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Chapter 0O

Introduction

0.1 Motivation: Discrete groups in complex analysis
and mathematical physics

0.1.1 Universal covering of Kahler manifolds

A complex Kéhler manifold M (not necessarily compact) has a universal covering man-
ifold D = M such that
M =D/T

where I' = 7, (M) is a discrete group of holomorphic deck transformations acting on
D. Thus complex analysis on M is related to ’automorphic’ analysis on D. We call T’
co-compact if the quotient space M = D/T" is compact. More generally, we call I' of
finite covolume if D/I has finite volume under the volume form induced by the Kahler
metric. For "hyperbolic’ Kahler manifolds, D can often be realized as a bounded domain
in C¢, and in important cases as a bounded symmetric domain

D = K\G,

where G is a semi-simple real Lie group and K is a maximal compact subgroup. In this
case we have a discrete subgroup

rccG

which is called a lattice if it is co-compact. In the 1-dimensional case a compact
Riemann surface M is hyperbolic iff it has genus > 1. By the uniformization theorem,
D = M is the unit disk (or upper half-plane). Therefore

becomes a discrete group of Mobius transformations. One (i.e., Poincaré) calls I' of
Klein type if it is co-compact and of Fuchs type if it has finite co-volume. Thus the



all-important modular group

SLy(Z) = {(CCL 2) € Z*?*: ad —bc =1}

is Fuchsian, but not Kleinian. In higher dimensions, there exist differential geomet-
ric criteria for M to ensure that D = M is the unit ball in C?, or more generally a
bounded symmetric domain. These criteria involve important geometric invariants of
the underlying Kahler manifold.

0.1.2 Teichmiiller space

For a compact Riemann surface X the Teichmiiller space
T(X) = Conf(X)/Diff’(X)

consists of all conformal structures on X modulo equivalence by diffeomorphisms which
are isotopic to the identity. Via Beltrami differentials, 7 (X) can be realized as a convex
bounded domain. However, the 'true’ moduli space

M(X) = Conf(X)/Diff(X)

consists of all conformal structures modulo equivalence by the full diffeomorphism group.
Thus

where

I' = Diff (X)/Diff°(X)

is the discrete group of components of Diff(X), also called the mapping class group.
The Teichmiiller space becomes the universal covering

—~—

T(X) = M(X).

As an important step, this moduli space has to be compactified to a projective algebraic
variety (or stack) by adding points at infinity, so M(X) becomes a Zariski-open (dense)
subset of the compactification. Actually, the important case is where X is not compact,
but arises from a compact Riemann surface by removing finitely many punctures. Then
the compactification M, is the Mumford-Deligne moduli space.

0.1.3 String theory duality groups

In the preceeding two examples, I is a discrete group of holomorphic transformations.
These give rise to automorphic forms, which are better regarded as sections of a holo-
morphic line bundle (therefore 'forms’ instead of ’functions’). On the other hand, in
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number theory (Langlands program) and mathematical physics one encounters discrete
subgroups of 'real’ Lie groups which give rise to real automorphic (or better, invariant)
functions. For example, for a metric g on a pseudo-Riemannian manifold of Minkowski
signature, the Einstein field equation

Ric(g) =0

arises from a variational principle under the Einstein-Hilbert action

L(g) = /dVolg Scal(g).

X

Extending this concept to super-gravity in 10 dimensions, the corresponding solutions,
when compactified on tori T™ of dimension 0 < n < 10 have scalar moduli which
transform under the super-gravity duality groups

An(R), Du(R), En(R),

the real forms of algebraic groups of ADFE-type. Now super-gravity is regarded as the
low-energy limit of string theory. Passing to string theory, which is a quantum field
theory, one expects again that the corresponding solutions have scalar moduli which
transform under the super-string duality groups

An(Z), Dn(Z), En(Z),

which form a lattice within the real duality groups. More precisely, for string-theory

backgrounds of the form
Rl,9*d % Td

we obtain the following duality groups
SUR\SLE/SLZ, d=0

SUM\GLY/GLZ, d=1
(SUR x SUR)\(SLE x SLE)/(SLZ x SL%), d=0
SUM\SLE/SLZ, d=3
(SUL xz, SUR\SUL, /SUZ,, d
(UY/Z2)\E/ES, d=5
(SUS /Z:)\EZ/EF, d=6
(SUTS/Zo)\ES/EE, d=T

4

In general these can be written as the series E;; with Dynkin diagram



0.1.4 Free group von Neumann algebras

For any free group I' in /-generators (more generally, every group with only infinite
conjugacy classes) the group von Neumann algebra W*(I') = I’ (bicommutant) is a von
Neumann factor of type Il;. We will show that this arises in the Berezin quantization
on weighted Bergman spaces H2(D) over the unit disk (or upper half-plane), where v
becomes the number of generators.

0.2 Basic concepts

0.2.1 Holomorphic automorphism groups

For a complex manifold D (or even more general, a complex analytic space) we let
Aut(D) denote the ’automorphism’ group of all biholomorphic transformations of D,
acting from the right: (z,¢g) — z - ¢. It is known that for a bijective holomorphic map

g : D — D the inverse map ¢! : D — D is also holomorphic.

If D is a locally compact and locally connected topological space, then Arens has
shown that the homeomorphism group Top(X), endowed with the so-called compact-
open topology, is a topological group and the evaluation map D x G — D is jointly
continuous. In particular, for a domain D C C¢ we consider the identity component

G = Aut(D)?

of the holomorphic automorphism group Aut(D) C Top(D). By Arens’ result this is a
connected topological group. In general, it is not a Lie group. For example, Aut(C?)
has infinite dimension, since for every entire function f : C — C the mapping

Dr(z,w) = (z,w+ f(2))

is an automorphism of C?, with inverse (I>}71 = ®_;. On the other hand, if DCC% is a
bounded domain, then G is a (finite-dimensional) Lie group by a deep theorem of H.
Cartan. The first step in the proof is the following:

Lemma 1. Let A, BC D be compact subsets of D. Then the set
Gap:={9€G: AgnB#0}
18 compact.

Proof. By separability, it is enough to show that G4 p is sequentially compact. Consider
a sequence g, € G 4 p. Then there exist sequences a,, € A, b, € B such that a, - g, = by.
Since g are bounded holomorphic maps on D we may choose by Montel’s theorem
convergent subsequences satisfying g= — g+ : D — D. Since A, B are compact, taking



further subsequences we may assume in addition that a, — a € A, b, — b € B. Then
a-gy =b, b-g_ = asince the evaluation map D x G — D is jointly continuous. Choose
open sets a e UCW CCD, b e VCCD satistying U -g, CV and V - g_ C W.Then
joint continuity implies g, o g_|y =id, g_ o g4|y = id. A similar argument shows that
D-gLCD. O

Corollary 2. For every a € D the isotropy subgroup
Go=Gooa={9€G: a-g=a}
18 compact.

Let D be a complex manifold, for example a bounded domain D C C%. A group
' C Aut(D) of holomorphic transformations of D is called properly discontinuous if
for all compact subsets A, B C D the set

FPap:={yel: AynB # 0}

is finite. Note that in general this is only a subset of I'. For A = B we obtain a (finite)
subgroup
Pp:=Taa={yel: AynA#0}.

In particular, for each point a € D the isotropy subgroup
Fpi=Tsa={yel: ay=a}

is finite. The same concepts apply to more general ’analytic spaces’ which may have
singularities.

Proposition 3. For a bounded domain D, every discrete subgroup I' C Aut(D) acts
properly discontinuous on D

Proof. For all compact subsets A, B C D the set
FA,B =I'N GA,B

is compact and discrete, hence finite. O

0.2.2 Holomorphic automorphic forms

Consider first a connected complex manifold D and a properly discontinuous group
[' C Aut(D). An automorphic cocycle J : I'x D — C consists of holomorphic functions
J : D — C which satisfy the cocycle property

Sy (2) = J5(7'2) Sy (2).

10



The standard example, for a domain D, is given by the Jacobian

Jy(2) :=det ¢'(2)

where ¢'(z) is the holomorphic derivative of g € Aut(D) at z € D. Relative to the
cocycle J, a holomorphic function f : D — C is called an m-automorphic form if

J(2)" f(yz) = f(2)

for all v € I" and all z € D. This means that f is a holomorphic section of the m-th
power of a line bundle determined by J. For m = 0 one would say invariant function, but

typically automorphic forms exist for large m. Let Of*(D, C) denote the vector space of
all m-automorphic forms. Then Of(D, C) - O}(D,C) C Of(D, C) and hence

Or(D, C) Zom (D,C)c O(D,C)

is a graded subalgebra of holomorphic functions.

0.2.3 Holomorphic Eisenstein series on bounded domains

Let D C C? be a bounded domain and I'C Aut(D) a discrete, hence properly discon-
tinuous, subgroup. Let f € H*(D) be a holomorphic function. For m > 2 define the
Poincaré-Eisenstein series

= Z‘]’Y(Z)

Note that I' is acting from the right.

Proposition 4. For m > 2 the series
= Z Jy(2)
~yel'
is compactly | - |-convergent on D.
Proof. Let ACC BC CD be compact subsets. Then for each z € A there exists an
open polydisk (product of disks) P, C B. If P,o N P, -7 # () then B- (o7 ')NBDP, -

(o771 N P, # 0 and hence o7~ ! € I'g. Therefore the collection (P,7),er covers D at
most |I'g| times. This implies for the volume | - |

> |PAl < [Tg] |D.

vyel

The mean value theorem and integral transformation formula imply

|P.y|
| T, /dw]J )P =
|P | | P |

11




since |.J,(w)|? is the real Jacobian determinant. It follows that

IPwI

vyel vyel

Since A is covered by finitely many polydisks P,, this proves uniform convergence on A
for m = 2. This in turn implies sup,c 4 |J,(2)| < 1 for almost all v € I' and therefore
L™ < (=) of m > 2. 0

Corollary 5. If f € H*®(D) is a bounded holomorphic function, then for m > 2 the

series
S DAL I OED DR
~er yel
is compactly | - |-convergent on D.
Proof.

S L™ ()] sup\leu

yerl’ yerl’

]

In case D C Z is a bounded domain, all polynomials f € P(Z) restricted to D are
bounded.

0.2.4 Poincaré series on Lie groups

Proposition 6. Let G be a unimodular group and f € L'(G) be integrable (could be
vector-valued). Then the Poincaré series

fo=Y"v-f frle)=>_ flg7)

vyer vyel

| - [|[-converges compactly on G and is bounded.

Proof. Since T is discrete there exists a symmetric compact e-neighborhood P C G such
that T'N P? = {e}. By a deep result of Harish-Chandra [1, Theorem 19, p. 154] there
exists a 'Dirac’ like function § € C*(G) with compact support supp(d) C P (which is
K-invariant §(k~'gk) = §(k) V k € K) and satisfies the convolution equation

fxo=1f.

Putting A’ = h~y, it follows that

F(gm) = (f % 8)(gn) = / ai’ f(gyh") 6(K)

12



= [an stgh ™y sy = [ an o) o)

Therefore

5ol [ dn o) 160l < supls) [ dn lstgh
Pyl

Pyl

If 1,7, € I are distinct, then Py; ' N Py, ' = (). Putting h” = gh™*, it follows that

1910(9) == S (o)) < sup 3] S / ah 1|7 (gh )|

~yel WEFP7_1

<supldl [ dn |ftgh™)] =supa] [ dn 1)) = sup 3] ]
G G

using that G is unimodular. This shows that the series converges normally on G. Since
f is integrable, for any € > 0 there exists a compact set () C G such that

[t <e

GQ
For any compact subset C'C G the set
A={yeTl: CyPNQ # 0}

is finite. For v € I' ~ A the sets gvP are pairwise disjoint and contained in G ~ Q.
Therefore, for any g € C

S Irtenl <swsl Y [ dn @l <swls [ w0 < e supjal

yel'~A yel'~A gy P GoQ
Hence the series converges uniformly on C' [

In general, it is difficult to decide whether these Poincaré series do not vanish iden-
tically. This can be studied, e.g., by Fourier expansions to be considered later.

13



Chapter 1

Quotients of Complex Analytic
Spaces

1.1 Overview

The quotient space D/T" of a complex manifold D (e.g., a domain DC Z = C9) by
a properly discontinuous group I' is in general not a complex manifold, because of
singularities arising at fixed points a € D where the (finite) isotropy group I', is not
trivial. Nevertheless, it will be shown that D/T" is always a so-called analytic space.
More precisely,

e The quotient Z/T" by a finite linear group I' C GL(Z) = GL,(C) (not necessarily
a reflection group) is a complex analytic space.

e As a consequence, the quotient D /T" of any complex analytic space D by a prop-
erly discontinuous group I' C Aut(D) (not necessarily finite or linear) is again
a complex analytic space.

e If D is a bounded domain and I' C Aut(D) is a co-compact discrete subgroup,
then D/I" is a projective algebraic variety. This deep result of H. Cartan was a
primary motivation for Kodaira’s embedding theorem.

e If D = K\G is a bounded symmetric domain and I' C G is an ’arithmetic’
discrete subgroup (of finite co-volume) then D/T" is a Zariski-dense open subset of
a projective algebraic variety.

In this chapter we prove the first three assertions. The fourth assertion (Satake com-
pactification) lies deeper and will be proved later.

14



1.2 Commutative algebra

1.2.1 Integral closure and Krull topology
We consider unital commutative rings A. For an integral domain A let
A::{%: a,be A, b0}
denote its field of fractions. For a commutative ring extension A C B let
A% = {(beB: Al = A(fin)}

denote the integral closure of A in B. This shorthand notation means that the algebra
A[b] generated by A and b € A (in short, the A-algebra generated by b) is a finitely
generated A-module. One can show that

AcA’cB

is a subring of B. We define the notion of integrally closed and integrally dense by
looking at the extreme cases

An integral domain A is called normal if

A=A & 44

closed

is integrally closed in its field of fractions. Consider a group I' C Aut(A) of ring auto-
morphisms of A. Then

AV ={acA: yv-a=aVyeT}
is a subring of A.

Lemma 7. Let A be a normal ring. Then the subring
AV ={acA: y-a=aVyel}
18 also normal.

Proof. Since A is an integral domain, its subring A" is also an integral domain. Now let
—AT —
f= § € AT | where p,q € A" and ¢ # 0. Then f € A% = A and for all v € I' we have

P _ D
yof=lE=toy
Y49 4

_ar
Therefore f € AU and hence A" = At O

15



Lemma 8. Let A be a noetherian ring, and M = A(fin) a finitely generated A-module.
Then every A-submodule N C M is also finitely generated, N = A{fin).

The following integrality criterion will often be used.

Proposition 9. Let AC B be a commutative ring extension. Then B = A(fin) is a
finitely generated A-module if and only if B = A[fin] is a finitely generated A-algebra
and B=A4". In short,

B = A(fin) < B = Alfin] = A"

Now we study ring completions under the so-called Krull topology. For any ring
A and ideal m <t A the m-closure of an ideal a < A is given by

a=)(a+m"A)

n=0

More generally, a submodule N C M of an A-module M has the m-closure

N = ﬂ(N+m”M)

n=>0
The following closure criterion is proved in [Zariski-Samuel, p. 262, Theorem 9.

Proposition 10. Consider a noetherian ring A and an ideal m <1 A contained in every
mazimal ideal. An equivalent condition is that

1+mcﬁ

1s invertible. Then every ideal a <1 A is m-closed

a= ﬂ(a+m”A)

n=0

More generally, every submodule N C M = A{fin) of a finitely generated A-module M
18 m-closed:
N =()(N+m"M)

n=0

An important special case is a (noetherian) local ring A with a unique maximal
ideal
m=A~ A

Here A denotes the group of units in A.

16



1.2.2 Power series and germs of analytic functions

For a field K and indeterminates z = (zy, ..., z,) we denote by
Kz = K|z, ..., 2]
K|z| = K|z, ..., 2]
C{z} =C{z,...,2n}

the ring of polynomials/formal power series/convergent power series

fz)=> fa

vEN™
with coefficients f, € K. These rings are integral domains (no zero divisors). Putting
= (z1, 2n) = (¢, 2n),

with 2’ = (z1,...,2,-1), we have

K[z] = K[2'][z]

Klz| = K|2'||z|

C{z} = C{z'Hzn}
The Weierstrass division theorem states

Theorem 11. Let f,g € K|z| such that f(0,z,) # 0, i.e., o(f(0, 2,)) = k < 0o. Then
there exist unique q € K|z| and r € K|2'|[z,] such that the order

0(g(0, z,) — (0, 2,)) > k

and
f=qg+r.
Similarly for convergent power series.

Thus the Taylor coefficients in the z,-variable satisfy g;(0") = r;(0’) for 0 < i < k.

Corollary 12. We have
f=q2"+r

with q(0) # 0, i.e., q is a unit.
Proposition 13. The rings K|z| and C{z} are noetherian.
Proof. Use induction on n and, in the convergent setting, the Weierstrass theorem. [

Proposition 14. The rings K|[z], K|z|, C{z} are normal.

17



For any a € C" let
0, =0%" ~C{z—a}

denote the local ring of germs of analytic functions at a. Given an open subset U C C"
a closed subset X C U is called analytic if for every a € X there exist a € U, Copen U
and holomorphic functions h; € O(U,), i € I such that

XNU,={2€U,: hi(z) =0V iel}.

By the noetherian property, one may always choose I to be a finite set. For an analytic
set X we denote by OX the ring of germs of analytic functions on X. We write

XcU ccc”

ana open

There are two basic ways to construct local rings of analytic functions. Suppose first
that 7 : D — D/I" is a quotient map. Endow D/I" with the quotient topology, and for
a € D, let c2/T denote the ring of germs of continuous functions. Then we define

Ofa/F ={f ECQZ/F: fOWGOf} =: W*(Of).

On the other hand, for an analytic subset X C U, with inclusion map ¢ : X — U, and
b € X we define
OFf ={flx=for: feOJ} = 10OV,

The maximal ideal m in the local power series ring K|z|/C{z} are the power series
f without constant term, i.e. f(0) = 0. Given power series f; € C{z} without constant
term we put

fo= (o fm).

Since f.0 = 0 we have the substitution homomorphism

c{z} <& clw),  g(w) = g(f.2)

for z near 0, inducing a commuting diagram

cizt = clw)

| |

Cifi} == Clw}/efe

where the range
C{f*} = C{fla e 7fm} = C{U}} ° f*
is a subring of C{z} and the kernel

of. :=ker(of,) = {g € C{w} : go f. =0} <C{w}

18



is called the ideal of analytic relations between fi,..., f,.

For a polynomial ideal Z <1 K'[z] we denote by
ITt={2€ Z: f(2)=0VY feTI}
the algebraic variety in Z = K9 If f, = (f1,..., fm) we also write

fo=K[E(f) ={x€ T: fi(z) =0V i}

by considering the ideal K[z|(f.) generated by the f;. For convergent power series f; €
C{z} we have instead the analytic variety (germ)

fi=1z: filz) =...= fm(2) =0}
near 0. Then 0 € f," and f, defines an analytic mapping into o_fﬁ.
The following Zariski criterion is proved in [1, Corollary, p. 19].

Proposition 15. 0 is isolated in f." if and only if the ring C{z} is integral over its
subring C{ f.}, i.e.,

int

C{£} ¢ Clz} = CIF)

C{z}

1.3 Quotient by a finite linear group

Let I' C GL4(C) be a finite group of linear transformations. More generally, let K be a
field, not necessarily of characteristic 0 or algebraically closed. We often write Z = K¢
(resp., Z = C9) since the coordinates play no distinguished role. Thus I' C GL(Z).
Via substitution
(v-p)(2) = p(27)
the group I" acts by ring automorphisms on the polynomials K[z]. Consider the invariant

subalgebra
Klz]" :={pe K[z]: v-p=pVyeT}

Since the ['-action preserves degrees, the homogeneous terms of a I'-invariant polynomial
are also [-invariant. It follows that K|[z]" is a graded K-algebra.
Lemma 16. The ring extension K|[z|" C K|z] is integral, i.e.

int — K]

K[z]' C K[z] = K[2]F

dense

Proof. For p € K[z] the monic polynomial

pt)y=JJt-v-p)=t-p) [] t—v-p) € K[]"[]
~€T 1#€l
satisfies p(p) = 0. Therefore p € K [z]FK[z].

19



Lemma 17.

is a finitely generated K[z]"-module.

Proof. Since
————K[]

K[2] = K[fin] = K[2]'[fin] = K[]" ",
the assertion follows from the ’integrality criterion’. m
The ’polynomial’ finite generation theorem is

Theorem 18. There exist finitely many homogeneous polynomials p. = (p1,...,Dm)
such that
K[2]" = K[p1,...,pm] = K[p.]

1s a finitely generated K -algebra. Thus the substitution homomorphism
K[2)" &= K], f(w) = fop.(2)
15 surjective and induces a commuting diagram

K[2]F <2 K[u]

N

[w]/op.

where
op. ={f € K[w]: fop.,=0}<qK[w]

denotes the kernel of the substitution homomorphism.

Proof. Applying (??) to the coordinate functions z; we obtain

4(t) =) 1"z, € K[2]"[t]

n=0

where z;,, € K[z]". Define the unital K-algebra
A= K|z, C K[2)".

(2]

For each i we have z; € A" since 2;(t) € A[t] by definition of A. Since the integral

closure 4" is a subring and even a K-subalgebra, it follows that

K[z = A" (1.3.1)

20



Therefore
Kl[z] = K[fin] = A[fin] = A"V

and the ’integrality criterion’ implies that
Kl[z] = A(fin) (1.3.2)

is a finitely generated A-module. Now A is a homomorphic image of a polynomial ring,
hence noetherian. By (2.1.2) it follows that K|z] is a noetherian A-module. Hence the
A-submodule K[z]' C K[2] is also noetherian. Now the Lemma implies

K[z = A(fin) = K[fin](fin) = K|fin]

This yields finitely many algebra-generators py, ..., p.,, which may be assumed homoge-
neous, since K|[z|' is a graded algebra. O

Corollary 19. The quotient ring K[w]/op, is normal.
Proof. This follows from K[w]/op, ~ K|z]". O

For 1 <1 < m define
dj = degpj > 0.

For any multi-index g = (pq, ..., tn) of length m put
d-pi="y dipy.
J

A polynomial of the form

p(w) = Z Puw”

d-u=k

for some integer k is called k-isobaric. Let
(4) ==1(0,...,0,1;,0,...,0).

Lemma 20. Let ¢ € K[w| be k-isobaric. If there exists 1 < j < m with coefficient
¢y # 0, then
¢—¢(j)w]' € K[wl,...,d)j,...,wm]

Proof. If ¢;) # 0, then d; = k. Now
¢—¢'(0) =) duut.
[pu>1

Let |p| > 1 satisfy p; > 0. If p; > 1 then d - pp > d;p; > k. Therefore ¢, = 0. If p; =1
there is another index ¢ # j such that p; > 0. Then d- pu > d; +d;p; > dj = k. Therefore
¢, =0 O
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We say that a set of generators p, = (py, ..., pm) of K[z]' is reduced if every isobaric
polynomial ¢ € K[w] satisfying ¢ o p, = 0 has a vanishing linear term ¢'(0) = 0.

Lemma 21. Every homogeneous set py, . .., pm of generators of K[z]' contains a reduced
set of generators.

Proof. If py,...,pm is not reduced, there exists an isobaric polynomial ¢ € K |w], satis-
fying ¢ o p. = 0, with non-vanishing linear term ¢'(0) # 0. Hence ¢y # 0 for some j.
By the Lemma we have

0=¢(ps) = (¢ = Syw;)(Prs-- -, Djs - -, Pm) + O(5)P;-

Since ¢(;y # 0 it follows that p; € Kpy,...p;,...,pm]. Therefore pi,...p;, ... ,pp is a
smaller set of generators. Repeating this argument, we obtain a reduced set of generators.

[]

From now on we assume that the generators p, are homogeneous and reduced.

Lemma 22. Let AC Z be a finite set of I'-inequivalent elements. For each a € A let
bq € K[2]' satisfy 04(¢a) > 1. Then there exists ¢ € K|[z|' such that o,(v) — ¢o) > 71
for all a € A.

Proof. For each b € A, the finite set AI' ~ b is [',-invariant. There exists a polynomial
pp such that

Ub(pb — 1) >, OAFNb(pb) >T.

The polynomial
w= ] pe K"

vE,

has the same vanishing properties, since

pro-pn—1l=@1—Dpo--pn+P2—ps-pp+...+p,—1

Define
U= Yy (dun) = doan + D7+ (dan) € K[2]"
Tp\D by-£b
Then
Y ==t —bat D U =ulta— 1)+ Y v (Sada) + DD V- ().
b b#a ay#a b#a Tp\I'

For the first term we have

oa((ba(%L - 1)) Z Oa(Qa - 1) > T,

For the second term, if ay # a then ay € AI' ~ a and therefore
Oa(/y : (¢aQa)) - oay((bQQa) > 0&7(Qa) > min UAFNa(qa> >T.
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For the third term, if b # a we have ay € AI' ~ b since a, b are I'-inequivalent. Therefore

00 (7 - (D)) = 00y (Pqs) = 04~(qp) = min opp(gy) > 7-

In summary, 0,(D> ¥y — ¢a) > 7. O
beA

Lemma 23. For 0 # a € Z there exists ¢ € K|x]'* such that

00(q) >0, 0,(¢q—1) > 0.

Proof. Take any polynomial p € K[z] and let
g=J1rr=r ][ v peKh™
v€ely e#£vel,
N
Then 0¢(q) = 0o(p) > 0. With I'y = {71,...,v7n} we have ¢ = [[(y; - p) and hence
i=1
N
g—1=]]i-P=D(is1-p) - (- p).
i=1
For each ¢ we have
0u (3P = D01 -p) -+ (i P)) 2 0a(3 - = 1) = 0a(%i - (p— 1) = 0y, (p = 1) > 0
since a7; = a. This implies 0,(¢ — 1) > 0. O]

For every a # 0 there exists p € K[z]' such that og(p) > 0, i.e., p € Z, and
0,(p—1) >0, ie., p(a) = 1. Hence

V(pi,...,pe) = V(I) = {0}

showing that py, ..., p, have no common zero # 0. By Zariski’s theorem, the ring exten-
sion K|[py,...,pe] C K[2] is integral. Therefore, the ring extension K|[z]" C K|z] is also
integral, proving the first assertion. Similarly, the ring extension K|py,...,p)] C K[z]"
is integral and K[p,...,p¢] is noetherian. Therefore

K[Z]F - K[pb o 7pf]<p€+17 o 7pm> = K[pb o 7pm]

is a finitely generated K-algebra.

Next we obtain the ’power series’ finite generation theorem.

Theorem 24. For formal/convergent power series we have

K|z|" = K|p.| | C{z}" = C{p.}.
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Thus for every f(z) € K|z|' | C{z}' there exists f € K|w| / C{w} such that
f(2) = f(p.2).
Equivalently, the substitution homomorphism
K|2|" &= Klw| / C{z}" ¢ C{w}

15 surjective and induces a commuting diagram

op: op.
- 2]
Klo|' <———Kw|  C{z}) ~——C{w}
> gy
Klwl/op. C{w}/op.

Note that p,0 = 0 is needed to define these rings.

Proof. The assertion for formal power series follows from the expansion into homoge-
neous terms. In the convergent setting C{p,} C C{z}', Taylor expansion into homoge-
neous terms shows that

Clp,) = C[z]" & C{z}"

dense

in the topology induced by the powers of the maximal ideal

m={feC{z}: f(0)=0}aC{z}.

A fortiori, we obtain

C{p*}dE c{z}".
We will now show that C{p,} is also m-closed in C{z}'. For any f € C{z}' consider
the algebra C{p,}[f]. Then (?7) implies

C{p.} C Clpf):

Since C{z} is a noetherian ring, its homomorphic image C{p.} is also noetherian. Since
0 is isolated in V(p.), the "Zariski criterion’ implies

cip} & cfzh =l

is integrally dense in C{z}. A fortiori,

Cip} & Clplf] =Sy
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is also integrally dense in the subring C{p,}[f] C C{z}. Thus

7 C{p-}

C{p.}f] = C{p.}[fin] = C{p.}

and the ’integrality criterion’ implies that

C{p}f] = C{p.3{fin)

is a finitely generated C{p,}-module. Applying the ’closure criterion’ to the noetherian
ring C{p.} and its maximal ideal m N C{z} it follows that the C{p.}-submodule

C{p.} C C{p)lf

is m-closed. Since it is also m-dense, we obtain C{p.} = C{p.}[f]. Therefore f € C{p.}.
Since f € C{z}' is arbitrary, it follows that C{p,} = C{z}'. O

Proposition 25. Consider power series qi,...,qnm € K|z|' / C{z}' which satisfy
0(g; —pj) > d;.
Then there exist power series Aj(w) € K|w| / C{w} such that
Acope=q., Aj(pez) = q(2)
and the linear term A (0) is invertible. Here we put
0(2) = (@) an(2), Auw) = (A (W), ., A (w)).

Proof. We may assume that d; < ... < d,. Write

2= ()

n=0
where qfn) € K[2]' is n-homogeneous. Then g (" ¢ K[2]" can be (non-uniquely) written
as
=D ap,
d-u=n

with coefficients a;, € K. Define formal power series

Ai(w) = ad” wh € Klwl.
I
Then
Ai(pez) =Yl (poz) = qu” = qi(2
n

For each fixed ¢ the assumption
O(Az OPsx — pz) - 0((] pz) dz
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implies that the isobaric polynomial

> ap, w! n <d;

satisfy ¢ o p, = 0. By reducedness, the linear term vanishes:

Za (Wi n < d;

0=dOy=1""
; a? Wi — Wi

Therefore

no =0V d; = d
{“> s 153

i,(j
di s
We claim that the linear terms

d.
N(0)yy = Z aif(j)wj
J

form a unipotent upper triangular matrix. On the dlagonal we have a% () =1 by

(2.1.2). Now let j < i. Then d; < d;. If d; < d;, then ai,(j) =0 by (2.1.2). If d; = d;,

d; i —
then a;7;) = ag, ;, =0 by (2.1.2). O

Note that this argument needs coordinates wy, ..., w,, (instead of just a complex
vector space W of dimension m) in order to define upper triangular matrices. The
deeper reason is that the degrees d; of the generators p; will in general be distinct.

Corollary 26. For formal/convergent power series we have
Elz|" = Klg.| / C{z}' = C{a.}.
Thus for every f(z) € K|z|F | C{z}' there exists f € K|w| /| C{w} such that
f(2) = fla.2).
Equivalently, the substitution homomorphism
K|z ¢ Klw| / C{z}" <= C{w}

18 surjective and induces a commuting diagram

Ogx« ) 0qs

2 -
K|z|' <——— KJw| C{z}l' =—— C{w}

| |
Klwl|/og. C{w}/og.

Note that q.0 = 0 is needed to define these rings.
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Proof. Since the power series map
w = A(w) = (A (w), ..., Ap(w))

satisfies A.(0) = 0 and A’ (0) is invertible, the inverse mapping theorem for formal /convergent
power series implies that the (composition) inverse A !(w) exists as a formal /convergent
power series near 0. Now the 'power series’ finite generation theorem implies

f:fop*:fo(/\*_loq*):(foA*_l)oq*:foq*

with f = fo A;' € K|z| / C{z}. O

1.3.1 Z/I' as an algebraic variety

Let 7 : Z = K¢ — Z/T be the canonical projection. The map p, := (p1,...pm) : Z —
K™ is I'-invariant and therefore has a factorization

7P gm

7T —
Py

Z/T
Consider the associated affine algebraic variety
op, i={w e K™: op,(w) =0}
Lemma 27. The map p, : Z/T' — K™ is injective.

Proof. Let m(a) # mw(b). Then al' N bI" = ). Choose a polynomial ¢ € K|[z] such that
¢(al') = 0 and ¢(bI') = 1. Then

f(z) =] ¢(zv) € K[2]"

vyel

satisfies f(al') = 0 and f(bI') = 1. The 'polynomial’ finite generation theorem implies
f(2) = f(psz) for some f € K[w]. Therefore p.a # p.b. O

Theorem 28. Suppose that K s algebraically closed. Then the range
P.(Z/T) = p.Z = op,”
is the algebraic variety determined by the ideal op,.

Proof. Let a € Z and f € op,. Then f op, =0 and therefore

f(p.(ma) = f(p.a) = (f ops)(a) = 0.
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It follows that p.Z C op,". Conversely, let b € op,”. Then op,(b) = 0. Hence there is a
commuting diagram

for the evaluation map ¢,. Hence

kerg, < Klwl|/op.

which implies
m = ker(e, o p,) = (ker§,) op, < K[z]"
We claim that K[zJm < K[z] is a proper ideal. In fact, if 1 = > w;a; with a; € K[z] and

u; € m then for each y € I' we have 1 = -1 = Z w;(7y - a;) and therefore

mzz (v - a;) mZuZny a; Em

vel' ~er
since Y v-a; € K[z]'. This contradiction shows 1 ¢ K[zJm. By Zorn’s Lemma there

yel’
exists a maximal ideal

K[zlm<n < K|z].
Then mCnn K[z]" < K[2]", since 1 ¢ nN K[2]". It follows that
(kerey) op, =m =nn K|[z]".

Since K is algebraically closed, Hilbert’s Nullstellensatz implies n = kere, for some
a € Z. For each j the affine polynomial A\(w) := w; — b; belongs to ker¢,, showing
that A o p, € n = kere,. Therefore 0 = (A op,)(a) = pj(a) — b; for all j showing that
psa = b. O

Together with Lemma ?7? it follows that the continuous map
ZJT 2 op*
is bijective.
Proposition 29. For K = C the map p, in the diagram
| N
ZJT —Zsop,*
is a homeomorphism for the quotient topology on Z/T' and the relative topology on op,™.

28



Proof. For t > (0 define homotheties

pi(2) =tx,  op(wy)iL, = (tdjwj)gnzl.

Then the diagram
Z/T B op, -

AL

commutes. Let C'C Z be a compact 0-neighborhood. Then there exists r > 0 such that
{zeZ: ||z <r}cCC.

Suppose there exists a sequence wy € p,Z ~ p,C such that w, — 0. Then w, = p,z, for
2y
llzell

some z; € Z ~ C. Hence ||z|| > r and r%4 € C has a convergent subsequence

with ||la]| =7 > 0. Then p,(7a) # 0 since 0 is the only common zero of p,. On the other

hand, .
_ L = — ) = —
P (Tm) = D (Pr/120120) = 01120 Pi(2eL) = Oz we — O

since ”;”—e” < 1. This contradiction shows that p.C' is a neighborhood of 0 € op,*. Since

D, is bijective and continuous, it follows that 7=C' LEN p«C' is a homeomorphism. Using
the homotheties again, we can reach any point in Z, and the assertion follows. O

1.3.2 Z/I' as a ringed space

The preceding theorem shows that Z/T" is isomorphic to a normal affine algebraic variety
op, C K™ as aset. We will now show that this isomorphism holds on the level of ringed
analytic spaces, if K is an algebraically closed, non-discrete, complete valuation field,
e.g. K = C. This more difficult part of Cartan’s theorem proceeds by investigating the
isotropy subgroups

Ip:={yel: ay=0}

at all points a € Z. Since I',, is also a finite linear group, the preceding results apply to
I', as well. Note that I'o =1T".

We make Z/T" into a ringed topological space. For an open subset V' C Z/T" define
OUT .={f:V—=C: for:x (V) — C holomorphic}

This yields a (pre)sheaf on Z/I'. The local ring OZ/" can be described as follows. The
translation action

tag(z) := ¢z —a)
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yields an isomorphism
O, <= Clz}f* = o
On the other hand, the averaging
o= "y f, V@) = Y fla)
'YGFa\F 'YGFa\F
is a surjective map
OZ/F ()Fa\r OFa.
Thus we have
or:
(')1;“\/ {
~ | tq
O« C{z)}T
and
Ont ={f: feC{z}"}.

consists of all germs

flrz)= Y flzr—a)

YL\
where f € C{z}'s, since (f o 7)(z) = f(nz) is holomorphic near a.

On the other hand, the (affine) algebraic variety op,” has the regular functions

K[op.'] := K[w]/op..

At any point b € op,” we may form the localization

K@yn:{§:¢weK@ywa¢m

These local rings form a coherent sheaf over op,”. Passing to convergent power series,

the algebraic variety Y := op,” C C™ is a ringed space with local rings

O = {4y : v € Clw}},

where we define

t(y) == ¥(y —b)

For each a € Z define a ring homomorphism A, by the commuting diagram

C{z}" L C{w)
tatz zttp*a
Ol < OF"

where t denotes the translation actions. Similarly, for formal power series.
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Theorem 30. For anya € Z the homomorphism A, is surjective: If f € K|z|'* / C{z}e,
there ezists f € Klw| / C{w} such that

f(x - CL) = f(p*x —p*a)

In other words, we have

taf = (t.af) 0 -
Proof. Applying the 'polynomial’ finite generation theorem to I', it follows that
K[z)'* = Kr,]

for a finite reduced set of homogeneous polynomials r.(z) = (ri(2),...,7m,(2)). By
Lemma (?7?), there exist invariant polynomials t,s; € K|[z]" with

0(sp — 1) = 04(tasp — tars) > degry.
Then s, € K|[z]"* C K|z|". Tt follows from Proposition (??) applied to T, that
7L, = hi 0 S,
for some power series hy € K|z| / C{z}. Since t,s; € K[z]' we can write
sk(r —a) = (tasi)(x) = gr(par — paa)

for polynomials g, € K[w]. Note that p,z — p.a (unlike p.(x — a)) is still a set of
(inhomogeneous) I'-invariant generators. Then

9k(0) = gx(rea — rea) = s,(0) = 0.
Thus we may form the formal power series 7, = hy o g, and obtain

This proves the assertion for the generators ry,. Since K|z|' = K|r.| / C{z}'* = C{r.}
by the 'power series’ finite generation theorem applied to I',, this suffices for the assertion
in general. O]

Corollary 31. For each a € Z there is a ring isomorphism
Z)T Z °Pr noPs" cm
(971'({ = W*Oa <_: Op*a - L*Op*a'

Here Z = Z/T and ops X3 C™ denote the canonical projection/injection, respectively.
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i
OPx

Proof. Every germ ¢ € Op_, is of the form

V() = (t,a9)(y) := gy — p.a)

where g € C{w}. Thus we have

i
OPx e cm tpra

O OS" = C{w}
onto ~

Then the convergent power series
fa(2) = g(po(2 + @) — p.a) € C{z}"

satisfies
(Yop)(x) = g(px — pea) = fo(z — a)

Proposition 32. At any point b = p.a € Y the power series completion
K|Y|, = K[Y], = K|z|'
18 normal.

Proof. The formal power series ring K |z| is normal. By Lemma, its subring K|z|'* is
also normal. O

1.4 Quotients of Analytic Spaces

A topological ringed space D is called an analytic space if around every a € D there

exists an isomorphism
D>USoUCV C Z

open ana  open

for some vector space Z, such that o(a) = 0. In short, D is locally isomorphic (as
a topological ringed space) to an analytic subset of an open subset in some C¢. We

sometimes write |
ocC
D>USoeUCZ.

open ~ ana

A group I' acting by holomorphic transformations on D is called properly discontin-
uous if the following two conditions hold:

aFﬂbF:®:>ElneighborhoodsaEU,bGV:UTﬂVF:Q)

Moreover every isotropy group I', is finite, and there exists a neighborhood U = UT,
such that
'y =T,.
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The first condition means that D/I" is a Hausdorff space. The second condition means
that the canonical projection 7 : D — D/T" satisfies

n(U)=U/T,

It follows that the local structure of D/I" is determined by quotients of the form U/T,,
where U is again a complex analytic space invariant under the finite group I'y, which
leaves the 'base point’ a € U fixed. The main idea is now to realize I', as a linear group.
Consider first the easy case that a € D is a regular point, i.e., not a singularity. The
set of regular points is an open dense subset of D. Around a regular point a the above
simplifies to

D>U%SoU C Z.

open ~ open

Lemma 33. Let I' be a finite group acting on an open set 0 € U C Z = C¢ and fizing
0. Then there exists an isomorphism U <> U’ onto an open set 0 € U' C Z such that the
diagram

commutes, i.e., we have

for all vy €T.

Proof. Define o : U — Z by

~ T 72

verl
Then
0 |F‘ Z 70 ’7
~yel'
Hence o is a local isomorphism on an open set 0 € U C Z. Put U’ := o(U). Now let

v € I'. Putting 7 =8 € I, with 7} = 5] we obtain

Z . | Z 27) 75 v = 0(2) Yo

ﬁEF Tel

]

For arbitrary, not necessarily regular points a € D, one uses the following ’lineariza-
tion trick’ due to Serre. For Z := C? let Z"+ denote the finite-dimensional vector space
of all maps ¢ : I'y — Z, v+ 1., endowed with the linear right action

Z' x Ty — ZM, (V7)) = 5.
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induced by permutation of the 'coordinates’ 5 € I',. For any subset V C Z we define the
invariant subset

Vie={y:T, - V}icz'™

If D is a complex analytic space, then for each a € D there is an open [',-invariant
set a € U C D and an injective holomorphic map ¢ : U — Z into a complex vector space
Z wich o(a) = 0, such that

USoUCV C Z

ana open

Lemma 34. Define an analytic map 6 : U — Z'e by

(62)y = 0(27).

Then the diagram
U—2>VTa Zla

1

s Ta
U—sr Ve —Z

commutes, i.e., for all v € T', we have 6(z7y) = (62)7, and

U c Ve ¢ 7,

ana open

Proof. Let g € T',. Then

(@(27))s = o((27)B) = 0(2(vB)) = (62)45 = ((62)7)s-

Since [ is arbitrary, the equivariance property (?7) follows. We claim that

oU ={v € (oU)"" : (07 (1),))B =07 (1hy5)}.

In fact, let ¢ = 5(z) for some z € U. Then v, = (62), = 0(27) and hence

(07 (1y))B = (27)8 = 2(1B).

On the other hand, we have ¢35 = (62),5 = o(2(73)) and hence o' (¢,5) = 2(v8).
This proves the claim. It follows that

U C(cU)'* c Ve =6U Cc Ve

ana ana ana

]

Note that by the linearization trick the embedding dimension of the underlying an-
alytic set increases considerably, so will not be optimal anymore. Also, the notion of
analytic subset is well-adapted to this process, since all one has to check is the analytic
equations of the image.

34



Theorem 35. The quotient D/T" of any complex analytic space D by a properly discon-
tinuous group I' C Aut(D) (not necessarily finite or linear) is again a complex analytic
space.

Proof. Keeping the above notation, for each fixed a € D, consider the linear action of
the finite group I', on Z%<. Since & is I',-equivariant, it induces an isomorphism

U/Te = (6U) /T

T

for the ringed structure induced by the projection. By Theorem ?? we have a polynomial

map p

"(U) = U/Tu £ (3U)/Ta € V[T € 2700 2 opt c C7

open

1.5 Compact Quotients of Bounded Domains

We now specialize to a bounded domain D CZ = C? and a properly discontinuous
group I' C Aut(D). Consider an automorphic cocycle J,(z). Then for each a € D the
map v — J,(a) is a character of I',. Since this is a finite group by assumption, there
exists an integer @ € N (for example, the order |I',|) such that

Jy(a)* =1

for all v € I',. By the linearization Lemma, the isotropy group I', acts by linear transfor-
mations in a local chart near a. In this chart the Jacobian J,(z) for v € I'; is independent
of z. Therefore we have

JW(Z)[I =1

for all v € T', and z in a neighborhood of a € D. Consider a graded subalgebra

A=) A"cO(D,C),

m=0

where A™ C OF(D, C) consists of m-automorphic forms relative to the cocycle J. To
ease notation, we sometimes write

€. gt
A, = AN
We assume that the following two conditions hold:
(x) Va,be D, w(a) #7(b), Vintegerl = lap ¥V 0,5 € C

Ife A fla)=a, f(b)=5
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Here m Vv n = l.c.om.(m,n) denotes the least common multiple of integers m,n. The
second condition is

(#%) VY a€ DV deN Vipgegal = (2 Vh € OL°
Ffe Ao f —h)>d.
Example 36. For a bounded domain D C Z := C? consider Poincaré-Eisenstein series
O =Y T 0, O () =D (2) él=)
yel’ vel
where m > 2 and ¢ € P(Z) is a polynomial. Define
A=y P P(2)
mi+...+mr=m
= (@) - (@e)r™ = ¢ € P(Z), mi 22, mai+ ...+ mp =m).
Then the conditions (*) and (**) are satisfied.

Proposition 37. For all a,b € D there exist D Dopen U 3 a,b and ¢y € N such that for
all 0 > Ly there exists f € ‘Aé\/l} with 0 ¢ f(U).
Proof. By (*) there exists ¢/ and f; € Af‘zlvb’ fo € Af:eri;l such that fi/2(a) = fi/2(b) = 1.
Hence there exists D Dopen U 2 a,b such that 0 ¢ f12(U). Every integer ¢ > {, :=
¢'(1+ ') can be written as £ = my¢' + my(¢' + 1) for positive integers my /. Then

fr= A e AT AT C AL

avb ¥ avh avb
satisfies 0 ¢ f(U). O

Proposition 38. Suppose a,,ay € D are not I'-equivalent. Then there exist D Dopen Ui 2
a; and ¢' € N such that for all ¢ > ' there exist f; € A’ with fi(a;) # 0 and for

a1Vas
L F
| filo: < |filu,
Proof. By (*) there exist ' and h; € A ;. such that h;(a;) = 1, hj(a;) = 0 if j # i.

By Proposition ?? there exists D Dopen U 3 a1, a2 and ¢y > ¢ such that for all £ > ¢,
there exists f € ALY with 0 ¢ f(U). Choose smaller neighborhoods U Dopen U; 3 @;

a1Vas

fii=F hi € Afva,

satisfies the requirements. O
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Proposition 39. For each a € D C Z there exists D Dopen Uy 2 @ and €, € N such that
for all € > {, there exist finitely many h¢ € A%, 0 < i < n, with 0 ¢ h¢(U,) and the
homogeneous coordinates yield an isomorphic embedding

(hg = ... hy | =[RS - 7(Uy) — P
onto a locally analytic subset of projective space.

Proof. By Proposition 77 there exist

D> U=Uly % o(U) C Z

open open

around a such that o(a) =0 and I} ;= g o[, 0 071 C GL4(C) is a (finite) linear group
leaving o (U) invariant. By the 'polynomial finite generation theorem’ there exist finitely
many homogeneous polynomials py, ..., p, € P(Z) such that

P(Z)" = Clpi] = C[p.].

Put d; = deg p; and choose ¢% as in condition (**). Since p; oo € OL« it follows that for
ly > max Kg" there exist f; € Af;o such that

oo(fio o™ —pi) = 0u(fi = pioo) > d;.

In particular, f;(a) = 0 for all i. For any D Dgpen U 3 a the intersection mFeFa U~ is
I',-invariant and still open, since ', is finite. It follows that I',-invariant neighborhoods
form a neighborhood basis, so we may by Proposition 7?7 assume that f. = (f1,..., fm)
defines an isomorphic embedding

foo™1).
-

7(U) = U/Ty = o (U)T", * cm

I«
onto a locally analytic subset of C™. The f, may still have a common zero in U. For each
{ > {y there exist hy € A4 and h € AL with 0 ¢ ho(UT)UR(UT). Then h; := hf; € A%
and (ho, hf.) has no common zero on U, so that the projectivation

[ho, hf] : m(U) — P™

defines an isomorphism onto a locally analytic set in P™. More precisely, if the range
f+(U) is defined by the equations h;(wy, ..., wy,) = 0, for (wq,...,w,) € C™ then the
range

ho(Z)
h(z)

[h0(2) = h(2) f1(2) = -2 h(2) fm(2)] = [
is described by the additional equation

h(](ﬁ:l(wl, Ce ,wn))
h(ft(we, ..., wy,)

in m + 1-variables wq, wy, . .. w,,. Here f, ! is a local analytic inverse for f,. O]

Hhi(z) s fn(2)]

Wy =
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Remark 40. The last, somewhat cumbersome, argument can be avoided in case D/T is
compact. In this case we produce an injective holomorphic map [f.] : D/T — PY whose
range, by the proper mapping theorem, is automatically an analytic (in fact, algebraic)
subset of PN,

Lemma 41. For 1 < j <k let fI = (fg, e ,fﬂ;j) be I'-automorphic of weight m;. Take

all monomials
n; _
=11 TT~

j=1k i=0

of total weight
k n; .
S 3l =
j=1 =0

Then if one of the family f7 has no common zero on a subset U C D, then f! also has
no common zero on U, and moreover the projectivation [f!] : D/T — P™ is injective
wherever [fI] : D/T — P™ is injective.

Proof. For any 0 < i < n; let Ozf,/ =m (5;,(5;/. Then (f/)™ is an allowed monomial
and the monomials (f/)™ have no common zero on D, proving the first assertion. Now
assume that the full monomial family f/ satisfies [f/(a)] = [f.(b)] for some a,b € D. Then
there exists a non-zero A € C such that f'(a) = Af'(b) for all admissible mononomials
f’. In particular,

(F (@)™ =X (fl o)™

and more generally, for the same j

n n
LI @)y =TT @)
i=0 i=0
whenever ZJ o = m’. This implies f7(a) = X f/(b), so that [fI(a)] = [f7(b)]. This proves
i=0
the second assertion. ]

Let us call the preceding procedure the monomial construction.

Proposition 42. Assume that D/T is compact. Then for large enough m > mq there
exists finitely many fo, ..., fn € AP(D) without common zero on D. Hence the projec-
tivation

[fo,..., fx]: D/T — PY

1s a well-defined holomorphic map.

Proof. Since D/T" is compact there exists a compact set K C D such that 7(K) = D/T.
Equivalently, KT' = D. There exists a finite covering K C|JU of open sets U C D such
u

38



that for each U € U there exist automorphic forms fI = (f{,..., fY ) € A™ without
common zero on U so that the projectivation

[fg]:[fé] U}:’]T(U)_>PHU

nu

is a holomorphic isomorphism onto a locally analytic subset of P". By increasing the
weights if necessary, or by applying the 'monomial construction’ to the finitely many
families fV we obtain family f/ without common zeros on K. Since KI' = D it follows
that the projectivation

[f.]: DJT — P

is a well-defined holomorphic map. O

Theorem 43. Assume that D/T" is compact. Then for large enough m > mg there ezists
finitely many fo, ..., fn € AP(D) without common zero on D such that the projectivation

[fo,---, fn]: DJT — PN

is an injective holomorphic map, hence an isomorphism onto an analytic (in fact, alge-
braic) subset of PV,

Proof. Let F denote the collection of all maps [f.] = [fo...., fa] : D/T" = P", where
fi € A(D, C) are automorphic of the same weight m (depending on f,) and have no
common zeros on D. Define

(K x K)z = {(zw) € Kx K: [f.(2)] = [fu(w)]}.

By Proposition ?? F is non-empty. Now assume [f,| € F is not injective. Then there
exist a1, as € K not I'-related, such that [f.(a1)] = [f«(a2)]. In other words, (ay,as) €
(K x K)y,. By Proposition ?? there exist D Dopen U; 3 @; and automorphic forms h; of
the same weight m such that for {i, 7} = {1, 2} we have

|h;

v, < |k

U;-

Applying the 'monomial construction’ to the two families (hq, hy) and f., we obtain
a new family f/ with a common weight which has no common zeros on D, and the

(well-defined) projectivation
[fl]: D/T —P"

is injective where [f,] is injective, i.e., (K x K)p C(K x K)y,. Since [hq, ho| separates a;
and as, Lemma 77 asserts that

[fl(CLl)] # [fi(%)]-

It follows that (a1, a2) € (K x K)y, ~ (K x K)y,, so that (K x K)p C(K x K)y, is
a proper subset. Now assume by contradiction, that there is no injective holomorphic
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map [fo, ..., fn] : D/T — P¥. Then the above construction produces a sequence [f¥]
for k € N such that

KxK)pDIKxK)nD.. DIKXK)m D(K X K)mi1D...
( )fs;é( )ﬁ# 7é( ) 7é( )fﬁl7é

On the other hand this is a decreasing sequence of analytic subsets meeting a compact set
K x K, which therefore must become stationary (noetherian property). Contradiction!

O
Theorem 44. Assume in addition that D/T is compact. Then there exist h; € A™ with-
out common zero on D such that the projective map associated with hy, = (hg,...,hy)

gives an isomorphism
(7]

D/T — [hJ(D/T) Cc P¥

~ alg

onto a locally analytic (in fact, algebraic) subset of PV,

Proof. It remains to construct a global injective embedding. For any finite subset
A = {ay,...,a} C D of pairwise inequivalent points there exist neighborhoods a; €
U; Copen D and, for £ > (4, there exist f; € A{, with |fi||o, > |f||u, for all j # i. By
Proposition 7?7 we may assume that

where all hj» € -Af/ai have the same weight as f;. Since D/I" is compact, we may assume

that U;I', 1 < ¢ < k cover all of D. This implies that the functions fi,..., fx have no

common zero on D and thus we may form the projective map
[fiehl:fo:h2:. . i fu:h¥):D/T — PV,

We claim that this map is injective and hence an isomorphism. Let z,w € D satisfy

(f1(2),RL(2), ..., fru(2), hE(2)) = M fi(w), hi(w), ..., fu(w), b5 (w))

for some non-zero A € C. If z,w € U; for some i then [h%(z)] = [hl(w)] implies 7(z) =
m(w) since [h'] is an embedding when restricted to 7(U;). Now suppose z € U;, w € U;
with 7 # j. Since fi(z) = Afj(2) we obtain [A] [f;(2)] = [fi(2)] > [;(2)| and [A] | f;(w)] =
|fi(w)| < |fj(w)|. This contradiction shows that (??) is an embedding. O

Lemma 45. There exist an open neighborhood U, C D of a which is invariant under the
isotropy group Ty and a local chart ¢, : Uy — U, from a 0-neighborhood U, such that
J(0,¢s) = id and for each v € Ty, the transformation 5 := ¢, oy o ¢, is linear.

For each a € D there exists a biholomorphic map A, : U, = U] Copen £ with a, =0
such that U, is I',-stable and for each v € T', the diagram

Xa oy
U, 22U

|

!
UGTUG,
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commutes, where 7/, € GL(Z) is linear. Putting z = (A this implies

A (Q) Y (CN) = (M) (€) = (76 A)'(€) = 7a(Aa) (C72)

and hence for the Jacobians

Ira(€) J5(CA) = det(vg) Jx,(¢7a):

Taking m-th powers we obtain

J3(Q) T (CAa) = det(y,)™ IR (Cra) = I3 (C)

since m is a multiple of |T',|. Put T/, := {7, : 7 € [,} = AT,A"". Then ), defines an
isomorphism
Opa Lo @lam

by putting
(Maf)(€) := JX(C) f(CAa)

This isomorphism preserves the respective maximal ideals and their higher powers, and
is therefore bicontinuous in the Krull topology. The finite-dimensional quotient space

OFa,m/(mFa,m)Z—i—l
a a
consists of all jets at a up to order /.

Proposition 46. Let AC D be a finite set of I'-inequivalent points. Let a € A and
Oq € ngz. Choose ¢ € N. Then there exists p € Clz] such that for all a € A we have
0.(pL. — fo) > (. Here we write ¢, € (9(1;:1 as ¢ = Ny fa for a unique germ f, € OL=m
and m 1s any large multiple of all a, a € A.

Proof. Let a € U, Copen D be a linearizing neighborhood around a and let V, C C U,.
Then

Ne = min |y, (2)] < 1

since |Jy,(0)| = 1. The set (not a group)

Fa::{’YEF: EIZGV(M |‘]"/(Z)|>%

is finite since sup,.y, |J,(2)| < % for almost all v € I". Moreover, I'; CI'?, since for
v €T, we have J,(a)"! =1 and therefore |.J,(a)| =1 > 1 > 2. For each a € A the set

AT® ~ qa is finite and T'y-invariant. There exists a polynomial p € C|[z] such that for all
acA

0a(p — fa) > L, 0are~a(p) > L.

Consider the m-weighted average
p{’n‘; - |FCL| fa = (p;‘r; - |Fa| fa) _+_p?erFa'
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For the first term we have
ga(p?z - ’Fa| fa) > 4

since the m-automorphy of f, under I', implies
P = Tal fa= > Iy p=7- fa)
vel's

and for each v we have

Ua(ng(W'p—V'fa) Z oa('}/'p_’}/'fa):Oa'y(p_fa)zoa(p_fa) > /.

For the second term we have ay # a and therefore

0o(JY" v p) Z 0a(7 - P) = 0ay(p) = Min0(arayna(p) > L.

It follows that p{ — |['4| f. vanishes of order > ¢ at a. Therefore the (-jet (Taylor
polynomial up to order ¢) at a satisfies

e(pF = [Talfa) = 6 (P + b = [Talfa) = 36 (pre ) + e (PP = [Tl o) = 36 PRore

since the second term has vanishing Taylor polynomial. In order to estimate the first
term, for all z € V, and v € I' ~ I'* we have |J,(z)| < 4 by definition, and therefore

EeGl= Y < (D) S r2Ecm e

yel'~T'a yel'~T'a

uniformly for z € V,. Since p is bounded on D we also have
Iprre(2)| < M7 27

for all z € V. Thus for any € > 0 there exists a multiple m of all a, a € A, such that
the ¢-th Taylor polynomial of p{? ;. at @ has norm < e. The same holds therefore for

p—|Ty| fo. Now consider the finite-dimensional vector space [] j¢ OY«™ and the linear
acA

mapping

I s o & clz]

acA
given by

Ap = (]ﬁ PF)aca

We have proved that this map has a dense linear range. By finite dimension, A is
surjective. Hence for any given f,, a € A there exists p € C[z] such that for all a € A
we have j' f, = jipm, ie., 0,(pf — f.) > €. Now (*) and (**) are easy consequences. []
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Proof. Let AC C D be compact. For each a € A there exists a polynomial p and a
weight d such that pl,(a) # 0. More generally, there exists polynomials p; and weights d;
such that

(po)goa SRR (pk)gk

have no common zeros on A. Put d := l.c.m.(d;). Then

F7d0)d/d0 F»dk)d/dk
1 ).

(p SN

have no common zeros on A and are automorphic of the same weight d. Thus we obtain
a holomorphic map

D' = P* 2 [0 ()Y, (0 (2)) Y]
defined on an open neighborhood A C D' C D. Now suppose
F:D' =P 2 [(fi2), ., fi(2)]

is given by automorphic forms fy, ... fr of the same weight d. Suppose that this map
is not injective on A and let a,b € A not I'-related satisfy fi(a) = f;(b) for 0 < i < k.
Choose polynomials py, ps and weights d;, ds such that

pr®(a) =0=py(b), Py (D) #0# py®(a).

Let d = leam.(d,dy,ds) and consider all monomials in fy, ..., fi, pr ™, py® of total

weight d. These finitely many monomials gg, ... g, define a holomorphic map
G:D" =P 2 [go(2),. .., 90(2)]
in the algebra generated by Poincaré series which satisfies
F(z) # Fw) = G(2) # G(w)

and, in addition, G/(a) # G(b). The first fact follows since the powers ffz /% oceurs as a

monomial. The second fact follows since p}™ (a;) # py®(a;) and the power (p]r’dj)d/dj

occurs as a monomial. Repeating this process, we obtain an injective map
G:D"—=P"  z[ho(2),..., hp(2)]

since A is met by only finitely many [-orbits. m
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Chapter 2

Construction of Automorphic forms

2.1 Automorphic forms on semi-simple Lie groups

Let G be a semi-simple real Lie group of non-compact type. Its Lie algebra g is identified
with the right-invariant vector fields on G, by associating with X € g the first order
differential operator

(X?f)(g) = 0 f(g exp(tX)).
It follows that the universal enveloping algebra g is identified with the right-invariant
differential operators (of any order) on G. Its center §° is the commutative subalgebra
of all bi-invariant differential operators on . By Chevalley, this is a free polynomial
algebra with rank(G) generators. For any function f € C*>®(G,V) into some vector
space V, the set

@);={Yeg: Yf=0}
is an ideal (since (XY)? = X?Y? and the center is commutative) called the annihilator
ideal of f. The linear evaluation map

induces a commuting diagram

We say that f is g°-finite if

codim (§°)3 = dim ¢§°/
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In the important case when the annihilator ideal has codimension 1 there exists a
character (unital algebra homomorphism)

such that (§°)5 = ker x; and

XOf = e4(X) = xp(X)f

for all X € §°. Thus f is an eigenfunction under §°.

Let K C G be a maximal compact subgroup, so that K'\G is a Riemannian symmetric
space. Let s : K — U(K ) be a unitary representation of K on V := K _. Let ' CG
be a discrete subgroup of finite co-volume. A smooth function f : G/I' — V is called
automorphic if it satisfies the following three conditions: The first is an invariance
condition

flkgy) =k f(g) Vke K, yeTl. (2.1.1)

The second is a finiteness condition
codim (§°)F = dim (§°/(§°)F < oc. (2.1.2)
The third is a growth condition at oo
1£ ()l < ¢ trg(Ad;Ady)™? (2.1.3)

for some ¢ > 0 and m € N. Here Ad : G — GL(g) is the adjoint representation and the
adjoint

"=0(g)
where 6 is the Cartan involution. These conditions make sense for distributions, but one
can show that automorphic forms are automatically real-analytic. Here the finiteness
condition (2.1.2) is essential. We note that there exist the important special scalar case

20

where V' = C is 1-dimensional and codim (§°)3 = 1.

In order to understand the condition (2.1.1) in geometric terms, consider the associ-
ated vector bundle
G xgV =A{[g,v] = [kg,k™v] : k€ K}

over K\G. Define
CR(G,V)={¥ eC>®(G,V): VU(kg)=k"V(g) VkeK}.
Every smooth section ¢ € C®(G X g V) has a homogeneous lift’ ¢ : G — V defined by
VKg = [971;(9)]-
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Then [kg, (kg)] = vxq = [9,¥(9)] = [kg, k1)(g)]. Hence ¢ € C3¢(G, V) and we obtain a
linear isomorphism

CX(G,V) & C®(G xk V).

The first part of (2.1.1) says that f is the homogeneous lift of a (unique) section ¢ €
C*(G xk V). Now consider the left action

(v-¥)(g) = ¥(g)

of v € G on C*(G, V), which leaves the subspace C%¥ (G, V) invariant, since (7. V)(kg) =
U(kgy) = k* ¥(gy) = k* (v - ¥)(g). Via the isomorphism (??) we obtain a left action
(v,1) = v -1 of G on C®°(G xk V) which is indirectly determined by

Yich = [h, (v ) (hy )]

for all h € G. The second part of (2.1.1) says that the section corresponding to f is I'-
invariant under this action. In summary, automorphic forms are I'-invariant sections of
a homogeneous vector bundle, which are generalized eigensections and satisfy a growth
condition.

To make contact with the standard notion using cocycles, consider a right action
X x G — X of G on a (smooth/real-analytic/complex analytic) space X, and a group
H with a linear representation p : H — GL(V') on some complex vector space V. Consider
a map

J:GxX—=H, (g9,2)— Jy(z)

satisfying the cocycle condition

Jog (2) = Jy(2) Jy(29)

for all z € X and g.¢g € G. Note that H is non-commutative, so that the order is
important. Then a (smooth/real-analytic/holomorphic) function f : X — V is called
J-automorphic if it satisfies

f(z) = J,(2)° f(27)

for all z € X and v € G. Let A{(X,V) denote the vector space of all J-automorphic
functions. The assignment

(z,0) -y = (27, J,(2) 1)
defines a right action of G on X x G since
((z,0) ) " = (273 L, (2)T'0) - = ((27)7, Ty (27) 7 T, (2) M)

= (9, (Jy(2) Jyr(29))"T0) = (2(3), Sy (2)"0) = (2,0) - (7))
Let
X xp V= (X x V)T = {[z,v] = [27, J,(2) "]}
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denote the quotient, regarded as a bundle over X/I" via the map X xpV — X/T',  [z,0] —
zI". Its sections C*°(X xr V') can be identified with

CR(X, V) ={P: X - V: ®(2v) = J,(2) '®(2)}

by putting )
¢z = [27 ¢(Z)

for all ¢ € C>*(X xr V) and z € X. Comparison with (??) shows that J-automorphic
functions are just the (homogeneous lifts of) (smooth/real-analytic/holomorphic) sec-
tions of X x{ V.

Now consider the special case X = K\G endowed with its natural right G-action.

Lemma 47. The H-valued automorphy factors on K\G are in 1-1 correspondence with
homomorphisms j : K — H together with a cross-section (= trivialization) 6 of the
associated (principal) H-bundle

GxxH={[g,h] =lkg,jx h|: g€ G, he H, ke K}
such that 0(k) = ji.

Proof. Let J be a factor of automorphy. Then for k, k" € K and the fixed point o :=
K € K\G we obtain

Jiw (0) = Ji(0) Jiw(0k) = Jgq(2) = Ji(0) Ji(0).

It follows that k +— Ji(0) is & homomorphism K — H. Consider the associated (princi-
pal) H-bundle

P=GxgH=/{[g,h] = kg, Ju(o)h] : g€ G, he H, ke K}.
The cross sections C*°(G x ¢ H) are identified with
CR(G,H)={0:G = H: O(kg) = Jx(0)O(9)}

by putting
vy = lg,9(g)]
for all ¥ € C*(G xx H). The map G > g — J,(0) € H satisfies

Jrg(0) = Ji(0) Jy(ok) = Ji(0) Jy(0)
and hence belongs to C¥(G, H). It follows that
Okg = 19, J4(0)]
defines a cross-section of G x i H such that 8(g) = J,(0). In particular, (k) = Ji(0).
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Conversely, let j : K — H be a homomorphism. Then the cross sections C*(G x x H)
are identified with

Cx(G,H)={0:G — H: O(kg) = jr ©(g)}

by putting

Vg = [g,9(g)]

for all 9 € C*(G xk H). Assume there is a cross-section 6 such that its homogeneous
lift 0 € C¥(G, H) satisfies (k) = ji. Define

J,(0g) = 0(9)"'0(g7) € H

Then

so that J : GxK\G — H is well-defined, and satisfies Jj,(0) = 6(e)'0(k) = j(e)~'j(k) =
j(k). Moreover, the automorphy property becomes

I, (2) Ty (27) = J,(0g) Ty (0g7) = 0(9) " 0(97)0(g7) " 0(g7Y') = 0(9)0(97Y) = Ty (0g) = Ty (2).
0

In view of the above Lemma, we write the homomorphism j : K — H as j(k) = Ji(0)
for a (unique) H-valued cocycle J.

Lemma 48. The map
(Kg,h) = [g, J4(0)h]

induces a trivialization

K\Gx H~GxgH

as a principal H-bundle.

Proof. This map is well-defined, since [kg, Jy,(0)h] = [kg, Ji(0)J4(0)h] = [g, J,(0)H] for
all £ € K. By construction, the map is also H-equivariant. O

Lemma 49. The map
(Kg,v) = [g,J4(0)"]

induces a vector bundle trivialization
K\GxVaxGxgVx(GxgH)xgV.
The induced isomorphism on the sections

C®(G, V)i C™®(K\G,V)
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has the form f(g) = J,(0)” f(Kg) for all f € C®(K\G,V). Moreover, for the right

translation action
(g-N)g) = flgg)
on C®(G, V)4 and the G-action on CL>®(K\G,V) induced by

(K\G xV)xG—= K\GxV, (zv)-9:=(zg,Jy,(z)"v),
the isomorphism (77?) is G-equivariant.

Proof. This map is well-defined, since [kg, Jis(0)? v] = [kg, (Jx(0)Jy4(0))? v] = [kg, Jk(0)? J4(0)? v] =
lg, Jy(0)Pv] for all k € K. O

Thus every section of (G X H) xyg V over (G xx H)/H ~ K\G is of the form
0lg,h] = h™" f(J,(0)) for some function f : K\G — V. There is a left action of G on
these sections by

g, ' é[Q? h] = é[g/ga h]
Put
fom(g) = f(Kyg)

where 7 : G — K\G is the canonical projection. Then the automorphy condition
becomes

(fom)(g) = f(Kg) = J,(Kg)" f(Kgy)=J,(Kg)’ (fon)(g7)

Equivalently,
(fom)(g7) = J5(Kg)™" (f om)(g)

which shows that fom € C°(G, V) or, equivalently, its homogeneous lift is I-invariant
under the action specified in Lemma ?7.

4k Now assume in addition that H has a representation p : H — GL(V) and
consider the associated vector bundle

(G xx H) x HV ={[p,v] = [ph,h"Pv]: pe P, veV, he H}
over P/H, whose cross-sections C*°(P x HV')) are identified with
Cy(P,V)={0e€C*(PV): O(ph) =h""O(p)}

via the assignment

prr = [, D (p))-

On the other hand, the representation k — Ji(0)” allows to form the associated vector
bundle
G xgV=A[g,v] = [kg, Jg(0)’v] : g€ G, veEV, ke K}
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over K\G, whose cross-sections C*°(G x g V) are identified with
CR(G, V) ={2eC™(G,V): X(kg) = Jr(0)’%(g)}

via the assignment

UKg = [g,a(g)]

Let [g, h]h' := [g, hh] be the canonical right H-action on G X x H. Then the map
Kgw—lg,J,(0)|H

is an isomorphism of the quotient spaces K\G — (G xx H)/H.

There is a natural identification
GXKV: (G XKH) XHV

Then P/H = K\G. Now let f : K\G — V and write f(g) := f(og) where 0 = K € K\G
is the midpoint. Then the automorphy condition is

fl9) = flog) = J,(09)" f(og7) = J,(09)*F(97)
with

Jgy(0) = Jy(0) J,(0g).
Thus we obtain J,(0)?f(g) = J,,(0)?f(g7) so that ***

The space of all automorphic functions (with values in K ) of type Z, resp. ¥, is
denoted by
CC(G/TLK,), CP(G/T K,

One has to show that this space has finite dimension (and to compute its dimension).
This was done (in the codim 1 case) by Selberg for SLZ C SLY, by Gelfand-Pjatetski-
Shapiro (GPS) for SLZ c SLF

n’

and in the holomorphic case by Siegel for Sp% C Spi.

The general case is due to Langlands.

2.1.1 The holomorphic case

Let K\G be a hermitian bounded symmetric domain. The Cartan decomposition

g=top

into the +-eigenspaces of the symmetry s, at the origin o = K € K\G induces a splitting
g“=t"@ptep

where £€ consists of linear vector fields on D = k\G C J, in its Harish-Chandra realiza-

tion

D p*, tanh(v) — 9, (veJ),

20



pT consists of all constant vector fields, and p~ contains all quadratic vector fields induced
by the Jordan triple product. Considering the associated subgroups of the conformal
group GC we have

P K°Pt c G°.

open

Every g € G has a unique decomposition
g ="hg'(0) tyo)
with h € P~. This follows from the properties 2(0) = 0, h'(0) = 0 of h € P~. Therefore
GC P K°p*.
Proposition 50. The assignment
Jy(2) == g¢'(z) € K©
defines a holomorphic factor of automorphy with values in the complex Lie group K©.
Proof. The automorphy condition
Jogr(2) = Jol2) Ty e
follows since we use the right action (z, g) — zg. ]

The above decomposition shows that the anti-holomorphic tangent space

To(D)=p".

Regarding p~ as complexified vector fields on D, let Y2 f for each Y € p~ denote the
anti-holomorphic Wirtinger derivative of functions f : D — V. Then

O(D,V)={feC®D,V): YOf=0VY €p} =C¥(D,V)L.

Proposition 51. Let f be a holomorphic automorphic function with respect to J. Then
its homogeneous lift

f(g) == J4(0) flog)

is automatically §°-finite (a generalized eigenfunction)

Proof. One first shows that satisfies

(Y2 F)(g) = Jy(0) (Y7F)(Kg)
Thus for holomorpic f we have

YPf=0
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for all Y € p~. The decomposition (?7) induces a vector space decomposition

§="=p otep"

with ﬁi actually symmetric algebras, since p* is abelian. Therefore every Y € g has a
}f::j{jp_ ki p;.

One shows that for Y € g° the terms p;° occur always both ore not, so there is a linear

finite representation

map
A:goE

such that

Y-\ cgep
By holomorphy, this implies

(Y = AY)f=0.
Since f' is supposed to be K-finite, it follows that the annihilator ideal %; has finite
codimension. By (?7) the same is true for (@O)J% O

2.1.2 Poincaré and Eisenstein series

In the holomorphic case, let J : K\G x G — GL(V') be a (holomorphic) automorphy
factor, and let ¢ : K'\g — V be holomorpihc, but not necessarily I'-invariant. We know
that f is automatically g°-finite. Then the series

ot(2) =) Io(2) 6(7)

yel

if convergent, defines a holomorphic J-automorphic function on K\G. If V' = C, we can
also take

Or(2) == D J7(2) d(27)

yel’

since in this case J™ is again a (holomorphic) automorphy factor. If ¢ is already invariant
under a subgroup I'yx CI' and J, = 1 for v € 'y, then we take instead

brr(z) = Y J(2) ¢(27)

’YEF/FOO

In the homogeneous case let f : G — V be K-equivariant and g°-finite, but not
necessarily I'-invariant. Then the series

frlg)=>_ flgv)

vyel
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if convergent, defines an automorphic function on G. If f is already invariant under a
subgroup 'y, CTI', then we take instead

frralg) = > flgv)

~v€l' /T

Theorem 52. Let f € L'(G,V) be left K-finite and §°-finite. Then

frlg) =Y flgv)

yel’

converges absolutely and uniformly on compact subsets.

Proof. Since

/@WWz/@E]MW<w

G g/r er
it follows that > |f(g)| converges in L'(G/T'), in particular almost everywhere. Now
vyer

the two finiteness conditions imply that f is annihilated by an elliptic operator L. By

general (closed graph) principles this implies that the series Y |f(g7y)| converges in the
vel’
C*>-topology, hence also uniformly on compact subsets. For the second assertion, assume

that f is right K-finite. By Harish-Chandra’s Lemma, for any e-neighborhood U there
exists 6 € C2°(U) invariant under Int(K) such that

f@=U*Mm:/%ﬂwﬂM@

G

For v € T" it follows that

flgn) = / ds flgys™) 6(s) = / dt f(gt™) 6(ty)

G G

tu [l

2.1.3 Root decomposition and parabolic subgroups

For any torus S C G, with character group S*, we have the root decomposition

g=5® ) g3

anSg
where, for a € S*, we put

ge={X€eg: Ad X=s5"XVseS5}
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and
Sg ={a €S g&+#0}.

For an algebraic group G a subgroup P C G is called parabolic if G/P is projectively
algebraic. Then we have a Levi decomposition

P - SP>
where S C GG is a torus and P- is the unipotent radical. For the Lie algebra this means

p=sDp-.

The minimal parabolic (Borel) subgroups contain a maximal torus 7' C G. Consider
the associated root decomposition

g=te Yy o
ozeTgﬁ

The Weyl group G%/G% acts simply transitively on the set of minimal parabolic sub-
groups by selecting a Weyl chamber. Thus

p=ta > gf

OLGT£

where T¢ C T, E’f denotes the set of positive roots. Choose a subset IﬁCTf of simple
(positive) roots. For any subset © C Ii we define a subtorus

T° .= ﬂ keraoCT
ac®

of dimension rk(G) — |©| and obtain the standard parabolic
PP = (Go,U) = G PO

with

o= Y g

€T~ (O)
In the real case G = G® we have ACT C G for some maximal R-split torus 7' and
obtain
“=Gr=K A
G5 = KA
It follows that
2/Gy = K5 /K3

and
G = KAN D K AN

is a minimal parabolic.
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2.2 Eisensteln series

For a matrix z € C™*" we put

|z||g == tr(z*z)Y2.

If g € GLS we have [|g]| = 1 and |lg7'|2 < ¢ ||g||¥ for some ¢ and N. Let G be a
connected semi-simple Lie group with finite center and Lie algebra g. We regard G as
the group of real points of some algebraic subgroup of GLS.

To construct such automorphic functions, consider the Iwasawa decomposition
G =KAN

of G. For example, if G = SLE, then K = SUR A ~ R is realized as diagonal matrices

1
dN =
.

we put a =: ga, k =: gk. By [6, p.4] we have

LS
1) consists of all unipotent upper triangular matrices. Writing g = kan

dg = a*’dk da dn

where p : @ — R is the half-sum of positive restricted roots. Now fix A € ag (linear
dual) and define the 'conical’ function N : G/N — End(K,,) by

Na(9) = g g1 "
Here we use (gn)x = gk, (gn)a = ga. Then there exists a character
XUy — C,
satisfying xsy = xa for all s € W = K% /K5 (Weyl group), such that
X?Ny = xa(X) N,

for all X € U;. The I'-invariant Eisenstein series is now (formally) defined by

NV = N M= Y e @)y

~e(TNN)\I' ~ye(NN)\I'

Then we still have
XaNA(mN)\r — o (X) N/smN)\r

since X is acting from the left. One first proves convergence for A in a non-empty open
subset of ag. However, for these A the associated character x, is not the infinitesimal
character of a unitary representation of (G. Thus one needs analytic continuation as a
meromorphic function in A € ag and prove unitarity on a suitable 'imaginary’ subspace.
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2.3 Siegel domains

Let P C G be a cuspidal parabolic subgroup. By [6, p. 5] we have decompositions
G =KP,

P = M AU Langlands decomposition

where the A-component of ¢ = kmau is uniquely determined. Put
Ari={aeA: Zo|loga < t}
For a bounded domain Q C P? the associated Siegel domain is defined by
S =KAQCG.

A subgroup I' € G which is commensurable with GZ is called arithmetic. By a theo-
rem of Borel [6, p. 5] the double quotient

PQ\Gq/T
is finite and for a (finite) subset A € Gq we have

G =SAT
for a Siegel domain S C GG if and only if

Gq = PoAT.

2.4 Theta Functions

In this section we generalize the classical theta function and its transformation properties
to a multi-variable setting. Let X be a euclidean Jordan algebra of rank r, with positive
definite cone X , and tube domain

U=X+iX={z+iy: y>0}

in the complexification U = X ® C. Let V be a hermitian vector space, with inner
product (v|b), endowed with a conjugation v — v and real form

Vei={veV:v=uv}

Define the Fourier transform L*(Vg) — L*(V) by

F(8) = / db e~ 8) f(p).

Vr
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The inverse Fourier transform L2(Vi4) — L*(Vg) is given by

H(b) == / d¢ > ¢(3).

f
VR

Counsider the dual lattice
L= {\eVi: (LN CZ}.

Then we have the Poisson summation formula

L2 ) = (22 Y F (N

leL AELY

Here |L| = Vol(Vr/L) is the volume of a fundamental domain for L in V.

The set H(Vr) of all self-adjoint endomorphisms of Vg is a euclidean Jordan algebra
under the anti-commutator product. Consider an injective unital representation

p: X —>HW), z—p. =272

of X on Vg, satisfying 22 = #* for all z € X. Let u — @ € Endgn(V) be the C-
linear extension. Every simple euclidean Jordan algebra X # H3(O) has such a faithful
representation.

A positive definite w € HT(VR) is called an intertwiner if
wU=Uw

for all u € U.

Let w: Vg — Vlg be a linear isomorphism, such that for all w € U the bilinear form
(av)(wb) = (ub)(wv)

on V' is symmetric, and is positive definite when u € X.. For the unit element u = ¢ we

obtain in particular
v(wb) = b(wv).

Let L C Vg be a lattice and define the multi-variable theta function

Ok (u,v) == |L|1/2 Z mi(t+20) -t

lel

for all w € U and v € V. This series |.|-converges compactly on U x V since for u =
z 41y € U we have y € X and therefore

il - 0l = 350 - ol — Gl -l
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with §¢ - wl positive definite and e™**®* of modulus 1. For the special case v = 0 we

obtain the theta nullwerte

@i(u7 0) — |L|1/2 Z em'ﬂéﬂ;é

leL

as a holomorphic function on U , which is also called the theta function of the lattice
L.

1

Consider the inverse isomorphism w™" : Vftil — Vi and the dual action @* on Vfﬁi

defined by

for all v € Vi, v € V4.

Lemma 53.

(w™' ) (wb) = bp.
(w™'B)(@v) = (w™'v)(@B)

Proof. In fact, put v := w™'3. Then (w™!B)(wb) = v(wb) = b(wv) = bA. For the second
assertion, put w™'v = v and w3 = b. Then

(w™'B) (@ v) = (aw™ B)v = (p"b)(wv)
is symmetric in (b, v) by (??) and hence symmetric in 3, v. O
By Lemma (?7), we can also define the dual theta function

@iﬁ,l(u, V) = ’Lﬁ’1/2 Z pri(w A+ 20)
AeLt

for all u € U and v € V.

Lemma 54.
O~ (u,v) = det w1/ @}ﬁl/zL(u,wl/Qv)

Proof. Use the formulas
(Wl + 2v|wl) = (w'?ul + 2w ?v|w20) = (w20 + 2w ?v|w'/20)

and
[V /w'?L| = det w/? |V /L]
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For example,
(Mznxl)ﬁ — M_TZnXI.

An automorphism of p is a pair ¢ € GL(X), 7 € GL(V) satisfying

po(z) = p(2)"

for all z € X.

Proposition 55. For an automorphism (o,7) of p we have

OL (u,v) = det 7% O71E _(u,v)

T WT

For v,b € Vg we have
(av|w*b) = (ublw*v),

since both sides are C-linear in u € U, and for z € X we have (v|w*Zb) € R and
(Zv|w*b) = (wiv|b) = (Twov|b) = (wv|Zb) = (Tblwv).
Proposition 56. For ¢ € L and A\ € L* the translation formulas
OL (u,v) = OL (u,v + w™\) = ™ @20 QL (4 4+ 710)
hold.

Proof. Let ¢ € L and A € L*. Then (??) implies (w™*A|wf) = (¢|\) € Z. Hence the first
assertion follows from

(@l + 2(v + w A |w ) = (Gl + 2v|w* ) + 2(w ™ Nw*l) = (Wl + 2v|w*l) + 2(¢|N).

For ¢,¢" € L we have (al|w*l') = (al'|w*l) by (??). Hence the second assertion follows
from
(@l + 2v|w*l) + (@l + 2(v + al)|w*l’)

= (@l|w*l) + (al'|w*l') + 2(al|w ") 4+ 2(v|w* € + w* L")
= (@l + ) w ({l+ L))+ 2w (l+ 1)) = (a(l + ') + 2v|w* (L + 1))
using { + L = L. O

Proposition 57. We have the inversion formula

OL . (—u a wv) = [w]'? [p(—iu)['/ ™) O (u,v)
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Proof. Consider the function

Y s NI, SIS B SR S | =11 sl m—1 (i) = 1p. =1,
f(b) :eﬂz(zw b—2iw "t wv) - b:e T Wb 6271'11) Wo-w b:e m(wy)~tbb e27rw v-b

for b € Vr. Applying [?, Theorem 1, p. 256] to the matrix (wg)~* and the vector
B + i~ 'v, we obtain the Fourier transform

£(8) = / db 5 £(b)

Vr

_ /db e 2mifb efﬂ'(d;g)_lb-b e2mb*1v-b _ /db 6727ri(5+iw*1v)-b efw(wg)—lb-b
VR VR

1/2 e—w(ﬂ+izb_1v)-mgj(,8+izb_1v 1/2 6—7r(ﬂ+i1b_1v)~1b(gﬂ+iv)

= |wj| ) = |wg|

s 1 - Ca o in- s - o .
— |wy|l/2 W v wB-wyB e 2mifwv |wy|1/2 W vy 6m(zyﬁ+2v) ws

The Poisson summation formula yields

OL i (—iw ' @ tiv) = L[V F(0) = [LV2 D F(N)

el AeL!

- Lo (i & . Lo i
_ |wy|1/2 |Lﬁ|1/2 PRLTIll Z 67rz(zy>\+21)) WA |wy|1/2 e vy @5) (Zy,'U).
AeLt

]

Let Z be a J*-triple, with triple product {u;v;w} =: u,w. Any idempotent ¢ € Z of
rank k£ < r induces a Peirce deomposition

Z =7;® 7] ® Zg.
One can show that the mapping
v = uv = {u;c; v}
defines a homomorphism Z§ — End(ZY). For each w € Z§ and v,b € Z{ put
v(wh) 1= (vyb|c) = (vb|w).

. . 5C . ~ . .
Lemma 58. For each invertible w € Z, the transformation w : Z{ — Zlcjj s an 1somor-
phism, with inverse w—. Moreover

(uew)(Wh) = (vyxb

w)
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b
Proof. Consider matrices u = (g 8), v = (1?2 1)01)’ b= (52 01)’ W= <8 1(1)1)

Then
< 0 uv1>
ucv = uv + U = ,
vou 0
Vb = vw*b + bw*v = viw*by + byw*ve 0 '
0 0
Therefore

5 viw*by + byw*v, 0 10
v(wb):(<1 201 20)‘<00

This implies

)) = (vw*by + bjw*va|1) = tr(vyw*by + byw*vy)

(uv)(wb) = ( 0 ugl) (wb) = tr(uviw by+biw*vou) = tr(vyw*byutubiw*ve) = (ub)(wWv).
VU

The identity

0 wvou*by + bou*vy

Vb = vu*b + butv = (O 0 )

shows that

0 0 0 0
blw) = = *by + bou*
(vublw) ( (O Vo by + bgu*m) 000] (0 w) ) (v2uby + by™vy |u)

= tr(vouby + bou' vy )w* = tr(bywvau®) + tr(byu*viw*bs)

It follows that
(vub|w) = (ucv)(wb)

for all w e Z5, v,b € Z{ and w € Z§. ]

hence obtain the theta function

@5;(ua U) _ ‘L‘1/2 Z eﬂi(ﬂu*€+2vcl\w)
lel

Note that ¢+l + 2v.l € Z§.
Let L C X be a lattice, with dual lattice

L':={ e X: (LN C2Z}.

Assume that £ € L = (*> € L. Put L, :== L N X{ and suppose the lattice LS is self-dual.
Now fix w € X (C).
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Proposition 59. Consider the O(Z;)—module M consisting of all holomorphic functions
(R Z; x Z7 — C which satisfy the two invariance properties

D(u,v) = I(u, v + £) = e™Prettbe) 9y v 4 {u;e; €})

for allt € Ly. Then

. ~ HLyewl

Define the theta function

O,(v,w) == Z iR L vie—cia}|u)

veL!
Note that {\;w; A} € {Z1; Zo; Z1} C Zy and {v;e — ¢; A} € {Z1; Zo; Z1} C Zs.
Proposition 60. The functions
(u,0) = €™ O (u, 0+ {w ™ ¢ {v; ¢ £}}),

for 0 € Ly/{Ly;e;w}, form a basis of M over O(Zy). For { =0 we obtain the standard
O-function.

The theta function has the following invariance properties
Ou(u,v) = Oy (u + lo,v) = Oy (u,v + £1)

_ eﬂi(Pelqu{Zl?e%”HW) @w(u7 v+ {'LL, e, 61}) = @gw (gu7 g’l))

whenever ¢, € L), ¢ € L1 = L} and g € GL(X) satisfies P, = g P, g*, g(Xf) =
Xz'ca g+L1 = Ll and g
The important inversion formula is

x¢ 1s a Jordan algebra automorphism, equivalently, gle—c) =e—c.
Ow N (—u {u ™ e; {v;e;w}}) = Ne—c—iu) ¥ %2/% N(ctw)¥/r—do/(r=F) T (PouT ) O, (u,v)

2.5 Algebraic groups

Let V be a finite-dimensional vector space defined by linear equations over Q. Thus Vg
is a Q-vector space and we put
VK = VQ &® K

for any field K D Q. A subgroup G C GL(V') defined by algebraic equations with rational
coefficients is called a (linear) algebraic group defined over Q. We define

GK = GQ & K C GL(VK>
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defined by the same equations over K D Q. Examples are the full linear group and
the orthogonal/symplectic subgroups, but not the unitary group. A discrete subgroup
[L C Vg is called a lattice if Vg /IL is compact. This means that A is a free abelian

group of full rank. Put
Gr:={g€G: gA=A}

A subgroup I' C G is called an arithmetic subgroup if I' is commensurable with Gy
for some lattice A C VQ.

Now assume that G is of hermitian type. Equivalently, G is the conformal group of
a hermitian Jordan triple. Then we have

G% = Aut’(D)

for some bounded symmetric domain D. The image I' C G% of an arithmetic subgroup
is a discrete subgroup and hence acts properly discontinuous on D. It follows that the
quotient space D/T" is a Zariski-open subset of an algebraic projective variety.

2.6 Satake compactification

Let T CG = Aut(D)° be an arithmetic discrete subgroup. Let ¢ € Z be a rational
tripotent and F' = ¢+ D§ C OqD be the associated rational boundary component. The
Cayley transformation 7. maps D onto the Siegel domain

D, = 7.(D) = {(u,v,w) € Z5® Z¢ & Z& - Im(u) — Ly(u,u) € X}
For an open neighborhood ( € U C F' and a € X, we consider the cylindrical set
DY = {(u,v,w) € Z5 @ ZE® Z& : Im(u) — Ly(u,u) € a+ Xy}

in D.. There exist finitely many rational boundary components Z; C gD such that
F COqE;, and for every rational boundary component Z C 0D such that F'C 0qZ
there exists v € I' such that Z = E;y for some i. Write

where ¢; is a rational tripotent covered by c. The Peirce O-space Z;' has itself a Peirce

decomposition
L5 =25 6 2 @ 2

with respect to the rational tripotent c—¢; € Z;'. Consider the Siegel domain realization

}.

s c—Cj

(DG e—e; = Ye—e; (D) = {(u,v,w) € Z57 & Z7“ @ Z5 : Im(u) — Ly(u,u) € X,

Choosing a; € X ;_Ci for each 7, we may consider cylindrical sets

s c—cCj

(D)2 = {(u,v,w) € 25 @ 27 @ Z5 = Tm(u) — Li(u,w) € a; + X5 )
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Note that U is unchanged and independent of i.

C; 0 0
0 c— C; 0
0 0 DS

Then a basis of open neighborhoods of (I" € (D U dqD)/T is given by
(U uDeY Ul Jei + (DSi)?ﬁZ)F

/7 C—Cj

where ¢ € U C Dy, aEX;andaieXz .

2.7 Siegel domains

Let u € )0(2, x,y € X;. By Lemma 4.1 we have
ue(u,'z) =
Therefore also u_*(u.z) = x. Moreover, the Jordan triple identity yields
Ze(Wett) — We(zet) = (ZeY) et — We, U
Since ey e = 0 and z.y € Xo @ X, it follows that
Ze(weu) — we(zou) € Xo.

Replacing 2z — u; 'z yields

(0712 () — wer = (u7"2). (uey) — wo(uguy'a)) € Xo.
Replacing z — uex, u — u~ ! yields

()7 y) = wer = () (uz"y) = wo(ur (o)) € Xo.

Now the assertion follows by subtraction.

[*]

2.8 Automorphic Forms on Bounded Symmetric Do-

mains

2.8.1 Harish-Chandra realization

Every g € G can be represented as g = &,-h-t, with a = 0-¢g and h = Og. Now let z € D
and g € G. Choose
Y= %Z ’ B;,/f -t
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and
Vg =1t - h - tz’y

Then we have
h:o QIOX‘ZQ:B;,/ZQ'ZQ

Therefore
vg =1 (Bl?-7g) - t.,
and
*g=B;? h=Ad(B;}? h)

2,2

2.9 Boundary Components and Fourier-Jacobi Se-
ries
2.9.1 Boundary components
The boundary components of D have the form
F=c+2Z,

where ¢ € S, is a non-zero tripotent and ZE is the open unit ball of the Peirce 0-space
Z§ of rank r — k. The associated Cayley transform is defined by

Ve = exp(%(c +c))=t. 0 Bi,/fc ot.
Under the Peirce decomposition
Z=7s® 7 ® 75> (u,v,w)
the Cayley transform has the explicit rational realization
Yolt, v, w) = (c+u)o(c—u) ", V2D ((c—u) 7Y, e)v, w+Py(c—u) Y = ({etu; ;5 (c—u) ™ V2{(e—u) "t e; v},
The Siegel domain of type III is

~c 1 ,
D.:={(u,v,w): we Z,, u— §{U; (id + Qcyw)_l;v} € X}

where the conjugate-linear endomorphism Q. ,,v := {¢;v;w} acting on V' has norm < 1
since |w|| < 1. The Cayley transform satisfies

The Peirce 0-projection



yields a holomorphic projection

~ CPCOC ~C
Z%c—l—Zo

which is equivariant under N(c + Z;). For any boundary component F of D the nor-
malizer N(F) is a parabolic subgroup of G%, realized as a semi-direct product

N(F)=U(F) x Z(Sp)

of its unipotent radical U(F') and the centralizer of a 1-dimensional R-split torus Sr. Let
ar be the positive simple R-root on G such that ax|Sr is non-trivial. Let Ar = (Sr)% be
the identity component of the group of real points of Sp. Then Ap acts on Dg := cp(D)

by
J

(u7 v, U)) a4 = (a}’(a)ua OéF(CL)U, U))
where 7,7 > 0. This implies
J(u+v+w,a)=ap(a)

for some m < 0. Now let I' C G% be an arithmetic subgroup. Then N(F)NT is arithmetic
in N(F)gr. For each v € X NI the action on D is

(u+v+w)y = (u+Lly,v,w)

for some translation vector ¢, € X. These vectors span a lattice
Xg:={l,: yeXNT}CX

such that X/Xgz is compact. Consider the dual lattice

AN={ e X: \Xg)€ZlcX =X

2.9.2 Fourier-Jacobi series

Consider a ['-automorphic form f on Dg. Then we have

f(u,v,w) = f((uﬂ)?w)’}/) = f(u+€,v,w)

for all ¢ € Ly. Therefore we obtain a Fourier-Jacobi expansion

f(u,v,w) E f v, W) emituln)

;AELjj

over the dual lattice Lg. If dimZ > 1, i.e., Z # C, then 'Koecher’s principle’ asserts
that

f(u,v,w) E f v, W) e2mituln)

HEAL
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where
A+ = .Ljj N X;

is the intersection of L! with the closed convex cone X , = X, associated with the
Jordan algebra Xs. Moreover, the 0-th Fourier coefficient satisfies

f6<v+a7w> = f(;(v7w)

for alattice UNT in V' = Z§. By Liouville it follows that f§(v, w) = f§(w) is independent
of v. Now consider the 'cylindrical” set

1 ,
S :={(u,v,w) € Dp : Im(u) — ELw(U,U) cw+ X, |v| <K, we@}

where wX , K <ooand @ C Zg is compact. One can show that the constants

My = sup |[fr(v,w) e*m]
(u,v,w)eS

ZM,\<OO.

AEA,

satisfy

2.9.3 Jacobi Forms

The functions f3 occurring in (?7) are called *Jacobi forms’. In general, let Vg be a real
vector space endowed with a symmetric bilinear form (v|v') and let Vz C Vg be an even
lattice, satisfying (¢|¢) € 2Z for all ¢ € Z. Let

Vi={eVr: (Vg cCZ}

be the dual lattice in Vﬁ{ = VR (via the inner product). A holomorphic function

f:VexC—C
is called a Jacobi k-form if for all (a 2) € I' := PSLy(Z) and for all {1,05 € Vz we
c
have
(o) = (cw+ &) FEUTE exp(—ri ULy Z o 1wty + 6, w)
= X — —
’ cw +d AT +d LR

and there is a Fourier expansion

Flo,w) = D7 fr emStusol)

UEVZﬁ
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Example 61. Let Z = CLX" be the J*-triple of symmetric matrices. Write the elements

sym
of Z as
w v
z =
vt ow

where u € C, v € C' and w € CYm "™V, A k-automorphic function f(z), under
[ := Spar(Z), has a Fourier-Jacobi expansion

u v _ . 2mitr(up)
10 o) = St e

If i > 0 is positive definite, then f;(v, w) 18 a Jacobi k-form on C™™1 x C, for the inner
product
(v1|va) = 207 vy

Example 62. Let Z = C"™" be the J*-triple of square matrices. Write the elements of

Z as
U v1 + U9
Z = * .k
V] + 10, w

where u € C, v1,v9 € C"~ ' and w € CC=Vx0=D " A k-qutomorphic function f : 7 — C,
under the imaginary quadratic field K, has a Fourier-Jacobi expansion

U U1 + Uy . . 2mitr (ww)
. = U, V1 + 1) € .
f<v1‘+zv;‘ w ) ;f“( ! 2)
If w > 0 is positive definite, then f2(u, v, +1ve) is a Jacobi k-form on C x (C1x 6?%1,
for the inner product
(01 + tvg|v] + ivg) = (v] — ivy)w(v] + ivy) + (V] — w5 )w(vy + ive)
Example 63. Similar for Z = C27 X2

asym

Example 64. Let Z = H3(O) @ C be the exceptional J*-triple of tube type. Write the
elements of Z as
B U v1 + U9
o <v1“ tivy w )

where u € C, vy,vy € Ok and w € Ho(O) ® C. A k-automorphic function f : 7 — C,
under the integer Cayley numbers Oz, has a Fourier-Jacobi expansion

f < Uu (%] + ZUZ) — Zf;(u,vl + 7;'U2) 6271’7;(111‘&)).

vy + 10, w e~
If w > 0 is positive definite, then f2(u,vy + ive) is a Jacobi 18k-form on C x 0%, for
the inner product

(alb) := (ab™ + ba*|w).
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Example 65. Let R be an even unimodular positive definite 2k X 2k-matriz, and let
G € Z%*" have rank n. Then the theta series

o At ROwu+2Gv
Orc(u,v) == E e ( )

\eZ2kx1
is a Jacobi k-form for Vo = C™*! and (a|b) := a™GTRGb.
Now define the level
q:=min{0 <n e N: g(ﬂﬁ)EZVfGVZ}

and put

7G 2x2

Ig={v€Zy : v—1€(¢Z)""}
Then every Jacobi k-form f(u,v) has a theta expansion
flup)= " fulu) 0,(u,v)
HEAE/A

where

f“(u> - Z f7;l/q+(u|u)/27u ermimla

0<meq(Z—(ulp)/2)

Ju(u,v) = Y N2
Acp+A

Choose representatives juy, ..., g of A*/A, where d = [A* : A]. Then there exists a
linear isomorphism

/P8

A (¢ ﬁ“d r . k—n/2
T (Cx Vo) s———{FeaM,’, »,(C): v F=x(yFVvY~yel}

Here x : I' = U(d) and ng(C) is the finite-dimensional vector space of all elliptic
modular k-forms on C.
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Chapter 3

Automorphic forms in
Toeplitz-Berezin quantization

3.1 II;-factors and discrete groups

A von Neumann algebra M C B(H) carries the ultraweak topology generated by the
seminorms

arr Y |(Gilans)|
=1

oo oo

where (;,m; € H satisfy Y [|G]|* < o0, D [|G]]* < 0o. Any equivalent representation of
i=1 i=1

M induces the same ultraweak topology, and every *-representation of M on a separable

Hilbert space is ultraweakly continuous.

A Il-factor is a von Neumann algebra M with trivial center C -1 and a normal
faithful finite trace 7 : M — C, normalized by 7(1) = 1. Let

M™ = L*(M,7)
be the GNS-Hilbert space with inner product
(alb), := 7(a™b).
Then M acts on M7 by left multiplication, and the commutant
M :={TeL(M"): [M,T] =0}

is again a [[-factor. If M is a I -factor, with a x-representation M — B(H) there
exists a formal dimension dimj; H of H as a left Hilbert module over M. For H = M"™

we obtain

70



Example 66. A group I' is called an icc-group (infinite conjugacy classes) if for each
e # v €T the conjugacy class {gyg~" : g € T'} is infinite. For each icc group T the left
group von Neumann algebra

M = W;(T) C B(¢*(T))

1s a I1)-factor, with trace

T Z Ay 1= Q.

~yel
In this case we have

MT = 62(1“)
and therefore

dimyys 0y (T) = 1.

The commutant
WD) =A{T € B(*() : [T,WX(I)] =0} = W,(I)
15 the right convolution W*-algebra.

For a semisimple, non-compact Lie group G a subgroup I' C G is called a lattice if
G/T has finite volume (with respect to Haar measure)

Proposition 67. A lattice I' in a semi-simple Lie group G with trivial center is an icc
group.

Proof. G is an algebraic group (more precisely, its real points) and for each h € T" the
map

ap G — G, ap(g) = ghg™!

is Zariski-continuous. Let Cj, := a;,(T') = {yhy™' : v € T'} be the conjugacy class of
h in I'. Then a4 (") C C. Now suppose that Cj, is finite, hence Zariski-closed. Since a
lattice I' is Zariski-dense in G' [Borel-Zimmer| this implies a,(G) C Cy. Therefore the
centralizer

n={9€G: gh=hg}

is a closed subgroup of finite index in G. Since G is Zariski-connected, it follows that
G; = G. Hence h belongs to the center of GG and therefore h = e. ]

For a discrete series representation 7w : G — U(H,) the formal dimension d, € R,
is defined by Schur orthogonality

/ dg (Elg™n)(g"olT) = w

G

for all £,n,0,7 € H,. Equivalently, d, is the Plancherel measure of the atom m € G¥.
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Theorem 68. Let G be a semi-simple Lie group with a discrete series representation
7:G— U(Hy). Let ' CG be a lattice subgroup. Then

dimpyry He = dr - |G/T
where |G /T'| denotes the covolume of I' C G.

Proof. We may assume that there is an isometry u : H — L?(G) such that v*u = idg
and p := uu* : L*(G) — H is the orthogonal projection. Identify

L2(G) = KQ(I’) ® LQ(D) =M ® LZ(D)
for a fundamental domain D C GG. Then
a" =a ®id

for all a € M. The commutant B(L*(G))3,; of M C B(L*(G)) is a Il -factor containing
p. By definition,
dimy H = trgz)e (p)

for the normalized trace on B(L*(G))$,;. The commutant is generated by finite sums

T =) py® a,, where p, = J\,J € Endp(M7) and
yel’

ay = Za;”’"emefl € F(L3)

are finite rank operators, for an orthonormal basis e, € L2,. It follows that

trperz)e ( ZtrM Jtrpe (ay) = trpz (a.) = Zag’".

verl n

The restriction map
q¢:Lg— Ly, [ flp

is a co-isometry satisfying
72 (gryq) = tTr2 (W)
for all y € B(L?) which are positive or have finite rank. It follows that
traz)s, (2) = triz (ac) = trpz (¢aeq) = tr(t @ ¢)"z(2 @ q).

Since traces are normal functionals, (??) holds for positive 0 < z € B(L%)$, since z is a
monotone limit of elements of the form (??) with a. > 0. In particular,

dimy H = trB(Lé)]"W (p) = trL% (q*pQ) = Z(en‘q*pqen) = Z(qen‘pqen) = Z En ’pen Z HpenHz

n n n
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since ge, = e,. The isometry ¢* : L% — L% associates to f € L% its trivial extension to
G which is zero outside of D. Consider the unitary transformation

BoLL S L4, 6, @e, = YN en).
Now let ( € H; be a unit vector. Then p& = ¢ and

L=l = lg*pCll” = D> (7 g enlg™pd)

vel' neN

=> Y (g eal(v9) 08

vel' neN

Therefore

GJT| = /dg—/dgng | = ZZ/dgmem L) pe)

vel' neN D

_Z/dg|qen|gpf Z/dglqenlpgf)l

nENG nENG
= Z/dg |(pg*enlg™6)|” Z/dg pqen|g"&)(9"Elpa"en)
nENG nENG
lpa” enH2 lg™¢|l® Hpq enH2 :
- L iy H,.
-y Sy el Ly,
neN neN

]

Let Z be the right half-space. For v > p—1 consider the discrete series Hilbert space
H2(Z). Then
Ly —7)
d

/ dg |(Elg"m)[? = ICI il

Ze
Therefore
() = W(T),

where
d

v
t= WdTVOI(G/F)

3.2 Hecke operators

Let o € Gq = PGLY/{#1}. Put Ty := T'N (al'a™!). Since T is an ’almost normal
subgroup’ of Gq there exists a finite set 7; € I', 1 <4 < k, such that the double cosets

k
[al' = U Fay;.

=1
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Now consider intertwining operators
LV (He, Hy) i ={A € L(H,H,): VA= Ay VyeT}

Define
LU (Hy, Hy) S L8 (Hy, He)

k
1
=7 Z ;) P A(ay;)?
for all A € LT (H, H;). For s =t we obtain the commutant von Neumann algebra
LN(H) ={A € L(H,): [[%,A] =0} = (T*) = W)

and
k

d,A = %Z(a%)_sA(a%)s.

i=1
On the other hand, consider the von Neumann algebra LO"(C/)F of all bounded I'-

invariant functions f on C. For f € L®(C)F let f™ denote the associated Toeplitz
operator acting on H,. Then

Proposition 69.
(L) =W{f": f e L*(C)"}

On the level of symbols, ®,, is given by

k
Z ;)" t2)

wl»—t

Then the diagram

Iy s s
A
Le(C)F == £ (H,)

commutes.

For m > 0 let

722 = {(Z 2) € Z¥?: ad — bc = m} CGLy(Q) =: Gq.

Then Z2*? := SLy(Z) =: I'. The group I' acts by left multiplication (v,a) := ya on
7222 A system of (right) representatives is given by the matrices

Vb = (mo/d Z) €Z”? 0<dm, 0<b<d,
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The Hecke operator, acting on k-automorphic forms, becomes

(L)) =m* " 3T (ear ) f(
(Z Z)er\z?n”

k1zd kz f<au+b> klZd kz f<mu+bd)

dlm dlm

b
)

For a prime number m = p this simplifies to

(T, f)(w) =5 flpu) + Zf(“p)

An I'-intertwiner A : H, — H; has an integral kernel
Ai(z,w) = (KL AKS,)
which is sesqui-holomorphic and has the invariance property

Al(yz,qyw) = J(v,2)° Az, w) J(v,w)

Consider the intertwiners
SJFP st

s—l—p
s+q

where f is g-automorphic and g is ¢ — p-automorphic. For p = ¢, ¢ is constant. Then

we have

Lemma 70. The intertwinerg" f" has the integral kernel given by the Berezin transform
(f9)"

Proof.

KT FTKw) = (0T K) = (9K FK) / 1 (A GO F(OK(O)

- / “O(do 900 K(=.0) £(0) K(Cw)

More directly,
(ICZ@W fTrICZ) = (/CZ|(§f)W]Cz) = ICZ,Z(@f)T);L = ]Cz,Z(gf)Z
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3.3 Berezin quantization
For f € C®(Z) let fT € B(H2(Z)) be the Toeplitz operator. Conversely, for A €
B(H2(Z)) let
(K.]A Ky)
ICz,w

/,ualeJ (2)
Z

where /i is a Haar measure on Z. The adjoint operator A* has Berezin symbol

At(z,w) =

be the Berezin symbol. Then

AL = A
Consider the unitary projective representation

(97°0)(2) = (det g))"" 6(g2)
Then
(9°Ag™)" = Atog™
Lemma 71. The restricted symbol A;" has sup-norm [[A*|| < || A, i.e.,

sup [A; .| < [[A]]

2€2

Proof. By Cauchy-Schwarz we have |(K,|AK,)| < |[|K.]| [|AK|| < ||A|l ||K.||* and there-
fore

(K- |AK:)

TR 1Al

ALl =
0

Proposition 72. With respect to the probability measure s, a bounded operator A €
B(H2(Z)) has the integral kernel A, K. Thus the Berezin symbol A* determines the
operator via

(49)(2) = [ mldw) o) A%, Ko
Z
Proof. The reproducing property impliew

(A6)(2) = (K| A) = (K.|A / a(dw) B(w) Ku)

Z

_ / 1s(dw) d(w) (K| AKCw) / o(dw) d(w) AL, K.
Z

Z
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Proposition 73. For each w € Z the holomorphic function K, A% belongs to HX(Z)
and has norm

I Aulls < 1A KL

Proof. For the first relation we have
Ko Ay(z) = Ko AL, = (K.JAK,)
and hence, by Cauchy-Schwarz,
Ko Ay (2)] = [(KJAK )| < I TAK | = AN KN AR = Al K22 KL
O

Proposition 74. Let A > 0 be a positive operator. Then we have matriz inequalities

O < (42, Kusy) < (I41K-)

2y

forallzl,...,anZ.

Proof. Let \; € C. Putting f = S K., € H2(Z) we have

D NN ALK =) NN (KAL) = (O MK,

1,J 1]

A NK.)
J

>0
= VAN < 711471 < 1AL = 1AN SR A, K

Proposition 75. If A is positive, then

|’Czw|
< sup [Ag o < [|All

Azl oo
ICAMEwll ™ ez

If A is bounded, then
Lo

Al re T S
Il

AflAll

Proof. For z,w € Z the positive matrix

ALK ALK
(z;;zz,w A;:wzcw)
has determinant > 0 showing that
ALK Ay K 2 1AL Kl

Taking square roots, it follows that

i "Cz w| / /
‘Az,w‘ IC1/2’C1/2 \ AJZLZ Ai ,W Sup ‘A HAH

Writing A € B(H2(Z)) into real/imaginary and positive/negative parts, the second
assertion follows. O
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3.3.1 Fundamental domains

A closed subset F' C Z is called a fundamental domain for a discrete subgroup I' C 7z o
if OF = F ~ F has measure zero, and

Z=J~F)

vyel’
YEYNE#£0=~=1.

Then the disjoint union |J y(F) is an open dense subset of Z whose complement is a
vyel’

zero-set. For each function ¢ : F — C denote by qg : Z — C the zero-extension of Q.
Conversely, for a function & : Z — C let ® : ' — C denote the restriction of ® to F.
Then ¢ € C.(F) if ® € C.(|J v(F)). We have

yel’
(Dly) = (®l)
for all ® € L2(Z), ¢ € L2(F).

Let e, (o) := 07 be the standard basis of ¢*(T"). Consider the left-regular representa-
tion

of T on ¢*(T"). Then
Aoy = o

since
(Meo) (1) = eo(y'7) = 071, = 0]7 = e (7)

Proposition 76. Define a map V : (2(T') @ L3(F) — L2(Z) by
Ve, ® ¢) = 0°¢

Then V' is unitary, with adjoint

Proof. Since (¢|y*) = 0 if 1 # ~ € T' we obtain
(Ve @ 9)[V(er @ 9)) = (0°6|7°0) = (dlo™*m°0) = (4l(a'7)*¢))
= 07(00) = 67(8]0) = (eoler)(9]0)) = (er @ ler @ ¢)
Thus V' is isometric. Moreover,

(Udle, @0) =) (eo @0 Ple, @) = > (eo]es)(a°®[)

oel oel
=D (g RY) = (TUPfy) = (1 @f)) = (®|7°) = (PV(e; @ 1)))
cel
It follows that U = V* and therefore V' is a unitary operator. O
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Proposition 77.
YoV =Vol,

Proof. i )
VV(er ®¢) =7(0°0) = (70)°¢ = V(ess ® ¢) = VA, (e, ® §)
]

For any f € LOO(Z) let [T € B(’H?(Z)) be the associated Toeplitz operator. Then

mﬁwmzmumm:/mwmu>ﬂo&«>

Z

d
= [t 10 Kew = [ B8k 0 Ko

Z Z

It follows that the Berezin transform f= := (f")" is given by

KT d d
o= o [ 50 K = [k )

A Z

where

Ko Kew

ES =
T Kew Kee

In particular,

Kecl? Kacl V2
Fo=FS = Kecl” 2
Kez Keg <IIICZI|||/CZ|I)

By Cauchy-Schwarz we have

[Fwl <1 (zwe2)

3.3.2 Berezin star product

The (weak/passive) Berezin star product of two symbol functions A*, B* is defined by

]CZﬂUU(AJ—LéBLL)Z,’w = /ﬂs(dC)IC%CAichwBiw
Z
Equivalently,

zCICCw

Bjiw

N\

Proposition 78.
(AB)" = A"LB"
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Proof. Applying the reproducing kernel identity to BK,, € H2(Z) we obtain

mwmm;s4&MB&»:muA/muowam0&>

Z

— [ UK (eI BE) = [ (O cAZ, KB
A Z

]

Let f, g be automorphic functions of weight pk. Then M, : H?(Z) — H§+pk(2) is a
bounded operator, and My M} € B(Hq i (2)).

Lemma 79.
o 9(2) f(w)
(Mng)z,w = ’szgkw

Proof. We have
M = T

and therefore

(KPR My MK ) s (MyKEPHMFIC"),

(MQM;)JzL,w = jCs ok - jos+pk
(g(2) K| f(w)KS),s —— K. g(2)f(w)
=T e W =T
u
3.3.3 trace

Let A € (I'*)' commute with I'*. Then v*Ay~* = A and therefore A_, = A_. Polarization
yields
uiN AL
A'yz,'yw = Az,w (7 € F)
Proposition 80.

1 n
Twzm!mw@Z

defines a positive faithful trace on T C B(H(Z))

Proof. We have
mmwm»:muA/Muow&mo&>

Z
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— [ mldOBENOUENAK) = [ pafdd) (e 4K B
Z Z
and therefore

v _ (KfABK,) 1 /Mo(dC) u / n Kl
AB), ., = = A, K. B w = dC)A; B .
( )27 ICz,w ICZ,w KC,C CIC ¢ CU)K:C MO( C) e CU)IC ’CQC
Z Z
Put c P
o) = 1AL P
Then
u ok lngngz 2 IlngI /
= dQ)A; A ’ o(dQ)| A% ¢
Z Z Z
and, similarly,
ik v K. C’CCZ / o2 |’CCz|2 /
ATAYE = d¢) A, A = d¢)|A e = d :
A = [ o)A AL 25 = [ oAz P = [ im0
It follows that
1
T(AAY) = — WAAYE, = — —
~ 7 [l = 177 [ 10l [ @150 = s [ ol S [ ot
F F Z F €l
and
P4 4) = i [ e )t = o fta) [ a0 = o [ @)Y [ mfac
F F 7 F el p
Since f(7(,2) = f(¢,v712), the assertion follows. O

Proposition 81.

For automorphic forms f, g of weight pk, the inner product

agrees with the Petersson inner product.

Proof.
To(M7My) = Toypp(MyMy) = / (dz)(M, Mf

>_i [ z _z z) =
=17 / fald ,Cgkz - TF / fin(d2) TE9(2) = (flg)

f(z,7¢)

f(v¢, 2).



Proposition 82. Put

Let f € L®(Z)". Then
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Chapter 4

Scattering theory

4.1 Abstract Theory

4.1.1 Abstract scattering

Let U; € U(H) be a unitary representation of R on a Hilbert space H. Suppose there is
a subspace H, C ‘H such that

UtHo— C Ho— (O't > 0)
() UM, = {0}

ot>0

U UH, C H

‘oR dense
Lemma 83. Fort > 0 we have
PLUP"HCH,.
Proof. For t > 0 and f € H we have (H_|Uf) = (U_yH_|f) = 0 since U_yH_ CH_.

It follows that
UHECHE.

Also, for f € H™ we have (H_|P,f) = (H_|f — Pyf) = (H_|f) — (H_|P+f) = 0 since
H, and H_ are orthogonal. Thus

PiHICHE.
In summary, we obtain
PIUPYH C PLUHE C PyHE CHE.
Since, trivially, PyU,P*H C H, we obtain
PLUP"HCH,.
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Lemma 84. Fort > 0 we have a semigroup
P.UPE
on Hy.

Proof. Let s,t > 0. Then P, U,P, = 0 since U/H, C H;. Moreover, PyU,P> CH" by
Lemma ?7?. It follows that P~ P U,P* = P U,P~ and hence

PUP* P*UP* = P*U,P'U.P* = P U(I — P,)U,P* = P*U,U,P* = P"U,, . P*

]

4.1.2 Scattering operator

There exists a unitary W, such that

H—"T" N H,
-
L*(R,E) 22Y (R, E) —— L*(R,, E)

L )
| fL E

N
. E>9H§(ZR7E)

L2(iR, B) <29 12(;

Define the unitary scattering operator

At ®id

L*(R, EB) 222 [2(R, E)

S

H S s

k
At ®id

L*(R,E) 222 [2(R, E)

Since S commutes with translations, we have

SE(t) = (SF f)(t) = / Sy(ds) f(t —s)

R

for some distribution Sy € D'(R). Now suppose (H4|H_) = 0. Then
SL*(R_,E)CL*(R_,E), S*L*(R.,E)CL*(R,,E).

Therefore Sy € H'(R_), i.e., Si(s) = 0 for s > 0. Let

Su(0) = / Sy(s)e” € H_(iR, £(2))
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be its Fourier transform, called the scattering matrix. Then

A

Sy(o) e U(Z) Im(o) =0

1S3(@)l <1 Im(0) <0

and

A0

S
H?(iR,E)<—— H2 (iR, E)

fT T F
L2(R_,E) e L2(R_,E)

where S ; denotes the multiplication operator
(5;9)(0) = (Sp)(0) ()
for ¢ € H2 (iR, E). Explicitly, Sy(z) € £(Z) is determined by

S(e—izsn) _ /Sﬂ(dt) e—iZ(s—t) — e—izs /Sﬁ(dt) ety — %S S«ﬁ(z)n
R R

for all n € Z.

4.1.3 Wave equation

Let H be a Hilbert space, L € L(H) a self-adjoint operator. Consider the abstract wave
equation
U = Ut = Lu

b (Domg{LWZ))

-()-)

Then (?7) is equivalent to the first order equation

s =0= (7 ) o0

The space

is called the data space. Write

L 0

For ¢ € H we define the energy form
Z(¢) = (¢'¢") — (¢°|L¢°)
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Lemma 85. The energy form is independent of t

Proof. Let u; solve the wave equation. Then
d d

Z B = —
alW=g

= (Lu|a) + (4| Lu) — (a|Lu) — (u|Lu) = (Lu|d) — (u|Ld) = 0

(Cal) = (ulzuw)) = () + (i) = (il Lu) — (ul L)
since L is self-adjoint. O]

4.2 Scattering for rank 1 spaces

For symmetric spaces  of rank 1 (including euclidean space) consider the Laplace-

Beltrami operator
1

L=A+(plp) =2+
on L%. Then the second-order wave equation 9?u = Lu for a function u(¢, ) on R x Q
is equivalent to the first-order system

0 I
EMU—(L O)w—Aw

u(t, x)
Oru(t, x)
group I' € Aut(Q)) with fundamental domain F' we have the diagram

where w(t,w) = ( ) is a smooth map w : R x Q — R?. If we have a discrete

q
TN
13 12
\/

q

where ¢f := f|r is a co-isometry and its adjoint isometry ¢*f is the zero-extension on
f. Thus q¢* = id and p = ¢*q : L% — L% is the orthogonal projection. Then A is
self-adjoint on H := L*(F, C?) for the boundary conditions imposed by (??). Consider
the resolvent (A — A)~!. For the basic solutions

up () = w'’? ¢y e*)

it follows that H.y consists of all data

oo (5)
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with ¢ € C*®(F*),a > 1. The main result [LaPh] states that (A — A)~! is a compact
operator and hence has a discrete spectrum. How do we find eigenfunctions? For 7 € iR

w1/2+7
he (w) := ( 1/2+T) :

T W

put

Then
Ah, =T h,.

Since h, depends only on y = Im(z) it is invariant under the parabolic subgroup I's, =

1 Z . .
consisting of all translations

0 1
((1) T)(z):z—l—n

by integers n € Z. To make it fully invariant under I' = SLy(Z) we define the Eisenstein
series
Z:(2) = Z he(vz).
YEL s \I'
Note that this is not holomorphic in z (discrete series) but instead belongs to the prin-
cipal series. The translation representation of T on L?(R)? is

+

Tif(s) = ﬁ(ﬁs, —1)(e’foe™)

where f = (;0) :
1

Theorem 86. The multiplication realization T+ on L2(iR)? is given by the Eisenstein
series

O1p(1) = (Eri’f)z

for the function

+ (11)1/2—‘,-7'7 —Twl/Q_T).

W) =

Define the scattering operator

ST_(f) = T4(f)
Then S has the Fourier coefficients
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4.3 Harmonic analysis on Symmetric Spaces

4.3.1 Structure of Lie groups

For a Riemannian symmetric space G/K let g = € @ p be a Cartan decomposition, and
let a C p be a maximal abelian subspace. The finite Weyl group

W= K%/K}

Choose a vertreter system k,, € K% of w € W = Ny(K)/Z4(K). W acts linearly on
a and hence on the symmetric algebra S(a) ~ P(a*). The invariant part

S(a)V ~D(G/K)

yields the algebra of invariant differential operators on G/K, while the skew-invariant
part
S(m)

is spanned by a single operator . Its square 72 is an invariant differential operator. The
generalized Poincaré inequality is

(f|7*f) > const.(f|f)

for all smooth functions f on G/K. Now consider the Iwasawa decomposition
G =KAN

and let g4, gx denote the Iwasawa components of g € G. By [He/432] we have

(ang)a = a (ana_l)A n;ll

for all n € N. The Kostant convexity theorem says
log(e'K) 4 = convWWit

In general, a Harish-Chandra isomorphism identifies a subalgebra A CU(g) with
U(a) for a sub Liegebra a C g.

h— g

L

Uh) —Ulg)

For example, for a complex Liegebra g the center Z(U(g)) is a commutative subalgebra
identified with U(h) = S(h) = P(h) for a Cartan subalgebra h C g. In the real case we
have D(G/K)% ~U(a) = P(a*) for a Cartan subspace a C p.
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4.3.2 Geodesics

For © C X put
a:=(H,: a€0©), a:={tca: tj© =0}

a,:={tca: tla>0Vaeck~(0)}

§ = [g%c, g3c]
E=tng

nt = Z g°

a€(O) 1

For t € a; and k£ € K we obtain a geodesic
Yer(Q) =k eK € G/K

The geodesic is regular for ¢ € a;, and singular for ¢ € af for some © # (). Since
K'N K = (K')S, we have an injection

K'/(K'% CK/K5
The inclusion K} C K, induces an exact sequence
K5 /Ky — K/K) — K/K},

with typical fibre
Kz///KZ - K,/(K,)Z/

4.4 geodesics

An element v € SLZ C G := SLj is called hyperbolic/elliptic/parabolic, resp. if
the trace tr(y) has absolute value > 2/ < 2/ = 2 resp. These properties are invariant
under conjugation. In the elliptic case we have eigenvalues in T and ~ is conjugate to
an element in K. In the hyperbolic case, we have real eigenvalues and ~ is conjugate to
an element in the centralizer

G = K° A,

A:{(g a01> :a>0}.

Writing gvg = k, a for some a € A and k, € K] we have

0~a:0-k7a:0~g*17g.

N2
7N( 0 N—1/2>
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for some N > 1, and the centralizer

TS =75

N2 0
7o 0 N0—1/2

By [TS/546] the group K, normalizes both K’ and G’. Thus

is a cyclic group with generator

m®kem™® = kg, m®gm=® = ¢

for all m® € K?

a” .

Define an action of K, on G'/K’ by
m® . gK' =¢ K’
This way Lg becomes a K §,-module. Consider the homogeneous vector bundle

K X%, Lo x G'/K')

and the L2-sections
(K x%,, L(a' x G'/K"))

4.4.1 Root analysis
Let m, be the restricted root multiplicity. Put
sinh, (t) := sinh(a|t)™

and
sinhyy () := Hyeq sinhy, (2).

For a € ¥, define [Wa/325]

B! =B

Ma May2
a

Mo May2 T|a>
27 4

_ B(
+T|a0> 27 4 ala

and Bf; := [] B..

aell

4.4.2 Invariant measures

By [HeJo/2] and [He/458] the Haar measure on G is given by

/dg Flg) = /dk/a2p/dn f(kam) = /dk/da a2p/dn f(kam)
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= c/dk/dt sinhg+(t)/dk’ f(ke'k')

K a4 K

For Re(7) > 0 define the c-function
= /dn ny "’
N
and normalize the Haar measure dn on N by

p_ =20 _
c —/dnnA =

N

Then Harish-Chandra’s formula

[ aw ot = [[anni® ol

K/KS N

holds. Normalize the Haar measure on N N (k' Nk,) by

/ dn n;* =1

NN(kp Nky)

Proposition 87.

ap/dn f(a 'na) :a_p/dn f(n)

N
Proof.
a”T/dn ny " (a'na) P = ¢ (a7 =6 "(a) = aT”/dn n’ ? (ana™')7F
N N

implies

ap/dn n, " (a " na)f = ap/dn n’ ? (ana™') 7 F
IS N

Theorem 88 (Wa/325). Let Re 7 > 0.Then

Proof. For rank 1 let X% = {8}. Then X, = {3,243} and hence

mg

9 + mQﬁ)Ba

P25 4 g
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olfo = plB _ mg

BB 2 T
Write 7 = izp. Then (7|8y) = iz(p|fy) and hence iz = ngo It follows that
. T m
2P(1 +iz) = mag = (p| o) (1 + %) Mag = (p+ 7|Bo) — mas = TB + 75

and hence P(1+iz) = 3(52 + mog + 7|6o). By [He/437] the unnormalized integral is

dr rmes/? [ dt tmas/2
7 1—}-7” mg/2+7|Bo /? ]_+t (m5/2+m25+7|50)
0

(Mg mas Mg T|Bo\ v or
= (57l B(T55 T+ 50 = B3 B
71Bo

5. The duplication formula

[e=]

since mg/, = 0 and 7|(28) =
2z 1 . 1
L(z) 74 L _)

implies
[(72 4 i) 218
R i)~ T )
2 4 2 2
Therefore
(%2, 7l60) B(T2, "0 + ﬁ) S — 27 D(rlf) .
2 24 2 ) T e e T )

By [He/447] we have

o T () (e e

We claim that
mpg T’ﬁo B Mo Ma/2
11 B( Tlﬁo) (T’T+ 2 )‘ 11 B( 2 4 +T|O‘0>
,BEEO Oé62+
For g € Z?r we have mg/, = 0. Therefore the claim is equivalent to

m2ﬁ mﬁ 7-|B0 o Mo May/2
HB( 2 )_ 11 B(T’ 4 +T’O‘°>

pexy IS

Since every a € Xy ~ X9 has the form o = 24 for a unique § € X9, the assertion
follows with 7|ag = Tgﬂ O
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4.4.3 Principal series representations and intertwiners

Let p be the half-sum of positive restricted roots. For 7 =i\ € aﬁc define the principal
series representation of G on H := L*(K/K9) by

(9" NIkl = (g7 k)" fllg™ F)x]

Here [k] := kKS). For 7 € ia* this is unitary and irreducible. Define an operator
vS, e L(H) by
1 w 1 —(r+0)
("8 F)H] = dm iy Sl
E+ﬂw IA_ E+ﬂw LA
NN(kp!Nkw)

Then

H H

wg_ st_}_

H~2I2(K/K3)

Put

K/KS = {xe K: Vi £{0}}.
For F € L*(ia*, H) and » € K//I?jj‘ define the Fourier coefficient

e / di f(r, kKS) k" € £(V.)

K

Then we have the inversion formula

TKA Zdtl"f|K)

%EK/KO

Then we have the diagonalization

("S- )" = "S7 17

for endomorphisms “S* € L(V,,) which preserve and are unitary on VA, By Harish-
Chandra there exist meromorphic functions ©* € /J(V}f( 4) such that for t € a; we
have

/d/{ ( tk’ Tp tk‘ K _ Z Z —tl(wr+p+p) ) F;‘(wT)wS;*

weW pel

where I € L(V 2‘) are rational and holomorphic on a®, + iaf,

93



4.4.4 Spherical functions

By [HeJo/1] a spherical function is a continuous bi-invariant function ¢ : G — C
satisfying

/ dk ¢(aky) = 6(2) ¢(w)

The non-zero bounded spherical function characterize the maximal ideals of the convo-
lution algebra L'(K\G/K) via

ot = {f € INE\G/K) - / dg F(9)élg) = 0}

G

For a nc symmetric space G/K the spherical function has the form [7, p. 435]
o7(9) = [ ik (g7 = [k g7 DW
K K
where 7 € al, and [k] := kK9. By [7, p. 419] we have
¢(g7") =07 (9)

By [HeJo] we have
¢" bounded < —Re(7) € conv(Wp).

Proposition 89. On A the spherical function is given by

¢ (a) = aT_p/dn ny "’ (ana_l)z_p
N

Proof. We have

¢"(a) = /dk: (ak) " = /dn nfp (ang)y " = /dn nfp (to(ana™)a -nt)""

K N N

_ _92 — CNT— _ r_ CNT—
=a” ”/dnnAanT(ana NP =a" ”/dnnAT ? (ana™ )"
IS

N

[]

Now let ¢ € a,. Since lim, o (e'e™*)4 = 1, the dominated convergence theorem

implies
lim P~ g7 (e!) = lim [ dn 7,7 (e'me )"
—00 t—o00
N
= /dn n, " tlim(etﬁe_t);_p = /dn n, " =c(r),
—00
N N
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If 7 is regular (s7 # 7 for all s # e) it follows that ¢(7) # 0. Thus there is an asymptotic
expansion
li 7T (a) = .
lim o @) = el
Joint eigenfunctions ®,(a) for radial parts [7, p. 429]
Do . =T,(D) @,
of D € D(G/K). In particular, by [He/427]

Lx®, = (17 — p|p)®..

Let 8 = {f,..., 5} be positive simple roots. Recursion formula
O (a)=a"" > Tpm(r)a™
meNT”

with I'g(7) = 1. Then we have |IW| linearly independent solutions ®,,,, w € W. Hence
Q" = Z c(wr) Dy,
weWw
with ¢,(7) = ¢(wt), ¢(7) = ce(7). In summary,
o Z c(wr)a*™* Z Ly (wr)a™™?
weWw meN"

Example 90. In the complex case we have [7, p. 432]

> detw a7

¢"(a) = ¢ > detw awe

with

For w = [k,] € W with k, € K% put N, := N Nk, Nk, and normalize by
/ dn 7 =
Ny
For s € K* let [Wa/319]
TY, =k / dn """ 5 € L(V,)
Ny
The integral converges on

Cp:={r€al: /dn ﬁg(Re(THp) < oo}

Ny
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={r€al: Rer|Qu >0V o€ (w)}

Here Y9 (w) consists of all indivisible positive roots a such that wa < 0. For w, € W
satisfying w,>; = —>, we have N,, = N since k;}ﬁkw* = N. Therefore

Wi . ] ——T+p —x
T = ke, /dn n, g
N

and
Cp. ={rcdy: Rered}.

By [Wa/320] we have the cocycle formula

’ !
)

WT, ¢ ~ T, %

for kyrny = kuwky and Ly, = Ly + £y. By [7, p. 458] for each 7 € aﬁc and [k] € K/K§
we obtain an eigenfunction

Grpglg) = (g7 k)"
of D(G/K). Therefore

Doy = T7(D)br

for the Harish-Chandra homomorphism
D(G/K) & P(a)V
By [7, p. 463] we have
o) i= [ dn T = B i (7)
Ny
where, putting a := a/(a|a), we define

. I'(r|a)
BolT) = S T + 1+ 7la)) T T s + 7]a)

4.4.5 Harmonic Analysis on Lie groups

Let G be a locally compact unimodular 2nd countable group of type I. For any choice
of Haar measure dg on G there exists a positive Plancherel measure dy on the unitary

dual G* such that
/ dg |f(g) = / a1 s

G Gt
for all f € L'(G) N L*(G). Here

[y = /dg flg) g7 € £2(Vv)'

G
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Now let GG be a connected semi-simple Lie group with finite center. Then G is of type I
and for every f € C5°(G) we have f(vy) € L}(V,). More over, the assignment

tr, f = tr(F(7))
is a distribution on G. Consider the spherical Fourier transform
Fon= [ do o005 7ol = [ dg 7lo) (4 0lK
G/K G/K

for 7 € ia®. In short,

7. = / dg flg) g1 € L2(K/K50).

G/K

1 d -

G/K iaf, K/KS,

Then

and [He/459] the Fourier transform has the inverse

|Bs., |* dr 17\~ (T+p) F
. + o

iaf A

flg]

4.5 Scattering on symmetric spaces

4.5.1 Extension of rings and fields
If K C K'is a finite field extension, then tr¥ : K’ — K is defined by
trfoz = trM,,

where M, : K" — K’ denotes multiplication by o € K'. Let

ma(X) = [J(X = Ai(a)) € K[X]

=1

denote the minimal polynomial of o € K’ over K. Then

1
WtrKOz—Z/\

For o« € K we have
tri'a = [K': K]a

97



If K C K'is a (finite) Galois extension, then

4
trflga: E wo

wEGal%l
If KC K'C K” is a tower of finite field extensions, then
K// K// K/
trg (a) = try (trg (@)

trK/ tI"K//
K <X K <X g

7

K//
trig

Define the trace form K’ x K’ — K by

(z]y) =t (zy)

Then (|) is non-degenerate if K’/K is separable, and identically zero if K'/K is purely
inseparable.

Example 91. Let
Q =QWd) ={a+b/d: abecQ}=Q(1,Vd)

be a quadratic extension field. Then M, , /5 has the basis

(M ypva) = (Z bd)

a

and the minimal polynomial
My, pva(X) = X? — 20X + (a® — db°)
with roots \y = a + bvd and M=\ =a— bv/d. Hence
trg(\/&)(a +bVd) = 2a

Example 92. Let F, CF} be a finite extension of finite fields. Then

F7 2 n—1 i
trFZa:a+aq+aq+...+oaq = E ol
1€Z/nZ

as a sum over the cyclic Galois group Galgg = Z/nZ. For o € F, we have a? = a and

F’VL
therefore trg’ oo = n .
q
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By Chevalley, the ring extension P" C P has the following properties:
P=PYhi,..., h]

is a free polynomial algebra. There exists a graded W-invariant subspace H C P (har-
monic polynomials) such that

P:PW®’H:(PKV-P)@H
Consider the quotients fields P and P". Then
PV =)V

and the field extension P ¢ P is Galois with Galois group W. It follows that

P
tlePZ Zw-p::pw

weW
for all p € P.
By [HC] we have restriction maps
P(a) ~——"P(p)
P(a)iy <—P(p)k

Here
W=Kj,/K;=G%/G}

since G4 = A K9. For a € ¥ choose t, € a such that
B(t,t,) = ta

for all t € a. Then W is generated by

so(t) =t — ﬁtw

By [HC2/251] there exist homogeneous wu,, € P(a) such that

P = Z Uy - Priy
weW
and
P=> u-P
weW

with u, free over the subfield Py, C P. Let u” € P denote the dual basis satisfying
(unt Yy =

g
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for all o,7 € W. Then u” € % and

D:ZuwP;LV

weW
On the other hand, by [HC/254] we have
,P(Cl)?/v = C[il, N 7'ér]

where r = dim a.

Consider the polynomial algebra P as a (free) Py-module, and denote by
P* = Homp. (P, Pyiy)

the dual P;j-module. The quotient fields Pj;, C P form a Galois extension with Galois
group W. Therefore there exists a conditional expectation tr : P — P, defined by

trz = zy, 1= E w -z

weW
for all z € P. This induces a non-degenerate bilinear trace form
P xP>(2,y) — (zy)y-
Hence the dual Pjj-vector space PF of all Pl -linear functionals P — Py, has the form

Pt ={z*: 2 € P},

where
y = 2y = (zly) = (zy)w-
By [HC/251] there exist homogeneous polynomials p,,, w € W such that

P = Phpw: weW)

|

P = Pyl weW)

and the p, are linearly independent over Pj,. Let p* € P denote the dual basis,
determined by

(ps|p") = tr(psi') = (psB' )iy = 0.
for all s,t € W.

Example 93. For rank r = 1 we have a = R and W = Z/2Z = {(—-1)°: ¢ = 0,1}.
Hence P = R[r] and Pj; = R[7?]. Since

P =Py (l,7),
the basis is po(T) := 1, pi(7) := 7. The dual basis in P = R(7) is p°(1) = 3, p'(7) = &=.
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Now consider the P;}-submodule
Pi={AcP": NPCP}}={z": z€P, (z|P)CPy}

of P*. Put

Then

Lemma 94.
P = P;{,(ﬁw cweW).

Proof. Let p= Y i p, € P where i € P;},. The identity
weW

(B°lp) = (7°] D i*puw) = Y (B°liPuw) = Y i“(5°lpw) = i* € Py}

weW weWw weWw
shows that p° € P for each s € W. Conversely, let x = > j,p* € P, with j, € E;,.

weWw
Then for each s € W we have

P 3 (@lps) = > (Gud®[ps) = Y uw(P”Ips) = js

weWw weWw

showing that z € Py, (p* : w € W). Thus (??) is proved. O
In order to describe P more explicitly, let
Py ={peP: w-p=(-1)"pVwe W}
be the Pyl,-submodule of skew-polynomials. By [HC/253] we have
Py = Py

where

() = H (t|e) € Py

aezi
Harish-Chandra [5, p. 251] has proved

Proposition 95.
P="P/r.

Proof. For p € P we have p;;, = > (—1)* w-p € Py,. By Lemma ?7 it follows that
weWw

pw = 7 - q for some q € P, Therefore

(o) = /miy = S wl = S 2P = S -y

weWw weW weW

suH
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This shows that (% |73> C P and hence P/m C P. For the (deeper) converse inclusion one

shows that
w . P
p € —
~ T

for all w € W. Then the assertion follows with Lemma ?7. OJ

4.5.2 Cauchy data space

On the other hand, define the jet space

H={P() L C(G/K)] = (pa)lfe = p2(alf) ¥ p € P, g € P},

The space C°(G/K) is a P(a*)" -module via
() = P9,
where for p € P(a*)" the G-invariant differential operator p® € D(G/K)¢ is defined by
pre, =p(n)®, (A€ d).
The Cauchy data space is defined by
D:={P 2 CX(G/K): (iD)h=i2(pA) Vi e P}

=Pt @p C(G/K) = (P* @r CZ(G/K) /N

for the submodule N generated by (iz)* ® ¢ — 2* ® i®¢ for all i € Py},. By Proposition
7?7 an alternative expression is

D =P @py CZ(G/K)

via the identification
(z @ ¢lp) := (z|p)>¢

for all z € P, p € P and ¢ € C°(G/K). This makes sense, since (z|p) = z*p C Py, by
assumption, and satisfies the module property

(i) ® ¢ =" ®i%¢
for all i € Pyl,. The energy form on D is now defined by
Codyev)zi= [ dud @el)e = [ du T v
G/K G/K
since operators in D(G/K)¥X are symmetric. Using Proposition ?? we can also write
p q T o AL PYInY o
ool o= [ d s v = [ a6 (o)
G/K G/K
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For the basis ps(7) and dual basis p'(7) we have
W@ olpo)z = [ a0 (w20
G/K

Example 96. For rank r = 1 we have 7(7t) = 7. Since

G =1, () = 1N =0, (0P = 3 g = 15
we have 1
(O =% 7w = 0, 0Py = 5
and hence

(R@h), = =8~ lo), (6 ), =0, (Fw), = ]

Therefore

Pentrea’ oy onz= [ & dnEm) + HEm:)
G/K

For each p € P(a*) we obtain an operator L, on H by putting

q|(Lyy)) = (qp)|v

Lemma 97. For each p € P there is an operator L, € L(D) defined by
q9(Lpg) := (qp)lj
for all p € P.
Proof. Let i € PV. Then
(i) (Lyj) = ((G)p)li = (i(gp)l = i (apls) = i*(a(Ly)))

Therefore the linear functional L,j on P is P"-linear and hence belongs to D. O

4.5.3 solution space
The space C®(a) is a P(a*)-module via
(p.q) = p’q,
where for p € P(a*) the constant coefficient differential operator p? € D(a) is defined by

P2t = p(X) e (X € af).
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The solution space £ consists of all smooth functions u : a x G/K — C, more
precisely, a = C>°(G/K), which satisfy the (hyperbolic) wave equation

idu(t, r) = i2u(t, )
for all i € P(a*)". Here t € a is regarded as multi-variable time’. Thus

L={a—=C*G/K): pPu(t,z) = p~u(t,z) V p € Pa*)"}.

smooth

For a smooth function v : a x G/K — C a jet in the variable ¢ € a is the linear
functional %u : P — C>(G/K) defined by

p(fu) = ptau

In order to express the wave equation we require that the jet j; satisfies the covariance
condition

(ip)je = i5 (pje)
for all i € PW.

Proposition 98. There is a smooth map
ax L —D, (tu)— u

defined by
q(7u) = pfu.

This map satisfies the Cauchy problem
pta(?u) = Lp(?u) VpeP.

Proof. For each i € PV we have

(iq)(Ju) = (ig)7u = p7 (i) = p{ (igw) = iz (v}u) = iz (qlfu)

Therefore Yu € D. Moreover,

qa(p) (u)) = p{p°u = (qp){u = (qp) (Gru) = q(Lp(Ju))

Let @ : a x G/K — C be a solution Define ®, : P(a*) — C by
q|o := py®

Then
(70)|Po = (j@)§® = p] jo® = pi(j2®) = j2(P]®) = j*(q|lFy)
It follows that &y € H.
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In different notation,
JP = ji@
If ® € #H, then ¢°® € H for all ¢ € P(af) since
i°(¢°®) = ¢°(5°®) = ¢° (@) = j*(¢"®).

Thus H is a P(a*)-module. On the other hand, put

Consider the following Cauchy problem for smooth maps ¥ : a — H
(BV)(q) = Welpg), Wo=1
Lemma 99. The assignment
U(t,x)q = p?®(t,z)
defines an isomorphism L — H.
Proof. We have for j € P(a¥)V
V(jg) = (jo)'® = ¢°(°®) = ¢° (72 @) = j2(¢"®) = j*¥(q)

It follows that W, € H for every t € a.

The geodesic flow T*X x A — T* X defines plane wave solutions

Yt [g]) = € (g7 R) AT = €7 (g"1)[K]
for each fixed 7 € ia* and k € K. Thus qffﬂk] € L and we may form the jet
J0Y EH

at 0 € a.

Lemma 100. For each 7 € ia? and k € K we have

-y Zps ) 7 ® (9“7 1)[K]

seWw

Proof. Let p=>_1° ps € P. Then (p|p®) = i* and therefore

P20, lol) = 8 (@2, la)) = B3 (9" K] = () (g D)[k] = D pa(7)i

seW

)(g* 1)[K]

= P (T DK = D pe(r) (0I5 (9] (Zps ) 5™ @ ( Wl)[’f])

seWw seEW seW
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Corollary 101. Let y = Y p' wy, with w, € Py, and ¢ € C°(G/K). Then
tew

(bt ) = > prhu() @170 DIK @l

Proof. Since w (¢%™1)[k] = wy(7)(g*"1)[K]
(o2, ' @ ¢) = Z p(r) (715 w)® (9" [K] © vlg]

= Z ps(7) (152w (9" 1)[k] ® [g]
= Z ps(T)wi(1) (5[5 (9" 1) k] @ [g]

Define a plane wave transform F,, : H — L%(ia*, H) by

(Fuwf)rm = (00 Q¥ f)z
Then [TiSh/539] asserts for all f € H

dr
W= | o | o D

sal K

Lemma 102. For ¢ € L*(K/K9) we have

(Ua~) = a7 / dn (ana™)5* 03" Yl(ana=)]

Proof.
(L) = (g71[) = / ak (D] ¥[K)
K/KS
- / ak: (g ), 7 k] = / dk: (g7 k)5 k)
K/K3 K/KS9

In particular,

(1a~") = / dk (a k)7 Ok = / dn 13 (¢ 'ng)7™ Pl

K/K§ N

= /dn ny? (a7 (a7 na)a - ngt) TP Ying] = d” /dn n " (a ' na) "7 Ynk]
N

N

aT”/dn (ana™")7 " n"7 " Yl(ana ) k]

N
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By [TiSh/542] we have the wave solutions

0, [g) = / |b<d—>, e (1g0,)

iaf

where U, € K C C(ia* x K/K5).

4.5.4 QOutgoing representation and scattering operators
Proposition 103. Let g € G'. Then

- dr |\
lim e*” W, ,[kge’ :/ e (1% ((kg) T—=
fim e Bendioe') = | (1 (07 525)).,.

and, more generally,

~ dr v
. sp 0 s] —tr ok -7 T
Slgloloe PV [kge’] /bZa i p(T) e (1|Z ((kg) b(—T)>>H@

ial

Proof. Let N = N\N and write n = 7 \n. Then e*ne™* = 71(e*\ne ) and hence
(ene=) n37 = (e \ne )P \n g

AR (e \ne ™) Ny = 0 (e \ne ) iy

where

Thus Lemma 7?7 implies

e (1) ) = e e o [

5 (€ne™*) " Yl(e*ne™) k]
n

A

—tT dn S, —S\T— S, _—s§ —tr d\n s —8\T— dn ;s —s
= [ e e = e A ey [ e e

oA
N
Let w, € W satisfy w,(0); = (0)_. Then \N = N N (k,'Nk,.). Hence
d\n . b(T)
- @ — cw —
LT a0
\N
since b(1) = 7(7)c(T) = df b ¢, . Since (1) = (1) we have
dn , dn , e "
[ S vl = [ S vla = [ dk ol = @l ome,
N4 N4 K/(K)y
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Since e*\ne~* — e it follows that

. S —(s+t)T S\—T —tr d\n dn ’ b(T —tT <k
lim ¢ =407 (1](¢) ) = e L/— Bl()x] = L et (1),
$—00 N TLA o nA o Yo

Putting ¢ := (kg)~ Tb‘I’T) we obtain, using the dominated convergence theorem,

~ v
lim e* Wy, [kge’] = lim eSP/ dr _(s+t)7<1|(k’ge )T — )H

s—00 s—00 b(T) b(—T)
ial

= [ i tmer e (e ko ), = [ g (0 k0 ),

ial ial

. dr ‘. v
— dr —\t7 = (1% kT T
/ Te '[dg) bg ‘ < g (—T))H@

b
iaf i
drt \\J
_ 43 \t‘r/ ft‘r(l —7! * —T T >
/ Te dz, by, l9 b(—7)/ e
h iaf

For v € L consider the limit

(Wgu)f[ 7= lim e’ pd@ Un-1(s+0) (kg€ s”]

s —o0
Then
(WeW)flg] = lim e*'7dd Woyi[kg'e”]
s'""— o0
"1 d 1! / WT
— / dT// eft T _T eft T <1’gfﬂ' Z'*k_fT >
bg b(—7)/ He

ia®t sa’l
Consider the homogeneous vector bundle
K xgo, L£(6x G/K) = {[k,u] = [km", (m") "] - m" € KUy}
Then
(Weu)f™ g = (Weu)f(m"[g'])
for all m"” € K7 ,. Therefore
ke (Wou)f

induces a section of K XKe, L(d x G/K).

By [T-S/546] we have the Plancherel formula

lulfy = [ave [ ar 0Vt i,
a K/K?,

Thereofore

Llax G/K) = L*a) @ T*(K xxo, L(d X G/K)
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4.5.5 Paley-Wiener theorem

Put H := L*(K/KY). The Paley-Wiener theorem states that

[2(ia*, H) <~— L*(a, H)

L2 (iof, H) <—— L*(a_, H)

where
L* (idf, H) = {d, +io" =5 H: sup /df [h(o +7)ll% < oc}

oca v
is the H-valued Hardy space.

Then p
T [¢]
11 = [ 5 [ P kR

iat K/KS

Define an operator WS :H —T'(Ho)

WS(t,gK', k):= lim e’ do(d)u(w (s +1),kg e K)

]
a+95—>+oo

This solves the wave equation for (t',2¢) € ' x G'/K’.

dT —T —T
ut98) = [ G 1l a

ial

lim e p(aa) (s+t,ge”K)

a—r—+00

dT
— (s+t)\7‘ as\—7 ,,+
al—1>+ooe aS / ‘b <1|(kg€ ) aT)H

ial

N / bg@)%{j) " <1|i*g_7k_7%>He

ial

Then there is a commuting diagram



Define
Wy = R;' oW,

_ 1.2 ~ —1
SV =W, W' =R,'W. W, R,

Then
S* .= pSvP~!

is a multiplication operator with multiplier

b(—wA) .,
b—n)
For s € Wg we have
S =W, Wt =Ow, W (W) Wit =ew, e

4.5.6 Coordinates

For a finite linear group W C GL(V') the Shephard-Todd theorem states that W is gen-
erated by pseudo-reflections if and only if

Kw|V] = K|freefin]
is a finitely generated free polynomial algebra, if and only if
K[V] = Kw|[V] < freefin >
is a finitely generated free module of rank |W|. Now consider a basis
Pla") =Pw(a®) <h®: c €W >

of homogeneous harmonic polynomials h°(\) on a*. Then any p()\) € P(a*) has a unique
decomposition

p(A) = ps(A) h7(A)
where p, € Py (a*). Multiplying by the linear functional t*(\) := (A[t) for any t € a we
also have
(A[)p(A) = (#"p)7(A) he(A)
where
(t"p)” = top”
is a matrix of G-invariant differential operators on G/ K. There is a matrix A7 of invariant
differential operators on GG/K such that

o) =Y [ 3 azu

U7PG/K
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defines an inner product on the Schwartz space S(G/K)V > (¢7), (1?). The Hilbert
completion carries a unitary representation a 3 ¢t — U(t) of a. By definition,

(U(a)¢?)(z) = ®(a,x)
for uniquely determined functions 7 : a x G/K — C satisfying the initial value problem
907 (a,x) = to®(a, )
and the initial condition
7(0, ) = ¢7(2)
forall a € a, 2z € G/K and o € W. For each ¢ € W define
a,:={t€a: afct) >0Vteca,}
and consider the o-light cone
C, ={(t,gK)€axG/K: t—W(g ' Ca,}.
Then
Hy = {p € S(G/K)™ . |, =0}
are closed subspaces are pairwise orthogonal and satisfy the Laz-Phillips axioms

Ut H, CH, (€ ay)
ﬂ U(t)HU = {O}

t€a

Uvr, c s@c/x)™.
tea dense
*ksksk

Proof. The conventional Fourier transform L?(Vg) — L?(VRr), defined by

3(6) = / dz ¢ g ().

VR

satisfies

9(2) = [ d¢ &9 g(g).
/
Putting x := y/(27) and ¢(z) := f(2miz) we have

1 . A ‘
(&) = 3 [ dy e flig) = [ dz e f(2min) = [ dz e g(2) = §(6).
i [t e

Therefore, using (77),

flin) = 9(5=) = [ dc =9 ge) = [ 0 gy = [ac o p(e)

2
Vr Vr Vr

Identifying Vg =~ Vfui via an inner product, the assertion follows. O
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Consider the dual lattice
LFi={\eVi: (LA C2miZ}.
Proposition 104. We have the Poisson summation formula

@m) Y2 LMY ) = L2 Y

lel AeL!

Proof. The lattice L/(2mi) C Vg has the dual lattice L C Vg ~ Vi in the usual sense.
Moreover,

|L/27i| = Vol(Vw/(L/(27i))) = (2m)¢ Vol(iVr /L) = (2m)% |L|.

Therefore the usual Poisson summation formula, applied to g(z) := f(2miz), yields

(om)2 |LP2 32 10 = 1L/ @il 2 S 05 ) = 1212 3 900 = 142 3 £+

lel AeLt AELY

]

Remark 105. Different authors have different conventions.

e Kudla, Bump:

G, GQ\Ga/Ka, D =Gr/Kg,G = NAK

e Baily:
G/, Ka\Ga/Gq, D = K\G,G = KAN
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