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1. Introduction

The model theory of Sz.-Nagy and Foias for contractions was reformulated in [15,
chapter 3]. The existence of a unique minimal unitary dilation amounts to the exis-
tence of a Silov resolution for contractive Hilbert modulesM over the disc algebra
A(D) along with the fact that any two minimal Silov resolutions are isomorphic.
The Silov modules appearing in the resolution may be classified using the von
Neumann and Wold decomposition for isometries. This classification then allows
one to identify a complete set of unitary invariants for the contractive moduleM.
This produces the characteristic function of Sz.-Nagy and Foias which determines
the contractive module up to unitary equivalence. Using localisation techniques
and Beurling’s Theorem [15, p. 115], it is possible to identify this characteristic
function. If we wish to adapt this method for Hilbert modules over other function
algebras, then first there is the question of existence of a resolution. Secondly,
given a resolution, there is the question of identifying invariants for the module
from the resolution. In the following, we will not address the first question but
attempt to describe some possible invariants from a resolution. Having decided to
ignore the question of existence of resolutions, we must identify situations where
it is easy to write down a resolution. In this paper, we consider Hilbert spaces
which consist of holomorphic functions on a bounded domain Ω ⊆ Cm together
with the natural action of the polynomials as multiplication operators. Thus we
obtain a module M over the algebra of polynomials in m variables. To continue
our investigation, we must assume that the action is bounded which ensures that
M is a module over the algebra A - the closure of the polynomials with respect to
supremum norm on Ω. If we consider the submoduleM0 of all functions vanishing
on a fixed subset Z of Ω then we obtain a short exact sequence

0←−Mq ←−M X←−M0 ←− 0 (1.1)

The research of the last two authors was partly carried out with financial support from the
National Board for Higher Mathematics, India.
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of Hilbert modules, where X is the inclusion map and the next arrow stands for
the quotient map. There is another short exact sequence which occurs, namely,

0←− Q ←−M X←−M←− 0, (1.2)

where X is multiplication by some ϕ in A. Let S be the submodule determined by
taking the closure of the range of this multiplication. Then Q is the quotient ofM
by the submodule S. We see that the submodule S is contained in the submodule
M0 of all functions vanishing on the zero set of ϕ. However, whether the two
submodules M0 and S coincide, when Z is the zero set of ϕ, is probably a subtle
question.

Let M0 ⊆ M be a submodule and consider the resolution (1.1) of Hilbert
modules over a function algebra A. Over the past several years, we have attempted
to obtain a canonical model and a complete set of unitary invariants for the quo-
tient moduleMq, at least in the case whereM0 is assumed to be a submodule of
functions vanishing on a hypersurface Z ⊆ Ω. To extract invariants from a resolu-
tion of the form (1.1), we assume that the moduleM is in the class B1(Ω∗), where
Ω∗ = {w ∈ Cm : w̄ ∈ Ω}. One may consult [15, p. 95] for more details about this
class, some of which are also reproduced in the following section on Preliminaries.
Then it is reasonable to expect that one should be able to use the existing theory
to find the answer. Unfortunately, the submoduleM0 does not necessarily belong
to the same class making our quest somewhat tortuous. Here is an example.

Example 1.1. Let M = H2(D2) be the Hardy space on the bi-disc. This may be
thought of as a Hilbert space of holomorphic functions defined on D2 determined by
the reproducing kernel

K̂(z, w) = (1− z1w̄1)−1(1− z2w̄2)−1, z = (z1, z2), w = (w1, w2) ∈ D2.

(We reserve the symbol K̂ for the reproducing kernel of the Hardy space.)

Let H2
0 (D2) = {f ∈ H2(D2) : f(0, 0) = 0} be the submodule M0 of functions

vanishing at the origin. The reproducing kernel K̂0(z, w) for H2
0 (D2) is easily seen to

be

K̂0(z, w) = (z1w̄1 + z2w̄2 − z1z2w̄1w̄2)K̂(z, w).

We verify that both the functions z1 and z2 lie in ∩2
`=1 kerPM∗

z`
, where P is the

projection on to H2
0 (D2). However, at all other points w = (w1, w2) ∈ D2, the joint

kernel is spanned by K̂0(·, w). Consequently, we have dim∩2
`=1 kerP (Mz`

− w`)∗ =
1. The quotient module, in this case, is the one dimensional space spanned by the
constant function 1.

The assumption that M is in B1(Ω∗) ensures the existence of an anti-
holomorphic, hermitian line bundle on the domain Ω. The fiber of this bundle
at w ∈ Ω is the joint kernel ∩m`=1 ker(M`−w`)∗, where M` is the operator induced
by the module action of the generator z` in A. It is then shown in [6] that the
local equivalence of these bundles translates to unitary equivalence of elements
in B1(Ω∗). The curvature of this line bundle completely determines the unitary
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equivalence class. In the case of H2
0 (D2), we can no longer associate a holomorphic

hermitian vector bundle on all of D2. However, it is clear that the module is in
B1(D2\{0}) and therefore there exists a line bundle on D2\{0}. This is the pro-
totypical example of our discussion in the last section, where we indicate how to
enlarge the domain of this bundle by “blowing up” the singularity at the origin.
The invariants for the new line bundle defined on a larger domain then provide
invariants for the submodule in question.

In [12], the submodule is taken to be the maximal set of functions vanish-
ing on an analytic hypersurface Z in Ω. Two descriptions are then provided for
the quotient module. The first approach characterises it as a reproducing kernel
Hilbert space. In the second approach, a hermitian, holomorphic line bundle on
Z is associated with the quotient module. A complete unitary invariant for the
quotient module is then the curvature of this line bundle. The submodule in [14]
is taken to be the (maximal) set of functions which vanish to some given order k
on the hypersurface Z. As in the previous case, two descriptions are provided for
the quotient module. A matrix-valued kernel function must now be used and, in
the vector bundle picture, we have a rank k hermitian, holomorphic bundle. Some
invariants for the quotient module (though not a complete set) are described. Some
possible directions which might lead to other invariants are also discussed. In the
section following the Preliminaries, we describe some of these results in detail along
with concrete examples.

In [12] and [14], the approach chosen has been to use the resolution (1.1)
of the quotient module and to construct invariants using the map X (and metric
information about some vector bundles determined by M and M0). It has, how-
ever, been shown in [13] that it may be fruitful to consider other resolutions of
the quotient module. Let ϕ be a defining function for Z ⊆ Ω. Assume that the
closure of the range of multiplication by ϕ on M coincides with the submodule
M0 consisting of functions that vanish on the hypersurface Z. Then it is shown
that the following is a useful resolution:

0←−Mq ←−M Mϕ←−M←− 0 (1.3)

Here Mϕ is the operator of multiplication by ϕ. If Mϕ(w), w ∈ Ω is the localisa-
tion of Mϕ (see subsection 2.2), it is shown that ∂∂ log ‖Mϕ(w)‖2 represents the
fundamental class of Z. We point out here that the complex

0←−M Mϕ←−M←− 0

is the simplest example of a Koszul complex and the sequence (1.3) is an extension
of this Koszul complex by the quotient module.

More general Koszul complexes are useful tools in studying the case where
M0 is taken to be the submodule of functions vanishing on an analytic submanifold
Z ⊆ Ω of codimension r > 1. Some of the results obtained are briefly described
below, the details are given in the later sections.
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Assume that Z is a complete intersection. Z is then the common zero set of
r defining functions ϕ1, ϕ2, · · · , ϕr. It is possible to construct a useful resolution
for the quotient module via a Koszul complex if we make the following further
assumption on the submodule M0. Consider the range of the operator of multi-
plication by ϕj , 1 ≤ j ≤ r, defined on M. It is clear that this range is contained
in M0 for each j. We assume that M0 is the closure of the span of these ranges.
Then it is possible to construct a resolution of the quotient module of length r
which allows us to identify the fundamental class of the submanifold Z using a
generalisation of the Poincaré-Lelong equation due to Griffiths and King [17].

If ϕ is the defining function for the hypersurface Z, then the closure of the
range of multiplication by ϕk on M is a subspace of functions which vanish to
order k on Z. Whether this is the largest subspace of functions with this property,
as pointed out earlier, is a subtle question. In the absence of a definite answer
to this question, we make the aparently restrictive assumption of the previous
paragraph. We discuss some of these details in the third section.

An alternative resolution of the quotient module is by means of a grid and it
is possible to determine the fundamental class of Z as a product of (1, 1) currents
(cf. [8]) obtained from this resolution. We have described the simplest case of r = 2
(see (4.8)) in some detail in this paper. Although working out the details of the
“grid construction” in the general case is not entirely trivial, the results are similar.

2. Preliminaries

We begin by describing the standing assumptions that we make all through this
paper. By a hypersurface Z ⊆ Ω we mean a complex submanifold of dimension
m − 1. It follows that, given z(0) ∈ Z, there is a neighborhood U ⊆ Ω and a
holomorphic map ϕ : U → C such that (∂ϕ/∂zj)(z(0)) 6= 0 for some j, with
1 ≤ j ≤ m and

U ∩ Z = {z ∈ U : ϕ(z) = 0}.
In this case, we say that ϕ is a defining function for the hypersurface Z. Whenever
we discuss a zero variety, we will assume that it is the common zero set of holomor-
phic functions ϕ1, . . . , ϕn defined on Ω. It must be pointed out that our interest
lies in equivalence classes of modules consisting of holomorphic functions defined
on Ω. The restriction of such modules to an open subset U of Ω yield equivalent
modules as pointed out in [14, p. 370]. Consequently, we can (by going to a smaller
open set if necessary) ensure that the zero variety has the description given above.
The only assumption we make is that if the zero variety is the intersection of a
number of hypersurfaces, then it must be a complete intersection. The assumption
of complete intersection allows us to get around a number of technical difficulties
- none very serious. We hope to study the general case in the near future.

Let Ω ⊆ Cm be a bounded, simply connected domain in Cm. Let A(Ω) denote
the closure with respect to the supremum norm on Ω of functions holomorphic in
a neighborhood of Ω̄, the closure of the domain Ω ⊆ Cm. Then A(Ω) is a function
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algebra and consists of continuous functions on Ω̄ which are holomorphic on Ω.
We assume that Ω is polynomially convex which then ensures that A(Ω) is the
closure of polynomials with respect to the supremum norm on Ω.

Let M be a Hilbert module over A(Ω). We assume that the point evalua-
tion f 7→ f(w), f ∈ M is bounded for each w ∈ Ω. Consequently, M admits a
reproducing kernel K : Ω × Ω → C. We assume, in addition, that M consists
of holomorphic functions on Ω and contains all the polynomials, and lies in the
Cowen-Douglas class B1(Ω∗), that is, (M∗

1 , . . . ,M
∗
m) is in B1(Ω∗). Although it may

not be absolutely necessary for what follows, we also assume thatM is of rank 1.

2.1. Functional Hilbert spaces and Bk(Ω)
Let E be a k-dimensional Hilbert space and L(E) denote the vector space of all
linear transformations on E. A function K : Ω× Ω→ L(E), satisfying

n∑

i,j=1

〈
K(wi, wj)ζj , ζi

〉
E
≥ 0, w1, . . . , wn ∈ Ω, ζ1, . . . , ζn ∈ E, n ≥ 1 (2.1)

is said to be a non negative definite (nnd) kernel on Ω. Given such an nnd kernel
K on Ω, it is easy to construct a Hilbert space H of functions on Ω taking values
in E with the property〈

f(w), ζ
〉
E

=
〈
f,K(·, w)ζ

〉
H
, w ∈ Ω, ζ ∈ E, f ∈ H. (2.2)

The Hilbert space H is simply the completion of the linear span of all vectors of
the form K(·, w)ζ, w ∈ Ω, ζ ∈ E, with inner product defined by (2.2).

Conversely, let H be any Hilbert space of functions on Ω taking values in E.
Let ew : H → E be the evaluation functional defined by ew(f) = f(w), w ∈ Ω,
f ∈ H. If ew is bounded for each w ∈ Ω then it is easy to verify that the Hilbert
space H possesses a reproducing kernel K(z, w) = eze

∗
w, that is, K(·, w)ζ ∈ H for

each w ∈ Ω and K has the reproducing property (2.2). Finally, the reproducing
property (2.2) determines the reproducing kernel K uniquely.

Remark 2.1. If we assume that H is a Hilbert space consisting of holomorphic
functions taking values in E, then it is not hard to see that the map w 7→ ew is
weak-∗ holomorphic. Hence it is also strongly holomorphic as a map into the dual of
H. But since (∂iew)(h) = (∂ih)(w), for h ∈ H and w ∈ Ω, it follows that evaluations
of partial derivatives induce bounded linear functionals on H. Therefore, we see that
∂̄iK(·, w) is in H, where ∂̄i = ∂

∂w̄i
.

Let T = (T1, . . . , Tm) be an m-tuple of commuting bounded linear opera-
tors on a separable complex Hilbert space H. Define the operator DT : H →
H ⊕ · · · ⊕ H by DT (x) = (T1x, . . . , Tmx), x ∈ H. For w = (w1, . . . , wm) ∈ Ω,
let T − w denote the operator tuple (T1 − w1, . . . , Tm − wm). Let k be a positive
integer.

Definition 2.1. The m-tuple T is said to be in the Cowen - Douglas class Bk(Ω)
if
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1. ran DT−w is closed for all w ∈ Ω
2. span {kerDT−w : w ∈ Ω} is dense in H
3. dimkerDT−w = k for all w ∈ Ω.

This class was introduced in [7]. The case of a single operator was investigated
earlier in the paper [6], where it is pointed out that an operator T in B1(Ω) is uni-
tarily equivalent to the adjoint of the multiplication operator M on a reproducing
kernel Hilbert space. Here (Mf)(z) = zf(z), f ∈ H. It is not very hard to see
that, more generally, an m-tuple T in Bk(Ω) is unitarily equivalent to the adjoint
of the m-tuple of multiplication operators M = (M1, . . . ,Mm) on a reproducing
kernel Hilbert space [10, Remark 2.6 a) and b)]. Conversely, Curto and Salinas
[10] show that if certain conditions are imposed on the reproducing kernel, then
the corresponding adjoint of the m-tuple of multiplication operators belongs to
the class Bk(Ω).

Let T be an m-tuple of operators in Bk(Ω) on H. Pick k linearly independent
vectors γ1(w), . . . , γk(w) in kerDT−w, w ∈ Ω. Define a map Γ : Ω→ L(Ck,H) by
Γ(w)ζ =

∑k
i=0 ζiγi(w), where ζ = (ζ1, . . . , ζk) ∈ Ck. It is shown in [6, Proposition

1.11] and [10, Theorem 2.2] that it is possible to choose γ1(w), . . . , γk(w), w in some
domain Ω0 ⊆ Ω, such that Γ is holomorphic on Ω0. Let A(Ω,Ck) denote the linear
space of all Ck - valued holomorphic functions on Ω. Define UΓ : H → A(Ω∗0,C

k)
by

(UΓx)(w) = Γ(w)∗x, x ∈ H, w ∈ Ω0. (2.3)

Define a sesqui-linear form onHΓ = ran UΓ by < UΓf, UΓg >Γ=< f, g >, f, g ∈ H.
The map UΓ is linear and injective. Hence HΓ is a Hilbert space of Ck-valued
holomorphic functions on Ω∗0 with inner product < ·, · >Γ and UΓ is unitary. Then
it is easy to verify the following (cf. [10, Remarks 2.6]).

a): K(z, w) = Γ(z̄)∗Γ(w̄), z, w ∈ Ω∗0 is the reproducing kernel for the Hilbert
space HΓ.

b): M∗
i UΓ = UΓTi, where (Mif)(z) = zif(z), z ∈ Ω.

c): There exists w0 ∈ Ω∗0 such that K(z, w0) = I for all z ∈ Ω∗0.

An nnd kernel satisfying the condition c) above is said to be normalised at w0.
Conversely, it is possible to impose conditions on a kernel function K :

Ω × Ω → L(Ck) ensuring the boundedness of each of the multiplication opera-
tors M1, . . . ,Mm on the associated reproducing kernel Hilbert space. One may
impose additional conditions on K to ensure that M is in Bk(Ω∗).

To anm-tuple T in Bk(Ω), on the one hand, one may associate a holomorphic,
hermitian vector bundle on Ω (cf. [6]), which is obtained as the pullback of the
universal bundle on the Grassmanian Gr(H, k) of the Hilbert space H under the
map γ : Ω → Gr(M, k), where γ(w) = kerDT−w. On the other hand, one may
associate a normalised reproducing kernel (cf. [10]) on a suitable subdomain of
Ω∗ = {w ∈ Cm : w̄ ∈ Ω}. It is possible to answer a number of questions regarding
the m-tuple of operators T using either the vector bundle or the reproducing
kernel.
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2.2. Localisation

Let M and N be any two Hilbert modules over the algebra A. Notice that there
are two possible module actions onM⊗N , i.e., the left action: L⊗I : (f, h⊗k) 7→
f · h ⊗ k and the right action: I ⊗ R : (f, h ⊗ k) 7→ h ⊗ f · k. The module tensor
product M⊗A N is defined to be the module obtained by identifying these two
actions. Specifically, let E be the closed subspace ofM⊗N generated by vectors
of the form

{f · h⊗ k − h⊗ f · k : h ∈M, k ∈ N and f ∈ A}.
Then E is a submodule ofM⊗N with respect to both the left and the right actions.
The module tensor productM⊗AN is defined to be (M⊗N )ªE together with
the compression of either the left or the right actions, which coincide on this space.
For fixed w ∈ Ω, C is a module over A with the module action

(f, v) 7→ f(w)v, f ∈ A, v ∈ C.
Let Cw denote the one dimensional module C with this action. We will largely
confine ourselves to the module tensor product M⊗A Cw, which we denote by
M(w).

Remark 2.2. Let M be a module over the algebra A(Ω). Then the subspace E of
M⊗ Cw is easily seen to be

E = span {((f − f(w)) · h)⊗ 1 : f ∈ A(Ω), h ∈M}.
It is therefore clear that the localisation M(w) at w, which is E⊥ is the common
eigenspace of the “adjoint action” at w, that is,

M(w) = ∩f∈A ker(Mf − f(w))∗.

The action of f ∈ A on M(w) is scalar and is determined by f(w).

If we localise the submodule H2
0 (D2) of Example 1.1, using the module Cw,

where w = (w1, w2) ∈ D2, then we find that

H2
0 (D2)⊗A(D2) Cw =

{
C0 ⊕ C0 w = (0, 0)
Cw w 6= (0, 0).

A less trivial example is obtained as follows.

Example 2.1. Let M be the multiplication operator on the Hardy space H2(D) on
the disc. Consider the action of the bi-disc algebra A(D2) on the Hardy space H2(D)
induced by the pair (M2,M3). Now, the Hardy space H2(D) is 2 - generated, as a
Hilbert module over A(D2), by 1 and z. If we localise H2(D) using the module Cw,
where w = (w1, w2) ∈ D2, then we find that

H2(D)⊗A(D2) Cw =





C0 ⊕ C0 w = (0, 0)
Cw w = (α2, α3), α 6= 0, α ∈ D
(0) w 6= (α2, α3), α ∈ D.
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If we remove the function z by considering the subspace H2
1 (D) of H2(D) spanned by

{1, z2, . . .}, then H2
1 (D) is also a contractive Hilbert module over A(D2), and now

H2
1 (D)⊗A(D2) Cw =

{
Cw w = (α2, α3), α ∈ D
(0) w 6= (α2, α3), α ∈ D.

If X is a map from a module M to a module N , we denote by X(w) the
restriction of X⊗I (defined onM⊗Cw) toM(w) followed by the projection onto
N (w).

A Hilbert moduleM over an algebraA(Ω) is said to be of rank k if there exists
Γ ⊆M of cardinality k such that the linear span of {f · h : f ∈ A(Ω) and h ∈ Γ}
is dense in M, and no subset of M of smaller cardinality has this property.

IfM is a module of rank 1, then we find (cf. [15, Lemma 5.1]) that dimM(w),
w ∈ Ω, is at most 1.

Recall thatM is said to be locally free if the sheaf determined by the local-
isation M(w) defines a finite dimensional holomorphic, hermitian vector bundle
over Ω and the linear span of the fibers is dense in M.

We point out that locally free modules over A(Ω) of finite rank, say k, re-
semble modules in the class B`(Ω), for some ` ≤ k.
2.3. Factorisation of the reproducing kernel for the submoduleM0

We recall from [14, Lemma 2.6] that ifM0 is the submodule of functions vanishing
on an irreducible hypersurface Z ⊆ Ω, then the reproducing kernel K0 of M0

admits the following factorisation:

K0(z, w) = ϕ(z)χ(z, w)ϕ(w), z, w ∈ Ω, (2.4)

where ϕ is a defining function for Z and χ : Ω × Ω → C is some function holo-
morphic in the first variable and anti-holomorphic in the second one. Moreover,
χ(w,w) 6= 0 for any w ∈ Ω. Since ϕ is a defining function, we may assume, without
loss of generality, that ∂1ϕ(w) 6= 0, for w ∈ Ω. Clearly,

(∂̄1K0)(·, w) = ϕ(·)χ(·, w)(∂1ϕ)(w) for w ∈ Z. (2.5)

Notice that ∂̄1K0(·, w), in view of Remark 2.1, is inM0. Now, it follows from the
reproducing property of K0 that

M∗
f (∂̄1K0)(·, w) = (∂1f)(w)K0(·, w) + f(w)(∂̄1K0)(·, w), f ∈ A.

The fact that(∂̄1K0)(·, w) is a non zero vector for w ∈ Z in M0 follows from
equation (2.5). Therefore, we conclude that (∂̄1K0)(·, w) is an eigenvector for M∗

f

as long as w ∈ Z. At this juncture, if we assume that the submoduleM0 coincides
with the range closure of the operator Mϕ, then it will follow that M0 is of rank
1 (we are making the standing assumption thatM is of rank 1). We then see that
M0 is a locally free module of rank 1.

Let Γ : Ω → M0 be the map defined by Γ(w) = ϕ(·)χ(·, w), then using the
reproducing property of K0 and (2.5), we find that

< Γ(w),Γ(w′) >= χ(w′, w).
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Therefore, following the discussion in section 2.1, we see that the module M0 is
isomorphic to a Hilbert module consisting of holomorphic functions on Ω whose
reproducing kernel is χ. We have therefore proved:

Proposition 2.1. LetM be a Hilbert module of rank 1 andM0 be a submodule of
functions as above (among other things,M0 coincides with the range closure of the
operator Mϕ). Then M0 is locally free and is of rank 1. Moreover, the submodule
M0 is isomorphic to a module of holomorphic functions on Ω whose reproducing
kernel is χ.

Remark 2.3. We point out that the assumption of irreducibility of the hypersurface
is superfluous for the kernel of the submodule M0 to admit a factorisation of the
form (2.4) as long as the submodule is the closure in M of a principal ideal I. We
may then take ϕ to be the generator of this ideal and obtain a factorisation formula
exactly as in (2.4) under the additional hypothesis that M0 equals the space of all
functions vanishing on the common zero set of the ideal I. The only difference is that,
in this case, the generator ϕ of the ideal I is not necessarily irreducible and admits a
factorisation ϕ = ϕ1 · · ·ϕ` into irreducible factors.

We describe an obvious example. Let H2
12(D

2) ⊆ H2(D2) be the submodule of
functions vanishing on the set {(z1, z2) ∈ D2 : z1 = 0 or z2 = 0}. Of course, this
submodule is also the closure of the ideal I12 ⊆ H2(D2) generated by z1z2. In this
case, the reproducing kernel for the submodule is easily seen to be

K0(z, w) = z1w̄1z2w̄2K̂(z, w), z = (z1, z2), w = (w1, w2) ∈ D2.

This is a locally free module of rank 1.

We now consider the case where the submodule M0 consists of functions
vanishing on the intersection of two hypersurfaces Z1 and Z2. Let ϕ1 and ϕ2 be
the defining functions (on a common open set) for these two hypersurfaces. Let
M1 andM2 be the two submodules of functions vanishing on these hypersurfaces
and M12 be the submodule of functions vanishing on the set Z1 ∪ Z2 which is
M1 ∩M2. It is clear that

M0 = (M1 ªM12)⊕ (M2 ªM12)⊕M12.

We have already shown (recall Proposition 2.1) that the reproducing kernels
K`(z, w), corresponding to the submodules M`, ` = 1, 2, admit factorisations.
Notice thatM12 consists of functions which vanish on the common zero set of the
function ϕ1ϕ2. The preceding remark ensures that a similar factorisation exists
for M12 as well. Therefore, we obtain the following formula for the reproducing
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kernel K0 corresponding to the submodule M0:

K0(z, w) = (ϕ1(z)χ1(z, w)ϕ1(w)− ϕ1(z)ϕ2(z)χ12(z, w)ϕ1(w)ϕ2(w))

+(ϕ2(z)χ2(z, w)ϕ2(w)− ϕ1(z)ϕ2(z)χ12(z, w)ϕ1(w)ϕ2(w))

+ϕ1(z)ϕ2(z)χ12(z, w)ϕ1(w)ϕ2(w)

= ϕ1(z)χ1(z, w)ϕ1(w) + ϕ2(z)χ2(z, w)ϕ2(w)

−ϕ1(z)ϕ2(z)χ12(z, w)ϕ1(w)ϕ2(w), (2.6)

where χ`(w,w) 6= 0 for w ∈ Z`, ` = 1, 2 and χ12(w,w) 6= 0 for w ∈ Z1 ∩ Z2.
The formula for the reproducing kernel K̂0 which was given in Example 1.1 is an
instance of the general formula given above with ϕ`(z) = z`, ` = 1, 2.

Remark 2.4. In the case of a submodule M0 of functions vanishing on a hyper-
surface, although the reproducing kernel vanishes on this hypersurface, Proposition
2.1 shows how to construct an isomorphic copy of this module with a non-vanishing
reproducing kernel. This amounts to dividing by ϕ. The resulting kernel χ may then
be used to construct a bundle, via the map w 7→ χ(·, w), on all of Ω. However, in
the case where the submodule consists of functions vanishing on the intersection of
two hypersurfaces, as above, if we attempt to divide either by ϕ1 or ϕ2, then the limit
as we approach the zero set may not exist. However, we can still do this as long as
we are willing to enlarge the domain. The details of this “blow up” construction are
discussed in the last section.

3. The case of a principal ideal

Assuming that the zero variety Z is a hypersurface, we have been able to obtain
complete unitary invariants for the quotient modules only under the further as-
sumption thatM0 consists of the maximal set of functions inM which vanish on
Z. Even in the case when Z is not assumed to be a hypersurface, the quotient
module is, surprisingly, the restriction of the module M to Z, as long as M0

continues to be the maximal set of functions in M which vanish on Z. If M is
assumed to be in B1(Ω∗), then the quotient module can once again be described
by a line bundle on Z. The restriction of the curvature then provides a complete
unitary invariant for the quotient module. Therefore, one may argue that there
is no need to find any other invariant for these quotients modules. Our aim in
obtaining such invariants in the case which we understand reasonably well is the
hope that some analogues may be found in the case where we drop the assumption
that M0 consists of the maximal set of functions in M which vanish on Z. For
instance, we have found an analogue of the alternating sum (4.1) in [14, Theorem
4.4]. However, we have not succeeded in evaluating this current. There is almost
certainly a possibility of applying the methods developed by Harvey and Lawson
[19] to evaluate this current which we propose to undertake during the course of
our work.
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We describe one instance which we have studied in some detail. Let M0

consist of functions vanishing to order k on a hyper-surface Z in Ω. Following our
assumption above,M0 is the closure of a principal ideal in M.

As mentioned earlier, in the case where M0 consists of functions in M that
vanish to order k, a description of the quotient module is presented in [14]. A brief
description of the model is presented here.

Starting with the module M, we construct a unitarily equivalent module,
denoted JM, using the map J defined as follows:

J : h 7→
k−1∑

j=0

∂j1h⊗ εj+1.

Here {εj}kj=1 is the standard basis in Ck and ∂1 denotes the derivative with
respect to z1 if the zero set is characterised, in local coordinates, by the equa-
tion z1 = 0. Hence JM is a vector-valued Hilbert space and the norm on it is
determined by the unitarity of the map J .

The module action on JM is given in matrix form by f 7→ J f, for f ∈ A(Ω),
where

J =




1

...

. . . 0(
`
j

)
∂`−j1 1

. . .
∂k−1
1 . . . 1




with 0 ≤ `, j ≤ k − 1.
We now construct a module over the algebra A(Ω) as follows. The Hilbert

space denoted (JM)res is obtained by restricting the elements of JM to the zero
set, with norm given by

‖h0‖ = inf{‖h‖ : h|Z = h0 for h ∈ JM}.
The module action is taken to be

(f,h|Z) 7→ J f |Z · h|Z
for f ∈ A(Ω).

The reproducing kernel for (JM)res is obtained by restricting the reproducing
kernel of JM in both arguments. We denote the resulting reproducing kernel by
(JK)res.

We reproduce below the characterisation of the quotient module [14, cf. The-
orem 3.3].

Theorem 3.1. Let M be a Hilbert module over the algebra A(Ω) and let M0 be
the submodule of functions h such that ∂j1h vanishes on Z for 0 ≤ j ≤ k − 1. The
quotient module is then equivalent to (JM)res.
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The above description of the quotient module is sufficiently general and en-
compasses some earlier descriptions of quotient modules that were worked out in
specific examples. We illustrate this by means of some examples.

Example 3.1. Let M be the space H2(D2) as a module over the bi-disc algebra
A(D2) and letM0 be the maximal subset of functions that vanish along the diagonal
z1 = z2, where (z1, z2) are coordinates on D2. The quotient module is spanned by the
(normalised) collection {ek}∞k=0 of homogeneous polynomials defined by

ek(z1, z2) =
1√
k + 1

k∑

j=0

zk−j1 zj2.

The module actions of z1 and z2 are the same and are described by the map

ek 7→
√
k + 1
k + 2

ek+1.

The general picture described above by restricting functions to the zero set yields the
Bergman space on the disc. The coordinates z1 and z2 are now identified and the
corresponding module action is the multiplication operator on the Bergman space.

The unitary map that intertwines the two pictures is the one that maps ek to zk√
k+1

in the Bergman space.

We point out that some generalisations of the above example have been
studied by D. N. Clark in [5]. A more general family of zero sets is studied there,
of which the diagonal in D2 is a special case.

Example 3.2 (Continuation of Example 2.1). The model of the quotient module
as functions obtained by restricting to the zero set is a useful one. The following
example further emphasises this fact. LetM be the module H2(D2) over the algebra
A(D2). Let M0 be the submodule consisting of functions which vanish on the zero
set determined by the function z3

1 − z2
2 . Thus we obtain a resolution

0←−Mq ←−M X←−M0 ←− 0.

The zero set is one (complex) dimensional and a parametrised description of it as
a subset of D2 is the collection of points in D2 of the form (α2, α3) with α ∈ D.
The quotient module, which is the restriction of the original module to the zero set,
therefore, consists of functions of the parameter α. Since H2(D2) is spanned by the
collection of monomials {zk1z`2 : k, ` ≥ 0}, it follows that Mq is spanned by the set
{α2k+3` : k, ` ≥ 0}. That is, Mq is spanned by the set {αn : n ≥ 0, n 6= 1} The
module action is also defined by restriction and is given by

p ∈ A(D2) 7→ p(M2,M3)

where M denotes multiplication by the coordinate α. It follows that the quotient
module is indeed isomorphic to the module H2

1 (D) discussed in Example 2.1.
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Example 3.3. We discuss an example where the submodule of functions vanish to a
higher order. Now take M0 to be the largest collection of functions in M = H2(D2)
which vanish to order 2 on the diagonal z1 = z2. (See [11] for the details of this
example). In this case the quotient module is spanned by the homogeneous polynomials
{ek} and {fk}, with the ek’s as in Example 3.1 and fk’s defined by

f2m =
1
αm

m−1∑

j=0

(m− j)z2m−j
1 zj2 −

m∑

j=1

jzm−j1 zm+j
2 , m ≥ 1

f2m+1 =
1
βm

m−1∑

j=0

(2m+ 1− 2j)z2m+1−j
1 zj2 −

m∑

j=0

(2j + 1)zm−j1 zm+j+1
2 , m ≥ 1

with

α2
m =

1
3
m(m+ 1)(2m+ 1)

β2
m =

2
3
(m+ 1)(2m+ 1)(2m+ 3).

The module action is described by

z1 · ek =

√
k + 1
k + 2

ek+1

z1 · fk =

√
3

(k + 2)(k + 3)
ek+1 +

√
k

k + 3
fk+1.

The action of z2 is similar except that the coefficient of ek+1 in the second equation
above now has a negative sign.

Recall that the quotient module, in the general picture described above, is charac-
terised as a module of vector-valued functions on the zero set, which is one dimensional
in this case. The correspondence between this picture and the description in terms of
homogeneous polynomials on D2 is obtained via the map

ek 7→


√
k + 1zk

k
2

√
k + 1zk−1


 , fk 7→




0

√
k(k+1)(k+2)

12 zk−1


 .

The matrix-valued reproducing kernel (JK)res is given by (cf. [14, Lemma 2.2])

(JK)res(z, w) =
1

(1− zw̄)2




1 z(1− zw̄)−1

w̄(1− zw̄)−1 (1 + zw̄)(1− zw̄)−2


 .

The complex geometric approach, developed in [6], is applicable to Hilbert
modules which give rise to holomorphic bundles where the module action is scalar
on each fiber. If two such bundles E and Ẽ are equivalent via the isometric bundle
map Θ : E → Ẽ, then it is shown that there exists a unitary UΘ : M → M̃
which implements Θ. Since the action of A(Ω) in that treatment is scalar on each
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fiber of the respective bundles and Θ is a bundle map, a unitary module map is
obtained. Although the quotient module in the case of multiplicity k gives rise to
a rank k bundle, the action of the algebra A(Ω) is no longer scalar on the fiber.
Hence, even if we obtain a unitary map U : Mq → M̃q using techniques from
[6], we have to ensure further that this is a module map. Necessary and sufficient
conditions for this to happen have not yet been obtained. (In a previous paper [12],
it was assumed thatM0 is the submodule consisting of all functions vanishing on
a hyper-surface Z. In that case, the quotient module gives rise to a line bundle
on Z and the module action is scalar on each fiber. Hence the complex geometric
approach of [6] applies.)

The methods described in [6], at least under certain conditions, provide a first
step towards a solution. It is hoped that the ideas there can be augmented to pro-
vide a complete solution. The general approach is to look at the largest subalgebra
of A(Ω) which acts by scalars. Equivalence under this action can be examined by
the results in [6]. The attempt is then to ascertain when the equivalence can be
implemented via an equivalence with respect to the action of the full algebra.

There are many situations in which the quotient modules (as modules over
A(Z)) lie in Bk(Z). (cf. [15, Example 5.16, p. 95] for the definition of this class
and the discussion in subsection 2.1.) In these situations, we have the following
possible approach to the equivalence question:

If two quotient modules are equivalent, they must be equivalent as modules
over the sub-algebra A(Z). The latter then becomes a question of equivalence
in Bk(Z). This question has been studied in [6]. For a complete answer to the
equivalence question, we need to determine when there is, among all the unitaries
that implement the equivalence in Bk(Z), one that intertwines the (nilpotent)
action of functions depending only on the ‘normal’ coordinate. This question can
be studied in a series of steps as follows:

Notice, firstly, that the action of zp1 is given by a (k − p)-step nilpotent
operator. The requirement that the unitary which describes the Bk(Z) equivalence
must intertwine these powers of z1 translates into a sequence of conditions on the
unitary. (For instance, in the case k = 2, where only the first power of z1 is
relevant, this requires that the unitary is upper triangular with equal entries on
the diagonal. This condition, it must be emphasized, may not ensure that the
unitary must also necessarily intertwine the nilpotent elements.)

We are thus led to the following vector bundle picture. If the quotient mod-
ule lies in Bk(Z), there is naturally associated a (rank k) bundle on Z. However,
this bundle now comes equipped with a collection of sub-bundles which together
determine a flag on each fiber. The full equivalence of the quotient modules re-
quires, among other things, the equivalence of these ‘flag bundles’. We point out
that equivalence of these flags will determine the equivalence of the modules upto
“similarity”. We will need the metric structure to obtain unitary invariants.

Equivalence of flag bundles, at least formally like these, is considered and
characterized by Martin and Salinas [20, Theorem 4.5].
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The quotient moduleMq is described in [14]. The modulesM,M0 and Mq

are identified with geometric objects, specifically vector bundles, though not all on
the same base. The equivalence of quotient modules is then reduced to a suitable
equivalence of these geometric objects.

The program will be complete only if one now obtains (hopefully complete)
invariants for these geometric objects. Towards this end the work of Bott and
Chern [3] and after them, Bismut, Gillet and Soulé [2], is probably relevant. These
authors study invariants for chain complexes of vector bundles on a given base.
However, it seems plausible that their ideas can be extended to chain complexes
of more general geometric objects of the type encountered in the study of quotient
modules. If these ideas can be carried to their logical end, we will have a rich
geometric complement to the module theoretic results obtained so far. In fact our
results produce, in many cases, natural examples to which the results of [3] as well
as [19] apply.

A second line of enquiry in the geometric direction is a possible adaptation of
the results of Harvey and Lawson [19] to the present situation. Let E and E0 be the
vector bundles obtained, as mentioned above, by localisation, from the modules
M andM0 and let φ be an ad-invariant polynomial (in particular, a Chern form)
in the respective curvatures K and K0. Then the work of Harvey and Lawson [19]
on singular connections gives a mechanism for studying these bundles since the
natural connection on the bundleM0 is a singular one. They obtain a relation of
the form

φ(K)− φ(K0) = Resφ[Z] + dTφ,

where Resφ[Z] is a ‘residue’ form related to the zero set and Tφ is a transgression
current. Note that this incorporates a generalised Poincaré-Lelong formula which
played a crucial role in the study of the quotient module in the rank one case [12].

By comparison with the rank one case, it seems likely that the current Tφ is
directly related to the map from E0 to E induced by the inclusion map from M0

into M. By studying the collection {Resφ[Z]} for various choices of the the ad-
invariant polynomial φ, it is hoped that a complete characterisation of the quotient
module can be obtained.

4. The case of ideals which are not necessarily principal

The approaches outlined above have been in the context where M0 consisted of
functions which vanished to some order on the hypersurface Z. In most cases,M0

is the closure of a principal ideal inM. The problem changes character completely
if we allowM0 to be the closure of an ideal which is not necessarily principal.

Suppose that the zero variety Z ⊆ Ω is a hypersurface andM0 is the maximal
set of functions inM which vanish on Z. Then using the Poincaré-Lelong formula,
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it follows that the alternating sum
m∑

i,j=1

∂2

∂wi∂w̄j
log(X(w)∗X(w))dwi ∧ dw̄j −K0(w) +K(w) (4.1)

represents the fundamental class [Z], where K and K0 are the curvatures associated
with the modulesM andM0 respectively and X(w) is the localisation of the map
X at w ∈ Ω.

If the zero variety is not a hypersurface, there are at least two different
versions of the Poincaré-Lelong formula. In each of these cases, the current of
integration on Z is identified with a current on Ω of bi-degree (m − r,m − r),
where r is the codimension of the variety Z. IfM0 is the maximal set of functions
inM which vanish on Z, then we construct two different resolutions of the quotient
module and find that they lead in a natural manner to the current of integration.
Of course, this current is an unitary invariant for the quotient module.

As mentioned in the introduction, the complex

0 −→M Mϕ−→M −→ 0

is the simplest example of a Koszul complex (discussed in the next section) and
the sequence (1.3) is an extension of this Koszul complex by the quotient module.

We therefore consider the following natural extension when M0 is the set
of functions vanishing on an analytic submanifold of higher codimension. If Z is
defined by the vanishing of the functions ϕ1, ϕ2, · · · , ϕr, we consider the multipli-
cation operatorsMϕ1 ,Mϕ2 , · · · ,Mϕr and the associated Koszul complex (extended
by the quotient module):

0 −→ H0
d0−→ H1

d1−→ H2
d2−→ · · · dr−1−→ Hr −→Mq −→ 0 (4.2)

We then attempt to construct invariants for the quotient module making use of
the differential maps d0, d1, d2, · · · , dr−1 of the complex. As a first step, we recover
the fundamental class of Z using the differential maps and the application of a
generalised Poincaré-Lelong formula.

It must be pointed out that although in [13] and [14] the approach has been to
use a resolution of the quotient module by means of an exact sequence, we make
a departure here. Our focus here has been enlarged to chain complexes which
terminate in the quotient module and which may not be necessarily exact. This
has been motivated by the results in [13] where it is shown that it is possible to
construct invariants for the quotient module by considering complexes which are
not necessarily exact.

We further assume that Z is an analytic submanifold of Ω defined by the
vanishing of functions ϕ1, ϕ2, · · · , ϕr defined globally on Ω. These functions are
assumed to be holomorphic on Ω and continuous on Ω. The module M0 is then
taken to be the submodule of all functions in M which vanish on Z and Mq is
defined to be the quotient module.
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4.1. The Koszul Complex

The invariant that we propose to construct uses the Koszul complex for a pre-
scribed set of operators. We, therefore, outline the construction of the Koszul
complex for an r-tuple of operators on a Hilbert space. A useful reference here is
[16].

Let H be a Hilbert space and let T1, T2, · · · , Tr be a commuting r-tuple of op-
erators on H. Let ∧(ε) be the (graded) exterior algebra on r symbols ε1, ε2, · · · , εr.
Denote by ∧j(ε) the exterior space spanned by the set {εl1 ∧ εl2 ∧ · · · ∧ εlj} for
j = 0, 1, ...., r. Let

Hj = H⊗ ∧j(ε).
Define the differential dj : Hj → Hj+1 by dj =

∑r
i=1 Ti ⊗ σi where σi is the

operator defined by
σi(ξ) = εi ∧ ξ, ξ ∈ ∧(ε).

The adjoint σ∗i of σi is given by

σ∗i (ξ1 + εi ∧ ξ2) = ξ2,

where ξ1 and ξ2 do not contain the symbol εi. We therefore have the following:

σiσj + σjσi = 0
σiσ

∗
j + σ∗jσi = δij for i, j = 1, 2, ..., r, (4.3)

where δ is the Kronecker symbol. It follows that dj+1dj = 0.
Define the Laplace operator on Hj by

∆j = d∗jdj + dj−1d
∗
j−1 for j = 1, 2, ...., r − 1.

Also take ∆0 = d∗0d0 and ∆r = dr−1d
∗
r−1.

The operator d∗j acts on Hj+1 as the adjoint of dj and is given by

d∗j =
r∑

i=1

T ∗i ⊗ σ∗i .

The torsion, τ , of the Koszul complex, whenH is finite dimensional, is defined
through the expression

log τ =
r∑

j=0

(−1)jj log det ∆j .

Consider the case where T1, T2, · · · , Tr represent a family of operators which
depend holomorphically on a parameter w ∈ Ω ⊆ Cm. This parametrized family
of maps, T1, T2, · · · , Tr, gives rise to a parametrized family of Koszul complexes,
as above. Motivated by the definition of the torsion, we make the following formal
definition which associates, under certain circumstances, an (r − 1, r − 1) current
to such a parametrized family of Koszul complexes. We note that det ∆j(w) is real
analytic, and consequently, each term in the product below is a current. However,
this does not ensure that the product is a current, in general. The results on page
161 of [17] show that the product is indeed a current in many cases. However, in
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our case, the hypothesis that the common zero set is a complex analytic manifold
ensures the transversality of the normal directions. Hence the singular wave front
sets for the factors are disjoint and the product is well defined as a current. We also
point out that for the parametrized family that we obtain from the localisation of
the resolution of the quotient module, this definition yields the current

Θ =
1
α

(log det(∆0(w))
r−1∏

j=1

∂∂ log det(∆j(w)), (4.4)

where α is the numerical constant given by α =
∏r−1
j=0

(
r
j

)
.

Lemma 4.1. Let T1, T2, · · · , Tr be a commuting tuple of operators as above. If
[Ti, T ∗j ] = 0 for i, j = 1, 2, ..., r, then ∆j as introduced above is given by

∆j =
( r∑

i=1

TiT
∗
i

)⊗ 1j ,

where 1j is the identity operator on ∧j(ε).
Moreover, in this case, if H is finite dimensional, we have the following:
(i) Tr ∆j =

(
r
j

)
Tr(

∑r
i=1 TiT

∗
i ) where Tr denotes the trace.

(ii) log det∆j =
(
r
j

)
log det(

∑r
i=1 TiT

∗
i ).

(iii) The torsion τ = 1.

Proof: The first result follows from the definition of ∆j using (4.3). The others
follow from the fact that the dimension of ∧j(ε) is

(
r
j

)
. ¤

The fundamental class of Z is recovered by an application of the following
generalised Poincaré-Lelong formula. For a proof and more details see [17].

Theorem 4.1. Let Ω be a complex n-manifold and let

ϕ1, ϕ2, · · · , ϕr : Ω→ C

be holomorphic maps. Let Z be the common zero set of ϕ1, ϕ2, · · · , ϕr. Let

Θ = log ‖ϕ‖2(∂∂ log ‖ϕ‖2)r−1,

where ‖ϕ‖2 = |ϕ1|2 + |ϕ2|2 + · · ·+ |ϕr|2.
If Z has dimension n − r, ∂∂Θ defines a current of degree (r, r) and corre-

sponds to the fundamental class of Z. In symbols, if ω is a compactly supported
(n− r, n− r) form, then

∫

Ω

Θ ∧ ∂∂ω =
∫

Z
ω. (4.5)
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4.2. Invariants for the Quotient Module

We now have the necessary ingredients to recover the fundamental class of the zero
set Z. If Z is defined by the vanishing of ϕ1, ϕ2, · · · , ϕr, let Mϕ1 ,Mϕ2 , · · · ,Mϕr be
the operators of multiplication by ϕ1, ϕ2, · · · , ϕr. Construct the (extended) Koszul
complex corresponding to the commuting operators Mϕ1 ,Mϕ2 , · · · ,Mϕr :

0 −→M⊗∧0(ε) d0−→M⊗∧1(ε) d1−→ · · · dr−1−→ M⊗∧r(ε) −→Mq −→ 0 (4.6)

SinceM⊗∧r(ε) is isomorphic toM, the map at the last stage is taken to be the
quotient map. We can make M⊗∧j(ε) a module over A by choosing the trivial
action on the second factor. With this choice of action, it follows that

(M⊗∧j(ε))⊗A Cw = (M⊗A Cw)⊗ ∧j(ε).
With the assumptions we have made onM, it can be shown thatM⊗ACw is one
dimensional. Therefore, dim

(
(M⊗∧j(ε))⊗A Cw

)
=

(
r
j

)
.

Theorem 4.2. Consider the localisation of the above complex (4.6) by the module
Cw, w ∈ Ω. Let Θ be the (r − 1, r − 1) current defined in equation (4.4), now
applied to this complex. Then ∂∂Θ represents the fundamental class of Z.

Proof: Since ϕ1, . . . , ϕr ∈ A, it follows that the two actions Mϕj ⊗ I and
I ⊗ Mϕj(w) are identified on M ⊗A Cw. Consequently the localisation of Mϕj ,
denoted Mϕj (w) , is the same as the one dimensional operator Mϕj(w). Hence
localising the above extended Koszul complex is equivalent to constructing the
Koszul complex for the operators Mϕ1(w), . . . ,Mϕr(w) (each of which acts on the
one dimensional Hilbert space H = M⊗A Cw) and then extending the complex
byMq ⊗A Cw.

The operator
∑r
i=1 TiT

∗
i occuring in Lemma 4.1 is the (parametrized) one

dimensional operator represented by |ϕ1(w)|2 + |ϕ2(w)|2 + · · ·+ |ϕr(w)|2. Now, the
result follows from an application of this Lemma and Theorem 4.1. ¤

Remark 4.1. Now consider just the Koszul complex for the operators Mϕ1 , . . . ,Mϕr :

0 −→M⊗∧0(ε) d0−→M⊗∧1(ε) d1−→ · · · dr−1−→ M⊗∧r(ε) −→ 0. (4.7)

It would be natural to ask if the torsion of the localisation of this complex is an
invariant for the quotient module. If the localisation is done with the one dimensional
module Cw, it is clear that the torsion is trivial using Lemma 4.1. We could localise
using higher rank modules. Lemma 4.1 would no longer be relevant (since Ti and T ∗j
may not commute). However, we have noticed that, in some cases where the torsion
can be computed explicitly, it still turns out be trivial. This is true, for instance, if we
localize with the two dimensional module C2

w using the module action described in
[14]. Whether this is true in some generality is an interesting question.

Another resolution of the quotient module is obtained as a grid of short exact
sequences of Hilbert modules in which each line consists of a short exact sequence.
We illustrate our methods in the case where the the zero variety is a complete
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intersection of two hypersurfaces Z1 and Z2. Let I1 and I2 be the maximal set
of functions which vanish on the hypersurfaces Z1 and Z2 respectively and let
I12 = I1 ∩ I2. Let us consider the diagram

0 0 0
↓ ↓ ↓

0 ←− I1
2 ←− I2 X2←− I12 ←− 0
↓ ↓ ↓ X1

0 ←− I1 ←− M ←− I1 ←− 0
↓ ↓ ↓

0 ←− I12 ←− I2 ←− I2
1 ←− 0

↓ ↓ ↓
0 0 0

(4.8)

where each connecting map is either an inclusion or a quotient map. We require
that each row and column be a short exact sequence of Hilbert modules. Hence all
the undefined symbols in the above diagram represent quotient modules at inter-
mediate stages. Localisation of the grid above provides the necessary ingredients
to obtain the current of integration on the zero variety Z1∩Z2, using the following
theorem, which is a generalisation of the Poincaré-Lelong equation (cf. [8]). It is
the case p = 2 of the theorem which is relevant to the above grid.

Theorem 4.3. Let ϕ = (ϕ1, · · · , ϕp) : U → Cp be a holomorphic mapping. If
Yj = ϕ−1

j {0} are the loci of zeros of the components of ϕ, one has

∂∂log|ϕ1|2 ∧ · · · ∧ ∂∂log|ϕp|2 = 2πi[Y1] ∧ · · · ∧ 2πi[Yp] = (2πi)p[Y ]

where [Y ] is the current corresponding to the intersection Y1 ∩ · · · ∩ Yp.
Notice that I12 in the grid above is the quotient module we are attempting

to describe. The result above is then a natural generalisation of the approach
described following the linear resolution (1.1) of the quotient module. Specifically
(see discussion in subsection 2.4),

X`(w)∗X`(w) =
|ϕ1(w)ϕ2(w)|2χ12(w,w)
|ϕ`(w)|2χ`(w,w)

, ` = 1, 2. (4.9)

Consequently, we find that
m∑

i,j=1

∂2

∂wi∂w̄j
log(X`(w)∗X`(w))dwi ∧ dw̄j −K12(w) +K`(w)

=
m∑

i,j=1

∂2

∂wi∂w̄j
log |ϕ`(w)|2dwi ∧ dw̄j , (4.10)

for ` = 1, 2. Hence Theorem 4.3 applies and we conclude that the product of the
two currents described in (4.10) yield the fundamental class of the zero variety.
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Even though the grid above is not a resolution of the quotient module in the
usual sense, we can extract a linear exact sequence which is a resolution of the
quotient. This resolution is obtained from the grid as follows.

We reproduce here the general technique of obtaining a linear complex from
a two dimensional complex and then apply the procedure to the case at hand. Let

Ci,j+1
δi,j←− Ci,j

di,j ↓

Ci+1,j

be a planar grid for 0 ≤ i, j ≤ N , where d2 and δ2 are zero. This grid gives rise
to a linear complex in a natural manner as follows. The k-th term of the linear
complex is

Dk =
⊕

i+j=k

Ci,j .

The boundary maps ∆k : Dk → Dk+1 are defined by

∆k|Ci,j
= δi,j + (−1)jdi,j .

We can apply this to the planar grid of modules above. Recall that Ik, k = 1, 2 are
the ideals of functions vanishing on the hypersurface Zk = {z ∈ Ω : ϕk(z) = 0}
and that I12 is the intersection of these two ideals. This leads to the following
exact sequence.

0← Q
∆4←− (M/I1)⊕(M/I2) ∆3←− (I1/I12)⊕M⊕(I2/I12) ∆2←− I1⊕I2 ∆1←− I12 ← 0

The maps ∆k are defined by

∆1(x) = (x, x) (4.11)
∆2(x, y) = (P 1

12x,−x+ y, P 2
12y)

∆3(x, y, z) = (−P1y + z, x+ P2y)
∆4(x, y) = P11x+ P22y,

where
a) P 1

12 (respectively P 2
12) is the quotient map from I1 (respectively I2) to I1/I12

(respectively I2/I12),
b) P1 (respectivelyP2) is the quotient map fromM toM/I1 (respectivelyM/I2),
c) P11 (respectively P22) is the relevant quotient map that appears in the grid
from M/I1 (respectivelyM/I2)) to the quotient module (Q).

We point out here that there is a generalisation of the planar grid to higher
dimensions which becomes relevant when the codimension of the zero set is greater
than two. In fact, we then need to consider a hypercubic grid in as many dimensions
as the codimension. Theorem 4.3 can be used in this general case to once again
determine the current of integration on the zero set. The linearisation described
above also has a natural generalisation.
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5. Localisation techniques and invariants for submodules

In this section, we use the localisation technique to describe some possible invari-
ants for submodules rather than quotient modules.

Let I be an ideal in the polynomial ring C[z1, · · · , zm]. LetM0 ⊆M be the
submodule which is the closure of such an ideal. The submodule M0 is therefore
contained in the largest set of functions in M which vanish on the common zero
set of this ideal - we assume that this inclusion is indeed an equality. It is easy to
see that the localisation (cf. [15]) of the submoduleM0 at w = (w1, · · · , wm) ∈ Ω
is ∩m`=1 ker(Mz`

|M0 − w`)∗ ⊆ M0. These subspaces inherit a hermitian metric
from the module M0. In case the submodule is the closure of an ideal generated
by a set of polynomials, we conjecture that

dim∩m`=1 ker(Mz`
|M0 − w`)∗ =

{
1 for w 6∈ V (I)
codimension of V (I) for w ∈ V (I), (5.1)

where V (I) is the common zero set of the ideal I intersect Ω. It is clear that in case
Z = V (I) is a hypersurface, the localisation produces a holomorphic hermitian line
bundle. Consequently, the complex geometric approach developed in [6] gurantee
that the curvature of this bundle is a complete invariant for the submodule M0.
However, if Z is not a hypersurface, the dimension of the localisation jumps across
the zero set.

If K is the kernel function for M, then K(·, w) induces a map γ : Ω →M∗

via γ(w)(f) = 〈f,K(·, w)〉, f ∈ M. Since the constant functions are in M, it
follows that γ(w) 6= 0, w ∈ Ω. Thus γ maps into the projective space Gr(M, 1).
The bundle described in the preceding paragraph is the pull back of the canonical
bundle on the projective space under this map. However, if we attempt a similar
approach with M0, then we find that we must consider the map induced by the
vectors PK(·, w), where P is the projection to M0:

The localisationM0(w) =M0⊗ACw is the orthogonal complement (inM0)
of the subspace

Nw = span {(f · h)⊗ 1− h⊗ (f · 1) : f ∈ A(Ω), h ∈M0}
= span {((f − f(w)) · h)⊗ 1 : f ∈ A(Ω), h ∈M0}

We clearly have Nw ⊆ {h ∈M0 : h(w) = 0} for w 6∈ Z. SinceM0 is the closure of
an ideal in C[z1, . . . , zm] ⊆M, it is likely thatNw = {h ∈M0 : h(w) = 0}, w 6∈ Z.
Since Nw ⊆ M0 ⊆ M, it follows that as long as w 6∈ Z, and Nw ⊆ M0 is the
submodule of functions vanishing at w, we have

M0 ªNw = (MªNw)ª (MªM0)
= clos span{K(·, w),K(·, λ) : λ ∈ Z} ª clos span{K(·, λ) : λ ∈ Z}
= PK(·, w),

where K is the reproducing kernel of the module M and P is the orthogonal
projection on toM0.
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Since K0(·, w) = PK(·, w) is zero for w ∈ V (I), we find that the associated
map γ vanishes at such points. As was pointed out in Remark 2.4, it is not possible
to get around this difficulty in a straightforward manner unless Z is a hypersurface.
Nevertheless, we show how we may take limits of PK(·, w) along complex lines to
get around this difficulty.

Example 5.1 (Continuation of Example 1.1). Let H2(D2) be the Hardy space on
the bi-disc D2 and let

0←Mq ← H2(D2)← H2
0 (D2)← 0

be a short exact sequence of modules over the bi-disc algebra. Here, H2
0 (D2) is the

ideal generated in H2(D2) by the coordinate functions z1, z2 of D2. The quotient
module in this case is 1 dimensional, the spectrum of Mq is the singleton set {0}.
The localisation of this module Mq is the skyscraper sheaf at the origin. The bundle

for H2
0 (D2) is only defined over D2\{0}. The rank of the fibre (which is 1 on D2\{0})

jumps to 2 at the origin and hence we get a “hermitian” sheaf on D2 rather than a
bundle.

A natural question to ask is how to construct invariants for such a “hermitian”
sheaf so that they play the same role as the curvature does for hermitian bundles. For
the example at hand, one has the following approach.

Let w = (w1, w2) ∈ D2\{0}. We will compute the module H2
0 (D2) ⊗A Cw,

where A is the bi-disc algebra consisting of functions which are continuous on the
closed bi-disc and are holomorphic on the bi-disc. Since {z1, z2} forms a minimal set
of generators for the module H2

0 (D2), the set {z1 ⊗ 1w, z2 ⊗ 1w} spans the whole
module H2

0 (D2)⊗ Cw. The localization H2
0 (D2)⊗A Cw is

H2
0 (D2)ª {h ∈ H2

0 (D2) : h(w) = 0}.
As pointed out earlier this space is spanned by the projection of K̂(·, w), w =
(w1, w2) ∈ D2, toM0 which equals K̂(·, w)− K̂(·, 0) = K̂0(·, w) defined in Example
1.1. This gives a basis vector for the one dimensional space obtained by localising using
Cw for w 6= 0.

From the explicit description of K̂0, we find that the limit of K̂0(·, w) as w → 0
is 0. Nevertheless, the limit of 1

w̄`
K̂0(·, w) along lines through the origin as w → 0

exist and is non-zero for ` = 1, 2. If we parametrize the lines through the origin by
w̄2 = θ1w̄1 or w̄1 = θ2w̄2, we get

lim
w̄2=θ1w̄1, w→0

K̂0(z, w)
w̄1

= z1 + θ1z2

= (∂̄1 + θ1∂̄2)K̂0(z, w)|w=0

lim
w̄1=θ2w̄2, w→0

K̂0(z, w)
w̄2

= θ2z1 + z2

= (θ2∂̄1 + ∂̄2)K̂0(z, w)|w=0. (5.2)



24 Ronald G. Douglas, Gadadhar Misra, and Cherian Varughese

We now construct a line bundle on the projective space P1 (obtained by “blowing
up the origin”). The section s1 on the coordinate patch U = {w ∈ D2 : w1 6= 0} is
given (as an element of H2

0 (D2)) by

(s1(θ1))(z) = (∂̄1K0(z, w))|w=0 + θ1(∂̄2K0(z, w))|w=0

= z1 + θ1z2.

The squared norm of this section is 1 + |θ1|2. Consequently the curvature of the line
bundle on the affine set {w1 6= 0} is given by

K(θ1) = ∂θ1∂θ̄1 log
1

1 + |θ1|2

=
dθ1 ∧ dθ̄1

(1 + |θ1|2)2 .

Obviously, a similar calculation yields K on the affine subset {w2 6= 0} of P1.
We point out that the above form determines a class in the cohomology group

H2(P1,Z) ∼ Z, which is the generator of H2(P1,Z). Actually, the curvature form
above is induced from the Fubini - Study metric on P1.

Let M0 be the largest submodule of functions in M vanishing at a fixed
point w ∈ Ω ⊆ Cm. It is clear, in view of equation (2.6), that we will be able to
construct a line bundle on the projective space Pm−1 obtained by “blowing up”
the point w.

To illustrate the ideas involved in the simplest possible terms, we assume that
our domain is the bi-disc D2 and the submodule M0 is the closure of the ideal
generated by the coordinate functions z1 and z2. Let θ1 and θ2 denote the usual
homogeneous coordinates on the open sets U and V in the complex projective
space P1 corresponding to the affine sets determined by w1 6= 0 and w2 6= 0 in C2.
Let E be the holomorphic line bundle on P1 defined, in local coordinates, by the
following sections

s1(θ1) = (∂̄1K0(·, w))|w=0 + θ1(∂̄2K0(·, w))|w=0

s2(θ2) = θ2(∂̄1K0(·, w))|w=0 + (∂̄2K0(·, w))|w=0. (5.3)

Theorem 5.1. Let M0 and M′
0 be two modules consisting of holomorphic func-

tions on D2 which are generated by the two coordinate functions, that is, both
modules consist of functions vanishing at the origin. Assume that the localisations
M0(w) and M′

0(w) are one dimensional away from the zero set. If the modules
M0 and M′

0 are isomorphic (equivalent via a unitary module map), then the cor-
responding bundles E and E′ they determine on the projective space are equivalent.

Proof: Let L : M′
0 → M0 be a unitary module map. By our assumption,

the localisations of M0 and M′
0 on D2\{0} are one dimensional and are spanned

by the corresponding reproducing kernels. Recall that M∗
fK

′
0(·, w) = f(w)K ′

0(·, w)
for f ∈ A(D2) and w 6= 0. Since L intertwines the module actions, it follows that
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M∗
f (LK ′

0(·, w)) = f(w)LK ′
0(·, w). Hence

LK ′
0(·, w) = g(w)K0(·, w), for w 6= 0. (5.4)

It then follows that g must be holomorphic on D2\{0}. Since L is unitary, we also
have

‖K ′
0(·, w)‖2 = |g(w)|2‖K0(·, w)‖2, w 6= 0. (5.5)

Therefore,

∂∂̄ log
K ′

0(w,w)
K0(w,w)

= ∂∂̄ log |g(w)|2 = 0 , w 6= 0.

Consider the following change of coordinates on D2\{0}:
(w1, w2) 7→ (%, θ1), w1 = %, w2 = %θ1.

We then find that ∂θ1 ∂̄θ1 = |w1|2∂2∂̄2. Consequently, it follows that

∂θ1 ∂̄θ1 log |g(%, θ1)|2 = 0 for % 6= 0. (5.6)

From the form of these kernel functions given in equation (2.6), it follows that
lim%→0 |g(%, θ1)|2 exists and is a real analytic function of the real and imaginary
parts of θ1. From equation (5.6), it follows that lim%→0 g(%, θ1) is holomorphic in
θ1. If s1 and s′1 are sections of E and E′ on U ⊆ P1, then we see that

Ls′1(θ1) = g(0, θ1)s1(θ1), (5.7)

where g(0, θ1) = lim%→0 g(%, θ1). This is a consequence of the following observa-
tions. From Equation (5.5) and the factorisation of K0 and K ′

0 described earlier,
it follows that |g(w)| has a finite limit at the origin. By the Riemann removable
singularity theorem, it follows that g extends to a holomorphic function on all of
D2. By performing the necessary differentiations on Equation (5.4), noting that
differentiation with respect to w commutes with L and using the boundedness of
g, we obtain (5.7).

From the unitarity of L it follows that

‖s′1(θ1)‖2 = |g(0, θ1)|2‖s1(θ1)‖2

and consequently the bundles determined byM0 andM′
0 on P1 are equivalent. ¤

We remark that it is possible to prove a theorem analogous to the one above
without making the restrictive assumption that the generators be irreducible poly-
nomials. Indeed, in the second family of examples below, the submodules are gen-
erated by the functions z2

1 , z2
2 and z1z2.

We illustrate by means of some examples the nature of the invariant we obtain
from the bundle E that lives on the projective space.

As we have shown, the curvature of the bundle which lives on the projective
space is an invariant for the submodule. While this curvature does provide an
invariant, the family discussed in Example 5.2 consisting of holomorphic functions
vanishing at 0, shows that it is not a complete invariant. However, surprisingly
enough, if we consider a similar family of examples (see Example 5.3), this time
consisting of functions vanishing to a higher order at 0, then it turns out that
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within this family it is a complete invariant. We intend to investigate the nature
of this invariant, arising out of a “blow up” construction, further at a future date.

Example 5.2. LetH1 be the functional Hilbert space on the disc with the reproducing
kernel

K1(z1, w1) =
1

(1− z1w̄1)λ
.

Similarly, letH2 be the functional Hilbert space on the disc with the reproducing kernel

K2(z2, w2) =
1

(1− z2w̄2)µ
.

Let H be the tensor product of H1 and H2. Then H is a functional Hilbert space
on the bi-disc D2. The reproducing kernel K of H is the product of K1 and K2. That
is,

K(z1, z2;w1, w2) =
1

(1− z1w̄1)λ(1− z2w̄2)µ
.

Define Mλ,µ
(p,q) to be the subspace of functions in H which vanish at the point

(p, q) in the bi-disc. Our goal is to decide when two modules in the set

{Mλ,µ
(p,q) : (p, q) ∈ D2, λ, µ > 0

}

are isomorphic. We begin by observing that

dim Mλ,µ
(p,q)(w) =

{
1 for (w1, w2) 6= (p, q)
2 for (w1, w2) = (p, q).

(5.8)

This implies that Mλ,µ
(p,q) is not equivalent to Mλ′,µ′

(p′,q′) if (p, q) 6= (p′, q′). Therefore,

we are reduced to considering submodules Mλ,µ
(p,q) with fixed (p, q) ∈ D2.

To explicitly compute the reproducing kernel for Mλ,µ
(p,q), we recall that for φ, ψ

in the Möbius group, the operators

(Uφf)(z) = (φ′(z))λ/2f(φ(z)) for f ∈ H1

(Vψf)(z) = (ψ′(z))µ/2f(ψ(z)) for f ∈ H2 (5.9)

define projective unitary representations of the Möbius group on H1 and H2, respec-
tively [22]. Choose φ (respectively, ψ) to be the element of the Möbius group which
maps the origin to the point p (respectively, q) in the disc. Let Sφ,ψ denote the unitary
operator Uφ⊗Vψ. The operator Sφ,ψ clearly maps the subspace of functions vanishing
at 0 to those vanishing at (p, q). Furthermore, if {vn} is an orthonormal basis for the
subspace of functions in H which vanish at the origin, {Sφ,ψvn} is an orthonormal
basis for the subspace of functions in H which vanish at the point (p, q). There is a
natural basis for the subspace of functions which vanish at the origin which is con-
structed from the complete orthogonal set {z`1zk2 : (`, k) 6= (0, 0)}. This, in turn, gives
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us an orthonormal basis for the subspace of functions which vanish at the point (p, q),
from which it is not hard to compute the reproducing kernel K(p,q) forMλ,µ

(p,q):

K(p,q)(z, w) =
(
φ′(z1)φ′(w1)

)λ/2(ψ′(z2)ψ′(w2)
)µ/2

× (
K((φ(z1), ψ(z2)), (φ(w1), ψ(w2))− 1

)
,

where z = (z1, z2), w = (w1, w2) are in D2.
We now have a situation that is analogous to the previous example. The procedure

outlined there can be applied to “blow up” the point (p, q) and to construct a line
bundle on the projective space at (p, q). We can calculate the section of this line
bundle using the explicit form of the reproducing kernel K(p,q). The section s1 on the

coordinate patch U , as an element of Mλ,µ
(p,q), is of the form

(s1(θ1))(z1, z2) =
λ

1− |p|2
( φ(z1)

(1− p̄z1)λ(1− q̄z2)µ
)

+ θ1
µ

1− |q|2
( ψ(z2)

(1− p̄z1)λ(1− q̄z2)µ
)
.

The curvature of this line bundle turns out to be the (1, 1)-form with coefficient

Cλ,µ(θ1) =
(1− |q|2)2(1− |p|2)2µλ

{(1− |q|2)2λ+ (1− |p|2)2µ|θ1|2}2 .

In case (p, q) = (0, 0), we have Cλ,µ(θ1) = λµ
(λ+µ|θ1|2)2 . We get that Cλ,µ =

Cλ′,µ′ if λ
µ = λ′

µ′ even though (λ, µ) 6= (λ′, µ′). (Of course, from the general formula

for the curvature given above, it is easy to see that we get a similar result at an
arbitrary point.) In all probability the submodules corresponding to two distinct pairs
(λ, µ) and (λ′, µ′) are not equivalent.

Theorem 5.1 was stated for the case of functions which vanish at the origin
in D2 but can naturally be generalised to any other point. There is also a gen-
eralisation of this theorem to functions which vanish to higher order at a point.
We present a brief outline for the case of functions which vanish to order 2 and
illustrate the usefulness of the result by means of an example.

The sections s1 and s2 are now given by

s1(θ1) = ((∂̄1 + θ1∂̄2)2K0(·, w))|w=0

s2(θ2) = ((θ2∂̄1 + ∂̄2)2K0(·, w))|w=0. (5.10)

A result analogous to Theorem 5.1 holds for the line bundle that these sections
determine on the projective space P1. As mentioned earlier, the curvature of this
line bundle gives a complete invariant for the family of modules considered in the
example below.

Example 5.3. The setting of this example is the same as that of Example 5.2 and
makes use of the Hilbert spaces H1,H2 and H defined there.
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We let N λ,µ
(p,q) be the subspace of functions in H which vanish to order 2 at the

point (p, q) in the bi-disc. The dimension of the localisation of N λ,µ
(p,q) jumps at the

point (p, q) and hence N λ,µ
(p,q) is not equivalent to N λ′,µ′

(p′,q′) if (p, q) 6= (p′, q′)

As in Example 5.2 we now consider the family of modules N λ,µ
(0,0). The section s1

of the line bundle on P1 is given (as an element of N λ,µ
(0,0)) by

(s1(θ1))(z) = λ(λ+ 1)z2
1 + 2λµθ1z1z2 + µ(µ+ 1)θ21z

2
2

The squared norm of the above section is

2λ(λ+ 1) + 4λµ|θ1|2 + 2µ(µ+ 1)|θ1|4
and consequently the curvature is

K(θ1) =
b+ 4c|θ1|2 + bc|θ1|4
(1 + b|θ1|2 + c|θ1|4)2

where

b =
µ(µ+ 1)
λ(λ+ 1)

and c =
µ

λ+ 1
.

It follows that two modules in this family corresponding to parameter values (λ, µ)
and (λ′, µ′) are equivalent if and only if the corresponding values of b and c are equal.
A simple computation shows that this happens if and only if (λ, µ) = (λ′, µ′), showing
that the curvature of the line bundle on the projective space is a complete invariant
for modules in this family.

We emphasise the advantage of using the bundle that we have constructed
on the projective space obtained by blowing up the zero set (the origin in our
examples). It is conceivable that the inequivalence results obtained above can
also be obtained by localising on D2\{0} and looking at the curvature of the
corresponding line bundle as in the Cowen-Douglas theory. However, any attempt
to do so, even in the simple Examples 5.2, lead to complicated calculations. Part of
the complication is due to the fact that this latter bundle lives on a two dimensional
base space. As illustrated above, in the Examples 5.3, it often suffices to consider
only the bundle defined on the projective space.

Many of the issues that we have raised in the context of Hilbert modules
have been studied in analogous algebraic settings. We have attempted to adapt
some of these results and techniques. Resolutions of modules have been studied
intensely during the last half of the twentieth century in both the algebraic and
analytic settings. This has been extended to the context of complex geometry - in
the presence of a hermitian metric - only in the last couple of decades. The work of
Bismut-Gillet-Soulé and Harvey-Lawson, cited earlier, are examples of this effort,
but not the only ones. The whole of what is called Arakelov theory falls in this
area. The problems which are described above are, we believe, both interesting
and important.
Acknowledgement: The authors would like to thank B. Bagchi and V. Pati for
many hours of helpful conversations.
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