z)

Kpkz,z
=

1

|F |

∫
F

µ́pk(dz) f(z)g(z) = (f |g)2k
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Proposition 82. Put

�Γ (z, ζ) :=
∑
γ∈Γ

|Kz,γζ |2

Kz,zKγζ,γζ

Let f ∈ L∞(Ź)Γ. Then

f�z,z =

∫
F

µ0(dζ) �Γ (z, ζ) f˜(ζ)

Proof.

f�z,z =

∫
Ź

µ0(dζ)
|Kz,ζ |2

Kz,zKζ,ζ
f(ζ) =

∑
γ∈Γ

∫
F

µ0(dζ)
|Kz,γζ |2

Kz,zKγζ,γζ
f(γζ)

=

∫
F

µ0(dζ)
(∑
γ∈Γ

|Kz,γζ |2

Kz,zKγζ,γζ

)
f(ζ) =

∫
F

µ0(dζ) �Γ (z, ζ) f˜(ζ)
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Chapter 4

Scattering theory

4.1 Abstract Theory

4.1.1 Abstract scattering

Let Ut ∈ U(H) be a unitary representation of R on a Hilbert space H. Suppose there is

a subspace Hσ⊂H such that

UtHσ⊂Hσ (σt > 0)⋂
σt>0

UtHσ = {0}⋃
t∈R

UtHσ ⊂
dense
H

Lemma 83. For t > 0 we have

P �

+UtP

�

−H⊂H

�

±.

Proof. For t > 0 and f ∈ H �

− we have (H−|Utf) = (U−tH−|f) = 0 since U−tH−⊂H−.
It follows that

UtH �

−⊂H

�

−.

Also, for f ∈ H �

− we have (H−|P �

+f) = (H−|f − P+f) = (H−|f)− (H−|P+f) = 0 since

H+ and H− are orthogonal. Thus

P �

+H

�

−⊂H

�

−.

In summary, we obtain

P �

+UtP

�

−H ⊂P

�

+UtH

�

−⊂P

�

+H

�

−⊂H

�

−.

Since, trivially, P �

+UtP

�

−H⊂H �

+, we obtain

P �

+UtP

�

−H⊂H

�

±.
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Lemma 84. For t > 0 we have a semigroup

P �

+UtP

�

−

on H �

±.

Proof. Let s, t > 0. Then P �

+UtPt = 0 since UtHt⊂Ht. Moreover, P �

+UsP

�

− ⊂H �

− by

Lemma ??. It follows that P �

− P

�

+UsP

�

− = P �

+UsP

�

− and hence

P �

+UtP

�

− P

�

+UsP

�

− = P �
+UtP

�

+UsP

�

− = P �

+Ut(I − P+)UsP

�

− = P �

+UtUsP

�

− = P �

+Ut+sP

�

−

4.1.2 Scattering operator

There exists a unitary Wσ such that

H
Wσ

��

HUtoo

Wσ

��

Hσ

Wσ

��

oo

L2(R, E) L2(R, E)
λt⊗idoo L2(Rσ, E)oo

L2(iR, E)

F

OO

L2(iR, E)
eitλ⊗idoo

F

OO

H2
σ(iR, E)oo

F

OO

Define the unitary scattering operator

L2(R, E)

S

��

L2(R, E)
λt⊗idoo

S

��

H

W+
::

W− $$
L2(R, E) L2(R, E)

λt⊗idoo

Since S commutes with translations, we have

Sf(t) = (S]] f)(t) =

∫
R

S](ds) f(t− s)

for some distribution S] ∈ D′(R). Now suppose (H+|H−) = 0. Then

SL2(R−, E)⊂L2(R−, E), S∗L2(R+, E)⊂L2(R+, E).

Therefore S] ∈ H′(R−), i.e., S](s) = 0 for s > 0. Let

Ŝ](σ) :=

∫
R

S](s)e
iσs ∈ H−(iR,L(Z))
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be its Fourier transform, called the scattering matrix. Then

Ŝ](σ) ∈ U(Z) Im(σ) = 0

‖Ŝ](σ)‖ 6 1 Im(σ) < 0

and

H2
−(iR, E) H2

+(iR, E)
Ŝ
◦
]oo

L2(R−, E)

F

OO

L2(R−, E)

F

OO

S]]

oo

where Ŝ
◦
] denotes the multiplication operator

(Ŝ
◦
]φ)(σ) = (Ŝ])(σ) φ(σ)

for φ ∈ H2
+(iR, E). Explicitly, Ŝ](z) ∈ L(Z) is determined by

S(e−izsn) =

∫
R

S](dt) e
−iz(s−t) = e−izs

∫
R

S](dt) e
iztn = e−izs Ŝ](z)n

for all n ∈ Z.

4.1.3 Wave equation

Let H be a Hilbert space, L ∈ L(H) a self-adjoint operator. Consider the abstract wave

equation

ü = utt = Lu

The space

H =

(
Dom(|L|1/2)

H

)
is called the data space. Write

φ =

(
u

ut

)
=

(
φ0

φ1

)
Then (??) is equivalent to the first order equation

φ̇(t) = φt =

(
0 1

L 0

)
φ(t)

For φ ∈ H we define the energy form

Z(φ) = (φ1|φ1)− (φ0|Lφ0)
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Lemma 85. The energy form is independent of t

Proof. Let ut solve the wave equation. Then

d

dt
E(ũ) =

d

dt

(
(u̇|u̇)− (u|Lu)

)
= (ü|u̇) + (u̇|ü)− (u̇|Lu)− (u|Lu̇)

= (Lu|u̇) + (u̇|Lu)− (u̇|Lu)− (u|Lu̇) = (Lu|u̇)− (u|Lu̇) = 0

since L is self-adjoint.

4.2 Scattering for rank 1 spaces

For symmetric spaces Ω of rank 1 (including euclidean space) consider the Laplace-

Beltrami operator

L = ∆ + (ρ|ρ) = ∆ +
1

4

on L2
Ω. Then the second-order wave equation ∂2

t u = Lu for a function u(t, x) on R× Ω

is equivalent to the first-order system

∂tw =

(
0 I

L 0

)
w = Λw

where w(t, w) =

(
u(t, x)

∂tu(t, x)

)
is a smooth map w : R × Ω → R2. If we have a discrete

group Γ ∈ Aut(Ω) with fundamental domain F we have the diagram

L2
D

q

��
L2
F

q∗

__

where qf := f |F is a co-isometry and its adjoint isometry q∗f is the zero-extension on

f. Thus qq∗ = id and p = q∗q : L2
D → L2

F is the orthogonal projection. Then A is

self-adjoint on H := L2(F,C2) for the boundary conditions imposed by (??). Consider

the resolvent (λ− A)−1. For the basic solutions

u±t (z) = w1/2 φ(y e−±t)

it follows that H± consists of all data

w±t (z) =

(
w1/2 φ(w)

±w−3/2 φ′(w)

)
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with φ ∈ C∞(F a), a > 1. The main result [LaPh] states that (λ − A)−1 is a compact

operator and hence has a discrete spectrum. How do we find eigenfunctions? For τ ∈ iR
put

hτ (w) :=

(
w1/2+τ

τ w1/2+τ

)
.

Then

Ahτ = τ hτ .

Since hτ depends only on y = Im(z) it is invariant under the parabolic subgroup Γ∞ =(
1 Z

0 1

)
consisting of all translations

(
1 n

0 1

)
(z) = z + n

by integers n ∈ Z. To make it fully invariant under Γ = SL2(Z) we define the Eisenstein

series

Zτ (z) :=
∑

γ∈Γ∞\Γ

hτ (γz).

Note that this is not holomorphic in z (discrete series) but instead belongs to the prin-

cipal series. The translation representation of T± on L2(R)2 is

T±f(s) =
±√

2
(∂s,−1)(esf ◦ e−s)

where f =

(
f0

f1

)
.

Theorem 86. The multiplication realization T̂± on L2(iR)2 is given by the Eisenstein

series

Θ±φ(τ) = (E±τ |f)Z

for the function

h±τ (z) =
±√
2τ

(w1/2+τ ,−τw1/2−τ ).

Define the scattering operator

ST−(f) = T+(f)

Then S has the Fourier coefficients

Ŝ(τ) = −e
+
τ

e−τ
=

Γ(1
2
)Γ(τ)

Γ(τ + 1
2
)

ζ(2τ)

ζ(1 + 2τ)
.
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4.3 Harmonic analysis on Symmetric Spaces

4.3.1 Structure of Lie groups

For a Riemannian symmetric space G/K let g = k⊕ p be a Cartan decomposition, and

let a⊂ p be a maximal abelian subspace. The finite Weyl group

W := K•A/K
◦
A

Choose a vertreter system kw ∈ K•A of w ∈ W = NA(K)/ZA(K). W acts linearly on

a and hence on the symmetric algebra S(a) ≈ P(a]). The invariant part

S(a)W ≈ D(G/K)

yields the algebra of invariant differential operators on G/K, while the skew-invariant

part

S(a)W−

is spanned by a single operator π. Its square π2 is an invariant differential operator. The

generalized Poincaré inequality is

(f |π2f) > const.(f |f)

for all smooth functions f on G/K. Now consider the Iwasawa decomposition

G = KAN

and let gA, gK denote the Iwasawa components of g ∈ G. By [He/432] we have

(anK)A = a (ana−1)A n
−1
A

for all n ∈ N. The Kostant convexity theorem says

log(etK)A = convWt

In general, a Harish-Chandra isomorphism identifies a subalgebra A⊂U(g) with

U(a) for a sub Liegebra a⊂ g.

h
⊂ //

��

g

��
U(h) // U(g)

For example, for a complex Liegebra g the center Z(U(g)) is a commutative subalgebra

identified with U(h) = S(h) = P(h]) for a Cartan subalgebra h⊂ g. In the real case we

have D(G/K)G ≈ U(a) = P(a]) for a Cartan subspace a⊂ p.
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4.3.2 Geodesics

For Θ⊂Σ put

á := 〈Hα : α ∈ Θ〉, à := {t ∈ a : t|Θ = 0}

à+ := {t ∈ à : t|α > 0 ∀ α ∈ Σ ∼ 〈Θ〉}

ǵ := [goàc, g
o
àc]

ḱ := k ∩ ǵ

ń+ :=
∑

α∈〈Θ〉+

gα

For t ∈ a+ and k ∈ K we obtain a geodesic

γt,k(α) := k eαtK ∈ G/K

The geodesic is regular for t ∈ a+, and singular for t ∈ aΘ
+ for some Θ 6= ∅. Since

K ′ ∩K◦A = (K ′)◦A′ we have an injection

K ′/(K ′)◦A′ ⊂K/K◦A

The inclusion K◦A⊂K◦a′′ induces an exact sequence

K◦A′′/K
◦
A → K/K◦A → K/K◦A′′

with typical fibre

K◦A′′/K
◦
A = K ′/(K ′)◦A′

4.4 geodesics

An element γ ∈ SL2
Z⊂G := SL2

R is called hyperbolic/elliptic/parabolic, resp. if

the trace tr(γ) has absolute value > 2/ < 2/ = 2, resp. These properties are invariant

under conjugation. In the elliptic case we have eigenvalues in T and γ is conjugate to

an element in K. In the hyperbolic case, we have real eigenvalues and γ is conjugate to

an element in the centralizer

G◦a = K◦a A,

A = {
(
a 0

0 a−1

)
: a > 0}.

Writing gγg = kγ a for some a ∈ A and kγ ∈ K◦a we have

o · a = o · kγa = o · g−1γg.

Then

γ ∼
(
N1/2 0

0 N−1/2

)
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for some N > 1, and the centralizer

Γ◦γ = γZ0

is a cyclic group with generator

γ0 ∼

(
N

1/2
0 0

0 N
−1/2
0

)

By [TS/546] the group K◦a′′ normalizes both K ′ and G′. Thus

mΘkΘm
−Θ = k′Θ, m

Θgm−Θ = g′

for all mΘ ∈ K◦a′′ . Define an action of K◦a′′ on G′/K ′ by

mΘ · gK ′ := g′ K ′.

This way LΘ becomes a K◦A′′-module. Consider the homogeneous vector bundle

K ×◦KA′′ L(a′ ×G′/K ′)

and the L2-sections

Γ2(K ×◦KA′′ L(a′ ×G′/K ′))

4.4.1 Root analysis

Let mα be the restricted root multiplicity. Put

sinhα(t) := sinh(α|t)mα

and

sinhΠ(t) := Πα∈Π sinhα(t).

For α ∈ Σ+ define [Wa/325]

Bτ
α = B

(mα

2
,
mα/2

4
+ τ |α0

)
= B

(mα

2
,
mα/2

4
+
τ |α
α|α

)
and Bτ

Π :=
∏
α∈Π

Bτ
α.

4.4.2 Invariant measures

By [HeJo/2] and [He/458] the Haar measure on G is given by∫
G

dg f(g) =

∫
K

dk

∫
A

a2ρ

∫
N

dn f(kan) =

∫
K

dk

∫
A

da a2ρ

∫
N

dn f(kan)
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= c

∫
K

dk

∫
a+

dt sinhΣ+(t)

∫
K

dk′ f(ketk′)

For Re(τ) > 0 define the c-function

cτ :=

∫
N

dn n−τ−ρA

and normalize the Haar measure dn on N by

cρ =

∫
N

dn n−2ρ
A = 1.

Then Harish-Chandra’s formula∫
K/K◦A

dk φ[k] =

∫
N

dn n−2ρ
A φ[nK ]

holds. Normalize the Haar measure on N ∩ (k−1
w Nkw) by∫

N∩(k−1
w Nkw)

dn n−2ρ
A = 1

Proposition 87.

aρ
∫
N

dn f(a−1na) = a−ρ
∫
N

dn f(n)

Proof.

aρ−τ
∫
N

dn n−τ−ρA (a−1na)τ−ρA = φτ (a−1) = φ−τ (a) = a−τ−ρ
∫
N

dn nτ−ρA (ana−1)−τ−ρA

implies

aρ
∫
N

dn n−τ−ρA (a−1na)τ−ρA = a−ρ
∫
N

dn nτ−ρA (ana−1)−τ−ρA

Theorem 88 (Wa/325). Let Re τ > 0.Then

cτ =
Bτ

Σ+

Bρ
Σ+

Proof. For rank 1 let Σ0
+ = {β}. Then Σ+ = {β, 2β} and hence

ρ =
mβ

2
β +m2ββ = (

mβ

2
+m2β)β,
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ρ|β0 =
ρ|β
β|β

=
mβ

2
+m2β

Write τ = izρ. Then (τ |β0) = iz(ρ|β0) and hence iz = τ |β0

ρ|β0
. It follows that

2P (1 + iz)−m2β = (ρ|β0)(1 +
τ |β0

ρ|β0

)−m2β = (ρ+ τ |β0)−m2β =
mβ

2
+ τ |β0

and hence P (1 + iz) = 1
2
(
mβ
2

+m2β + τ |β0). By [He/437] the unnormalized integral is

∞∫
0

dr

r

rmβ/2

(1 + r)mβ/2+τ |β0

∞∫
0

dt

t

tm2β/2

(1 + t)
1
2

(mβ/2+m2β+τ |β0)

= B
(mβ

2
, τ |β0

)
B
(m2β

2
,
mβ

4
+
τ |β0

2

)
= Bτ

β B
τ
2β

since mβ/2 = 0 and τ |(2β)0 = τ |β0

2
. The duplication formula

Γ(2z)

Γ(z)
=

1

2
√
π

4z Γ(z +
1

2
)

implies

Γ(
mβ

4
+ τ |β0

2
)

Γ(
mβ

2
+ τ |β0)

= c · 2−τ |β0

Γ(
mβ

4
+ τ |β0

2
+ 1

2
)

Therefore

B
(mβ

2
, τ |β0

)
B
(m2β

2
,
mβ

4
+
τ |β0

2

)
= c′ · 2−τ |β0 Γ(τ |β0)

Γ(
mβ

4
+ τ |β0

2
+ 1

2
) Γ(

mβ
4

+
m2β

2
+ τ |β0

2
)

By [He/447] we have

c(τ) = c0

∏
β∈Σ0

+

2−τ |β0 Γ(τ |β0)

Γ(
mβ

4
+ τ |β0

2
+ 1

2
) Γ(

mβ
4

+
m2β

2
+ τ |β0

2
)

= c1

∏
β∈Σ0

+

B
(mβ

2
, τ |β0

)
B
(m2β

2
,
mβ

4
+
τ |β0

2

)
We claim that∏

β∈Σ0
+

B
(mβ

2
, τ |β0

)
B
(m2β

2
,
mβ

4
+
τ |β0

2

)
=
∏
α∈Σ+

B
(mα

2
,
mα/2

4
+ τ |α0

)
For β ∈ Σ0

+ we have mβ/2 = 0. Therefore the claim is equivalent to∏
β∈Σ0

+

B
(m2β

2
,
mβ

4
+
τ |β0

2

)
=

∏
α∈Σ+∼Σ0

+

B
(mα

2
,
mα/2

4
+ τ |α0

)
Since every α ∈ Σ+ ∼ Σ0

+ has the form α = 2β for a unique β ∈ Σ0
+, the assertion

follows with τ |α0 = τ |β0

2
.
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4.4.3 Principal series representations and intertwiners

Let ρ be the half-sum of positive restricted roots. For τ = iλ ∈ a]C define the principal

series representation of G on H := L2(K/K◦A) by

(gτf)[k] = (g−1k)τ−ρA f [(g−1k)K ]

Here [k] := kK◦A). For τ ∈ ia] this is unitary and irreducible. Define an operator
wSτ ∈ L(H) by

1

Bρ
Σ+∩w−1∆−

(wSτf)[k] =
1

Bτ
Σ+∩w−1∆−

∫
N∩(k−1

w Nkw)

dm m
−(τ+ρ)
A f [kkwmK ]

Then

H

wSτ
��

H

wSτ
��

gw·τoo

H L2(K/K◦A)
gτoo

.

Put

K̂/K◦A := {κ ∈ K̂ : V
K◦A
κ 6= {0}}.

For F ∈ L2(ia], H) and κ ∈ K̂/K◦A define the Fourier coefficient

fκ
τ :=

∫
K

dk f(τ, kK◦A) k−κ ∈ L(Vκ)

Then we have the inversion formula

f(τ,K◦A) =
∑

κ∈K̂/K◦A

dκ tr(fκ
τ |V K◦Aκ

)

Then we have the diagonalization

(wSτfτ )
κ = wSκ

τ f
κ
τ

for endomorphisms wSκ
τ ∈ L(Vκ) which preserve and are unitary on V

K◦A
κ . By Harish-

Chandra there exist meromorphic functions Θκ ∈ L(V
K◦A
κ ) such that for t ∈ a+ we

have ∫
K

dk (etk)τρA (etk)κK =
∑
w∈W

∑
µ∈L

e−t|(wτ+ρ+µ) c(wτ) Γκ
µ(wτ)wSκ∗

τ

where Γκ
µ ∈ L(V

K◦A
κ ) are rational and holomorphic on a]+ + ia].
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4.4.4 Spherical functions

By [HeJo/1] a spherical function is a continuous bi-invariant function φ : G → C

satisfying ∫
K

dk φ(xky) = φ(z) φ(w)

The non-zero bounded spherical function characterize the maximal ideals of the convo-

lution algebra L1(K\G/K) via

φ � := {f ∈ L1(K\G/K) :

∫
G

dg f(g)φ(g) = 0}

For a nc symmetric space G/K the spherical function has the form [7, p. 435]

φτ (g) =

∫
K

dk (gk)τ−ρA =

∫
K

dk (g−τ1)[k]

where τ ∈ a]C and [k] := kK◦A. By [7, p. 419] we have

φτ (g−1) = φ−τ (g)

By [HeJo] we have

φτ bounded⇔ −Re(τ) ∈ conv(Wρ).

Proposition 89. On A the spherical function is given by

φτ (a) = aτ−ρ
∫
N

dn n−τ−ρA (ana−1)τ−ρA

Proof. We have

φτ (a) =

∫
K

dk (ak)τ−ρA =

∫
N

dn n−2ρ
A (anK)τ−ρA =

∫
N

dn n−2ρ
A (ta(ana

−1)A · n−1
A )τ−ρ

= aτ−ρ
∫
N

dn n−2ρ
A nρ−τA (ana−1)τ−ρA = aτ−ρ

∫
N

dn n−τ−ρA (ana−1)τ−ρA

Now let t ∈ a+. Since limt→∞(etne−t)A = 1, the dominated convergence theorem

implies

lim
t→∞

et|ρ−τ φτ (et) = lim
t→∞

∫
N

dn n−τ−ρA (etne−t)τ−ρA

=

∫
N

dn n−τ−ρA lim
t→∞

(etne−t)τ−ρA =

∫
N

dn n−τ−ρA = c(τ),

94



If τ is regular (sτ 6= τ for all s 6= e) it follows that c(τ) 6= 0. Thus there is an asymptotic

expansion

lim
A+3a→∞

aρ−τ Φτ (a) = c(τ).

Joint eigenfunctions Φτ (a) for radial parts [7, p. 429]

D̃Φτ = Γτ (D) Φτ

of D ∈ D(G/K). In particular, by [He/427]

L̃XΦτ = (ττ − ρ|ρ)Φτ .

Let β = {β1, . . . , βr} be positive simple roots. Recursion formula

Φτ (a) = aτ−ρ
∑

m∈Nr

Γm(τ)a−mβ

with Γ0(τ) = 1. Then we have |W | linearly independent solutions Φwτ , w ∈ W. Hence

φτ =
∑
w∈W

c(wτ)Φwτ

with cw(τ) = c(wτ), c(τ) = ce(τ). In summary,

φτ =
∑
w∈W

c(wτ)awτ−ρ
∑

m∈Nr

Γm(wτ)a−mβ

Example 90. In the complex case we have [7, p. 432]

φτ (a) = cτ

∑
w

detw awτ∑
w

detw awρ

with

cτ =
(Σ+|ρ)

(Σ+|τ)

For w = [kw] ∈ W with kw ∈ K•A put Nw := N ∩ k−1
w Nkw and normalize by∫

Nw

dn n−2ρ
A = 1

For κ ∈ K] let [Wa/319]

Twτ,κ := kκw

∫
Nw

dn n−τ+ρ
A nκ

K ∈ L(Vκ)

The integral converges on

Cw := {τ ∈ a]C :

∫
Nw

dn n
−(Re(τ)+ρ)
A <∞}
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= {τ ∈ a]C : Reτ |Qα > 0 ∀ α ∈ Σ0
+(w)}

Here Σ0
+(w) consists of all indivisible positive roots α such that wα < 0. For w∗ ∈ W

satisfying w∗Σ+ = −Σ+ we have Nw = N since k−1
w∗Nkw∗ = N. Therefore

Tw∗τ,κ := kκw∗

∫
N

dn n−τ+ρ
A nκ

K

and

Cw∗ = {τ ∈ a]C : Re τ ∈ a]+}.

By [Wa/320] we have the cocycle formula

Tw
′w

τ,κ = Tw
′

wτ,κ T
w
τ,κ

for kw′w = kw′kw and `w′w = `w′ + `w. By [7, p. 458] for each τ ∈ a]C and [k] ∈ K/K◦A
we obtain an eigenfunction

φτ,[k][g] := (g−1k)τ+ρ
A

of D(G/K). Therefore

Dφτ,[k] = Γτ (D)φτ,[k]

for the Harish-Chandra homomorphism

D(G/K)
Γ−→ P(a)W

By [7, p. 463] we have

cw(τ) :=

∫
Nw

dn n
−(τ+ρ)
A = B̃Σ0

+∩w−1∆0
−

(τ)

where, putting α := α/(α|α), we define

B̃α(τ) =
Γ(τ |α)

2τ |α Γ(1
2
(mα

2
+ 1 + τ |α)) Γ(1

2
(mα

2
+m2α + τ |α))

4.4.5 Harmonic Analysis on Lie groups

Let G be a locally compact unimodular 2nd countable group of type I. For any choice

of Haar measure dg on G there exists a positive Plancherel measure dγ on the unitary

dual G] such that ∫
G

dg |f(g)|2 =

∫
G]

dγ ‖fγ‖2
HS

for all f ∈ L1(G) ∩ L2(G). Here

fγ =

∫
G

dg f(g) gγ ∈ L2(Vγ).
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Now let G be a connected semi-simple Lie group with finite center. Then G is of type I

and for every f ∈ C∞0 (G) we have f(γ) ∈ L1(Vγ). More over, the assignment

trγf := tr(f(γ))

is a distribution on G. Consider the spherical Fourier transform

f̃ τ,[k] =

∫
G/K

dg (g−1k)τ−ρA f [g] =

∫
G/K

dg f [g] (g−τ1)[k]

for τ ∈ ia]. In short,

f̃ τ =

∫
G/K

dg f [g] g−τ1 ∈ L2(K/Ko
Ac).

Then
1

|Bρ
Σ+
|2

∫
G/K

dz |f(z)|2 =

∫
ia]+

dτ

|Bτ
Σ+
|2

∫
K/K◦A

dk |f̃ τ,[k]|2

and [He/459] the Fourier transform has the inverse

f [g] =
|Bρ

Σ+
|2

|W |

∫
ia]

dτ

|Bτ
Σ+
|2

∫
K/K◦A

dk (g−1k)
−(τ+ρ)
A f̃ τ,[k].

4.5 Scattering on symmetric spaces

4.5.1 Extension of rings and fields

If K ⊂K ′ is a finite field extension, then trK
′

K : K ′ → K is defined by

trK
′

K α = trMα,

where Mα : K ′ → K ′ denotes multiplication by α ∈ K ′. Let

mα(X) =
n∏
i=1

(X − λi(α)) ∈ K[X]

denote the minimal polynomial of α ∈ K ′ over K. Then

1

[K ′ : K[α]]
trK

′

K α =
n∑
i=1

λi(α)

For α ∈ K we have

trK
′

K α = [K ′ : K]α
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If K ⊂K ′ is a (finite) Galois extension, then

trK
′

K α =
∑

w∈GalK
′

K

wα

If K ⊂K ′⊂K ′′ is a tower of finite field extensions, then

trK
′′

K (α) = trK
′′

K′ (tr
K′

K (α))

K K ′
trK
′

Koo K ′′
trK
′′

K′oo

trK
′′

K

``

Define the trace form K ′ ×K ′ → K by

(x|y) := trK
′

K (xy)

Then (|) is non-degenerate if K ′/K is separable, and identically zero if K ′/K is purely

inseparable.

Example 91. Let

Q′ = Q(
√
d) = {a+ b

√
d : a, b ∈ Q} = Q〈1,

√
d〉

be a quadratic extension field. Then Ma+b
√
d has the basis

(Ma+b
√
d) =

(
a bd

b a

)
and the minimal polynomial

ma+b
√
d(X) = X2 − 2aX + (a2 − db2)

with roots λ1 = a+ b
√
d and λ2 = λ1 = a− b

√
d. Hence

tr
Q(
√
d)

Q (a+ b
√
d) = 2a

Example 92. Let Fq⊂Fn
q be a finite extension of finite fields. Then

tr
Fnq
Fq
α = α + αq + αq

2

+ . . .+ αq
n−1

=
∑

i∈Z/nZ

αq
i

as a sum over the cyclic Galois group Gal
Fnq
Fq

= Z/nZ. For α ∈ Fq we have αq = α and

therefore tr
Fnq
Fq
α = n α.
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By Chevalley, the ring extension PW ⊂P has the following properties:

P = PW [h1, . . . , hr]

is a free polynomial algebra. There exists a graded W -invariant subspace H⊂P (har-

monic polynomials) such that

P = PW ⊗H = (PW+ · P)⊕H

Consider the quotients fields P and PW . Then

PW = (P)W

and the field extension PW ⊂P is Galois with Galois group W. It follows that

trPPW p =
∑
w∈W

w · p := pW

for all p ∈ P .
By [HC] we have restriction maps

P(a) P(p)oo

P(a)◦W

OO

P(p)◦K
�oo

OO

Here

W = K•A/K
◦
A = G•A/G

◦
A

since G�A = A K�A . For α ∈ Σ choose tα ∈ a such that

B(t, tα) = tα

for all t ∈ a. Then W is generated by

sα(t) = t− 2tα
tαα

tα.

By [HC2/251] there exist homogeneous uw ∈ P(a) such that

P =
∑
w∈W

uw · P+
W

and

P =
∑
w∈W

uw · P+
W

with uw free over the subfield P+
W ⊂P . Let uw ∈ P denote the dual basis satisfying

(uσu
τ )0
W = δτσ
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for all σ, τ ∈ W. Then uσ ∈ P
π

and

D =
∑
w∈W

uw P+
W

On the other hand, by [HC/254] we have

P(a)◦W = C[i1, . . . , ir]

where r = dim a.

Consider the polynomial algebra P as a (free) P+
W -module, and denote by

P] = HomP+
W

(P ,P+
W )

the dual P+
W -module. The quotient fields P+

W ⊂P form a Galois extension with Galois

group W. Therefore there exists a conditional expectation tr : P → P+
W defined by

trz = z◦W :=
∑
w∈W

w · z

for all z ∈ P . This induces a non-degenerate bilinear trace form

P × P 3 (x, y) 7→ (xy)◦W .

Hence the dual P+
W -vector space P] of all P+

W -linear functionals P → P+
W has the form

P] = {x∗ : z ∈ P},

where

y 7→ x∗y := (x|y) = (xy)◦W .

By [HC/251] there exist homogeneous polynomials pw, w ∈ W such that

P = P+
W 〈pw : w ∈ W 〉

P

OO

= P+
W 〈pw : w ∈ W 〉

OO

and the pw are linearly independent over P+
W . Let p̃w ∈ P denote the dual basis,

determined by

(ps|p̃t) = tr(psp̃
t) = (psp̃

t)◦W = δts

for all s, t ∈ W.

Example 93. For rank r = 1 we have a = R and W = Z/2Z = {(−1)ε : ε = 0, 1}.
Hence P = R[τ ] and P+

W = R[τ 2]. Since

P = P+
W 〈1, τ〉,

the basis is p0(τ) := 1, p1(τ) := τ. The dual basis in P = R(τ) is p0(τ) = 1
2
, p1(τ) = 1

2τ
.
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Now consider the P+
W -submodule

P] = {λ ∈ P] : λP ⊂P+
W} = {x∗ : z ∈ P , (x|P)⊂P+

W}

of P]. Put

P˜ := {z ∈ P : (x|P)⊂P+
W}.

Then

P] = {x∗ : z ∈ P˜}.
Lemma 94.

P˜ = P+
W 〈p̃

w : w ∈ W 〉.

Proof. Let p =
∑
w∈W

iw pw ∈ P where iw ∈ P+
W . The identity

(p̃s|p) = (p̃s|
∑
w∈W

iwpw) =
∑
w∈W

(p̃s|iwpw) =
∑
w∈W

iw(p̃s|pw) = is ∈ P+
W

shows that p̃s ∈ P˜ for each s ∈ W. Conversely, let x =
∑
w∈W

jwp̃
w ∈ P˜ , with jw ∈ P+

W .

Then for each s ∈ W we have

P+
W 3 (x|ps) =

∑
w∈W

(jwp̃
w|ps) =

∑
w∈W

jw(p̃w|ps) = js

showing that z ∈ P+
W 〈p̃w : w ∈ W 〉. Thus (??) is proved.

In order to describe P˜ more explicitly, let

P−W := {p ∈ P : w · p = (−1)w p ∀ w ∈ W}

be the P+
W -submodule of skew-polynomials. By [HC/253] we have

P−W = P+
Wπ.

where

π(τ) :=
∏
α∈Σ0

+

(τ |α) ∈ P−W .

Harish-Chandra [5, p. 251] has proved

Proposition 95.

P˜ = P/π.

Proof. For p ∈ P we have p−W =
∑
w∈W

(−1)w w · p ∈ P−W . By Lemma ?? it follows that

p−W = π · q for some q ∈ P+
W . Therefore( 1

π
|p
)

= (p/π)◦W =
∑
w∈W

w· p
π

=
∑
w∈W

w · p
wπ

=
∑
w∈W

(−1)w
w · p
π

=
1

π

∑
w∈W

(−1)w w·p =
p−W
π

= q.
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This shows that
(

1
π
|P
)
⊂P and hence P/π⊂P˜ . For the (deeper) converse inclusion one

shows that

p˜w ∈ Pπ
for all w ∈ W. Then the assertion follows with Lemma ??.

4.5.2 Cauchy data space

On the other hand, define the jet space

H = {P](a]) f−→
lin
C∞c (G/K)] : (pq)|fx = p∆

x (q|f) ∀ p ∈ P(a])W , q ∈ P(a])}.

The space C∞c (G/K) is a P(a])W -module via

(p, φ) 7→ p∆φ,

where for p ∈ P(a])W the G-invariant differential operator p∆ ∈ D(G/K)G is defined by

p∆Φτ = p(τ)Φτ (λ ∈ a]).

The Cauchy data space is defined by

D := {P λ−→
lin
C∞c (G/K) : (ip)λ = i∆x (pλ) ∀ i ∈ P+

W}

= P] ⊗P+
W
C∞c (G/K) = (P] ⊗R C∞c (G/K)/N

for the submodule N generated by (ix)∗ ⊗ φ− x∗ ⊗ i∆φ for all i ∈ P+
W . By Proposition

?? an alternative expression is

D = P˜ ⊗P+
W
C∞c (G/K)

via the identification

(z ⊗ φ|p) := (x|p)∆φ

for all z ∈ P˜ , p ∈ P and φ ∈ C∞c (G/K). This makes sense, since (x|p) = x∗p⊂P+
W by

assumption, and satisfies the module property

(ix)∗ ⊗ φ = x∗ ⊗ i∆φ

for all i ∈ P+
W . The energy form on D is now defined by

(z ⊗ φ|y ⊗ ψ)Z :=

∫
G/K

dµ0 φ (π2(x|y))∆ψ =

∫
G/K

dµ0 (π2(x|y))∆φ ψ

since operators in D(G/K)K are symmetric. Using Proposition ?? we can also write

(
p

π
⊗ φ|( q

π
⊗ ψ)Z =

∫
G/K

dz ((pq)◦W )∆
x φ ψ(z) =

∫
G/K

dz φ(z) ((pq)◦W )∆
x ψ.
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For the basis ps(τ) and dual basis p̃t(τ) we have

(p˜s ⊗ φs|p˜tφt)Z =

∫
G/K

dzφ(z) ((πp˜s πp˜t)0
W )∆

x ψ

Example 96. For rank r = 1 we have π(τ) = τ. Since

(p0p0)0
W = 1, (p0p1)0

W =
1

4
(
1

τ
)0
W = 0, (p1p1)0

W =
1

4
(

1

τ 2
)◦W =

1

4

1

τ 2

we have

π2(p0p0)0
W = τ 2, π2(p0p1)0

W = 0, π2(p1p1)0
W =

1

4

and hence(
π2(p0p0)0

W

)∆

x
= −∆1 − (ρ|ρ),

(
π2(p0p1)0

W

)∆

x
= 0,

(
π2(p1p1)0

W

)∆

x
=

1

4

Therefore

(p0 ⊗ φ0 + p1 ⊗ φ1|p0 ⊗ φ0 + p1 ⊗ π1)Z =

∫
G/K

dz
(

(∆− ρ|ρ)φ0(z)π0(z) + φ1(z)π1(z)
)

For each p ∈ P(a]) we obtain an operator Lp on H by putting

q|(Lpψ) := (qp)|ψ

Lemma 97. For each p ∈ P there is an operator Lp ∈ L(D) defined by

q(Lpj) := (qp)|j

for all p ∈ P .

Proof. Let i ∈ PW . Then

(iq)(Lpj) = ((iq)p)|j = (i(qp))|j = i∆(qp|j) = i∆(q(Lpj))

Therefore the linear functional Lqj on P is PW -linear and hence belongs to D.

4.5.3 solution space

The space C∞(a) is a P(a])-module via

(p, q) 7→ p∂q,

where for p ∈ P(a]) the constant coefficient differential operator p∂ ∈ D(a) is defined by

p∂e(·|λ) = p(λ) e(·|λ) (λ ∈ a]).
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The solution space L consists of all smooth functions u : a × G/K → C, more

precisely, a
u−→ C∞c (G/K), which satisfy the (hyperbolic) wave equation

i∂t u(t, x) = i∆x u(t, x)

for all i ∈ P(a])W . Here t ∈ a is regarded as multi-variable ’time’. Thus

L = {a u−−−−→
smooth

C∞c (G/K) : p∂u(t, x) = p∆u(t, x) ∀ p ∈ P(a])W}.

For a smooth function u : a × G/K → C a jet in the variable t ∈ a is the linear

functional ∂t u : P → C∞c (G/K) defined by

p(∂t u) := p∂t u

In order to express the wave equation we require that the jet jt satisfies the covariance

condition

(ip)jt = i∆x (pjt)

for all i ∈ PW .

Proposition 98. There is a smooth map

a× L → D, (t, u) 7→ ∂
t u

defined by

q(∂t u) := p∂t u.

This map satisfies the Cauchy problem

p∂t (
∂
t u) = Lp(

∂
t u) ∀ p ∈ P .

Proof. For each i ∈ PW we have

(iq)(∂t u) = (iq)∂t u = p∂t (i
∂
t u) = p∂t (i

∆
x u) = i∆x (p∂t u) = i∆x (q|∂t u)

Therefore ∂
t u ∈ D. Moreover,

q(p∂t (
∂
t u)) = p∂t p

∂u = (qp)∂t u = (qp)(jtu) = q(Lp(
∂
t u))

Let Φ : a×G/K → C be a solution Define Φ0 : P(a])→ C by

q|Φ0 := p∂0Φ

Then

(jq)|Φ0 = (jq)∂0Φ = p∂0 j
∂
0 Φ = p∂0(j∆Φ) = j∆(p∂0Φ) = j∆(q|lF0)

It follows that Φ0 ∈ H.
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In different notation,

j∂t Φ = j∆
x Φ

If Φ ∈ H̃, then q∂Φ ∈ H̃ for all q ∈ P(a]) since

j∂(q∂Φ) = q∂(j∂Φ) = q∂(j∆Φ) = j∆(q∂Φ).

Thus H̃ is a P(a])-module. On the other hand, put

Consider the following Cauchy problem for smooth maps Ψ : a→ H

(p∂t Ψ)(q) = Ψt(pq), Ψ0 = ψ

Lemma 99. The assignment

Ψ(t, x)q := p∂t Φ(t, x)

defines an isomorphism L → H.

Proof. We have for j ∈ P(a])W

Ψ(jq) = (jq)∂Φ = q∂(j∂Φ) = q∂(j∆Φ) = j∆(q∂Φ) = j∆Ψ(q)

It follows that Ψt ∈ H for every t ∈ a.

The geodesic flow T ∗X × A→ T ∗X defines plane wave solutions

Φw
−τ,[k](t, [g]) = etτ (g−1k)wτ−ρA = etτ (gwτ1)[k]

for each fixed τ ∈ ia] and k ∈ K. Thus Φw
−τ,[k] ∈ L and we may form the jet

∂
0Φw
−τ,[k] ∈ H

at 0 ∈ a.

Lemma 100. For each τ ∈ ia] and k ∈ K we have

∂
0Φw
−τ,[k][g] =

∑
s∈W

ps(τ) p̃s∗ ⊗ (gwτ1)[k]

Proof. Let p =
∑
s

is ps ∈ P . Then (p|p̃s) = is and therefore

p
(
∂
0Φw
−τ,[k][g]

)
= p∂0

(
Φw
−τ,[k][g]

)
= p∂0e

tτ (gwτ1)[k] = p(τ)(gwτ1)[k] =
∑
s∈W

ps(τ)is(τ)(gwτ1)[k]

=
∑
s∈W

ps(τ)(is)∆(gwτ1)[k] =
∑
s∈W

ps(τ) (p|p̃s)∆(gwτ1)[k] = p
(∑
s∈W

ps(τ) p̃s∗ ⊗ (gwτ1)[k]
)
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Corollary 101. Let y =
∑
t∈W

p̃t wt, with wt ∈ P+
W , and ψ ∈ C∞c (G/K). Then(

∂
0Φw
−τ,[k]|w∗ ⊗ ψ

)
Z

=
∑
s,t∈W

ps(τ)wt(τ) (p̃s|p̃t)∆(gwτ1)[k]⊗ ψ[g]

Proof. Since w∆
t (gwτ1)[k] = wt(τ)(gwτ1)[k](
∂
0Φw
−τ,[k]|w∗ ⊗ ψ

)
Z

=
∑
s,t∈W

ps(τ) (p̃s|p̃twt)∆ (gwτ1)[k]⊗ ψ[g]

=
∑
s,t∈W

ps(τ) (p̃s|p̃t)∆w∆
t (gwτ1)[k]⊗ ψ[g]

=
∑
s,t∈W

ps(τ)wt(τ) (p̃s|p̃t)∆(gwτ1)[k]⊗ ψ[g]

Define a plane wave transform Fw : H → L2(ia], H) by

(Fwf)τ,[k] := (ι0 Φw
τ,[k]|f)Z

Then [TiSh/539] asserts for all f ∈ H

‖f‖2
E =

∫
ia]

dτ

|πτ cτ |2

∫
K

dk |(Fwf)τ,[k]|2.

Lemma 102. For ψ ∈ L2(K/K◦A) we have

(1|a−τψ) = aτ−ρ
∫
N

dn (ana−1)τ−ρA n−τ−ρA ψ[(ana−1)K ]

Proof.

(1|g−τψ) = (gτ1|ψ) =

∫
K/K◦A

dk (gτ1)[k] ψ[k]

=

∫
K/K◦A

dk (g−1k)τ−ρA ψ[k] =

∫
K/K◦A

dk (g−1k)−τ−ρA ψ[k].

In particular,

(1|a−τψ) =

∫
K/K◦A

dk (a−1k)−τ−ρA ψ[k] =

∫
N

dn n−2ρ
A (a−1nK)−τ−ρA ψ[nK ]

=

∫
N

dn n−2ρ
A (a−1 · (a−1na)A · n−1

A )−τ−ρ ψ[nK ] = aτ+ρ

∫
N

dn nτ−ρA (a−1na)−τ−ρA ψ[nK ]

= aτ−ρ
∫
N

dn (ana−1)τ−ρA n−τ−ρA ψ[(ana−1)K ]
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By [TiSh/542] we have the wave solutions

Ψ̃t[g] =

∫
ia]

dτ

|b(τ)|2
e−tτ (1|g−τΨτ )

where Ψτ ∈ KR⊂C∞c (ia] ×K/K◦A).

4.5.4 Outgoing representation and scattering operators

Proposition 103. Let g ∈ G′. Then

lim
s→∞

esρ Ψ̃s+t[kge
s] =

∫
ia]

dτ

bτΘ dτΘ
e−tτ

(
1|i∗((kg)−τ

Ψ+
τ

b(−τ)
)
)
HΘ

and, more generally,

lim
s→∞

esρ p∂Ψ̃s+t[kge
s] =

∫
ia]

dτ

bτΘ dτΘ
p(τ) e−tτ

(
1|i∗((kg)−τ

Ψτ

b(−τ)
)
)
HΘ

Proof. Let N = Ń\N and write n = ń \n. Then esne−s = ń(es\ne−s) and hence

(esne−s)τ−ρA n−τ−ρA = ńτ−ρA (es\ne−s)τ−ρA ń−τ−ρA \n−τ−ρA

= ń−2ρ
A (es\ne−s)τ−ρA \n

−τ−ρ
A = ń−2ρ́

Á
(es\ne−s)τ−ρA \n

−τ−ρ
A ,

where

ρ́ :=
1

2

∑
α∈〈Θ〉+

α mα.

Thus Lemma ?? implies

esρ e−(s+t)τ (1|(es)−τψ) = esρ e−(s+t)τ es(τ−ρ)

∫
N

dn

nτ+ρ
A

(esne−s)τ−ρA ψ[(esne−s)K ]

= e−tτ
∫
N

dn

nτ+ρ
A

(esne−s)τ−ρA ψ[(esne−s)K ] = e−tτ
∫
\N

d\n
\nτ+ρ

A

(es\ne−s)τ−ρA

∫
Ń

dń

ń2ρ́

Á

ψ[(ńes\ne−s)K ]

Let w∗ ∈ W satisfy w∗〈Θ〉+ = 〈Θ〉−. Then \N = N ∩ (k−1
w∗Nkw∗). Hence∫

\N

d\n
\nτ+ρ

A

= cτw∗ =
b(τ)

dτΘ bτΘ

since b(τ) = π(τ)c(τ) = dτΘ bτΘ cτw∗ . Since (ń)K = (ń)Ḱ we have∫
Ń

dń

ń2ρ́

Á

ψ[(ń)K ] =

∫
Ń

dń

ń2ρ́

Á

ψ[(ń)Ḱ ] =

∫
Ḱ/(Ḱ)◦

Á

dḱ ψ[ḱ] = (1|i∗ψ)HΘ
.
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Since es\ne−s → e it follows that

lim
s→∞

esρ e−(s+t)τ (1|(es)−τψ) = e−tτ
∫
\N

d\n
\nτ+ρ

A

∫
Ń

dń

ń2ρ́

Á

ψ[(ń)K ] =
b(τ)

dτΘ bτΘ
e−tτ (1|i∗ψ)HΘ

Putting ψ := (kg)−τ Ψτ
b(−τ)

we obtain, using the dominated convergence theorem,

lim
s→∞

esρ Ψ̃s+t[kge
s] = lim

s→∞
esρ
∫
ia]

dτ

b(τ)
e−(s+t)τ

(
1|(kges)−τ Ψτ

b(−τ)

)
H

=

∫
ia]

dτ

b(τ)
lim
s→∞

esρ e−(s+t)τ
(

1|(es)−τ (kg)−τ
Ψτ

b(−τ)

)
H

=

∫
ia]

dτ

dτΘ bτΘ
e−tτ

(
1|i∗(kg)−τ

Ψτ

b(−τ)

)
HΘ

=

∫
ià]

dτ̀ e−\tτ̀
∫
iá]

dτ́

dτΘ bτΘ
e−t́τ́

(
1|i∗g−τk−τ Ψτ

b(−τ)

)
HΘ

=

∫
ià]

dτ̀ e−\tτ̀
∫
iá]

dτ́

dτΘ bτΘ
e−t́τ́

(
1|g−τ ′i∗k−τ Ψτ

b(−τ)

)
HΘ

For u ∈ L consider the limit

(Ŵ
w

Θu)kt [g
′] = lim

s′′→∞
es
′′ρd∂Θ uw−1(s′′+t)[kg

′es
′′
]

Then

(ŴΘΨ̃)kt [g
′] = lim

s′′→∞
es
′′ρd∂Θ Ψ̃s′′+t[kg

′es
′′
]

=

∫
iaΘ]

dτ ′′ e−t
′′τ ′′
∫
ia′]

dτ ′

bτΘ
e−t

′τ ′
(

1|g−τ ′i∗k−τ Ψτ

b(−τ)

)
HΘ

Consider the homogeneous vector bundle

K ×K◦\A L(á× Ǵ/Ḱ) = {[k, u′] = [km′′, (m′′)−1u′] : m′′ ∈ K◦\A}

Then

(Ŵ
w

Θu)km
′′

t [g′] = (Ŵ
w

Θu)kt (m
′′[g′])

for all m′′ ∈ K◦\A. Therefore

k 7→ (Ŵ
w

Θu)kt

induces a section of K ×K◦\A L(á× Ǵ/Ḱ).

By [T-S/546] we have the Plancherel formula

‖u‖2
E =

∫
à

d\t
∫

K/K◦\A

dk ‖(Ŵ
w

Θu)k(−,\t)‖2
EΘ

Thereofore

L(a×G/K) = L2(à)⊗ Γ2(K ×K◦\A L(á× Ǵ/Ḱ)
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4.5.5 Paley-Wiener theorem

Put H := L2(K/K◦A). The Paley-Wiener theorem states that

L2(ia], H) L2(a, H)Φ

isom
oo

L2
−(ia], H) L2(a−, H)Φ

isom
oo

where

L2
−(ia], H) := {a]+ + ia]

h−→
hol

H : sup
σ∈a]+

∫
ia]

dτ ‖h(σ + τ)‖2
H <∞}

is the H-valued Hardy space.

Then

‖f‖2 =

∫
ia]

dτ

|b(τ)|2

∫
K/K◦A

dk |Fwf(τ, kK◦A)|2

Define an operator Ŵ
Θ

w : H → Γ(HΘ)

Ŵ
Θ

w(t, gK ′, k) := lim
aΘ
+3s→+∞

eρ|s dΘ(∂t)u(w−1(s+ t), kg es K)

This solves the wave equation for (t′, zΘ) ∈ a′ ×G′/K ′.

u(t, gK) =

∫
ia]

dτ

|b(τ)|2
e−tτ (1|g−τa+

τ )H

lim
α→+∞

eαsp(
∂

∂s
)u(s+ t, g eαsK)

= lim
α→+∞

eαsp(
∂

∂s
)

∫
ia]

dτ

|b(τ)|2
e−(s+t)|τ

(
1|(kgeαs)−τa+

τ

)
H

=

∫
ia]

dτ

bΘ(τ)

p(τ)

dΘ(τ)
e−tτ

(
1|i∗g−τk−τ a+

τ

b(−τ)

)
HΘ

Then there is a commuting diagram

L2(a, H)
Φ
// L2(ia], H) L2(ia], H)

b(−λ)−1
oo H

F1

oo

Ŵ 1

tt

L2(a−, H) Φ //

OO

L2
−(ia], H)

OO

L2
−(ia])

b(−λ)−1

oo H−
F1oo

OO

Ŵ 1

jj
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Define

Ww := R−1
w ◦ Ŵw

Sw := W+W
−1
w = R−1

w Ŵ+Ŵ
−1

w Rw

Then

Sw := ΦSwΦ−1

is a multiplication operator with multiplier

b(−wλ)

b(−λ)
Swλ

For s ∈ WΘ we have

Ss = W+W
−1
s = ΘW+ Ŵ

Θ

+ (Ŵ
Θ

+)−1 W−1
s = ΘW+

ΘW−1
s

4.5.6 Coordinates

For a finite linear group W ⊂GL(V ) the Shephard-Todd theorem states that W is gen-

erated by pseudo-reflections if and only if

KW [V ] = K[freefin]

is a finitely generated free polynomial algebra, if and only if

K[V ] = KW [V ] < freefin >

is a finitely generated free module of rank |W |. Now consider a basis

P(a]) = PW (a]) < hσ : σ ∈ W >

of homogeneous harmonic polynomials hσ(λ) on a]. Then any p(λ) ∈ P(a]) has a unique

decomposition

p(λ) = pσ(λ) hσ(λ)

where pσ ∈ PW (a]). Multiplying by the linear functional t∗(λ) := (λ|t) for any t ∈ a we

also have

(λ|t)p(λ) = (t∗p)σ(λ) hσ(λ)

where

(t∗p)σ = tσρp
ρ

is a matrix ofG-invariant differential operators onG/K. There is a matrix Aσρ of invariant

differential operators on G/K such that

(φ|ψ) :=
∑
σ,ρ

∫
G/K

φ
ρ
Aσρψ

σ
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defines an inner product on the Schwartz space S(G/K)W 3 (φσ), (ψσ). The Hilbert

completion carries a unitary representation a 3 t 7→ U(t) of a. By definition,

(U(a)φσ)(z) := Φ(a, x)

for uniquely determined functions Φσ : a×G/K → C satisfying the initial value problem

t∂Φσ(a, x) = tσρΦρ(a, x)

and the initial condition

Φσ(0, x) = φσ(z)

for all a ∈ a, z ∈ G/K and σ ∈ W. For each σ ∈ W define

aσ := {t ∈ a : α(σt) > 0 ∀ t ∈ aσ}

and consider the σ-light cone

Cσ := {(t, gK) ∈ a×G/K : t−W (g−1⊂ aσ}.

Then

Hσ := {φ ∈ S(G/K)|W | : Φ|Cσ = 0}
are closed subspaces are pairwise orthogonal and satisfy the Laz-Phillips axioms

U(t)Hσ⊂Hσ (t ∈ aσ)⋂
t∈a

U(t)Hσ = {0}⋃
t∈a

U(t)Hσ ⊂
dense
S(G/K)|W |.

***

Proof. The conventional Fourier transform L2(VR)→ L2(VR), defined by

ĝ(ξ) =

∫
VR

dz e−2πi(x|ξ) g(z),

satisfies

g(z) =

∫
VR

dζ e2πi(x|ξ) ĝ(ξ).

Putting x := y/(2π) and g(z) := f(2πix) we have

f •(ξ) =
1

(2π)d

∫
VR

dy e−iyξ f(iy) =

∫
VR

dz e−2πizξ f(2πix) =

∫
VR

dz e−2πizξ g(z) = ĝ(ξ).

Therefore, using (??),

f(ix) = g
( x

2π

)
=

∫
VR

dζ e2πi(x/(2π)|ξ) ĝ(ξ) =

∫
VR

dζ ei(x|ξ) ĝ(ξ) =

∫
VR

dζ ei(x|ξ) f •(ξ).

Identifying VR ≈ V ]
R via an inner product, the assertion follows.
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Consider the dual lattice

L] := {λ ∈ V ]
R : (L|λ)⊂ 2πiZ}.

Proposition 104. We have the Poisson summation formula

(2π)d/2 |L|1/2
∑
`∈L

f(`) = |L]|1/2
∑
λ∈L]

f •(λ)

Proof. The lattice L/(2πi)⊂VR has the dual lattice L]⊂VR ≈ V ]
R in the usual sense.

Moreover,

|L/2πi| = Vol(VR/(L/(2πi))) = (2π)d Vol(iVR/L) = (2π)d |L|.

Therefore the usual Poisson summation formula, applied to g(z) := f(2πix), yields

(2π)d/2 |L|1/2
∑
`∈L

f(`) = |L/(2πi)|1/2
∑
`∈L

g
( `

2πi

)
= |L]|1/2

∑
λ∈L]

ĝ(λ) = |L]|1/2
∑
λ∈L]

f •(λ)

Remark 105. Different authors have different conventions.

• Kudla, Bump:

Γ\G, GQ\GA/KA, D = GR/KR, G = NAK

• Baily:

G/Γ, KA\GA/GQ, D = K\G,G = KAN
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