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I first met Professor Parthasarathy when hewas visiting Sambalpur university where I was a postgraduate student.
He then stopped over at Bhubaneswar on his way to Delhi. This provided me an opportunity to talk to him in a
somewhat informal atmosphere. After several years, I joined the Indian Statistical Institute Kolkata in 1986. Soon
after, Professor Parthasarathy invited me for a short visit to the Delhi Center of the Indian Statistical Institute. He
was, of course, well known for his very meticulously prepared lectures that he delivered with great clarity. So,
when I was asked to give a lecture with Professor Parthasarathy in the audience, I was very nervous. I remember
to this date how during my lecture he was making several suggestions for picking better notation among a myriad
of other things. I am sure this and many other friendly tips over the years has made me rethink my own approach
to both teaching and research.

In the early nineties, together with my colleague Bhaskar Bagchi, I was trying to understand the Wallach set:
Let K : X × X → C be a positive definite kernel defined on a set X , that is, the n × n matrix

((
K (x j , xk)

))n
j,k=1

is positive definite for all subsets {x1, . . . , xn} of X and all n ∈ N. The Wallach set of the pair (X, K ) for any
bounded domain X in Cn is the set

{λ > 0 | K λis positive definite},
where K is assumed to be holomorphic in the first variable and anti-holomorphic in the second. Moreover, K λ

is defined by first defining K (w,w)λ for any λ > 0 and then defining K (z, w)λ by polarizing the power series
of the real analytic function K (w,w)λ in a neighbourhood of the set {(w, w̄) | w ∈ X}. In [3], topics closely
related to the Wallach set are discussed. Therefore, I thought it would be great if KRP (by now, like everybody
else, I have switched to addressing Professor Parthasarathy by the more familiar name of KRP) can visit us at
ISI Bangalore and give a few lectures on positive definite kernels. To my delight, when I checked with him,
he happily agreed and delivered a series of mesmerizing lectures on positive definite kernels. He left his very
detailed and complete lecture notes with me. Although, he never said it, I think, the idea was for me to convert his
carefully prepared handwritten notes to a more formal set of lecture notes or a book. It is entirely my misfortune
that I never got around to actually doing it.

A week long conference, “Mathematical Foundations of Quantum Mechanics” at IISER Kolkata in the year
2010 provided another opportunity for me to talk to KRP at length. After my lecture on imprimitivity in this
conference, he said that I should learn QuantumMechanics. We used to take long walks in the evening around the
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campus. During these long walks, he made it a point to patiently explain some of the basic principles of Quantum
Mechanics to someone who had absolutely no idea about the subject. Among other things, he recommended
that I get hold of a copy of “PCT, Spin and Statistics, and all that" and read it. Following his advice, of course,
I bought the book promptly but I can’t say I have been able to read much of it. Nevertheless let me attempt to
describe a version of the imprimitivity theorem due to KRP [1] that is both deep, like many of his other theorems,
and is at the confluence of the broad themes of Representation theory and Quantum mechanics.

1 States

We assume all Hilbert spaces are complex and separable and all operators are bounded. Replace a Borel σ -
algebra by the lattice P(H) of projections on a Hilbert space H and a Borel measure by a function,

μ : P(H) → [0, 1], satisfying μ(0) = 0 and μ(I ) = 1; μ
( ∞∨

i=1

Pi
) =

∞∑

i=1

μ(Pi )

whenever Pi Pj = 0 for every i �= j . The map μ is called a state on P(H). Examples are easy to construct:
Given a unit vector u in H define μu : P(H) → [0, 1] by setting μu(P) = 〈Pu, u〉. Are there other states? In
general, we have the following theorem due to Gleason.

Theorem 1.1 (Gleason) Any state μ must be of the form μ(P) = tr(PT ) for some non-negative operator T on
a Hilbert space H, dim(H) � 3, with tr(T ) = 1.

Since T is a non-negative operator with trace 1 there exists an orthonormal set of eigenvectors{
u j : j = 1, 2, · · · } of T with Tu j = λ j u j , λ j ≥ 0,

∑∞
j=1 λ j = 1, such that

Tr (PT ) =
∞∑

j=1

λ j
〈
Pu j , u j

〉
.

Consequently, {μu | ‖u‖ = 1, u ∈ H} are the extreme points of the convex set consisting of all states. These are
called pure states. For a pure state μu , we have μu(u) = μu(cu) for any c in the unit circle T. We can therefore
identify pure states with elements of the Projective Hilbert space P(H) obtained by identifying any two unit
vectors u and v inH if u = αv for some α ∈ T.

Suppose that � : P(H) → P(H) is a one to one onto map satisfying

(i) �(0) = 0, �(I ) = I ;

(ii) �
(∨

j Pj

)
= ∨

j �
(
Pj

)
, �

(∧
j Pj

)
= ∧

j �
(
Pj

)
for every sequence

{
Pj

}
in P(H),

(iii) �(I − P) = I − �(P).

Then � is called an automorphism of P(H). All such automorphisms constitute a group under composition. Let
AutP(H) denote this group. Evidently, if U is a unitary operator on H, then the map �U : P(H) → P(H)

defined by

�U (P) = U PU−1, P ∈ P(H)

is an automorphism. Are there other automorphisms?Wigner’s theorem says that every automorphism� ofP(H)

is induced in this manner by a unitary or antiunitary operator (UA operator in short), namely, a map V : H → H
that is onto, V (u + v) = Vu + V v for all u, v ∈ H, V (cu) = c̄V u, c ∈ C and u ∈ H and 〈Vu, V v〉 = 〈v, u〉
for all u, v ∈ H.

Theorem 1.2 (Wigner) Let H be a Hilbert space with dim(H) � 3. Then to every automorphism � of P(H)

there corresponds a unitary or antiunitary operator U satisfying

�(P) = U PU−1 for all P ∈ P(H).

If V is another unitary or antiunitary operator satisfying the identity �(P) = V PV−1 for all P then there exists
c ∈ T such that V = cU.

Complete self contained proof of Gleason’s theorem as well as the theorem of Wigner is in [4].
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1.1 Projective unitary antiunitary representations

All unitary and antiunitary operators on H form a group UA(H). The product of two antiunitary operators
is unitary. The product of a unitary and an antiunitary operator is antiunitary. The group U(H) of all unitary
operators is a normal open subgroup of UA(H) and the quotient UA(H)/U(H) consists of two elements. Let
π(H) denote the compact subgroup {cI, |c| = 1}. Then π(H) is the centre of UA(H). Wigner’s theorem implies
that there is a group isomorphism between AutP(H) and the quotient group Ũ (H) := UA(H)/π(H). The
group UA(H) with the weak topology (equivalently, the strong topology) inherited by it, is shown in [1, page.
308] to be a complete and separable metric group. When endowed with the quotient topology, Ũ (H) becomes
a separable metric group. Moreover, [1, Lemma 2.3] implies that it is actually a complete and separable metric
group. Let

∼ : UA(H) → Ũ (H)

be the canonical quotient homomorphism. Thus we may topologise AutP(H) by giving it the quotient topology
of Ũ (H) through Wigner’s isomorphism. This makes AutP(H) a complete and separable metric group. A
sequence {�n} in AutP(H) converges to an automorphism � if the weak limit, as n → ∞, of �n(P) is �(P)

for every P ∈ P(H). Moreover, there exists a Borel cross-section for ∼, namely, a one to one Borel map
η : Ũ (H) → UA(H) such that η (U∼)∼ = U∼, see [1, Corollary 2.2].

LetG denote a locally compact second countable group equipped with the natural Borel structure compatible
with the topology. Also, for the sake of brevity, we write Ũ instead of Ũ (H). As before, it is equipped with the
quotient topology.

A Borel homomorphism from G into Ũ is called a projective unitary antiunitary representation or simply
a PUA representation of G inH.

A well-known theorem due to Mackey (cf. [2, Theorem 2,2]) states that if G is a locally compact second
countable group and H is a separable metric group, and π : G → H is a Borel homomorphism from G into H ,
then π is continuous. Since Ũ is a separable metric group, it follows that the map g �→ π(Ug) is continuous.
Thus, any PUA representation of G is continuous, see [1, Lemma 3.1].

1.2 Multipliers

The lifting of a projective unitary representation to a multiplier representation is well-known. In the paper [1],
first, how to lift PUA representations to multiplier representations (see below) is discussed. This is necessarily
more complicated since both unitary and antiunitary representations are involved. Secondly, the imprimitivity
theorem due to Mackey, originally proved only for projective unitary representations is now proved for PUA
representations. Letme conclude by providing some details briefly of the imprimitivity theoremofKRP following
[1].

Suppose that g → Ug
∼ is a PUA representation of G. Making use of the cross section η, construct a Borel

map g → η
(
Ug

∼)
from G into UA(H). Since η

(
Ug

∼)∼ = Ug
∼, it follows that Ug = η

(
Ug

∼)
without loss

of generality. Then g → Ug is a Borel map and for any two elements g1, g2 ∈ G,
(
Ug1Ug2

)∼ = U∼
g1g2 . Hence

there exists a complex number σ (g1, g2) ∈ T such that

Ug1Ug2 = σ (g1, g2)Ug1g2 for all g1, g2 ∈ G. (1.1)

Assume that Ue = I , where e is the identity element of G. Then

σ(e, g) = σ(g, e) = 1 for all g ∈ G. (1.2)

Computing Ug1Ug2Ug3 in two different ways, as Ug1

(
Ug2Ug3

)
and

(
Ug1Ug2

)
Ug3 , it is shown (see [1, Equation

(3.3)]) that

σ (g1, g2) σ (g1g2, g3) =
{

σ (g1, g2g3) σ (g2, g3) if g1 ∈ G+
σ (g1, g2g3) σ̄ (g2, g3) if g1 ∈ G−,

(1.3)
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where the set G+ is the open and closed normal subgroup
{
g : U∼

g is unitary modulo π(H)
}
, see [1, Lemma

3.1], and G− :=
{
g : U∼

g is antiunitary modulo π(H)
}
.

A Borel function σ defined on G × G and taking values in T is called a multiplier if it satisfies Equations
(1.2) and (1.3). A Borel map g → Ug from G into UA(H) is called a multiplier representation if there exists a
multiplier σ such that Equation (1.3) is satisfied. When G− is the empty set, that is, Ug

∼ is a projective unitary
representation, Equations (1.2) and (1.3) coincide with the usual multiplier identities, see [2, page 2].

Theorem 1.3 (Theorem 3.1, [1]) Let G be a locally compact second countable group and g → U∼
g be a PUA

representation of G. Then there exists a multiplier representation g → Vg of G such that V∼
g = U∼

g for all
g ∈ G. Conversely every multiplier representation g → Vg of G determines a PUA representation g → V∼

g of
G.

1.3 Imprimitivity

We first recall Mackey’s imprimitivity theorem and then describe the non-trivial generalization of this theorem
obtained by KRP.

Let G be a locally compact second countable group and X be a locally compact G - space, that is, there is
a map α : G × X → X , such that for a fixed g ∈ G, the map x → αg(x), αg(x) := α(g, x) is bijective and
continuous on X , moreover, g → αg is a homomorphism. The action of G on X is said to be transitive if for
every pair x1, x2 in X , there is a g ∈ G such that g · x1 = x2, g · x := α(g, x). Let H ⊆ G be a closed subgroup
and let X := G/H be the space of cosets: {gH | g ∈ G}. Equipped with the action of G by left multiplication:
g′(gH) := (

g′g
)
H, g′, g ∈ G, the coset space X is a transitive G- space.

Let (X,B) be the Borel measurable space, and note that each g ∈ G defines a continuous map on X by our
assumption. Given a σ -finite measureμ on X , define the push-forward g∗μ of the measureμ by the requirement

(g∗μ)(A) := μ
(
g · A)

, g · A := {g−1 · s | s ∈ A}, A ∈ B.

The measure μ on X is said to be invariant if g∗μ = μ and quasi-invariant if g∗μ is equivalent (mutually
absolutely continuous) to μ for all g ∈ G. There is a quasi-invariant measure uniquely determined modulo
equivalence on X , see page 313 of [1].

If G is second countable, then there is a Borel cross-section p : G/H → G, that is, a Borel subset B ⊂ G
that meets each coset of H in exactly one point. Thus, each g ∈ G can be written uniquely as g = g1g0 with
g0 ∈ H and g1 ∈ B, see page 315 of [1].

A spectral measure, or a projection valued measure, defined on X is a projection valued map P : B → P(H)

such that P(X) = I and P(∪· Ek) = ∑∞
k=1 P(Ek) for any disjoint collection of sets Ek , k = 1, 2, . . . , in B,

where the convergence is in the strong operator topology.
A system of imprimitivity (H,Ug, P(E)) introduced by Mackey consists of a projective unitary representa-

tion U of a second countable locally compact group G on a Hilbert space H and a regular H-projection-valued
measure P on X such that

U (g)P(E)U (g)−1 = P(g · E) (1.4)

for all g ∈ G and every Borel subset E of X .
The imprimitivity theorem of Mackey (involving only projective unitary representations) has two parts:

Firstly, any transitive imprimitivity (H,Ug, P(E)) is equivalent to a canonical imprimitivity, where H =
L2(X, μ,Hn), U is a projective unitary representation on L2(X, μ,Hn), that is,

(
U (g)h

)
(x) = c(g, x)(g · h)(x), h ∈ L2(X, μ,Hn), g ∈ G, (g · h)(x) = h(g · x),

where c : G × X → U(Hn) is a Borel map taking values in the group of unitary operators acting on the Hilbert
spaceHn of dimension n. ForU to be a homomorphism, the function c must be a cocycle. The spectral measure
P is defined, via the functional calculus, by setting P(E) = M1E , E ∈ B and 1E is the characteristic function of
E . Here M f denotes the multiplication by f , f ∈ L∞(X, μ,Hn) on L2(X, μ,Hn). Secondly, the imprimitivity
theorem asserts that such a multiplier representation is induced from a unitary representation of the subgroup H
acting on the Hilbert space Hn .
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In the generalization of Mackey’s imprimitivity theorem obtained by KRP, the projective unitary represen-
tation is replaced by a PUA (projective unitary antiunitary) representation. An automorphism of the lattice of
projections induces a map on the state space and that along with Wigner’s theorem discussed in the beginning
not only justifies such a generalization but makes it indispensable. However, there are new complications arising
from the decomposition of the group G = G+ ⋃· G−. As we have seen, the multiplier identities are a lot more
complicated.

Obtaining a canonical form of the imprimitivity when both projective unitary and antiunitary (PUA) repre-
sentations are involved is the first non-trivial step in the generalization of Mackey’s imprimitivity theorem to the
case of PUA representations. Let me reproduce below how KRP achieves this in [1], where his L2(μ, n) stands
for what we have called L2(X, μ,Hn).

“In the space L2(μ, n), the complex conjugation which maps f to f is a canonical antiunitary operator.
By the discussion in §2, it follows that every antiunitary operator is the product of a unitary operator and this
conjugation. Making use of this fact and following the arguments of Mackey [2] one can prove the following
lemma.

Lemma 4.2. Let
{
L2(μ, n), Vg, P0(E)

}
be an imprimitivity system for G on X . Let G = G+ ∪ G−be the

U A decomposition of G associated with the PUA representation g → Vg∼. Then there exist functions C(g, x)
and D(g, x) defined respectively on G+ × X and G− × X and taking values in the space of unitary operators in
C
n such that

(
Vg f

)
(x) =

[
dμ

dμg

(
g−1x

)] 1
2

C
(
g, g−1x

)
f

(
g−1x

)
if g ∈ G+

=
[
dμ

dμg

(
g−1x

)] 1
2

D
(
g, g−1x

)
f

(
g−1x

)
if g ∈ G−

where μg is the quasi invariant measure defined by the equation μg(E) = μ(gE), E ∈ BX .”
The second part of the Imprimitivity theorem is to show that the unitary representation U in any system of

imprimitivity based on X = G/H is a representation induced from a representation κ of the subgroup H , that
is, the representation U is of the form

(U (g) f )(x) =
√
dμ(g · x)
dμ(x)

κ(h) f (g−1 · x).

Here h ∈ H is determined from the relation g p(g−1 · x) = p(x)h, x ∈ X , where p : G/H → G is a Borel
cross-section.

It is impossible to go through all the intricacies of the powerful generalization obtained by KRP of Mackey’s
imprimitivity theorem in a short article like this one. Therefore, I have decided to conclude by reproducing one
of the main theorems of KRP from [1]. I hope that the reader will not have any difficulty with what is being said
and in appreciating the depth of what is involved. I am sure this will be motivation enough to read the original
work of KRP.

Theorem 1.4 (Theorem 4.1 [1]) Let G be a locally compact second countable group, H ⊂ G a closed subgroup
and X = G/H the homogeneous space of left cosets. Let

{
H ,Ug, P(E)

}
be an imprimitivity system for G on

X. Let G = G+ ∪ G−be the U A decomposition of G with respect to PU A representation g → Ug, g ∈ G.
Suppose that G+acts transitively on X and σ is the multiplier of the representation g → Ug. Let γ be a one
one Borel map from X into G+such that πγ is the identity map of X onto itself. Then there exists an equivalent
imprimitivity system

{
L2(μ, n), Vg, P0(E)

}
where

(
Vg f

)
(x) = σ

(
g, γ

(
g−1x

))

σ
(
γ (x), γ (x)−1gγ

(
g−1x

))
{(

dμ

dμg

) (
g−1x

)} 1
2 · Mγ (x)−1γ (g−1x) f

(
g−1x

)
,

μ is a quasi invariant measure, n is a finite or countable cardinal, h → Mh is a σ - representation of H and P0

is the canonical projection valued measure on BX . This imprimitivity system is irreducible if and only if the σ

representation h → Mh of H is irreducible.
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In the statement of the theorem reproduced above from [1], (i) P0 is the canonical projection valued measure
on L2(μ, n) as described at the bottomof page 313, [1], and (ii) a “σ - representation” is amultiplier representation
with multiplier σ , Definition 3.3, [1].

The slight familiarity that I have with the terminology from mathematical physics is mostly from my con-
versations with KRP. This article, based on one of the papers of KRP that I have always admired, is dedicated to
his fond memory.
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