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A CLASSIFICATION OF HOMOGENEOUS OPERATORS

IN THE COWEN-DOUGLAS CLASS

ADAM KORÁNYI AND GADADHAR MISRA

Abstract. An explicit construction of all the homogeneous holomorphic Hermitian vector bundles
over the unit disc D is given. It is shown that every such vector bundle is a direct sum of irreducible
ones. Among these irreducible homogeneous holomorphic Hermitian vector bundles over D, the ones
corresponding to operators in the Cowen-Douglas class Bn(D) are identified. The classification of
homogeneous operators in Bn(D) is completed using an explicit realization of these operators. We
also show how the homogeneous operators in Bn(D) split into similarity classes.

1. Introduction

An operator T is said to be homogeneous if its spectrum is contained in the closed unit disc and for
every Möbius transformation g of the unit disc D, the operator g(T ) defined via the usual holomorphic
functional calculus, is unitarily equivalent to T . To every homogeneous irreducible operator T there
corresponds (cf. [1, Theorem 2.2]) an associated projective unitary representation U of the Möbius
group G0:

U∗
g T Ug = g(T ), g ∈ G0.

The projective unitary representations of G0 lift to unitary representations of the universal cover

G̃0 which are quite well-known. We can choose (cf. [1, Lemma 3.1]) Ug such that k 7→ Uk is a
representation of the rotation group. If

H(n) = {x ∈ H : Ukθx = ei nθx},
where kθ(z) = eiθz, then T : H(n) → H(n + 1) is a block shift. A complete classification of

these for dimH(n) ≤ 1 was obtained in [1] using the representation theory of G̃0. First examples
for dimH(n) = 2 appeared in [14]. Recently [7, 9], an m - parameter family of examples with
dimH(n) = m was constructed. We will use the ideas of [7, 9] to obtain a complete classification of
the homogeneous operators in the Cowen-Douglas class. Finally, we describe the similarity classes
within the homogeneous Cowen-Douglas operators. As a consequence, we obtain an affirmative
answer to the Halmos question (cf. [10]) for this class of operators. We also include a somewhat
new conceptual presentation of the Cowen-Douglas theory and a brief description of the method of
holomorphic induction, which will be our main tool. Our paper is essentially self contained and can
be read without the knowledge of [7] and [9]. The results of this paper were announced in [8] except
for Theorem 4.2.

1.1. Vector bundles. Let M be a complex manifold and suppose π : E → M is a complex vector
bundle. We write, as usual, Ez = π−1(z). For a trivialization, ϕ : E → M × C

n, we write
ϕ(v) = (z, ϕz(v)) for v ∈ Ez with ϕz : Ez → C

n linear. (All we are going to say here would be valid
using local trivializations, but in this article we will always work with global trivializations.)
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We write E∗
z for the complex anti-linear dual of Ez, z ∈ M , and we write [u, v] for u(v), u ∈

E∗
z , v ∈ Ez. We consider C

n to be equipped with its natural inner product and identify it with
its own anti-linear dual (so ξ ∈ C

n is identified with the anti-linear map η 7→ 〈ξ, η〉Cn). Then
ϕ∗
z : Cn → E∗

z is well-defined. We set ψz = ϕ∗
z
−1 and ψ(u) = (z, ψz(u)) for u ∈ E∗

z . This makes
E∗ a complex vector bundle with trivialization ψ. We call ϕ and ψ, the associated trivializations
of E and E∗. If E is a holomorphic vector bundle then E∗ is an anti-holomorphic vector bundle
(meaning that for any two trivializations, ψα and ψβ, the transition functions z 7→ (ψα)z ◦ (ψβ)z

−1

are anti-holomorphic) and vice-versa.
If E has a Hermitian structure, we automatically equip E∗ with the dual structure (giving the

dual norm of Ez to E∗
z for all z ∈M).

By an automorphism of π : E →M , we mean a diffeomorphism ĝ : E → E such that π ◦ ĝ = g ◦ π
for some automorphism g of M . We write gz for the restriction of ĝ to Ez. The automorphism ĝ also
acts on the sections f of E, by (ĝ∗f)(z) = g−1

z f(gz). When G is the group of automorphisms of E
(acting on the left, as usual) we have a representation U of G on the sections given by Uĝf = (ĝ−1)∗f ,
that is,

(Uĝf)(z) = gz f(g
−1z).

Given an automorphism g of E, there is a corresponding automorphism of E∗, where the place of
gz is taken by g∗z

−1. This also remains true in the category of Hermitian bundles. It follows that a
group G of automorphisms of E also acts as a group of automorphisms of E∗. If E is homogeneous,
that is, the action of G is transitive on M , then so is E∗, and vice-versa.

1.2. Reproducing kernel. We describe, essentially following [2], how the usual formalism of reproduc-
ing kernels can be adapted to vector bundles. Suppose H is a Hilbert space whose elements are
sections of a vector bundle E → M and suppose the maps evz : H → Ez are continuous for all
z ∈M . Then setting Kz = ev∗z, we have

[u, f(z)] = [u, evz(f)] = 〈Kzu, f〉H, u ∈ Ez, f ∈ H. (1.1)

For all w ∈ M then Kwu is in H and is linear in u. So, we can write Kw(z)u = evz
(
Kwu

)
=

evzev
∗
w(u). We also write K(z, w) = Kw(z) = evzev

∗
w which is a linear map E∗

w → Ez, and is called
the reproducing kernel of H, (1.1) is the reproducing property.

Clearly, K(w, z) = K(z, w)∗. We have the positivity
∑

j,k[uk,K(zk, zj)uj ] ≥ 0 for any z1, . . . , zp
in M and u1, . . . , up ∈ E∗

z which is nothing but the inequality
∑

j,k

〈(evzk)∗uk, (evzj)∗uj〉H ≥ 0.

Conversely, a K with these properties is always the reproducing kernel of a Hilbert space of sections
of E (cf. [2]).

Suppose we have a vector bundle E and a Hilbert space H of sections of E with reproducing kernel
K; suppose ĝ is an automorphism of E. Then ĝ acts on the sections of E by (g∗f)(z) = g−1

z f(gz).
By the density of linear combinations of the sections of the form Kwu, the condition for this action
to preserve H and act on it isometrically is

〈g∗(Kwu),Kzu
′〉H = 〈Kwu, (g

−1)∗(Kzu
′)〉H

for all z, w; u, u′. Evaluating both sides using (1.1), this amounts to

K(gz, gw) = gz K(z, w) g∗w, for all z, w ∈M.

The following remarks will be important for us. Suppose each evz is non-singular, that is, its range
is the whole of Ez. (This is so in the important case where H is dense in the space of sections of
E in the topology of uniform convergence on compact sets.) Then Kz = ev∗z is an imbedding of E∗

z
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into H. Postulating that this imbedding is an isometry we obtain a canonical Hermitian structure
on E∗. Using (1.1) we can write for the norm on E∗

‖u‖2z = ‖Kzu‖2H = [u,K(z, z)u], u ∈ E∗
z .

The vector bundle E has the dual Hermitian structure, for v ∈ Ez we have

‖v‖2z = [K(z, z)−1v, v].

In fact this statement amounts to

|[u, v]|2 ≤ [K(z, z)−1v, v][u,K(z, z)u]

for all u, v with equality reached for some u, v. Since K(z, w) is bijective by hypothesis, any v ∈ Ez

can be written as v = K(z, z)u′ with u′ ∈ E∗
z and the inequality to be proved is equivalent to

|[u,K(z, z)u′]|2 ≤ [u′,K(z, z)u′][u,K(z, z)u]. But this is just the Cauchy-Schwarz inequality.
When E is a holomorphic vector bundle, K(z, w) depends in z holomorphically and on w anti-

holomorphically. Hence K(z, w) is completely determined by K(z, z). It follows that K(z, w) is
completely determined by the canonical Hermitian structure of E (or E∗).

In the last paragraphs, we had a Hilbert space H of sections of E and (under the assumption that
each evz is surjective) we associated to it a family of imbeddings of E∗

z , the fibres of E∗, into H.
This procedure can be reversed which is of importance for what follows. Suppose now that E is a
vector bundle and the fibres E∗

z of E∗ form a smooth family of subspaces of some Hilbert space H
which together span H, that is, E∗ is a anti-holomorphic sub-bundle of the trivial bundle M ×H).

We write ιz : E∗
z → H for the (identity) imbeddings. We define, f̃(z) = ι∗zf for f ∈ H, z ∈M . Then

f̃ is a section of E and evz(f̃) = ι∗zf . If we denote by H the Hilbert space of all f̃ , f ∈ H, with norm

‖f̃‖ = ‖f‖, each evz is continuous, so we have a reproducing kernel Hilbert space. The reproducing
kernel is Kzu = ι̃zu.

1.3. Operators in the Cowen-Douglas class. We modify the definition of the class of operators intro-
duced in [4] in an inessential way. A conceptual presentation in which the role of the dual of the
bundle constructed in [4] is apparent follows. Given a domain Ω ⊆ C, we say the bounded operator
T on the Hilbert space H is in Bn(Ω) if z̄ is an eigenvalue of T , the range of the operator T − z̄
is closed, and the corresponding eigenspaces Fz are of constant dimension n for z ∈ Ω. It is proved
in [4] that the spaces Fz span an anti-holomorphic Hermitian vector bundle F ⊆ Ω×H. (In [4] the
eigenvalues are z ∈ Ω and so F is a holomorphic vector bundle; it is more convenient for us to change
this.) We write, for z ∈ Ω, ιz : Fz → H for the identity imbedding. Now, E = F ∗ is a holomorphic
vector bundle, this will be the primary object for us. The bundle F is identified with E∗, in what
follows we refer to it as E∗. We are now in the situation discussed above in Section 1.2.

To the elements f of H there correspond the sections f̃ of E (defined by f̃(z) = ι∗zf) and form a
Hilbert space H isomorphic with H and having a reproducing kernel Kzu = ι̃zu.

Under this isomorphism, the operator on H corresponding to T is M∗, where M is the multipli-
cation operator (Mf̃)(z) = zf̃(z). In fact (cf. [4]) for any u ∈ E∗

z ,

[u, T̃ ∗f(z)] = 〈ιzu, T ∗f〉H = 〈T ιzu, f〉H = z̄〈ιzu, f〉H
= [u, zf̃(z)] = [u,Mf̃(z)]

1.4. Trivialization. Finally, we describe how the preceding material appears when the vector bundle is
trivialized. We always use associated trivializations ϕ,ψ of E and E∗. As explained in the beginning,
this means that ψz = ϕ∗

z
−1, that is, [u, v] = 〈ψzu, ϕzv〉Cn for u ∈ E∗

z and v ∈ Ez. We will consider
here only the case where E is a holomorphic vector bundle. When g is an automorphism of E, in the
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trivialization gz : Ez → Egz becomes ϕgz ◦ gz ◦ ϕ−1
z , which we write as the matrix Jg(z)

−1. When g
is followed by another automorphism h, the relation (hg)z = hgz ◦ gz becomes the multiplier identity

Jhg(z) = Jg(z)Jh(gz). (1.2)

For the induced automorphism of E∗, the place of Jg(z) is taken by Jg(z)
∗−1.

The sections of E (resp E∗) in the trivialization become the holomorphic (resp anti-holomorphic)

functions f̂(z) = ϕz(f(z)) (resp ψz(f(z))). The action g∗f of an automorphism g on a section

becomes
(
g∗f̂

)
(z) = Jg(z)f̂(gz). If G is a group of automorphisms of E, the representation U of G

described in Section 1.1 becomes the “multiplier representation”
(
Û f̂

)
(z) = Jg−1(z)f̂ (g−1z). (1.3)

A Hermitian structure on E becomes a family of inner products on C
n, parametrized by z ∈ M .

One can always write
‖ξ‖2Ez

= 〈H(z)ξ, ξ〉Cn

with a positive definite matrixH(z), z ∈M . The structure is invariant under a bundle automorphism
ĝ if and only if 〈H(gz)Jg(z)

−1ξ, Jg(z)
−1ξ〉Cn = 〈H(z)ξ, ξ〉Cn , that is,

H(gz) = Jg(z)
∗H(z)Jg(z).

The dual Hermitian structure of E∗ is given by ‖ξ‖2E∗

z
= 〈H(z)−1ξ, ξ〉Cn .

A Hilbert space H of sections of E becomes a space Ĥ of holomorphic functions from M to C
n.

The reproducing kernel becomes K̂(z, w) = ϕz ◦K(z, w)◦ψ−1
w , a matrix valued function, holomorphic

in z and anti-holomorphic in w. The reproducing property appears as

〈f̂(z), ξ〉Cn = 〈f̂ , K̂zξ〉Ĥ,
the positivity as ∑

j,k

〈K̂(zj , zk)ξk, ξj〉Cn ≥ 0,

and the isometry of the G - action as

Jg(z)K̂(gz, gw)Jg(w)
∗ = K̂(z, w).

The canonical Hermitian structure of E is then given by H(z) = K(z, z)−1.

1.5. Induced representations. We briefly recall some known facts of representation theory. Let G,H
be real (or, complex) Lie groups and H ⊆ G be closed. Given a representation ̺ of H on a complex
finite dimensional vector space V , let F(G,V )H denote the linear space of C∞ (or holomorphic)
functions F : G→ V satisfying

F (gh) = ̺(h)−1F (g), g ∈ G, h ∈ H.

The induced representation (cf. [5, p. 187]) U := IndGH(̺) acts on the linear space F(G,V )H by left
translation: (Ug1f)(g2) = f(g−1

1 g2).
From the linear representations (̺, V ) of H, one obtains all the G - homogeneous vector bundles

over M = G/H as G×H V , which is (G× V )/ ∼, where

(gh, v) ∼ (g, ̺(h)v), h, g ∈ G, v ∈ V.

The map (g, v) 7→ gH is clearly constant on the equivalence class [(g, v)] and hence defines a map
π : G ×H V → M . An action ĝ, g ∈ G, of the group G is now defined on G ×H V by setting

ĝ′
(
[(g, v)]

)
= [(g′g, v)]. This definition is independent of the choice of the representatives chosen.

Thus G ×H V is a homogeneous vector bundle on M . As in Section 1.1, there is a representation
U of G on the sections of G ×H V , where (U(g)s)(x) = ĝ

(
s(g−1 · x)

)
. The lift to G of the section

s of the vector bundle G ×H V is s̃ : G → V with s̃(g) := ĝ−1s(gH). These again form the space
F(G,V )H which shows that U is just another realization of the representation U.
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When M is a manifold with a group G acting on it transitively, we use the usual identification
M = G/H, where H is the stabilizer in G of a chosen fixed point 0 ∈ M . The map q : g 7→ g · 0 is
the quotient map from G to M . Suppose that there exists a global cross-section p :M → G, that is,
a map with q ◦ p = id|M . Then p gives a trivialization of the bundle E = G×H V . The trivializing

map ϕ is given for v ∈ Ez by ϕ(v) = (z, p(z)−1v), that is, ϕz = p(z)−1. (This ϕ actually maps
to M × E0, but E0 with H acting on it by the bundle action can be identified with (̺, V ).) As in
Section 1.4, the action of G on Ez becomes Jg(z)

−1 = ϕgz ◦ gz ◦ϕ−1
z which is now the group product

p(gz)−1gp(z) (preserving the fibre E0) followed by the identification of E0 with V = C
n, that is,

Jg(z) = ̺
(
p(z)−1g−1p(g(z))

)
, z ∈M, g ∈ G. (1.4)

The representation U appears now as the multiplier representation with multiplier (1.4).
Even though not needed in this paper, we point out that given any J : G×M → GLn(C) satisfying

the cocycle condition (1.2), the map
(
Ugf

)
(z) = J−1

g (z)f(g−1 · z) defines a multiplier representation
of the group G. Also, it defines a representation ̺ : h 7→ Jh−1(0) of the group H on the vector space
V . The representation induced by this ̺ is equivalent to U . In fact, the multiplier corresponding to
the cross section p and the representation ̺ is

̺
(
p(z)−1g−1p(g · z)

)
= Jp(g·z)−1gp(z)(0)

= Jp(z)(0)Jp(g·z)−1g(p(z) · 0)
= Jp(z)(0)Jg(z)Jp(g·z)−1(g · z)
= Jp(z)(0)Jg(z)Jp(g·0)(0)

−1.

which is equivalent to the multiplier J .
We remark that the inducing construction always gives a multiplier such that Jg(z) ∈ ̺(H) for

all g, z. Not all multipliers possess this additional property. However, given any multiplier J , we
can always find another multiplier J ′ equivalent to J such that J ′

g(z) ∈ ̺(H), where ̺(h) = Jh−1(0).
This is achieved by taking any section p and setting

J ′
g(z) = Jp(z)(0)Jg(z)Jp(g·z)(0)

−1.

Holomorphic induced representation is a refinement of the induced representation in the case of
real groups G,H such that G/H has a G - invariant complex structure. The complex structure
determines a subalgebra b of gC, namely the isotropy algebra in the local action of gC on G/H. The
holomorphic induced representation is the restriction of the induced representation to a subspace
of F(G,V )H , defined by the differential equations XF = −̺(X)F for all X ∈ b, where ̺ now is a
representation of the pair (H, b). It is an important fact that every G - homogeneous holomorphic
vector bundle arises by holomorphic induction from a simultaneous finite dimensional representation
̺ of H and b (cf. [5, Ch. 13]). We will use this fact to determine all the holomorphic vector bundles
which are homogeneous under the universal cover of the Möbius group.

2. Homogeneous holomorphic vector bundles

In the following, we explicitly construct all the irreducible homogeneous holomorphic Hermitian
vector bundles over the unit disc D. Every homogeneous holomorphic Hermitian vector bundle
on D is then obtained as a direct sum of the irreducible ones (Corollary 2.1). In Section 4, we
determine which ones of these irreducible homogeneous holomorphic Hermitian vector bundles over
D correspond to operators in the Cowen-Douglas class Bn(D).

2.1. The Möbius group. Let G0 be the Möbius group – the group of bi-holomorphic automorphisms
of the unit disc D, G = SU(1, 1) and K ⊆ G be the rotation group. Let G̃ be the universal covering
group of G (and also that of the group G0). The group G acts on the unit disc D according to the
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rule

g : z 7→ (az + b)(b̄z + ā)−1, g =
(
a b
b̄ ā

)
∈ G, z ∈ D.

The group G̃ also acts on D (by g · z = q(g) · z, where q : G̃ → G is the covering map), we denote

the stabilizer of 0 in it by K̃. So D ∼= G/K ∼= G̃/K̃. The complexification GC of the group G is the
(simply connected) group SL(2,C).

In the following, we use the notation of [7, 9], which is the notation used in [13]. The Lie algebra

g of the group G is spanned by X1 =
1
2

(
0 1
1 0

)
, X0 =

1
2

(
i 0
0 −i

)
and Y = 1

2

(
0 1
1 0

)
. The subalgebra k

corresponding to K is spanned by X0. In the complexified Lie algebra gC, we mostly use the complex
basis h, x, y given by

h = −iX0 =
1

2

(
1 0
0 −1

)

x = X1 + iY =
(
0 1
0 0

)

y = X1 − iY =
(
0 0
1 0

)

The subgroup of GC corresponding to g is G. The group GC has the closed subgroups K
C ={(z 0

0 1
z

)
: z ∈ C, z 6= 0

}
, P+ =

{(
1 z
0 1

)
: z ∈ C

}
, P− =

{(
1 0
z 1

)
: z ∈ C

}
; the corresponding

Lie algebras kC =
{(
c 0
0 −c

)
: c ∈ C

}
, p+ =

{(
0 c
0 0

)
: c ∈ C

}
, p− =

{(
0 0
c 0

)
: c ∈ C

}
are

spanned by h, x and y, respectively. The product KCP− =
{(a 0

b 1
a

)
: 0 6= a ∈ C, b ∈ C

}
is a closed

subgroup to be also denoted B; its Lie algebra is b = Ch+ Cy. The product set P+
K

CP− = P+B
is dense open in GC, contains G, and the product decomposition of each of its elements is unique.
(GC/B is the Riemann sphere, gK → gB, (g ∈ G) is the natural embedding of D ∼= G/K into it.)
Linear representations (̺, V ) of the algebra b ⊆ gC = sl(2,C), that is, pairs of linear transformations
̺(h), ̺(y) satisfying

[̺(h), ̺(y)] = −̺(y) (2.1)

are automatically representations of K as well. Therefore they give, by holomorphic induction, all
the homogeneous holomorphic vector bundles.

A homogeneous holomorphic vector bundle that admits a G̃ - invariant Hermitian structure will be
called Hermitizable. Since the vector bundles corresponding to operators in the Cowen - Douglas class
are of this type, we only consider these bundles (except for some comments following Remark 3.1).

The G̃ - invariant Hermitian structures on the homogeneous holomorphic vector bundle (making it

into a homogeneous holomorphic Hermitian vector bundle), if they exist, are given by ̺(K̃) - invariant

inner products on the representation space V . A ̺(K̃) - invariant inner product exists if and only
if ̺(h) is diagonal with real diagonal elements in an appropriate basis. So, we will assume without
restricting generality, that the representation space of ̺ is Cd and that ̺(h) is a real diagonal matrix.

Furthermore, we will be interested only in irreducible homogeneous holomorphic Hermitian vector
bundles, this corresponds to ̺ not being the orthogonal direct sum of non-trivial representations.

Let Vλ be the eigenspace of ̺(h) with eigenvalue λ. We say that a Hermitizable homogeneous
holomorphic vector bundle is elementary if the eigenvalues of ̺(h) form an uninterrupted string:
−η,−(η + 1), . . . ,−(η +m). Every irreducible homogeneous holomorphic Hermitian vector bundle
is elementary, In fact, let −η be the largest eigenvalue of ̺(h) and m be the largest integer such
that −η,−(η + 1), . . . ,−(η +m) are all eigenvalues. From (2.1) we have ̺(y)Vλ ⊆ Vλ−1; this and
orthogonality of the eigenspaces imply that V = ⊕m

j=0V−(η+j) and its orthocomplement are invariant
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under ̺. So, V is the whole space C
d, and we have proved that the the bundle is elementary. We

can write V(η+j) = C
dj and hence (̺,Cd) is described by the two matrices:

̺(h) =



−ηI0

. . .

−(η +m)Im


 ,

where Ij is the identity matrix on C
dj and

Y := ̺(y) =




0
Y1 0

Y2 0
. . .

. . .

Ym 0




for some choice of matrices Y1, . . . , Ym that represent the linear transformations Yj : Cdj−1 → C
dj .

Let E(η,Y ) denote the holomorphic bundle induced by this representation.
It is clear that ̺ can be written as the tensor product of the one dimensional representation σ

given by σ(h) = −η, σ(y) = 0, and the representation ̺0 given by ̺0(h) = ̺(h) + ηI, ̺0(y) = ̺(y).

Correspondingly, the bundle E(η,Y ) for ̺ is the tensor product of a line bundle Lη and the bundle

corresponding to ̺0, that is, E(η,Y ) = Lη ⊗E(0,Y ).

For g ∈ G̃, g′(z) (we write g′(z) = ∂g
∂z (z)) is a real analytic function on the simply connected set

G̃ × D, holomorphic in z. Also g′(z) 6= 0 since g is one-one and holomorphic. Given any λ ∈ R,
taking the principal branch of the power function when g is near the identity, we can uniquely define
g′(z)λ as a real analytic function on G̃× D which is holomorphic on D for all fixed g ∈ G̃.

For the line bundle Lη, the multiplier is g′(z)η . Consequently, the multiplier corresponding to the
original ̺ is

Jg(z) =
(
g′(z)

)η
J0
g (z), (2.2)

where J0 is the multiplier obtained from ̺0.
The advantage of ̺0 is that it is also a representation of G (not only of G̃) and extends to a

representation of GC. The (ordinary) induced representation (in the holomorphic category) IndGT (̺)
operates on functions F : GC → V such that F (gt) = ̺0(t)−1F (g) (g ∈ GC, t ∈ T ). The restrictions of
these functions F to G then give exactly the functions Φ : G→ V which satisfy Φ(gk) = ̺0(k)−1Φ(g)
(g ∈ GC, t ∈ T ) and (XΦ)(g) = −̺0(X)Φ(g) (g ∈ G, X ∈ b), that is, the space of the representation
holomorphically induced by ̺0. Taking a holomorphic local cross section p of GC defined on D, the
functions f(z) = F (p(z)) give a trivialization of E(0,Y ).

We use the local cross section p : D → GC, z 7→ p(z):=
(
1 z
0 1

)
. Apply (1.4) to compute the

corresponding multiplier J0
g (z). For g =

(
a b
c d

)
∈ G, we have

J0
g (z) = ̺0

((
1 −g · z
0 1

)(
a b
c d

)(
1 z
0 1

))−1

= ̺0
(
cz + d 0
−c (cz + d)−1

)

= ̺0
((

(cz + d)
1
2 0

0 (cz + d)−
1
2

)(
1 0
−c 1

)(
(cz + d)

1
2 0

0 (cz + d)−
1
2

))

= ̺0(exp(2 log(cz + d)
1
2h))̺0(exp(−cy))̺0(exp(2 log(cz + d)

1
2h))

= Dg(z) exp(−cY )Dg(z), (2.3)
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where Dg(z) is the diagonal matrix with

Dg(z)ℓℓ = (cz + d)−
j

2 Idj .

Computing the matrix entries of the exponential using (2.2), we obtain for g ∈ G̃, z ∈ D,

((J (η,Y )
g (z)))p,ℓ := (g′(z))ηJ0

g (z)

=

{
1

(p−ℓ)!(−cg)p−ℓg′(z)η+
p+ℓ

2 Yp · · ·Yℓ+1 if p ≥ ℓ

0 if p < ℓ.
(2.4)

In this formula cg for g ∈ G̃ is to be understood as cg# , where g
# is the projection to G of g. We

note here, for later use, that there is also another way to interpret cg for g ∈ G̃. Taking a small

neighborhood Ũ of the identity in G̃ such that the projection is a diffeomorphism onto a neighborhood
U of the identity in G, by computing in U , we find that

g′′(z) = −2cg g
′(z)3/2 (2.5)

holds with cg an analytic function of g on U , independent of z. This is then true for g ∈ Ũ and by

analytic continuation for all g ∈ G̃. So the equation (2.5) can serve as a definition for cg.

Proposition 2.1. All elementary Hermitizable homogeneous holomorphic vector bundles are of the
form E(η,Y ) with η ∈ R and Y as before. The bundles E(η,Y ) and E(η′,Y ′) are isomorphic if and only
if η = η′ and Y ′ = AY A−1 with a block diagonal matrix A.

Proof. The induced bundles are isomorphic if and only if the inducing representations ̺, ̺′ are
linearly equivalent, that is, ̺′ = A̺A−1 for some A. Since we have normalized the representations
by fixing the matrix ̺(h), the equivalence must be given by an A which commutes with ̺(h), that
is, by a block diagonal A. �

Thus E(η,{Y }) = Lη ⊗ E({Y }) parametrizes the equivalence classes of elementary Hermitizable
homogeneous holomorphic vector bundles. Here, we have let {Y } denote the conjugacy class of Y
under conjugation by a block diagonal matrix A.

2.2. Homogeneous holomorphic Hermitian vector bundles. We proceed to discuss homogeneous holo-
morphic Hermitian vector bundles. From here on we will always use the trivialization we just de-
scribed. We will not always make a careful distinction between a section of E(η,Y ) and the functions

from D to C
don which G acts by the multiplier J

(η,Y )
g (z). As in Section 1, a Hermitian structure

appears in the trivialization as a family of quadratic forms 〈H(z)ξ, ξ〉, which because of the homo-
geneity is determined by a single positive definite block-diagonal matrix H = H(0). We denote by

(E(η,Y ),H) the bundle E(η,Y ) equipped with the Hermitian structure determined by H.

Proposition 2.2. The Hermitian vector bundles (E(η,Y ),H) and (E(η′ ,Y ′,),H ′) are isomorphic if
and only if η = η′, Y ′ = AY A−1 and H ′ = A∗−1HA with a block diagonal matrix A.

Proof. The trivialization of the sections obtained by starting with ̺ (resp. ̺′ = A̺A−1) are related
as f ′(z) = Af(z). Now, H ′(z) gives the same metric as H(z) if and only if 〈H ′(z)f ′(z), f ′(z)〉 =
〈H(z)f(z), f(z)〉. From this, the statement follows. �

For any H, clearly there is an A such that A∗−1HA = I. This means that every elementary
homogeneous holomorphic Hermitian vector bundle is isomorphic to one of the form (E(η,Y , I). Two
vector bundles of this form are equivalent if and only if Y ′ = AY A−1 with A such that A∗−1IA−1 =
I, that is, with a block-diagonal unitary A. We denote by [Y ] the equivalence class of Y under

conjugation by block-diagonal unitaries and write E(η,[Y ]) for the equivalence class of (E(η,Y ), I),
omitting the I. We now have the first half of the following Proposition.
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Proposition 2.3. For η ∈ R, [Y ] a block unitary conjugacy class of matrices Y , the vector bun-

dles E(η,[Y ]) form a parametrization of the elementary homogeneous holomorphic Hermitian vector
bundles. The Hermitian vector bundle E(η,[Y ]) is irreducible if and only if Y cannot be split into
orthogonal direct sum Y ′ ⊕ Y ′′ with Y ′, Y ′′ having the same block diagonal form as Y .

Proof. The last statement follows since the irreducibility of E(η,[Y ]) is the same as the possibility of
splitting ̺ into an orthogonal direct sum of two sub-representations. �

Proposition 2.3, with a different proof, also appears in [3].
The following Theorem is important because its hypothesis is exactly what we know about the

vector bundle corresponding to a homogeneous operator in the Cowen-Douglas class Bn(D). It was
stated in [7] but proved without the uniqueness statement. Here we give a complete proof.

Theorem 2.1. Let E be a Hermitian holomorphic vector bundle over D and suppose that for all
g ∈ G, there exists an automorphism of E whose action on D coincides with g. Then the full
automorphism group of E is reductive and G̃ acts on E by automorphisms in a unique way.

Proof. Let Ĝ denote the connected component of the automorphism group of E. It is a Lie group
because it is the connected component of the isometry group of E under the Riemannian metric
defined for vectors tangent to the fibres by the Hermitian structure and for vectors horizontal with
respect to the Hermitian connection by the G-invariant metric of D.

Let N ⊆ Ĝ be the subgroup of elements acting on D as the identity map. The subgroup N is
normal, and the projection π : Ĝ→ G is a homomorphism with kernel N . Let K be the stabilizer of
0 in G and let K̂ = π−1(K). The group K̂ contains N and is compact because it is the stabilizer of
the origin in the fiber over 0.

Let ĝ, g, k, n, k̂ be the Lie algebras of the groups defined above, and let g = k + p be the Cartan
decomposition. Since K̂ is compact, we can choose an Ad(K̂) - invariant complement p̂ to k̂ in ĝ. Now,

π∗ maps k̂ onto k with kernel n. By counting dimension, it follows that π∗ maps p̂ to p bijectively.
We set k̂0 = [p̂, p̂]. Then π∗(k̂0) = [π∗p̂, π∗p̂] = k, therefore k̂0 ⊆ π−1

∗ (k) = k̂. It follows that

[̂k0, p̂] ⊆ p̂ and by the Jacobi identity, ĝ0 = k̂0 + p̂ is a subalgebra. Similarly, [n, p̂] ⊆ p̂ since n ⊆ k̂.
But n is an ideal, so [n, p] = 0, and by the Jacobi identity [n, ĝ0] = 0. Finally, ĝ = n ⊕ ĝ0 and g is

reductive. The analytic subgroup Ĝ0 ⊆ Ĝ corresponding to ĝ0 is a covering group of G and therefore
it acts on E by automorphisms. It is the unique subgroup of Ĝ with this property because ĝ0, being
the maximal semisimple ideal in the reductive algebra ĝ, is uniquely determined. The action of Ĝ0

now lifts to a unique action of G̃. �

Theorem 2.1 implies that every homogeneous operator in the Cowen-Douglas class Bn(D) has an
associated representation irrespective of whether it is irreducible or not. The following Corollary has
also appeared in [3].

Corollary 2.1. If a Hermitian holomorphic vector bundle E is homogeneous and is reducible (E =
E1⊕E2) as a Hermitian holomorphic vector bundle then it is reducible as a homogeneous Hermitian
holomorphic vector bundle, that is, E1 and E2 are also homogeneous.

Proof. We consider the automorphisms exp th of E, where

h =

{
iI on E1

−iI on E2.

Then h is in n since exp th (t ∈ R) preserves fibres. So, h commutes with ĝ0. The sections of

E1, E2 are characterized as eigensections of h corresponding to different eigenvalues. Thus Ĝ0, and
its universal covering G̃ preserve the eigensections of h. �
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3. Homogeneous holomorphic Hermitian vector bundles with reproducing kernel

In this Section, we determine which ones of the elementary homogeneous holomorphic Hermitian
vector bundles have their Hermitian structure coming from a reproducing kernel. In other words,
which are the homogeneous holomorphic vector bundles that have a G̃ - invariant reproducing kernel
K(z, w). When there is a reproducing kernel K, it gives a canonical Hermitian structure by setting

H = K(0, 0)−1. Let pz =
1√

1−|z|2
( 1 z
z̄ 1 ) ∈ G, so pz · 0 = z. Writing J

(η,Y )
z for J

(η,Y )
pz (z), we have

K(z, z) = J (η,Y )
z K(0, 0)J (η,Y )

z
∗
. (3.1)

So, the question amounts to enumeration of all the possibilities for K(0, 0).

3.1. An intertwining map. For λ > 0, let A
(λ) be the Hilbert space of holomorphic functions on the

unit disc with reproducing kernel (1 − zw̄))−2λ. It corresponds to the homogeneous line bundle

Lλ. The group G̃ acts on it unitarily with the multiplier g′(z). This action is the Discrete series

representation D
(λ)
g . Let C

d = ⊕dj
j=0C

dj . We think of functions f : D → C
d as having components

fj : D → C
dj . Let A(η) = ⊕m

j=0A
(η+j) ⊗ C

dj . For η > 0, Y as before and fj ∈ A
(η+j) ⊗ C

dj , define

(
Γ(η,Y )fj

)
ℓ
=

{
1

(ℓ−j)!
1

(2η+2j)ℓ−j
Yℓ · · ·Yj+1f

(ℓ−j)
j if ℓ ≥ j

0 if ℓ < j.
(3.2)

So, Γ(η,Y ) maps Hol(D,Cd) into itself. Let N be an invertible d × d block diagonal matrix with
blocks Nj , 0 ≤ j ≤ m, d = d0 + · · · + dm. We will assume throughout that N0 = Id0 . This is only a
normalizing condition. We can normalize further by assuming that each block diagonal matrix with
dj × dj blocks Nj is positive definite but this is not important. We can think of N as changing the

natural inner product of each C
dj to 〈Nju,Njv〉Cdj . We let Γ

(η,Y )
N = Γ(η,Y ) ◦ N and H(η,Y )

N denote

the image of Γ
(η,Y )
N in the space of holomorphic functions Hol(D,Cd).

Theorem 3.1. The map Γ
(η,Y )
N is a G̃ - equivariant isomorphism of A

(η) onto the Hilbert space

H(η,Y )
N on which the G̃ action is unitary via the multiplier J

(η,Y )
g (z). It has a reproducing kernel

K
(η,Y )
N (z, w) such that

(
K

(η,Y )
N (0, 0)

)
ℓℓ
=

ℓ∑

j=0

1

(ℓ− j)!

1

(2η + 2j)ℓ−j
Yℓ · · ·Yj+1NjN

∗
j Y

∗
j+1 · · · Y ∗

ℓ .

Proof. The injectvity of the map Γ
(η,Y )
N is clear from its definition. It is also apparent that the image

H(η,Y )
N is the algebraic direct sum of the summands A(η+j)⊗C

dj of A(η). We define a norm on H(η,Y )
N

by stipulating that Γ
(η,Y )
N is a Hilbert space isometry. This gives us the Hilbert space H(η,Y )

N and the

unitary action Ug of G̃ on it. We have to show that it is the multiplier action given by J
(η,Y )
g (z). For

this, we must verify that

Γ
(η,Y )
N ◦

(
⊕ djD

(η+j)
g−1

)
= Ug−1 ◦ Γ(η,Y )

N . (3.3)

Since N obviously intertwines ⊕ djD
(η+j) with itself, it suffices to prove (3.3) for Γ(η,Y ) in place of

Γ
(η,Y )
N = Γ(η,Y ) ◦N . Furthermore, it is enough to verify this relation for each f ∈ A

(η+j) ⊗C
dj , that

is, to show

Γ(η,Y )
(
(g′)η+j(f ◦ g)

)
= Jg

(
(Γ(η,Y )f) ◦ g

)
, f ∈ A

(η+j) ⊗ C
dj , 0 ≤ j ≤ m.

We will show that the ℓth components on both sides are equal. First, if ℓ < j then both sides are 0.
Second if ℓ ≥ j, on the one hand, using Lemma 3.1 of [7] which is easily proved by induction starting
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from the equation (2.5) and says that

(
(g′)ℓ(f ◦ g)

)(k)
=

k∑

i=0

(
k
i

)
(2ℓ+ i)k−i(−c)k−i(g′)ℓ+

k+i
2
(
f (i) ◦ g

)
(3.4)

for any g ∈ G̃, we have

Γ(η,Y )
(
(g′)η+j(f ◦ g)

)

=
1

(ℓ− j)!

1

(2η + 2j)ℓ−j
Yℓ · · ·Yj+1

(
(g′)η+j(f ◦ g)

)(ℓ−j)

=
1

(ℓ− j)!

1

(2η + 2j)ℓ−j
Yℓ · · ·Yj+1

ℓ−j∑

i=0

(ℓ−j
i

)
(2η + 2j + i)ℓ−j−i(−c)ℓ−j−i(g′)η+j+ ℓ−j+i

2 (f (i)) ◦ g

= Yℓ · · ·Yj+1

ℓ−j∑

i=0

1

(ℓ− j − i)!i!

1

(2η + 2j)i
(−c)ℓ−j−i(g′)η+j+ ℓ−j+i

2 (f (i)) ◦ g,

On the other hand,
m∑

p=j

(Jg)ℓp
(
(Γ(η,Y )f)p ◦ g

)

=

ℓ∑

p=j

(−c)ℓ−p 1

(ℓ− p)!
(g′)η+

p+ℓ
2 Yℓ · · ·Yp+1

1

(p − j)!

1

(2η + 2j)p−j
Yp · · ·Yj+1f

(p−j) ◦ g

=

ℓ∑

p=j

1

(ℓ− p)!

1

(p− j)!

1

(2η + 2j)p−j
(−c)ℓ−p(g′)η+

p+ℓ

2 Yℓ · · ·Yj+1f
(p−j) ◦ g

=

ℓ−j∑

i=0

1

(ℓ− i− j)!

1

i!

1

(2η + 2j)i
(−c)ℓ−j−i(g′)η+

j+i+ℓ

2 Yℓ · · · Yj+1f
(p−j) ◦ g.

This completes the verification of (3.3). Finally, we we observe that H(η,Y )
N has a reproducing kernel

K
(η,Y )
N (z, w) because it is the image of A(η) under an isomorphism given by a holomorphic differential

operator, so point evaluations remain continuous. ThenK
(η,Y )
N (z, w) is obtained by applying Γ

(η,Y )
N to

the reproducing kernel of A(η) once as a function of z and once as a function of w. This computation

is easily carried out and gives the formula for K
(η,Y )
N (0, 0). �

Writing H := H
(η,Y )
N =

(
K

(η,Y )
N (0, 0)

)−1
, the Hilbert space H(η,Y )

N is a space of sections of the

homogeneous holomorphic Hermitian vector bundle (E(η,Y ),H) in our (canonical) trivialization.

Theorem 3.2. The construction with Γ
(η,Y )
N gives all elementary homogeneous holomorphic Hermit-

ian vector bundles which possess a reproducing kernel, namely, those of the form
(
E(η,Y ), (K

(η,Y )
N (0, 0))−1

)
,

where η > 0, Y are arbitrary and K
(η,Y )
N (0, 0) is the form given in Theorem 3.1. The vector bundles(

E(η,Y ), (K
(η,Y )
N (0, 0))−1

)
and

(
E(η′,Y ′), (K

(η′,Y ′)
N ′ (0, 0))−1

)
are equivalent if and only if η = η′, Y ′ =

AY A−1 and N ′N ′∗ = ANN∗A∗ for some invertible block diagonal matrix A of size d× d.

Proof. The existence of a reproducing kernel implies that the vector bundle is Hermitizable. Such a
bundle is of the form (E(η,Y ),H) by Propositions 2.1 and 2.2. When it has a reproducing kernel, then
in our canonical trivialization this is a matrix valued function K(z, w), and we have H = K(0, 0)−1.

The G̃ action U which is now unitary, is given by the multiplier J
(η,Y )
g (z). The equation (2.4) shows
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that the action of K̃ is diagonalized by the polynomial vectors: If vj ∈ C
dj and f(z) = znvj, then

for kθ such that kθ(z) = eiθz, we have Ukθf = eiθ(η+j+k)f . It follows that U is a direct sum of the

Discrete series representations D(η+j), 0 ≤ j ≤ m. In particular, it follows that η > 0.

The map Γ(η,Y ) (and Γ
(η,Y )
N for any block diagonal N) intertwines the representations U and

⊕m
j=0 djD

(η+j), both of which are unitary. By Schur’s Lemma it follows that N can be chosen such

that Γ(η,Y )◦N is unitary. This proves that the bundle E(η,Y ) corresponds to the Hilbert space H(η,Y )
N .

The statement about equivalence follows from the analogous statement in Proposition 2.2. �

Remark 3.1. In the proof we only used the unitarizability of the G̃ action on the sections of the
Hermitizable bundle E. In this vein, an even more general result holds:

For any G̃ - homogeneous holomorphic vector bundle E, if the G̃ action on the sections is unitariz-

able then it is a direct sum of bundles corresponding to some H(η,Y )
N . (The possible unitary structures

correspond to different choices of N .)

One way to prove this is to use the “Inverse propagation theorem” of T. Kobayashi [6]. If the

action of G̃ is unitary, then so is the K̃ action on the fibres, and we are back in the situation of
Theorem 3.2.

Here we sketch a more direct proof which also shows what the non-Hermitizable homogeneous
holomorphic vector bundles are like.

A general E is still gotten from two matrices Z = ̺(h), Y = ̺(y) such that [Z, Y ] = −Y by
holomorphic induction. The inclusion Y Vλ ⊆ Vλ−1 still holds for the generalized eigenspaces of Z.
Using some easy identities for g′(z), we can then verify that

Jg(z) = exp
(
1
2(log(g

′(z))′Y
)
exp

(
− log g′(z)Z

)
,

which, in the case where Z is diagonal, is just another way to write (3.2), is a multiplier.

Writing Ug for the action of G̃ on Hol(D,V ) given by Jg(z), we compute
(
Uexp tihf

)
(z) = exp(itZ)f(e−itz). (3.5)

Hence (Uhf)(0) = Zf(0) and by a similar computation (Uyf)(0) = Y f(0). This shows that Jg(z)

gives a trivialization of our E. It also shows that Uk, k ∈ K̃ maps the spaces Mp of monomials of

degree p to Mp for all p ≥ 0. Hence K̃ - finite vectors are exactly the (V - valued) polynomials.
Now if U is unitary with respect to some inner product, then it is a sum of irreducible represen-

tations. The K̃-types of these (i.e. the eigenfunctions of Uh) are known to be one dimensional and

together they span the space of K̃ - finite vectors. By (3.5), Uh maps any zpv ∈ Mp to zp(Zv− pv).
It follows that Z must be diagonalizable, otherwise the eigenfunctions of Uh could not span Mp.

3.2. Parametrization. The description of the homogeneous holomorphic Hermitian vector bundles
given in Theorem 3.2 can be made more explicit. We now proceed to determine, in terms of the
parametrization E(η,[Y ]) of elementary homogeneous holomorphic Hermitian vector bundles as in
Proposition 2.3, exactly which ones of these have their Hermitian structure come from a reproducing
kernel.

Theorem 3.3. The Hermitian structure of E(η,[Y ]) comes from a (G̃ - invariant) reproducing kernel
if and only if η > 0 and

I − Yj
( j−1∑

k=0

(−1)j+k

(j − k)!(2η + j + k − 1)j−k
Yj−1 · · · Yk+1Y

∗
k+1 · · ·Y ∗

j−1

)
Y ∗
j > 0

for j = 1, 2, . . . ,m.

Proof. We have a description of all the vector bundles with reproducing kernel in Theorem 3.2. To
see how this description appears in the parametrization E(η,Y ), we have to answer the question: For
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what η, [Y ], is it possible to find a block-diagonal N such that K
(η,Y )
N (0, 0) = I. Writing this more

explicitly, we have the system of equations

Iℓ −
ℓ∑

j=0

1

(ℓ− j)!

1

(2η + 2j)ℓ−j
Yℓ · · ·Yj+1NjN

∗
j Y

∗
j+1 · · ·Y ∗

ℓ = 0, (3.6)

ℓ = 1, . . . ,m and the question is if the solution NjN
∗
j , j = 1, . . . ,m consists of positive definite

matrices.
We claim that the solution of (3.6) is given by

NjN
∗
j =

j∑

k=0

(−1)j+k

(j − k)!(2η + j + k − 1)j−k
Yj · · ·Yk+1Y

∗
k+1 · · ·Y ∗

j , (3.7)

for j = 1, . . . ,m.
In fact, substituting the expression for NjN

∗
j from (3.7) into (3.6), we have

Iℓ −
ℓ∑

j=0

j∑

k=0

1

(ℓ− j)!(2η + 2j)ℓ−j

(−1)j+k

(j − k)!(2η + j + k − 1)j−k
Y (k) = 0,

where Y (k) = Yℓ · · ·Yk+1Y
∗
k+1 · · · Y ∗

ℓ . The coefficient of Y (k), from the above, is seen to be

1

(ℓ− k)!2

ℓ∑

j=k

(−1)j+k

(
ℓ− k

j − k

)
(2η + 2j − 1)B(2η + k + j − 1, ℓ− k + 1),

where B(x, y) = Γ(x)Γ(y)
Γ(x+y) is the usual Beta function. Using the binomial formula and the integral

representation: B(x, y) =
∫ 1
0 t

x−1(1− t)y−1dt, it simplifies to

1

(ℓ− k)!2

∫ 1

0

{
(2η + 2k − 1)t2η+2k−2(1− t)2(ℓ−k) − 2(ℓ− k)t2η+2k−1(1− t)2(ℓ−k)−1

}
dt

=
1

(ℓ− k)!2

∫ 1

0

{
t2η+2k−2(1− t)2(ℓ−k)−1

(
(2η + 2k − 1)−

(
2η + 2ℓ− 1)t

)}
dt

=
1

(ℓ− k)!2
(
xB(x, y)− (x+ y)B(x+ 1, y)

)
,

where x = 2η+2k− 1 and y = 2ℓ− 2k, which is zero except when k = 0 = ℓ. This verifies the claim.
The right hand side of the equation (3.7) is exactly the expression given in the statement of the

Theorem, so its positivity is the condition we were seeking. �

When Y is given, we may ask what are the values of η for which the positivity condition of the
Theorem holds. It obviously holds when η is large. We can also see that there exists a number
ηY > 0 such that it holds if and only if η > ηY . For this we only have to see that if E(η,Y ) has a
reproducing kernel for some η > 0, then so does E(η+ε,Y ) for all ε > 0. Now E(η+ε,Y ) = Lε ⊗ E(η,Y )

which shows that the productK(z, w) = (1−zw̄)−2εK
(η,Y )
I (z, w) is a reproducing kernel for E(η+ε,Y ),

and K(0, 0) = I still holds.
When m = 1, the condition of the Theorem 3.3 reduces to

I − 1

η
Y1Y

∗
1 > 0.

In this case, we have ηY = 1
2‖Y1Y ∗

1 ‖ in terms of the usual matrix norm.
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4. Classification of the homogeneous operators in the Cowen-Douglas class

The following theorem together with Theorems 3.1 and 3.2, and Corollary 2.1 gives a complete
classification of homogeneous operators in the Cowen-Douglas class.

Theorem 4.1. All the homogeneous holomorphic Hermitian vector bundles with a reproducing kernel
correspond to homogeneous operators in the Cowen-Douglas class. The irreducible ones are the

adjoint of the multiplication operator M on the space H(η,Y )
I for some η > 0 and irreducible Y . The

block matrix Y is determined up to conjugacy by block diagonal unitaries.

Proof. First we note that by Theorems 3.2 and 3.3 every homogeneous holomorphic Hermitian vector

bundle can be written in the form (Eη,Y , I) with η > 0. The Hilbert space Hη,Y
I is a subspace of the

(trivialized) holomorphic sections of (Eη,Y , I) which is the image under the map Γ
(η,Y )
N of A(η). We

have to show only that the operator M∗ on H(η,Y )
I belongs to the Cowen-Doulas class. For this we

compute the matrix of M in an appropriate orthonormal basis.
Each of the Hilbert spaces A(η+j) (0 ≤ j ≤ m) has a natural orthonormal basis

{
enj (z) :=

√
(2η + 2j)n

n!
zn : n ≥ 0

}
.

Hence A
(η+j) ⊗C

dj has the basis enj ε
(j)
q , where {ε(j)q : 1 ≤ q ≤ dj} is the natural basis of Cdj . The

Hilbert space A(η) then has the orthonormal basis enj εjq with εjq := εj⊗ε(j)q , where {εj : 0 ≤ j ≤ m}
is the natural basis for C

m+1. Each enj εjq is a function on D taking values in C
d; its part in C

dj is

εj ⊗ ε
(j)
q , and its part in every other Cdk (k 6= j) is 0. Defining

e
n
jq := Γ(η,Y )

(
enj εjq

)
, (4.1)

we have an orthonormal basis for H(η,Y ).
We identify the “K -types” in H(η,Y ), that is, the subspaces on which the representation U

restricted to K̃ acts by scalars. For kθ ∈ K̃ given by kθ(z) = eiθz, we have D
(η+j)
kθ

enj = e−iθ(η+j+n)enj
on A

(η+j). By the intertwining property of Γ(η,Y ), the basis elements of H(η,Y ) then satisfy Ukθe
n
jq =

e−iθ(η+j+n)
e
n
jq. It follows that the subspace

H(η,Y )(n) := {f ∈ H(η,Y ) : Ukθf = e−iθ(η+n)f}

is spanned by the basis elements {en−j
jq : 1 ≤ q ≤ dj , 0 ≤ j ≤ min(m,n)} and H(η,Y ) equals the

direct sum ⊕n≥0H(η,Y )(n).

Clearly, the operator M maps each H(η,Y )(n) to H(η,Y )(n+ 1). We write M(n) for the matrix of

the restriction of M to H(η,Y )(n), that is,

Me
n−j
jq =

∑

ℓ,r

M(n)(ℓr)(jq)e
n+1−ℓ
ℓr . (4.2)

We write en−j
(jq),(st)(z) for the (s, t) - component (0 ≤ s ≤ min(m,n), 1 ≤ t ≤ ds) of the function e

n−j
jq

taking values in C
d. This can be regarded as a matrix of monomials in z. The coefficients of these

monomials form a numerical matrix which we denote by E(n).
Applying the operator M , which is multiplication by z, to the monomials does not change their

coefficients. Therefore, equation (4.2) amounts to the matrix equality

E(n) = E(n + 1)M(n). (4.3)
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We use (4.1) to compute E(n) explicitly. The part in C
dj of the vector valued function en−j

j εjq is

en−j
j ε

(j)
q , its part in C

dk with k 6= j is 0. So (3.2) gives, for the part of en−j
jq (0 ≤ j ≤ m) in C

dℓ ,

(
e
n−j
jq (z)

)
ℓ
=

{
c(η, ℓ, j, n)zn−ℓ

(
Yℓ · · ·Yj+1

)
ε
(j)
q zn−ℓ if ℓ ≥ j

0 if ℓ < j,
(4.4)

where the constant c(η, ℓ, j, n) is the coefficient of zn−ℓ in

1

(ℓ− j)!

1

(2η + 2j)ℓ−j

( d
dz

)ℓ−j
en−j
j (z) =

1

(ℓ− j)!

1

(2η + 2j)ℓ−j

√
(2η + 2j)n

n!

( d
dz

)ℓ−j
zn−j .

We can regard E(n) as a block matrix with blocks E(n)jℓ of size dj×dℓ. The (q, r) entry of E(n)jℓ
being E(n)(jq)(ℓr) defined above. Then equation (4.4) says that

E(n)jℓ =

{
c(η, ℓ, j, n)Yℓ · · ·Yj+1 if ℓ ≥ j

0 if ℓ < j.

Now, we consider the behavior of c(η, ℓ, j, n) for large n. First, since
√

(2η + 2j)n−j

(n− j)!

( d
dz

)ℓ−j
zn−j =

√
(n− j)!(2η + 2j)n−j

(n− ℓ)!
zn−ℓ,

it follows that

c(η, ℓ, j, n) =
1

(2η + 2j)ℓ−j(ℓ− j)!

√
Γ(n− j + 1)Γ(2η + j + n)√
Γ(2η + 2j)Γ(n− ℓ+ 1)

.

From Stirling’s formula, we obtain

c(η, ℓ, j, n) ∼ 1√
Γ(2η + 2j)(2η + 2j)ℓ−j(ℓ− j)!

√
(e−nnn−j+ 1

2 )(e−nnn+2η+j− 1
2 )

e−nnn−ℓ+ 1
2

∼
√

Γ(2η + 2j)

Γ((ℓ− j + 1))Γ(2η + 2j + ℓ)
nη−

1
2
+ℓ.

If we define the block matrix E by

Eℓj =

{ √
Γ(2η+2j)

Γ((ℓ−j+1))Γ(2η+2j+ℓ)Yℓ · · ·Yj+1 if ℓ ≥ j

0 if ℓ < j

and the diagonal block matrix D(n) by D(n)ℓℓ = nℓIdℓ then we can write our result as

E(n) ∼ nη−
1
2D(n)E

From (4.3), for large n, it follows that

M(n) = E(n + 1)−1E(n)

∼
( n

n+ 1

)η− 1
2E−1D(n+ 1)−1D(n)E

∼ I +O(1/n). (4.5)

Therefore, the operator M which is a “weighted block shift” is the direct sum of an ordinary (un-
weighted) block shift and a Hilbert - Schmidt operator. Hence M is bounded and standard results
from Fredholm theory ensure that the adjoint operator M∗ is in the Cowen-Douglas class Bd(D). �

The similarity classes of the homogeneous Cowen-Douglas operators are easily described in terms
of the parameter η and the multiplicities d0, . . . , dm. For a somewhat smaller class of operators, the
similarity classes were described in [11].
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Theorem 4.2. The multiplication operator M on H(η,Y )
I and on H(η′,Y ′)

I are similar if and only if
the blocks in Y and Y ′ are of the same size and η = η′.

Proof. To prove the forward direction, first we show that Γ(η,Y ) maps A
(η) onto itself, that is,

A
(η) = H(η,Y )

I as linear spaces. The derivative d
dz : A(α) → A

(α+1) defines a surjective bounded linear

operator for any α > 0. For any f ∈ A
(η),

(Γ(η,Y )f)ℓ =

ℓ∑

j=0

(Γ(η,Y )fj)ℓ

and (3.2) shows that each term of the sum is in dℓA
(η+ℓ). On the other hand, given g = (g1, . . . , gm) ∈

A
(η), we find f ∈ A

(η) satisfying Γ(η,Y )f = g. The functions f0, . . . , fd are determined recursively.
Suppose, we have already determined fj, j < ℓ. Then from the definition of the map Γ(η,Y ), we see
that taking

fℓ = gℓ −
ℓ−1∑

j=0

(Γ(η,Y )fj)ℓ

we have the required f . Clearly, M : A(η) → A
(η) is similar to M : H

(η,Y )
I → H(η,Y )

I via the map
f 7→ f , which is bounded and invertible by the Closed graph theorem.

For the proof in the other direction, let K(n) ⊆ A
(η) = ⊕m

j=0djA
(η+j) be the linear span of the

vectors {enjq : 0 ≤ j ≤ m, 1 ≤ q ≤ dj}. The multiplication operator M on A
(η) maps K(n) into

K(n+ 1). If Mn is the matrix representing M|K(n) : K(n) → K(n+ 1) then M is a block shift with

blocks {Mn : n ≥ 0}, which are diagonal matrices of size d×d. LetM ′ be the multiplication operator

on A
(η′) = ⊕m′

j=0d
′
jA

(η′+j) with a similar block decomposition. Assume without loss of generality that

η′ > η. Suppose L : A(η) → A
(η′) is a bounded and invertible linear map consisting of d × d blocks

with LM =M ′L. Then d = d0 + · · ·+ dm = codim(ranM) = codim(ranM ′) = d′0 + · · ·+ d′m′ .
It then follows that L0k = 0 for all k ≥ 1 and consequently L00 is non-singular. We also have

LnnMn−1 =M ′
n−1Ln−1n−1 from which it follows that

Lnn =M ′
n−1 · · ·M ′

0L00M
−1
0 · · ·M−1

n−1 = F ′
nL00F

−1
n ,

where Fn =M0 · · ·Mn−1 and F ′ =M ′
n−1 · · ·M ′

0 are diagonal matrices. The diagonal elements are

F (n)kk =

√
(2η + 2j(k))n

n!

(
respectively,F ′(n)ℓ ℓ =

√
(2η′ + 2j′(ℓ))n

n!

)
,

where j(k) = j if d0 + · · ·+ dj−1 < k ≤ d0 + · · · + dj . By Stirling’s formula, we have
(
Lnn

)
ℓk

=
(
F ′
n

)
ℓℓ

(
L00

)
ℓk

(
F−1
n

)
kk

∼ nη
′−η+j′(ℓ)−j(k)

(
L00

)
ℓk
.

Since L00 is nonsingular, for any k with j(k) = 0, there is an ℓ such that
(
L00

)
ℓk

6= 0. Now, unless

η = η′, we have
(
Lnn

)
ℓk

→ ∞ contradicting the boundeness of L. Therefore, we have η = η′ and(
Lnn

)
ℓk

∼ nj
′(ℓ)−j(k)

(
L00

)
ℓk
. Take all those k for which j(k) = 0. For each of these, we can find a

different ℓk such that
(
L00

)
ℓkk

6= 0. (The columns of the nonsingular matrix L00 with these indices

are linearly independent and therefore cannot have only zeros in more than d − k slots.) Again,
unless j′(ℓk) = 0, we have

(
Lnn

)
ℓkk

→ ∞. This shows that d′0 ≥ d0. Similarly, d′j ≥ dj , 1 ≤ j ≤ m.

From the equality
∑m′

j=0 d
′
j =

∑m′

j′=0 dj , it follows that m
′ = m and d′j = dj for j = 1, . . . ,m. �

The following Corollary, the proof of which is evident, implies that polynomially bounded homo-
geneous operators in the Cowen-Douglas class are similar to contractions.

Corollary 4.1. A homogeneous operator in the Cowen-Dougls class is either similar to a contrac-
tion or it is not power bounded.
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5. Examples

In this last Section, we discuss how some formerly known examples fit into the present framework.

5.1. The case of d0 = d1 = · · · = dm = 1. This case was already studied in [7]. Here each Yj is a
number, non-zero in the irreducible case. The unitaries implementing the equivalence are diagonal,
and clearly the conjugacy class [Y ] under these has exactly one representative with yj > 0, 1 ≤ j ≤ m.
The positive m + 1 - tuples satisfying the condition given in Theorem 3.3 give a parametrization

of homogeneous Cowen-Douglas operators. For each one, K(0, 0) = I and J
(η,Y )
g is given by the

formula (2.4).
Another good parametrization is possible with the aid of Theorem 3.1. All possible Y -s are now

conjugate under diagonal unitaries A, so we may fix an arbitrary Y (0) (for example, yj = 1 for
all j, or, as in [7], yj = j for all j). Take any positive diagonal matrix N with diagonal elements

1 = µ0, µ1, . . . , µm. By Proposition 2.2, Y (0), N and Y (0), N ′ give isomorphic vector bundles if
and only if A is diagonal and hence N = N ′. It follows that the positive numbers η, µ1, . . . , µm
give a parametrization of the homogeneous operators in the Cowen-Douglas class Bm+1(D). Here

J
(η,Y (0))
g depends only on η and K

(η,Y (0))
N (0, 0) is given by the formula in Theorem 3.1. This is the

parametrization used in [7].
In the case m = 1, for any d0 and d1, the class [Y ] always contains a member for which Y is

diagonal. So, the corresponding bundle is reducible unless d0 = d1 = 1. When m = 2, it is easy to
see that d0 = 2 or d2 = 2 gives only reducible bundles. So, the first non-trivial case occurs (apart
from the case d0 = d1 = d2 = 1, which has been dealt with previously) when d0 = d2 = 1, d1 = 2.

5.2. The case of (d0, d1, d2) = (1, 2, 1). For this case, again there are two natural parametrizations.
Conjugating Y with a block-diagonal unitary having blocks u0, U1, u2 changes Y1, Y2 into U1Y1u

−1
0 ,

u2Y2U
−1
1 . Now, U1 can be chosen so that Y1 =

(
a

0

)
. Then u0, u2 and a scalar factor in front of U1 can

be found with a ≥ 0 and Y =
(
b c

)
with b, c ≥ 0. We have irreducibility if and only if a, b, c 6= 0 and

no two such triples give equivalent Y -s. So, we have a parametrization of the irreducible E(η,Y ) by
four arbitrary non-zero parameters. There is a reproducing kernel (and hence an operator in B4(D))
if and only if the the right hand side of the equation (3.7) is positive; in terms of the parameters,
this is

a2 < 2η

b2 <
2η + 2

1− a2

2(2η+1)

c2 < 2η + 2

The positive quadruple (η, a, b, c) subject to this condition parametrizes the homogeneous operators
in B4(D). In each case, K(0, 0) = I and Jg can be expressed in terms of the parameters using (2.4).

The other parametrization of the (d0, d1, d2) = (1, 2, 1) case is found using Theorem 3.1. Simple

arguments show that Y can always be conjugated by a block diagonal A so that Y1 =
(

1

0

)
and

Y2 =
(
1 0

)
or

(
0 1

)
. When Y2 =

(
0 1

)
, the bundle will be reducible for any choice of Hermitian

structure. So, we can fix Y (0) with Y1 =
(

1

0

)
and Y2 =

(
1 0

)
. The block diagonal A that conjugates

this Y (0) to itself is a diagonal matrix with (p, p, q, p) on the diagonal. If N is any positive diagonal

diag (n0, N1, n2) with n0 = 1, N1 =
(α β
β̄ γ

)
and n2 ≥ 0, then we can ensure n1 = 1 = n2 and

α, β, γ > 0 after conjugating by an A. Thus the homogeneous bundles with reproducing kernel (and
hence the homogeneous operators in B4(D)) of type (1, 2, 1) are now parametrized by four positive
numbers (η, α, β, γ) subject to the condition β2 < αγ.

By a different construction, a large subset of these examples already occurs in [12].
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