
˜SL(2,R)-HOMOGENEOUS VECTOR BUNDLES

INDRANIL BISWAS AND GADADHAR MISRA

Abstract. We describe all the holomorphic Hermitian vector bundles (E , h) over the upper half plane
in C with the property that (f∗E , f∗h) is holomorphically isometric to (E , h) for any holomorphic
automorphism f of the upper half plane. We give an explicit construction of all such holomorphic
Hermitian vector bundles using some linear algebraic data.

1. Introduction

Linear spaces with norms defined by a Hermitian form make an appearance in many areas of math-
ematics and its applications. However, often the bounded linear operators on such spaces or bundle
maps of Hermitian vector bundles are the primary object of study. In [Cowen and Douglas 1978],
Cowen and Douglas introduce a class of operators possessing an open set of eigenvalues Ω of constant
multiplicity, say k. They show that for such an operator T , with the additional assumption that the
range T − w is closed for w ∈ Ω, the map w 7−→ ker(T − w) is holomorphic. It then follows that
π : ET −→ Ω, where

ET = {ker(T − w) : w ∈ Ω} , π(ker(T − w)) = w, w ∈ Ω

defines a holomorphic Hermitian vector bundle on Ω. Although, we must emphasize that not all
holomorphic Hermitian bundles arise this way. One of the main results of [Cowen and Douglas 1978]
is that the unitary equivalence class of T and the equivalence class of the holomorphic Hermitian
vector bundle ET determine each other. For instance, if the multiplicity k = 1, then the curvature
of ET is a complete invariant of the holomorphic Hermitian line bundle ET and hence that of the
operator T . With this bridge between complex geometry and operator theory at our disposal, we raise
the question of homogeneity.

Let T be a bounded linear operator on a Hilbert space H. We will let σT denote the spectrum
of the operator T . Let Möb be the group of bi-holomorphic automorphisms of the unit disc D. If
the function ϕ ∈ Möb is holomorphic on some open set containing σT , then ϕ(T ) is well-defined
via the usual holomorphic functional calculus for T . If ϕ(T ) is unitarily equivalent to T for all ϕ in
Möb, then T is said to be homogeneous. It turns out that if T is homogeneous then σT = D and
ϕ(T ) is unitarily equivalent to T for all ϕ in Möb. The well-known characterization of systems of
imprimitivity due to Mackey amounts to classifying normal operators (or commuting tuples of normal
operators) in our context (cf. [Bagchi and Misra 1995]). A systematic study of homogeneous operators
when the normality assumption is dropped is of more recent origin (cf. [Bagchi and Misra 2001]). A
classification of all homogeneous scalar shift operators has been obtained in [Bagchi and Misra 2003].
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Now, assume that T is one of the operators in the Cowen-Douglas class of D and ET be the
holomorphic Hermitian vector bundle corresponding to T . If T is homogeneous then ϕ(T ) is evidently
in the Cowen-Douglas class as well for all ϕ in Möb. The vector bundle Eϕ(T ) for the operator
ϕ(T ) is the pullback of the bundle ET under ϕ, that is, ϕ∗ET = Eϕ(T ). It is natural to say that a
holomorphic Hermitian vector bundle E defined on the unit disc is homogeneous (Möb - equivariant)
if its pullback by any ϕ ∈ Möb remains (isometrically) isomorphic to E, that is, ϕ∗ET

∼= Eϕ(T )

for all ϕ in Möb. Thus the classification of homogeneous operators in the Cowen-Douglas class of
D is the same as that of the corresponding homogeneous holomorphic Hermitian bundles defined
on D. Wilkins [Wilkins 1993] provides a classification of all, not necessarily the ones arising out
of Cowen-Douglas operators, homogeneous holomorphic Hermitian bundles. The main goal of this
paper is a classification of homogeneous holomorphic Hermitian bundles on D as well. However, our
methods are somewhat different from that of Wilkins and we give a very explicit construction of all
homogeneous holomorphic Hermitian bundles on D. The question of which ones of these bundles
correspond to operators in the Cowen-Douglas class remains open except when the rank of the bundle
is 1. However, a different description of all homogeneous holomorphic Hermitian vector bundles
which correspond to homogeneous operators in the Cowen-Douglas class of the unit disc D is given in
[Korányi and Misra 2006, Theorem 4.1].

We point out that the list of SL(2,R)-equivariant vector bundles in [Biswas 2003] is incomplete.

It will be convenient for us to work with the upper half plane in the complex plane rather than the
unit disc.

2. Some properties of homogeneous bundles

Let H := {z ∈ C | Im(z) > 0} be the upper half plane of the complex plane. The group PSL(2,R)
acts on H as

(2.1) A(z) =
az + b

cz + d
,

where

(2.2) A =
(
a b
c d

)
∈ PSL(2,R)

and z ∈ H. This action identifies the group of all holomorphic automorphisms of H with PSL(2,R).
For any A as in Eqn. (2.2), let

(2.3) φ(A) ∈ Aut(H)

be the holomorphic automorphism defined in Eqn. (2.1)

The universal cover of the group PSL(2,R) will be denoted by ˜SL(2,R). Using the projection

(2.4) p : ˜SL(2,R) −→ PSL(2,R) ,

the group ˜SL(2,R) acts on H.

Let E be a holomorphic vector bundle over H equipped with a Hermitian structure h such that the
holomorphic Hermitian vector bundle (φ(A)∗E , φ(A)∗h) is isomorphic to (E , h) for all A ∈ Aut(H).

By a lift of the action of ˜SL(2,R) to (E , h) as vector bundle automorphisms we mean the following:
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• The group ˜SL(2,R) acts on the total space of E and the natural projection of E to H is
˜SL(2,R)-equivariant;

• for any A ∈ ˜SL(2,R), the action of A on E is a holomorphic isomorphism of the vector bundle
φ(p(A−1))∗E with E, where φ and p are defined in Eqn. (2.3) and Eqn. (2.4) respectively;
and

• the action of ˜SL(2,R) on E preserves the Hermitian structure h.

The following lemma has appeared as Theorem 2.2 in [Korányi and Misra 2006].

Lemma 2.1. Let (E , h) be a holomorphic Hermitian vector bundle over H such that the holomorphic
Hermitian vector bundle (φ(A)∗E , φ(A)∗h) is isomorphic to (E , h) for all A ∈ Aut(H). The action

of ˜SL(2,R) on H lifts to a holomorphic action on E, as vector bundle automorphisms, preserving the
Hermitian structure h.

Proof. Let GE denote the group of all pairs of the form (τ , σ), where τ ∈ Aut(H) is a biholomorphism
of H, and

σ : E −→ τ∗E

is a holomorphic isomorphism preserving the Hermitian structure h. It is easy to see that GE is a
finite dimensional Lie group. Let H ⊂ GE be the closed subgroup defined by all pairs of the form
(IdH , σ); in other words, H is the group of all automorphisms of the holomorphic Hermitian vector
bundle (E , h). Therefore, we have an exact sequence of groups

(2.5) e −→ H −→ GE −→ PSL(2,R) −→ e .

We note that the above homomorphism GE −→ PSL(2,R) is surjective follows from the assumption
that the holomorphic Hermitian vector bundle (φ(A)∗E , φ(A)∗h) is isomorphic to (E , h) for all A ∈
Aut(H).

Let

(2.6) 0 −→ h −→ gE −→ sl(2,R) −→ 0

be the exact sequence of Lie algebras obtained from Eqn. (2.5); here h and gE are the Lie algebras
of H and GE respectively. Since the Lie algebra sl(2,R) is semisimple, the exact sequence of Lie
algebras in Eqn. (2.6) is right split [Bourbaki 1960, p. 91, Corollaire 3]. In other words, there is a Lie
subalgebra l ⊂ gE that projects isomorphically to sl(2,R).

Since the group ˜SL(2,R) is simply connected, the above isomorphism sl(2,R) −→ l gives a homo-

morphism of groups ˜SL(2,R) −→ GE . Now ˜SL(2,R) acts on E using this homomorphism to GE (the

group GE has a natural action on E). Therefore, the action of ˜SL(2,R) on H lifts to a holomorphic
action on E as vector bundle automorphisms preserving the Hermitian structure h. This completes
the proof of the lemma. �

Lemma 2.2. Let (E , h) be as in Lemma 2.1. Assume that the group H in Eqn. (2.5) is a product

of copies of the circle group S1. Then there is a unique lift of the action of ˜SL(2,R) (on H) to a
holomorphic action on E as vector bundle automorphisms preserving the Hermitian structure h.

Proof. Consider the adjoint action of the group GE on the normal subgroup H in Eqn. (2.5). Since
both H and PSL(2,R) are connected, from Eqn. (2.5) it follows that the group GE is connected; also
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the automorphism group of a product of copies of S1 is discrete. Therefore, the adjoint action of GE

on H is the trivial action. Hence H is contained in the center of GE .

Since H is contained in the center of GE , any two right splitting of the exact sequence of Lie algebras
in Eqn. (2.6) differ by a Lie algebra homomorphism from sl(2,R) to h. As sl(2,R) is simple and h is
abelian, there is no nonzero homomorphism from the Lie algebra sl(2,R) to h. This means that there
is a unique right splitting of the exact sequence of Lie algebras in Eqn. (2.6) (we saw in Lemma 2.1
that there is at least one right splitting). From this it follows immediately that there is a unique lift of

the action of ˜SL(2,R) on H to a holomorphic action on E as vector bundle automorphisms preserving
the Hermitian structure h. This completes the proof of the lemma. �

Let E be a holomorphic vector bundle over H equipped with a Hermitian structure h. Then E has
a unique Hermitian connection ∇ = ∇1,0 +∇0,1 such that

∇0,1s = 0

for all locally defined holomorphic sections of E [Kobayashi 1987, p. 11, Proposition (4.9)]. This
connection ∇ is called the Chern connection on E.

Let F ⊂ E be a C∞ subbundle. It is easy to see that the following two statements are equivalent:

(1) For any smooth section s of F defined over some open subset U ⊂ H, the inclusion

(2.7) ∇s ∈ Ω1(U, F ) = C∞(U, F ⊗ (TC
U )∗)

holds, where ∇ is the Chern connection.
(2) Both F and F⊥ are holomorphic subbundles of E.

Assume that the holomorphic Hermitian vector bundle (φ(A)∗E , φ(A)∗h) is isomorphic to (E , h)

for all A ∈ Aut(H). From Lemma 2.1 we know that the action of ˜SL(2,R) on H lifts to a holomorphic
action on E, as vector bundle automorphisms, preserving the Hermitian structure h. Fix such a lift
of the action of ˜SL(2,R). Then we have the following proposition:

Proposition 2.3. Let F ⊂ E be a C∞ subbundle preserved by the Chern connection (i.e., Eqn. (2.7)

holds for all smooth sections s of F defined over open subsets of H). Then the action of ˜SL(2,R) on
E preserves the subbundle F .

Proof. Let Aut0(E) denote the connected component, containing the identity element, of the group
of all holomorphic Hermitian automorphisms of the holomorphic Hermitian vector bundle (E , h). In
other words, Aut0(E) is the connected component containing the identity element of the group H in
Eqn. (2.5).

Using the action of ˜SL(2,R) on E, the group ˜SL(2,R) acts as automorphisms of Aut0(E) as follows:

The action of any g ∈ ˜SL(2,R) sends any T ∈ Aut0(E) to the automorphism g−1 ◦ T ◦ g of (E , h).
Let

(2.8) ρE : ˜SL(2,R) −→ Aut(Aut0(E))

be the resulting homomorphism, where Aut(Aut0(E)) is the group of automorphism of the group
Aut0(E).

Since Aut0(E) is a compact Lie group, any element in the connected component of Aut(Aut0(E))

containing the identity automorphism must be an inner conjugation. As ˜SL(2,R) is connected, and the
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connected component of Aut(Aut0(E)) containing the identity automorphism is Aut0(E)/Z, where
Z ⊂ Aut0(E) is the center, we conclude that the homomorphism ρE in Eqn. (2.8) gives a homomor-
phism

(2.9) ρE : ˜SL(2,R) −→ Aut0(E)/Z .

Since Aut0(E)/Z is compact, the image of any unipotent element in ˜SL(2,R) under the homomorphism

ρE in Eqn. (2.9) must be the identity element. The group ˜SL(2,R) being simple, this implies that
ρE is the trivial homomorphism. Consequently, the homomorphism ρE in Eqn. (2.8) is the trivial
homomorphism.

For any θ ∈ [0 , π/2] ⊂ R, consider the automorphism Tθ of E defined by

Tθ = exp(π
√
−1θ)IdF + exp(−π

√
−1θ)IdF⊥ ,

where F⊥ ⊂ E is the orthogonal complement of F . We noted earlier that the given condition that Eqn.
(2.7) holds for all smooth sections s of F defined over open subsets of H is equivalent to the condition
that both F and F⊥ are holomorphic subbundles of E. Hence we conclude that Tθ ∈ Aut0(E).

Since the homomorphism ρE in Eqn. (2.8) is the trivial homomorphism, the above automorphism

Tθ of E commutes with the action of ˜SL(2,R) on E. This immediately implies that the action of
˜SL(2,R) on E preserves the eigenbundles of Tθ. Therefore, the action of ˜SL(2,R) on E preserves the

subbundle F . This completes the proof of the proposition. �

In the next section we will investigate the holomorphic Hermitian line bundles over H equipped
with an action of ˜SL(2,R).

3. ˜SL(2,R)-homogeneous line bundles

We start with a simple lemma.

Lemma 3.1. Let (L1 , h1) and (L2 , h2) be two holomorphic Hermitian line bundles over H. Let K1

and K2 be the curvatures of the Chern connections on L1 and L2 respectively (so K1 and K2 are
smooth (1 , 1)-form on H). The two holomorphic Hermitian line bundles (L1 , h1) and (L2 , h2) are
isomorphic if and only if K1 = K2.

Proof. If L1 is holomorphically isometric to L2, then obviously K1 = K2. To prove the converse,
assume that K1 = K2. The Chern connection on L1 and L2 will be denoted by ∇1 and ∇2 respectively.

Consider the holomorphic line bundle L∗1
⊗
L2 over H equipped with the Hermitian structure in-

duced by the pair h1 and h2. The Chern connection on L∗1
⊗
L2 is ∇ = ∇∗

1

⊗
IdL2 + IdL1

⊗
∇2,

where ∇∗
1 is the connection on L∗ induced by ∇1. The curvature of ∇ is K2 −K1 = 0.

Since H is simply connected, and the curvature of ∇ vanishes, the flat line bundle L∗1
⊗
L2 is

isomorphic to the trivial line bundle equipped with the constant metric. Fixing a flat section of
L∗1
⊗
L2 of (pointwise) norm one, we get a holomorphic isomorphism of L1 with L2 that takes the

Hermitian structure h1 to h2. This completes the proof of the lemma. �

We will now construct a family of holomorphic Hermitian line bundle parametrized by the real
numbers.
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Take any λ ∈ R. Let ξ denote the trivial holomorphic line bundle H × C over H. Consider the
Hermitian structure hξ

λ on ξ defined as follows: For any z ∈ H and any c ∈ ξz = C,

(3.1) hξ
λ(c , c) := 〈c , c〉λ :=

|c|2

Im(z)λ
.

Let ξλ denote the holomorphic line bundle ξ over H equipped with the Hermitian structure hξ
λ defined

above.

It is easy to check that the curvature Kλ of the Chern connection on ξλ is

Kλ = −λ∂∂(Im(z)) ∈ Ω1,1
H ,

which is a smooth (1 , 1)-form on H. It is straight-forward to check that the form Kλ is left invariant
by the action of PSL(2,R) on H. Therefore, using Lemma 2.2 and Lemma 3.1 we have the following
corollary:

Corollary 3.2. There is a unique lift of the action of ˜SL(2,R) (on H) to a holomorphic action on ξλ
as vector bundle automorphisms preserving its Hermitian structure hξ

λ.

Proof. Using Lemma 3.1 it follows that for any A ∈ PSL(2,R), the holomorphic Hermitian line bundle
φ(A)∗ξλ is holomorphically isometric to ξλ, where φ is defined in Eqn. (2.3). Since the group H (see
Lemma 2.2) in this case is S1, the proof is completed using Lemma 2.2. �

Lemma 3.3. Let (L , h) be a holomorphic Hermitian line bundle over H equipped with a lift of the

action of ˜SL(2,R) (on H) to a holomorphic action on L preserving the Hermitian structure h. Then
there is a unique real number λ such that ξλ is holomorphically isometric to (L , h).

Proof. Since the curvature of ξλ is −λ∂∂(Im(z)), and ∂∂(Im(z)) 6= 0, there can be at most one λ with
the above property. To prove that there is actually one λ, consider the curvature Kh of the Chern
connection on (L , h). As (L , h) is equipped with a lift of the action of ˜SL(2,R), we conclude that

(3.2) φ(A)∗Kh = Kh

for all A ∈ PSL(2,R), where φ is defined in Eqn. (2.3).

From the identity in Eqn. (3.2) it follows that Kh = µ∂∂(Im(z)) for some µ ∈ R (we also use the
fact that the form Kh is real). Now the proof of the lemma is completed using Lemma 3.1. �

Proposition 3.4. If the line bundle ξλ admits a smooth nonzero section invariant under the action
of ˜SL(2,R), then λ = 0.

Proof. Let s be a smooth section of ξλ satisfying the following two conditions:

• the action of ˜SL(2,R) on ξλ leaves s invariant, and
• the section s is not identically equal to zero.

Note that these two conditions imply that s is nowhere vanishing. Let ∂ξλ
be the Dolbeault operator

defining the holomorphic structure of ξλ. So ∂ξλ
s is a smooth section of ξλ

⊗
(T 0,1

H )∗ which is left

invariant by the action of ˜SL(2,R).

Since s is nowhere vanishing, we have

∂ξλ
s = s⊗ ω ,
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where ω is a (0 , 1)-form on H which is left invariant by the action of ˜SL(2,R) on H. But there

is no nonzero (0 , 1)-form on H which is left invariant by the action of ˜SL(2,R). Indeed, this follows

immediately from the fact that the isotropy subgroup of ˜SL(2,R) for any point z ∈ H acts nontrivially
on the line (T 0,1

z )∗ (the fiber of (T 0,1
H )∗ over z).

Therefore, the (0 , 1)-form ω vanishes identically. Hence ∂ξλ
s = 0. In other words, the section s

is holomorphic. Since s is left invariant by the action of ˜SL(2,R), the inner product 〈s(z) , s(z)〉λ is
independent of z ∈ H (see Eqn. (3.1)). As s is a holomorphic section of ξλ whose norm is a constant
function on H, the Chern connection on the holomorphic Hermitian line bundle ξλ is flat. Therefore,
λ = 0. This completes the proof of the proposition. �

Proposition 3.4 has the following corollary:

Corollary 3.5. Let f : ξλ −→ ξλ′ be a C∞ homomorphism of line bundles that intertwines the
actions of ˜SL(2,R). If f is not identically zero, then λ = λ′. In that case, f is a constant scalar
multiplication.

Proof. Consider the Hermitian structure on the holomorphic line bundle ξ∗λ
⊗
ξλ′ induced by the

Hermitian structures on ξλ and ξλ′ . The curvature of the Chern connection on ξ∗λ
⊗
ξλ′ is −(λ′ −

λ)∂∂(Im(z)). Using Lemma 3.3 it follows that the Holomorphic Hermitian line bundle ξ∗λ
⊗
ξλ′ holo-

morphically isometric to ξλ′−λ. Now the proof is completed by applying Proposition 3.4 to ξλ′−λ. �

4. Data for higher rank vector bundles

For any point z ∈ H, let Γz ⊂ ˜SL(2,R) be the subgroup that fixes z. It is easy to see that Γz is
isomorphic to the additive group R. Fix a point z0 ∈ H, and fix an isomorphism

(4.1) α : Γz0 −→ R .

Let (E , h) be a holomorphic Hermitian vector bundle over H equipped with an action of ˜SL(2,R)
compatible with both holomorphic and Hermitian structures. The fiber of the vector bundle E over a
point z ∈ H will be denoted by Ez. The isotropy subgroup Γz ⊂ ˜SL(2,R) acts on Ez preserving the
Hermitian structure on Ez. Since Γz0 preserves the Hermitian structure of Ez0 , using the isomorphism
α in Eqn. (4.1) we have a positive integer `, real number r1, · · · , r` and positive integers m1, · · · ,m`

satisfying the following conditions:

•
∑`

i=1mi = rank(E), and
• for each i ∈ [1 , `], there is a subspace Vz0,ri ⊂ Ez0 of dimension mi such that α−1(t) acts on
Vz0,ri as multiplication by exp(

√
−1rit) for all t ∈ R.

Using the action of ˜SL(2,R) on E, the above decomposition

Ez0 =
⊕̀
i=1

Vz0,ri

induces a C∞ decomposition of the vector bundle E

(4.2) E =
⊕̀
i=1

Vri .
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In other words, Vri is the orbit of Vz0,ri for the action of ˜SL(2,R) on E. It is easy to see that for any
z ∈ H, the decomposition

Ez =
⊕̀
i=1

(Vri)z

obtained from Eqn. (4.2) is the isotypical decomposition of the Γz-module Ez.

We will interpret the decomposition in Eqn. (4.2) using the line bundles ξλ constructed in Section
3.

In Corollary 3.2 we noted that there is a unique lift of the action of ˜SL(2,R) on H to a holomorphic
action on ξλ preserving its Hermitian structure. For any λ ∈ R, let

(4.3) WE,λ := C∞(H, ξ∗λ ⊗ E)
˜SL(2,R)

be the space of all smooth homomorphisms from ξλ to E that intertwine the actions of ˜SL(2,R) on

ξλ and E (these homomorphisms need not be holomorphic). Since ˜SL(2,R) acts transitively on H, for
any point z ∈ H, the evaluation at z

(4.4) WE,λ −→ (ξ∗λ ⊗ E)z

is an injective homomorphism. In particular, WE,λ is a finite dimensional vector space.

We will construct an inner product on the vector space WE,λ. Consider the inner product on WE,λ

given by the Hermitian structure on the fiber (ξ∗λ ⊗ E)z using the injective homomorphism in Eqn.
(4.4). It is now an easy exercise to check that this inner product on WE,λ does not depend on the
choice of the point z. Therefore, WE,λ is canonically a finite dimensional Hilbert space.

The Hermitian structure of ξλ and the inner product on WE,λ together induce a Hermitian structure
on the holomorphic vector bundle

(4.5) Eλ := ξλ ⊗C WE,λ .

The actions of ˜SL(2,R) on ξλ and the trivial action of ˜SL(2,R) on WE,λ together induce an action

of ˜SL(2,R) on the vector bundle Eλ constructed in Eqn. (4.5). This action of ˜SL(2,R) on Eλ clearly
preserves the holomorphic structure as well as the Hermitian structure.

Associate to (E , h) the holomorphic Hermitian vector bundle

(4.6) E :=
⊕
λ∈R

Eλ =
⊕
λ∈R

ξλ ⊗C WE,λ .

Note that WE,λ = 0 for all but finitely many λs in R. The Hermitian structure on E, which we will
denote by H, is the above mentioned Hermitian structure on each Eλ, and the direct sum in Eqn.
(4.6) is an orthogonal direct sum.

The actions of ˜SL(2,R) on Eλ, λ ∈ R, together induce an action of ˜SL(2,R) on the holomorphic
Hermitian vector bundle (E ,H). This action clearly preserves the holomorphic structure as well as
the the Hermitian structure.

The evaluation homomorphisms in Eqn. (4.4) for different values of λ together define a C∞ isomor-
phism

(4.7) γE : E −→ E
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which takes the metric H to h. This homomorphism γE clearly intertwines the actions of ˜SL(2,R) on
E and E. However, the homomorphism γE need not be holomorphic.

Let
∂E : E −→ E ⊗ Ω0,1

H

be the Dolbeault operator defining the holomorphic structure of the holomorphic vector bundle E.
Let

(4.8) ∂
φ
E := (γ−1

E ⊗ Id
Ω0,1

H
) ◦ ∂E ◦ γE : E −→ E⊗ Ω0,1

H

be the Dolbeault operator obtained by transporting ∂E to E using the isomorphism γE in Eqn. (4.7).

Let ∂E : E −→ E ⊗ Ω0,1
H be the Dolbeault operator defining the holomorphic structure of the

holomorphic vector bundle E. Therefore,

(4.9) Θ := ∂
φ
E − ∂E ∈ C∞(H, End⊗ (T 0,1

H )∗) = Ω0,1
H (End(E))

is a (0 , 1)-form on H with values in the vector bundle End(E), where ∂φ
E is defined in Eqn. (4.8).

Since the C∞ isomorphism γE (constructed in Eqn. (4.7)) intertwines the actions of ˜SL(2,R), the

section Θ in Eqn. (4.9) is preserved by the action of ˜SL(2,R) (the action of ˜SL(2,R) on E induces an

action of ˜SL(2,R) on End(E)).

Proposition 4.1. For any λ ∈ R, the homomorphism Θ in Eqn. (4.9) sends the direct summand
Eλ ⊂ E (see Eqn. (4.6)) to the direct summand Eλ−2

⊗
(T 0,1

H )∗.

Proof. We recall that the holomorphic tangent bundle T 1,0
H has the Poincaré metric defined by ‖ ∂

∂z‖ =
1/Im(z). Hence the holomorphic Hermitian line bundle T 1,0

H is holomorphically isometric to ξ2.

The (1 , 1)-form on H given by the Poincaré metric, which is a ˜SL(2,R)-invariant Kähler form, gives

a smooth ˜SL(2,R)-equivariant isomorphism of T 1,0
H with (T 0,1

H )∗.

Therefore, from Corollary 3.5 it follows that if there is a nonzero ˜SL(2,R)-equivariant homomor-
phism from the C∞ line bundle ξλ to the C∞ line bundle ξλ′

⊗
(T 0,1

H )∗, then λ′ = λ− 2.

Since the action of ˜SL(2,R) on Eλ is defined using the trivial action of ˜SL(2,R) on WE,λ (see Eqn.

(4.5)), applying the above assertion to the ˜SL(2,R)-invariant section Θ, the proof of the proposition
is complete. �

In the proof of Proposition 4.1 we saw that the holomorphic tangent bundle T 1,0
H equipped with

the Poincaré metric is holomorphically isometric to ξ2. On the other hand, ξλ1+λ2 is holomorphically
isometric to ξλ1

⊗
ξλ2 equipped with the Hermitian structure induced by the Hermitian structures on

ξλ1 and ξλ2 . Therefore, ξλ
⊗
T 1,0

H is holomorphically isometric to ξλ+2 for all λ ∈ R.

Fix once and for all a holomorphic bundle map

(4.10) fλ : ξλ −→ ξλ−2 ⊗ T 1,0
H , λ ∈ R

which is isometric. The isomorphism fλ clearly intertwines the actions of ˜SL(2,R).

We also noted in the proof of Proposition 4.1 that the Kähler form on H for the Poincaré metric gives
a ˜SL(2,R)-equivariant smooth isomorphism of T 1,0

H with (T 0,1
H )∗. Combining this with the isomorphism
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fλ in Eqn. (4.10) we get a ˜SL(2,R)-equivariant smooth isomorphism

(4.11) f ′λ : ξλ −→ ξλ−2 ⊗ (T 0,1
H )∗ .

Let
Θλ : Eλ −→ Eλ−2 ⊗ (T 0,1

H )∗

be the homomorphism obtained by restricting the smooth homomorphism Θ constructed in Eqn. (4.9)
(see Proposition 4.1). This homomorphism Θλ and the smooth isomorphism f ′λ in Eqn. (4.11) together

give a ˜SL(2,R)-equivariant smooth homomorphism of vector bundles

(4.12) Θ′
λ : Eλ := ξλ ⊗C WE,λ −→ ξλ ⊗C WE,λ−2

(see Eqn. (4.5)).

Lemma 4.2. The homomorphism Θ′
λ in Eqn. (4.12) is of the form Idξλ

⊗
T , for some linear trans-

formation T ∈ Hom(WE,λ ,WE,λ−2).

Proof. Recall that the action of ˜SL(2,R) on Eλ was constructed using the trivial action of ˜SL(2,R) on

the vector space WE,λ. Therefore, the lemma follows immediately from the fact that Θ′
λ is ˜SL(2,R)-

equivariant. �

Thus, given a holomorphic Hermitian vector bundle (E , h) over H equipped with an action of
˜SL(2,R) compatible with both holomorphic and Hermitian structures, we have constructed the fol-

lowing data:

(1) A direct sum of finite dimensional Hilbert spaces indexed by real numbers

(4.13) H(E) :=
⊕
λ∈R

WE,λ

such that WE,λ = 0 for all but finitely many real numbers, and
(2) a linear map

(4.14) Θ′ : H(E) −→ H(E)

such that Θ′(WE,λ) ⊂ WE,λ−2 for all λ.

By making Eqn. (4.13) an orthogonal direct sum we get an inner product on the vector space H(E).

In the next section we will invert the above construction in the sense that starting from a data
of the above type, we will construct a holomorphic Hermitian vector bundle over H equipped with a
compatible action of ˜SL(2,R).

5. Higher rank equivariant bundles on H

Suppose we are given the following data:

(1) An orthogonal direct sum of finite dimensional complex Hilbert spaces indexed by real numbers

H :=
⊕
λ∈R

Hλ

such that Hλ = 0 for all but finitely many real numbers, and
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(2) a linear map

(5.1) ρ : H −→ H

such that ρ(Hλ) ⊂ Hλ−2 for all λ ∈ R.

Let F denote the smooth vector bundle

(5.2) F :=
⊕
λ∈R

ξλ ⊗C Hλ

(recall that Hλ is nonzero for only finitely many λ). The Hermitian structures on the line bundles
ξλ and the inner product on the vector spaces Hλ together give a Hermitian structure on the vector
bundle F defined in Eqn. (5.2). This Hermitian structure on F will be denoted by hF .

Equip each Hλ with the trivial action of ˜SL(2,R). Now using the action of ˜SL(2,R) on the line

bundles ξλ we get an action of ˜SL(2,R) on F that preserves the above defined Hermitian structure
hF .

The holomorphic structures on the line bundles ξλ together induce a holomorphic structure on F .
This holomorphic structure on F is clearly preserved by the above action of ˜SL(2,R).

Using ρ (in Eqn. (5.1)) we will construct a new holomorphic structure on F .

Let ∂F denote the Dolbeault operator on F giving the holomorphic structure of F obtained using
the holomorphic structures on the line bundles ξλ.

For any λ ∈ R, let ρ(λ) : Hλ −→ Hλ−2 be the restriction of the homomorphism ρ in Eqn. (5.1).
Using the isomorphism f ′λ in Eqn. (4.11), this homomorphism ρ(λ) gives a smooth homomorphism of
vector bundles

(5.3) Sλ = f ′λ ⊗ ρ(λ) : ξλ ⊗C Hλ −→ (ξλ−2 ⊗ (T 0,1
H )∗)⊗C Hλ−2 = (ξλ−2 ⊗C Hλ−2)⊗ (T 0,1

H )∗ .

It is easy to see that Sλ intertwines the actions of ˜SL(2,R).

Let

(5.4) ∂
′
F := ∂F +

(⊕
λ∈R

Sλ

)
be the Dolbeault operator on F , where ∂F is the earlier defined Dolbeault operator on F , and Sλ

is defined in Eqn. (5.3). Since both ∂F and Sλ are preserved by the action of ˜SL(2,R) on F , the

holomorphic structure defined by ∂′F (see Eqn. (5.4)) is also preserved by the action of ˜SL(2,R).

Therefore, ((F , ∂F ) , hF ) is a holomorphic Hermitian vector bundle over H equipped with an action

of ˜SL(2,R) which is compatible with both the holomorphic and the Hermitian structures. It is straight-
forward to check the following: If we substitute ((F , ∂F ) , hF ) for (E , h) in Section 4, then the data
we get from it (see the end of Section 4) coincide with the above data (H , ρ).

Conversely, if we perform the above construction using the data (H(E) ,Θ′) in Eqn. (4.13) and
Eqn. (4.14), then we get back the holomorphic Hermitian vector bundle (E , h) from which the data
(H(E) ,Θ′) were constructed.

Therefore, we have proved the following theorem.

Theorem 5.1. Once the isomorphisms f ′λ in Eqn. (4.11) are fixed, there is a natural bijective corre-
spondence between the following two collections:
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(1) holomorphic Hermitian vector bundle over H equipped with an action of ˜SL(2,R) which is
compatible with both the holomorphic and the Hermitian structures, and

(2) pairs of the form (H , ρ), where
H :=

⊕
λ∈R

Hλ

is an orthogonal direct sum of finite dimensional Hilbert spaces with Hλ = 0 for all but finitely
many real numbers, and

ρ : H −→ H

is a linear map with ρ(Hλ) ⊂ Hλ−2 for all λ ∈ R.

6. Classification of isomorphism classes

Let (E1 , h1) and (E2 , h2) be two holomorphic Hermitian vector bundles over H equipped with

actions of ˜SL(2,R) which are compatible with both the holomorphic and the Hermitian structures.
They will be called equivalent if there is a holomorphic isometry E1 −→ E2 that intertwines the
actions of ˜SL(2,R).

Our aim in this section is to investigate the conditions on the data of the type (H , ρ) in Theorem
5.1 that translate into the above equivalence condition on equivariant holomorphic Hermitian vector
bundles.

Take a pair (H , ρ), where
H :=

⊕
λ∈R

Hλ

is an orthogonal direct sum of finite dimensional Hilbert spaces with Hλ = 0 for all but finitely many
real numbers, and

ρ : H −→ H

is a linear map with ρ(Hλ) ⊂ Hλ−2 for all λ ∈ R. Let

H ′ :=
⊕
λ∈R

H ′
λ

be another finite dimensional Hilbert space of above type, and let

ρ′ : H ′ −→ H ′

be a linear map such that ρ′(H ′
λ) ⊂ H ′

λ−2 for all λ ∈ R. Assume that there is a linear isometry

(6.1) ψ : H −→ H ′

such that ψ(Hλ) = H ′
λ for all λ ∈ R, and furthermore,

ρ′ ◦ ψ = ψ ◦ ρ .

Let ((F , ∂F ) , hF ) (respectively, ((F ′ , ∂F ′) , hF ′)) be the vector bundle corresponding to (H , ρ)
(respectively, (H ′ , ρ′)) given by Theorem 5.1. Therefore,

F :=
⊕
λ∈R

ξλ ⊗C Hλ ,

and
F ′ :=

⊕
λ∈R

ξλ ⊗C H
′
λ



˜SL(2, R)-HOMOGENEOUS VECTOR BUNDLES 13

(see eqn. (5.2)).

Consider the smooth isomorphism between vector bundles

ψ̃ :=
⊕
λ∈R

(Idξλ
⊗ ψλ) : F =

⊕
λ∈R

ξλ ⊗C Hλ −→
⊕
λ∈R

ξλ ⊗C H
′
λ = F ′ ,

where ψλ is the restriction to Hλ of the isomorphism ψ in Eqn. (6.1). It is straight-forward to
check that this isomorphism ψ̃ takes the holomorphic structure ∂F to ∂F ′ , and it takes the Hermitian
structure hF to hF ′ . Furthermore, ψ̃ intertwines the actions of ˜SL(2,R).

Therefore, ((F , ∂F ) , hF ) and ((F ′ , ∂F ′) , hF ′) are equivalent.

Conversely, let (E , h) and (E′ , h′) be two holomorphic Hermitian vector bundles over H equipped

with actions of ˜SL(2,R) that are compatible with the holomorphic and Hermitian structures. Let

(6.2) δ : E −→ E′

be a holomorphic isometry intertwining the actions of ˜SL(2,R). In other words, δ gives an equivalence.

For any ˜SL(2,R)-equivariant smooth homomorphism of vector bundles

α : ξλ −→ E ,

the composition δ ◦ α is a ˜SL(2,R)-equivariant smooth homomorphism from ξλ to E′, where δ is the
homomorphism in Eqn. (6.2). The map defined by α 7−→ δ ◦ α gives a linear isometry of the Hilbert
space WE,λ (defined in Eqn. (4.3)) with the Hilbert space WE′,λ, where WE′,λ denotes the Hilbert
space obtained by substituting (E′ , h′) for (E , h) in the construction of WE,λ; see Eqn. (4.3). Let

(6.3) ψλ : WE,λ −→ WE′,λ

be the isometry obtained this way.

Let
ρ :

⊕
λ∈R

WE,λ −→
⊕
λ∈R

WE,λ

and
ρ′ :

⊕
λ∈R

WE′,λ −→
⊕
λ∈R

WE,λ

be the homomorphisms constructed as in Eqn. (4.14) from (E , h) and (E′ , h′) respectively. The
restriction of ρ (respectively, ρ′) to WE,λ (respectively, WE′,λ) will be denoted by ρλ (respectively,
ρ′λ). Now, it is easy to check that ψλ constructed in Eqn. (6.3) has the property that

ρ′λ ◦ ψλ = ψλ−2 ◦ ρλ ,

Therefore, we have proved the following:

Theorem 6.1. Let (E , h) and (E′ , h′) be two holomorphic Hermitian vector bundles over H equipped

with actions of ˜SL(2,R) which are compatible with both the holomorphic and the Hermitian structures.
Let (H =

⊕
λ∈RHλ , ρ) and (H ′ =

⊕
λ∈RH

′
λ , ρ

′) be the data for (E , h) and (E′ , h′) respectively given
by Theorem 5.1. Then the following two statements are equivalent:

(1) There is a holomorphic isometry E −→ E′ intertwining the actions of ˜SL(2,R).
(2) There is a linear isometry H −→ H ′ that takes Hλ to H ′

λ for all λ, and it intertwines ρ and
ρ′.
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Let (E , h) be a holomorphic Hermitian vector bundle over H equipped with an action of ˜SL(2,R)
which is compatible with both the holomorphic and the Hermitian structures. We will say that (E , h)
is decomposable if there is a smooth nonzero subbundle F ⊂ E such that

• rank(F ) < rank(E), and
• the Chern connection on E leaves F invariant.

These two conditions are equivalent to the condition that the orthogonal complement F⊥ is nonzero
with both F and F⊥ being left invariant by the Chern connection on E. From the equivalence of
statements prior to Proposition 2.3 it follows that the above two conditions are equivalent to the
condition that both F and F⊥ are holomorphic nonzero subbundles. If a smooth subbundle F ⊂ E

is left invariant by the Chern connection on E, then Proposition 2.3 says that F is also left invariant
by the action of ˜SL(2,R) on E.

We will say that (E , h) is indecomposable if it is not decomposable.

Theorem 5.1 associates to (E , h) data of following type:

• A Hilbert space H and an orthogonal decomposition

H :=
⊕
λ∈R

Hλ

with Hλ = 0 for all but finitely many real numbers, and
• a linear map

ρ : H −→ H

with ρ(Hλ) ⊂ Hλ−2 for all λ ∈ R.

We will call (H =
⊕

λ∈RHλ , ρ) to be decomposable if the following conditions hold:

(1) for each λ ∈ R, there is a linear subspace H ′
λ ⊂ Hλ such that

0 6=
⊕
λ∈R

H ′
λ =: H ′ 6= H

and
(2) the subspaces H ′ ⊂ H and its orthogonal complement H ′⊥ are both preserved by the homo-

morphism ρ.

We will say that (H =
⊕

λ∈RHλ , ρ) is indecomposable if it is not decomposable.

From the construction of the bijective correspondence in Theorem 5.1, we have the following corol-
lary:

Corollary 6.2. Let (E , h) be a holomorphic Hermitian vector bundle over H equipped with an action

of ˜SL(2,R) which is compatible with both the holomorphic and the Hermitian structures. Let (H =⊕
λ∈RHλ , ρ) be the corresponding data given by Theorem 5.1. Then the following two statements are

equivalent:

(1) The holomorphic Hermitian vector bundle (E , h) is indecomposable.
(2) The data (H =

⊕
λ∈RHλ , ρ) is indecomposable.
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7. Some numerical invariants

Let (E , h) be a holomorphic Hermitian vector bundle over H equipped with an action of ˜SL(2,R)
which is compatible with both the holomorphic and the Hermitian structures. Let ∇ denote the
Chern connection on E. The curvature of ∇ will be denoted by K(∇). Therefore, K(∇) is a smooth

(1 , 1)-form on H, with values in End(E), which is left invariant by the action of ˜SL(2,R).

Let ω denote the Kähler form on H given by the Poincaré metric. So, we have

(7.1) K(∇) = KE ⊗ ω ,

where KE is a ˜SL(2,R)-invariant smooth section of End(E). For any point z ∈ H, consider the

eigenvalues (along with multiplicities) of KE(z) ∈ End(Ez). Since KE is ˜SL(2,R)-invariant, these
eigenvalues are independent of the choice of the point z. Therefore, they can be considered as numerical
invariants for (E , h).

We will describe K(∇) in terms of the data for (E , h) given by Theorem 5.1.

Let∇E denote the Chern connection of the holomorphic Hermitian vector bundle (E ,H) constructed
in Eqn. (4.6) from (E , h). Therefore, ∇0,1

E is the Dolbeault operator ∂E on E (see Eqn. (4.9)).

Let

(7.2) ∇̃1,0 := (γ−1
E ⊗ Id

Ω1,0
H

) ◦ ∇1,0 ◦ γE : E −→ E⊗ Ω1,0
H

be the differential operator, where ∇1,0 is the (1 , 0)-component of the Chern connection ∇ on (E , h),
and γE is the smooth isomorphism constructed in Eqn. (4.7). We know that

(7.3) ∂
φ
E := (γ−1

E ⊗ Id
Ω0,1

H
) ◦ ∂E ◦ γE = ∂E + Θ

(see Eqn. (4.8) and Eqn. (4.9)). Since the homomorphism γE is an isometry, the connection γ∗E∇ =
∇̃1,0 + ∂

φ
E on E is preserves its Hermitian structure H. Now from Eqn. (7.3), and the fact the

connection ∇E is Hermitian, it follows that

∇̃1,0 = ∇1,0
E −Θ∗ ,

where ∇1,0
E is the (1 , 0)-component of the Chern connection ∇E on E.

In other words, we have

γ∗E∇ = ∇E −Θ∗ + Θ .

Therefore, the curvature K(γ∗E∇) of γ∗E∇ has the following expression:

(7.4) K(γ∗E∇) = γ∗EK(∇) = K(∇E)−Θ∗ ∧Θ−Θ ∧Θ∗ ,

where K(∇E) is the curvature of the connection ∇E.

The curvature K(∇E) has the following expression:

K(∇E) = −
⊕
λ∈R

λ · IdEλ
· ω ,

where ω is the Kähler form on H for the Poincaré metric (here the decomposition of E given in Eqn.
(4.6) is used). Indeed, this follows from the fact that the decomposition in Eqn. (4.6) is an orthogonal
decomposition into holomorphic subbundles.
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Let (H =
⊕

λ∈RHλ , ρ) be the data for (E , h) given by Theorem 5.1. Using Eqn. (7.4) and the
above expression for K(∇E) it follows that the γ∗EK(∇) corresponds to the endomorphism

T = −
⊕
λ∈R

((ρλ)∗ρλ − ρλ+2(ρλ+2)∗ + λ · IdHλ
)

of H, where ρλ is the restriction of ρ to Hλ.

It may be noted that the eigenvalues of the operator

ρ̃ :=
⊕
λ∈R

(ρλ)∗ρλ

on H are also numerical invariants of (E , ρ).

We will now give an example to show that these numerical invariants and the numerical invariants
given by the eigenvalues of KE (constructed in Eqn. (7.1)) do not determine (E , h). Let a, b and x

be any three real numbers. Consider

ρ =


0 0
0 0

a 0
0 b

0 0
0 0

0 0
0 0

0 0
0 0

x 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

 and ρ′ =


0 0
0 0

a 0
0 b

0 0
0 0

0 0
0 0

0 0
0 0

0 0
x 0

0 0
0 0

0 0
0 0

0 0
0 0

 .

Here H = H0
⊕
H2
⊕
H4 with H0 = H2 = H4 = C2 equipped with the standard metric. Since

ρ3 = 0 and ρ′3 6= 0, it follows that ρ cannot be unitarily equivalent to ρ′. Furthermore, ρρ∗ as well
as ρ∗ρ are diagonal with eigenvalues a2, b2, x2, 0. Similarly, ρ′ρ′∗ and ρ′∗ρ′ are diagonal with the same
set of eigenvalues a2, b2, x2, 0. The eigenvalues of ρρ∗ − ρ∗ρ are a2, b2, x2 − a2,−b2,−x2, 0 while those
of ρ′ρ′∗ − ρ′∗ρ′ are a2, b2,−a2, x2 − b2,−x2, 0. These two sets of eigenvalues are equal for a = b.
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[Korányi and Misra 2006] A. Korányi and G. Misra, “New constructions of homogeneous operators”, C. R. Acad. Sci.
Paris, ser. I 342 (2006), 933 – 936.

[Wilkins 1993] D. R. Wilkins, “Homogeneous vector bundles and Cowen-Douglas operators”, Int. Jour. Math. 4 (1993),
503–520.

School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Bombay 400005,
India

E-mail address: indranil@math.tifr.res.in

Indian statistical Institute, R. V. College Post Office, Bangalore 560059, India

E-mail address: gm@isibang.ac.in


