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ABSTRACT. It is known that all the vector bundles of the title can be obtained by holomorphic induction
from representations of a certain parabolic group on finite dimensional inner product spaces. The
representations, and the induced bundles, have composition series with irreducible factors. We give
a condition under which the bundle and the direct sum of its irreducible constituents are intertwined
by an equivariant constant coefficient differential operator. We show that in the case of the unit ball
in C? this condition is always satisfied. As an application we show that all homogeneous pairs of
Cowen-Douglas operators are similar to direct sums of certain basic pairs.

Résumé. Il est bien connu que les fibrés vectoriels homogenes holomorphes hermitiens peuvent étre
obtenus par induction holomorphe a partir des representations a dimension finie d’un certain groupe
parabolique. Les représentations, ainsi que les fibrés induits, ont des séries de composition. On donne
une condition qui assure que le fibré et la somme directe des termes de sa série de composition soient
entrelacés par un opérateur différentiel invariant a coefficients constants. Cette condition est toujours
satisfaite au cas de la boule unité de deux dimensions complexes. Comme application on montre
que tous les couples d’opérateurs homogenes de la classe de Cowen-Douglas associés a la boule sont
similaires & des sommes directes de certains couples fondamentaux.

1. HOLOMORPHIC VECTOR BUNDLES

Let g be a simple non-compact Lie algebra with Cartan decomposition g = ¢ + p such that ¢ is not
semi-simple. Then ¢ is the direct sum of its center and of its semisimple part, € = 3 + €., and there is
an element Z which generates 3 and ad(2) is a complex structure on p.

The complexification g€ is then the direct sum p* + € + p~ of the i,0, —i eigenspaces of ad(2) We
let G denote the simply connected Lie group with Lie algebra g© and we let G, K€, K, P*, ... be the
analytic subgroups corresponding to g€, €, ¢ p*,.... We denote by G the universal covering group of
the group G and by K, K, ... its analytic subgroups corresponding to &, &, . ...

KCP~ is a parabolic subgroup of G¢. PTKCP~ is open dense in G€. The corresponding decompo-
sition gt ¢%¢g~ of any ¢ in PYK®P~ is unique. The natural map G/K — G®/K®P~ is a holomorphic
imbedding, its image is in the orbit of PT. Applying now expp]ﬁl we get the Harish-Chandra real-
ization of G/K as a bounded symmetric domain D C p*. The action of g € G on z € D, written
g - 2, is then defined by exp(g - z) = (gexpz)T. We will use the notation k(g,z) = (gexpz)" and
expY(g,z) = (gexpz)”, so we have

gexpz = (exp(g - 2))k(g, z) exp(Y (g, 2)).

The G - homogeneous Hermitian holomorphic vector bundles (hHhvb) over D are obtained by
holomorphic induction from representations (p,V) of €€ + p~ on finite dimensional inner product
spaces V such that p(£) is skew Hermitian. We write p°, p~ for the restrictions of p to €¢ and p~,
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respectively. The representation space V is the orthogonal direct sum of its subspaces V) (A € R) on
which p%(2) =i\ It is easy to see that p~(Y)Vy C Vy_; for Y € p~. We also have

(1) p ([(ZY])=["(2),p" V)], Z€t, Y €p™.

We note that if representations p° and p~ of €€ and p~, respectively, are given, then they will
together give a representation of £€© + p~ if and only if equation (1) holds. We call (p,V) and the
induced bundle, indecomposable if it is not the orthogonal sum of sub-representations, respectively,
sub-bundles. We restrict ourselves to describing these.

Proposition 1.1. Every indecomposable holomorphic homogeneous Hermitian vector bundle E can be
written as a tensor product Ly, @ E', where Ly, is the line bundle induced by a character x», and E' is
the lift to G of a G - homogeneous holomorphic Hermitian vector bundle which is the restriction to G

and D of a G€ - homogeneous vector bundle induced in the holomorphic category by a representation
of K¢P~.
The proof involves some structural properties of GC, which we omit in this short Announcement.
As shown in [1], PT x K© x P~ can be given a structure of complex analytic local group such that
(writing 7 : K€ — K©) id x 7 x id is the universal local group covering of PTKCP~. We write G,

fgr this logal group agd abbreviate id x 7 x id to 7. By [1], G, KCP~, PTKC are closed subgroups of
GEC and GexpD C GEC. Defining g-z = m(g) -z and Y (g, 2) = Y (7 (g), z) we have the decomposition
gexpz = (expg-2)k(g,2)expY(g,2), (9 € G,z € D)
in Gloc. We write b(g, z) = k(g,z) exp Y (g, 2); then b(g, z) satisfies the multiplier identity and b(kp~,0) =
kp~ for kp~ € KCP~.
Hence given a representation (p, V) of €€ 4 p~ as above, the holomorphically induced bundle has

a canonical trivialization such that the sections are the elements of Hol(D,V), and G acts via the
multiplier

p(b(g,2) = p°(k(g,2))p™ (exp Y (g, 2))-
If f € Hol(D,V), then we write Df for the derivative: Df(z2)X = (Dxf)(z) for X € p™. Thus
Df(z) is a C - linear map from p™ to V.

Lemma 1.2. For any holomorphic representation 7 of K€ and any g € G, z€ D, X € pt,
Dx7(k(g.2)7") = =7([¥ (9. 2), X]) 7 (k(g,2) ")

Furthermore,

DxY(g,2) = =[Y(g,2),[Y (g, 2), X]].
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This is proved by refining the arguments of [4, p. 65]

2. THE MAIN RESULTS ABOUT VECTOR BUNDLES

If in the set up of Section 1 each subspace V) is irreducible under £€ we call the corresponding
representations and the vector bundles filiform. We consider this case first.

We have seen that every indecomposable filiform representation is a direct sum of subspaces Vy_;,
which we denote by Vj, carrying an irreducible representation p? of €€ (0 < j < m), furthermore,
we have non-zero £C-equivariant maps p; P = Hom(V;_1,V;). The space of such maps is 1-
dimensional: This is an equivalent restatement of the known fact that p~ ® V;_; as a representation

of €€ is multiplicity free [2, Corollary 4.4]. We denote the orthogonal projection from p~ ® Vicito V;
by P;j. We define for Y € p—, v € Vj_q,

(2) pi(Y)v = Pi(Y @v).
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Then p; has the £C-equivariant property, and it follows that p; = YiPj with some y; # 0. We write
y = (y1,-..,Ym) and denote by EY the induced vector bundle. We observe here that the vector bundle
EY is uniquely determined by p8, P, ..., Py, and y, but these data cannot be arbitrarily chosen: The
p;i (1 < j < m) together must give a representation of the abelian Lie algebra p~. In terms of P;, this
condition amounts to

(3) P (Y@ Py(Y @) = P (Y @ Py(Y @)

for all Y)Y’ € p~ and v € Vj_;.
We denote by ¢ the identification of (p*)* with p~ under the Killing form, and for any vector space
W, extend it to a map from Hom(p*, W) to p~ @ W, that is, for Y € p~,w € W,

(B Y)w) =Y ®w.
In what follows n denotes the complex dimension of D.

Lemma 2.1. Given p?_l,,o(;, as above, there exists a constant cj, independent of A, such that for all
Y € p~, we have

Pup)_y([Y.]) = (¢ — 2540)5,(Y).

This follows from £C-equivariance and a character computation. The following two lemmas can be
proved by computations based on Lemmas 1.2 and 2.1.

Lemma 2.2. For all 1 < j <m — 1, and holomorphic F': D — V},
Piy1D (p9(k(g, )" ) F(g2))
= —(cjr1 = 511 (Y(9,2)) (P} k(g 2) ) F(92) ) + pJ11(k(g,2) ) ((P+10DF)(92)),
where D) denotes the differentiation with respect to z.

Lemma 2.3. For all 1 < j < m — 1, with the constants c; of Lemma 2.1,
z) ~ 1 ~ ~
PiuDWpi(Y (g,2)) = 5(cj = €1 = 53)p541(Y (9, 2))55 (Y (9, 2)).

Now let EY be an indecomposable filiform hHhvb as described above. Writing 0 = (0,...,0), E°
makes sense, it is the direct sum of irreducible vector bundles in the composition series of EY.

If f € Hol(D, V), we write f; for the component of f in Vj, that is, the projection of f onto V.
Theorem 2.4. Assume that in EY, the constants c; of Lemma 2.1 are of the form

with some constants w,v and X\ is reqular in the sense that

j—k
_ 1 Ay 2kti—1 1\
Cik = G H{u— 5+ (04 50) )
i=1
is meaningful for 0 < k < j < m. Then the operator I' : Hol(D, V') — Hol(D, V') given by

coj Yo+ Yj1(PoeD) - (Pjy1D) fj if £ > j,
Lfi)e= < f; if L=,
0 ife<j

intertwines the actions of G on the trivialized sections of E° and EY.
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The proof is by induction based on the preceding lemmas.

We note that condition (#) is vacuous when m = 1 or 2. Otherwise, it can be shown that (#) is
also necessary for the theorem to hold.

Next we pass from the filiform case to the general case. Now (pg, Vp) is a direct sum of representations
(pga, V) with inequivalent irreducible representations « of &, and p?a = Xa—j (I, ® ). For pairs of
(o, B) that are admissible in the sense that3 C Ad,- ®a we write P, for the corresponding projection
and define maps pog for Y € p~. Then

0 (V) = Sa,895" @ pas(Y)

with y}xﬁ € Hom(C™e,C™#) such that yflly;w = 0 unless (af) and (fB7) are admissible and the
analogue of (3) holds. We let E¥ denote the bundle holomorphically induced by p, and let E? be the
(direct sum) bundle gotten by changing all the y®? to 0. The general version of T' is now going to be
(for j < 0)

(TF)e = Bap ey 327) @ (Pay st D) - (PayyriD) £
For 57 > ¢, it is unchanged.

Theorem 2.5. Suppose that (#) holds for all indecomposable filiform subbundles of EY. Then there
exist constants c?jj "% such that T intertwines the actions of G on the trivialized sections of E* and

EY.

We note that if D is the disc in one variable then (#) always holds with « = v = 0. So, Theorem
2.5 contains Theorem 3.1 of [3]. We proceed to discuss cases where (#) is satisfied.

The Cartan product of two irreducible representations of €€ is the irreducible component of the
tensor product whose highest weight is the sum of the highest weights of the original representations.
Lemma 2.6. Let pY be any irreducible representation of tC and define pg (1 < j < m) inductively as
the Cartan product of Ad,- and p?_l. Then with p; as in (2) and p; = y;p; (y; # 0) we obtain a
filiform representation p of €€ +p~. In this case (#) is automatically satisfied.

Both the statements in this Lemma are proved by using weight theory.

Finally, we specialize to the case where D is the unit ball in C2. Then G = SU(2,1), £§ = sl(2,C).
It is well known that the irreducible representations of sl(2, C) are just the symmetric tensor powers of
the natural representation, which is equivalent to Ad;,, the restriction of Ad,- to E;CS. Consequently,
a complete description of indecomposable representations of €€ + p~ is possible in this case. In the
following, an exponent in brackets, [k], denotes the k-th symmetric tensor power.
Proposition 2.7. For the complex ball in C?, there are only two types of indecomposable filiform
representations of €€ + p~. For the first type, p? =Xr—j ® (Ad;,)[kﬂ], 0 < j < m, with some A € R
and k,m € N. For the second type, pg =X\ ® (Ad;,)[k_ﬂ, 0<j<m,withA€R, and m <k. For
both types the condition (#) is satisfied.
Sketch of the proof. By Clebsch-Gordan, for j > 1,

Ad;r ®(Ad;,)m — (Ad;,)[ﬁl] ® (Ad;,)b 1

So for each P; there are two possibilities, “up” or “down”. One can show that unless all are up or all
are down, the condition in equation (3) will fail.

When all Pj are “up” (the first type), we are in the situation of Lemma 2.6, so (#) holds. The second
type is the contragredient of a representation of the first type: it follows that (#) holds again. O

Theorem 2.8. In the case of the unit ball in C? the conclusion of Theorem 2.5 holds for all indecom-
posable hHhvb-s with regular \.

This is because Proposition 2.7 shows that the condition of Theorem 2.5 is satisfied.
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3. HILBERT SPACES OF SECTIONS

With notations preserved, for general D, we consider first the case where p is irreducible. Then
automatically p" is also irreducible and p~ = 0. We write p° = x\ ® o, where o is an irreducible
representation of £. For every o, there is an (explicitly known) set of A-s such that the sections of the
corresponding holomorphically induced vector bundle have a G-invariant inner product. This is Harish-
Chandra’s holomorphic discrete series and its analytic continuation. In the canonical trivialization it
gives Hilbert spaces pro = H,  which are known to have reproducing kernels K, (2, w). If we set

K(z,w) = k(exp —w, 2),
(where w denotes conjugation with respect to g) we have, slightly extending [4, Chap II, §5]

Koz (z,w) = (x) ® 0)(K(z,w)).
In particular, it is known that the inner product is regular in the sense that all K - types (i.e polyno-
mials) have non-zero norm in H, y if and only if A < A, for a certain known constant \,.
In the following theorem we consider a bundle EY as in Section 2. The corresponding E° is then a
direct sum of irreducible bundles as above. Its sections have a G-invariant inner product if and only
if this is true for each summand. In this case, we have a Hilbert space H? = @K o0

Theorem 3.1. Suppose (#) holds for all filiform subbundles of EY. Then the sections of EY have a
G-invariant reqular inner-product if and only if the same is true for EC. In this case, the map T is a
unitary isomorphism of H° onto the Hilbert space HY of sections of EY. The space HY (as well as H°)
has a reproducing kernel.

For the proof one observes that I' has an inverse of the same form (only the constants c;, change).
I" being a holomorphic differential operator, the image of H" is also a Hilbert space of holomorphic
functions with a reproducing kernel. One can verify that this is the sought after HY.

Theorem 3.2. Suppose D is the unit ball in C". Let o, 0y be the irreducible representations of €5 such
that o1 C Adpf ®oo and let P be the corresponding projection. Then if X < Ay, we have A —1 < Ay,
and PuD is a bounded linear transformation from Hey, x to Hey a—1.

By the theory of reproducing kernels, for this it is enough to prove that (D(z) and D) denote the
differentiation with respect to the variable z and w respectively)

CKoy pmi1(2,0) = (PDP) Ky 5 (2,w) (PLDM™))

is positive definite for some C' > 0. (In general, we say that a kernel K taking values in Hom(V, V') is

positive definite if, for any z1,...,2, in D and vy,...,v, in V,
n
> (K (2, z)vk,v5) 2 0
j?k:]-
holds.)

Remark 3.3. When D is the unit ball in C?, the conditions of Theorem 3.1 are satisfied for any
indecomposable EY. Furthermore, the spaces 7" and HY are equal as sets. This follows from Theorem
3.2 and the closed graph theorem.

4. HOMOGENEOUS COWEN-DOUGLAS PAIRS

For any bounded domain D C C", the n-tuple T' = (T3,...,T},,) of bounded linear operators on a
Hilbert space H is said to be homogeneous (relative to the holomorphic automorphism group Aut(D))
if the joint (Taylor) spectrum of T'is in D and for every g in Aut(D), the n-tuple g(T') = g(T1,...,T})
is unitarily equivalent to T'.
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Another important class of n-tuples of commuting operators associated with the domain D C C™
is the extended Cowen-Douglas class B} (D). Its elements are n-tuples of bounded operators that
can be realized as adjoints of the multiplications by the coordinate functions on some Hilbert space
of holomorphic CF- valued functions on D possessing a reproducing kernel K and containing all C*-
valued polynomials as a dense set. (The strict Cowen-Douglas class B (D) as originally defined consists
of the n-tuples of bounded operators (71, ...,T,) that can be realized like this and in addition satisfy
the condition that ®(7; — z;) mapping the Hilbert space into the n-fold direct sum with itself has
closed range.)

We wish to investigate, for bounded symmetric domains D, the homogeneous n-tuples in Bj (D).
For the case of the unit disc, there is a complete description and classification of these in [3]. (In that
case, it turns out that the homogeneous operators in B} (D) are the same as in B(ID).)

Theorem 4.1. For any bounded symmetric D, an n-tuple T in B} (D) is homogeneous if and only if
the corresponding holomorphic Hermitian vector bundle is homogeneous under G.

The proof (not entirely trivial) is the same as in [3, Theorem 2.1].

For a bounded symmetric D, we call a n-tuple T in B} (D) and its corresponding bundle E basic if
F is induced by an irreducible p. From the results of Section 3, when D is the unit ball in C", E is
basic if and only if it is induced by some x)\ ® o with A < o).

Theorem 4.2. If D is the unit ball in C?, all homogenous pairs in B).(D) are similar to direct sums
of basic homogeneous pairs.

The proof is based on Remark 3.3. The similarity arises as the identity map between H° to 3V,
which clearly intertwines the operators M; on the respective Hilbert spaces.
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