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1 Chapter 1: Compact and Fredholm Oper-
ators

1 Overview and Polar Decomposition
1.1 Overview

A normal operator on a finite dimensional inner product space can be diago-
nalised and the eigenvalues together with their multiplicities are a complete
set of unitary invariants for the operator, while on a infinite dimensional
Hilbert space the spectral theorem provides a model and a complete set of
unitary invariants for such operators. Thus we view the theory of normal
operators to be well understood. It is natural to study operators which
may be thought of in some sense to be nearly normal. One hope is that
it would be possible to provide canonical models and a complete set of in-
variants for such operators. Since an operator is normal if the commutator
[T, T*] = TT*—T*T = 0, one may say an operator is nearly normal if [T, 7|
is small in some appropriate sense, for example, finite rank, trace class or
compact. In these notes, we will take the last of these three measures of
smallness for [T, T*| and make the following definition.

Definition 1.2. An operator T is essentially normal if [T, T*| is compact.

Our goal would be to classify the essentially normal operators with respect
to some suitable notion of equivalence. Since we are considering compact
operators to be small, the correct notion of equivalence would seem to be the
following.

Definition 1.3. Two operators T7 and 75 are said to be essentially equivalent
if there exists a unitary operator U and a compact operator K such that
UT\U* =Ts 4+ K, in this case we write, T} ~ T5.

(The goal of these notes is to describe, {essentially normal operators}/~.)

We will very closely follow the basic work of Brown, Douglas and Fillmore
1, 2].

Why should this problem be tractable at all? To answer this question, we
have to look at some early history preceeding the work of Brown, Douglas
and Fillmore [1, 2].

1.4 Brief History

In 1909, Weyl defined the essential spectrum of a self adjoint operator to be
all points in its spectrum except the isolated eigen values of finite multiplicity.



He proved that if two self adjoint operators S and T are essentially equivalent
then S and T have the same essential spectrum. Some twenty years later,
von Neumann proved a striking converse, that is, if the essential spectrum
of two self adjoint operators are equal then they are essentially equivalent.
In response to a question of Halmos, Berg and Sikonia, independent of each
other, showed in 1973 that the Weyl von Neumann theorem actually holds
for normal operators.

What all this has to do with essentially normal operators? The point is
that, if C(H) is the set of compact operators and 7 : L(H) — L(H)/C(H)
is the natural quotient map then an operator T is essentially normal if and
only if the class 7(T") is normal in the Calkin algebra £(H)/C(H). It is not
very hard to see that the essential spectrum oes(V), of a normal operator N
is the same as the spectrum o(mw(N)) of the class 7(IV) of the operator N in
the Calkin algebra L(H)/C(H). Let

N +C={N+ K : N is normal and K is comapct).

For an operator T in N + C, we see that 0ess(T) = 0ess(N+K) = o(m(N+
K)) = o(m(N)), so that the Weyl-von Neumann-Berg theorem actually
extends to operators in the class N + C.

Theorem 1.5. (Weyl-von Neumann—Berg theorem). Any two operators T}
and Ty in N+ C are essentially equivalent if and only if ess(T1) = Oess(Ts).
Moreover, if X is any compact subset of the complex plane C then there is a
normal operator N such that oes(N) = X.

This theorem shows that the essential spectrum of an operator A + C is
complete invariant for unitary equivalence modulo compact and the classi-
fication problem for such operators is complete. Are all essentially normal
operators in N+ C? To give an example of an essentially normal operator
not in A/ + C, consider the Toeplitz operator T, on the Hardy space H*(T).
Note that I — T, 77 = P and I —T;T, = 0, where P is a rank one projec-
tion, therefore T, is an essentially unitary operator. An operator T is called
Fredholm if it has closed range and the dimension of its kernel and cokernel
are finite. For a Fredholm operator T, define

ind(7") = dim ker(7") — dim ker(7™).
It will be shown, that if T" is Fredholm and K is compact then
ind(7 + K) = ind(7T).

If N is a normal operator which is also Fredholm then its index is zero.
It is easy to see that the Toeplitz operator T, is Fredholm, dimker(7,) = 0
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and dimker(77) = 1. If in addition 7, is also in N/ + C, then we would have
—1 =ind(T}) — ind(N + K) = 0.

Secondly, note that the Multiplication operator M, and the Toeplitz op-
erator T, both have the same essential spectrum, namely the unit circle T.
If these two operators were essentially equivalent then we would have

—1=ind(T.) = ind(T, + K) = ind(U*M,U) = ind(M,) = 0.

This shows that the essential spectrum is not the only invariant for our
equivalence. The remarkable theorem of Brown, Douglas and Fillmore says
that the essential spectrum together with a certain index data is complete
set of invariants for essential equivalence.

We end this brief introduction, with a discussion of the Polar Decom-
position Theorem. In these notes, we assume that all Hilbert spaces are
separable.

Polar Decomposition

If X\ is a complex number then A\ = |\|e, for some ; this is the polar
decomposition of A. For operators, is it possible to find an analogy? To
answer this question, we may ask, what is the analogy of |\| and ¢ among
operators. A little thought would show that the analogy for |A| ought to
be (T*T)'?, the analogy for e would seem to be either an unitary or an
isometry. However, none of these is correct for an operator on an infinite
dimensional Hilbert space.

Definition 1.6. An Operator V on a Hilbert space ‘H is a partial isometry
if |V f|| = ||f]| for f orthogonal to ker V; if in addition the kernel of V is
{0} then V' is an isometry. The initial space of V' is the closed subspace
orthogonal to ker V.

It turns out that the correct analogy for €% is a partial isometry.

Theorem 1.7. IfT is an operator on the Hilbert space H then there exists a
positive operator P and a partial isometry V' such that T =V P. Moreover,
P and V' are unique if ker V= ker P.

Proof. If we set P = (T*T)"?, then
IPFI2 = (Pf.Pf) = (Pf.f) = (T"TF, f) = |IT/|*or f in M
Thus, if we define
V :ran P — H such that VPf = T,

>



then V is well defined, in fact it is isometric and extends uniquely to an
isometric mapping from clos [ran P| to H. If we further define V : H — H
by

- Vf for fin clos[ran P]
Vi= { 0  forf in [ran P]*

then V is a partial isometry satisfying "= V P and
ker V = [ran P|* = ker P.

For the uniqueness, note first that if W is a partial isometry then for f
in 'H,
(L =WW) )=, ) = W W)= I = [WFI? = 0.

Thus, (I — W*W)Y2 is a well defined positive operator. Now, if f L [ker W]
then |[W f]| = || f]l, and therefore, ((I — W*W)f, f) = 0. Since,

(L =W W) 2F|? = (I =W*W) [, f) =0,
we have, (I — W*W)YV2f = 0 or W*Wf = f. Therefore, W*W is the
projection onto the initial space of W.
Now, if T" = W@, where W is a partial isometry, () is positive and
ker W = ker () then
P?=T*T = QW*WQ = Q?,
since W*W is projection onto

[ker W]+ = [ker Q]* = clos[ran Q).

Thus, by the uniqueness of the square root, we have P = () and hence
WP =V P. Therefore, W =V on ran P. But

[ran P]* =ker P = ker W = ker V,

and hence W = V on [ran P]*. Therefore, V = W and the proof is complete.
O

Some times a polar decomposition in which the order of the factors are
reversed is useful.

Corollary 1.8. If T is an operator on the Hilbert space H, then there exists a
positive operator (Q and a partial isometry W such that T' = QW . Moreover,
W and Q are unique if ran W = [ker Q]*.

Proof. Apply the theorem to the operator 7. Observe that W = V* and
QQ = P so that ker P = ker V if and only if ran W ker Q|+, the uniqueness
now follows from the theorem. O



2 Compact and Fredholm Operators
Compact Operators

We will show that an operator is compact if and only if it is the norm limit
of a sequence of finite rank operators. Thus the compact operators are the
natural generalisation of finite dimensional operators in a topological sense.

However, we first show that any closed subspace of the Hilbert space H
in the range of a compact operator must be finite dimensional. It turns
out, any operator whether compact or not, possessing this property can be
approximated in norm by a sequence of finite rank operators. Thus, we obtain
another characterisation of the compact operators, namely an operator is
compact if and only if the only closed subspaces of the Hilbert space H in
its range are finite dimensional.

Definition 2.1. An operator T is finite rank if the dimension of its range is
finite and compact if the image of the unit ball under 7" is compact. Let 7 (H)
and C(H) denote the set of all finite rank and compact operators respectively.

Most of the elementary properties of compact operators are collected
together in the following.

Proposition 2.2. If H is a Hilbert space then T (H) is a minimal two sided
*-ideal in L(H).

Proof. The two inclusions
ran(S + 7)) C ran(S) + ran(7") and ran(ST') C ran(.S)
show that 7 (H) is a left ideal in £(H). The identity
ran T* = T*[ker T*]*- = T*(clos[ran T1)

shows that 7" is in 7 (H) if and only if 7* is in 7 (H). Finally, if S is in £(H)
and 7" is in 7 (H) then 7*S* is in 7 (H) and hence ST = (7*S*)* is in 7 (H).
Therefore, 7 (H) is a two sided *-ideal in L(H).

To show that 7 (H) is minimal, assume that J is a non zero ideal in
L(H). Thus there exists an operator 1" # 0 in J hence there is a non zero
vector f and a unit vector g in H such that T'f = g. Let T} be the rank
one operator defined by

Tyi(0) = (¢, h)k.

Note that,
Ty kLT ¢(0) = (€, h)k = Th,(0)



and therefore, T}, ;. is in 7 (H) for any pair of vectors h and k in H. However,
{T'€ L(H) : T is rank one} = {T}, : h and k in H}.

Thus, 7 (H) contains all the rank one operators and hence all finite rank
operators. This completes the proof. Il

next, we obtain a very useful alternate characterisation of compact oper-
ators. The proof is elementary and left out.

Lemma 2.3. If H is a Hilbert space and T is in L(H) then T is compact if
and only if for every bounded sequence {f,} which converges to f weakly it
is true that {T'f,} converges in norm to T'f.

Lemma 2.4. The closed unit ball (H), in an infinite dimensional Hilbert
space 'H is compact if and only if H s finite dimensional.

Proof. 1f ‘H is finite dimensional then it is isometrically isomorphic to C™ and
hence its unit ball is compact. On the other hand if H is infinite dimensional
there exists an infinite orthonormal sequence {e,} in the closed unit ball
(H),. The fact that

llen — em|| = /2 for n #m

shows that the sequence {e,} has no convergent subsequence. Thus, closed
unit ball (H), can not be compact. O

Proposition 2.5. If K is a compact operator on an infinite dimensional
Hilbert space H and M s a closed subspace contained in the range of K then
subspace M is finite dimensional.

Proof. 1f Py, is the projection onto the subspace M then PyT is also com-
pact. If A :H — M is the operator defined by Af = PyTf then A is
bounded and maps H onto M. By the open mapping theorem A is an open
map. Therefore,

A(H), 2 Bs(0) for some § > O.

Since the compact set PyT'(H), contains the closed ball Bs(0), it follows
that M is finite dimensional by the preceeding corollary. O]

Theorem 2.6. If H is an infinite dimensional Hilbert space then the norm
closure of T(H) is contained in C(H). If the range of an operator T' on the
Hilbert space H does not contain any closed infinite dimensional subspace of
H then T is in the norm closure of T (H). In particular, the norm closure of

T(H) is C(H).



Proof. First it is obvious that 7 (H) is contained in C(H). Secondly, to prove
that C(H) is closed assume that {K,} is a sequence of compact operators
which converges in norm to K. If {f,} is bounded sequence converging

weakly to f and
M = max{1, || f.|| : n € N}

then choose N such that ||K—Ky|| < €/3M. Since Ky is a compact operator,
there exists an ng such that

HKan — KNfH < 6/3 for n > no-
Thus, we have

1K fo = KfIl = (K = En) fall + 1K fo = B fll + [[(Kn = K)f]]
< €/3+¢/3+¢/3=c¢forn>ny,

and hence K is a compact operator. Therefore, the closure of 7 (H) is C(H).

Let T' be any operator on the Hilbert space H such that the range of
T does not contain any closed infinite dimensional subspace of ‘H and let
T = PV be the polar decomposition for 7". Consider the extended functional
calculus for the operator P, defined for functions in L*°(v) for some positive
regular Borel measure v. Let x. = X(,p|] be the characterstic function of
the interval (e, || P]|] and note that x. is in L*>°(v). Thus,

E. = x.(P) is a projection on H.
If we define ¢, on (0, || P||) by
y _{ 1/x fore<a <|P|

0 otherwise
then Q. = ¥.(P) satisfies
QP = PQ. = E.
Thus, we have
ran(E.) =ran P(Q.) Cran P =ran T

and therefore the range of the projection E. is finite dimensional by assump-
tion. Hence P. = P(E.) is in 7(H) and P.V is also in 7 (H). Finally,

I =PV = [PV = PV] <[P = P|| = [[P = PE|
= sup |l —axc(x)]]
0<z<|| P

Therefore, T is in the norm closure of 7 (H). The comment about the com-
pact operators follows from the preceeding Proposition. O

9



For emphasis, we separately record the following corollary which is al-
ready contained in Proposition 2.3 and second half of the theorem.

Corollary 2.7. If 'H is an infinite dimensional Hilbert space and T is an
operator on H then T is compact if and only if range T does not contain any
closed infinite dimensional subspaces.

Corollary 2.8. If H is an infinite dimensional Hilbert space then C(H) is
the only proper closed two sided *-ideal in L(H).

Proof. Since C(H) is the norm closure of 7 (H) and 7 (H) is a minimal two
sided *-ideal, it follows, that C(H) is itself is a minimal two sided *-ideal.
Next, we prove that it is the only such ideal. If an operator T is not com-
pact then by the previous corollary, the range of T contains a closed infinite
dimensional subspace M. The operator Py/T" maps H onto the subspace
M and by the open mapping theorem, we find an operator S such that
TS = Py and hence any two sided ideal containing 7" must also contain 1.
This completes the proof. n

2.9 Fredholm Operators

We prove the basic spectral properties of compact operators after obtaining
some elementary results for Fredholm operators.

Definition 2.10. If H is a Hilbert space then the quotient algebra U(H) =
L(H)/C(H) is a Banach algebra called the Calkin algebra.

In fact, if Z is a closed ideal in any C*-algebra U then the quotient U /T
is also a C*-algebra. In particular the Calkin algebra is a C*-algebra. The
natural homomorphism from £(H) onto U(H) is denoted by .

The following definition of Fredholm operators is equivalent to the clas-
sical one via Atkinsons Theorem, which will be proved below.

Definition 2.11. If H is a Hilbert space then T in L(H) is Fredholm operator
if 7(T') is invertible in the Calkin algebra U(H). The collection of Fredholm
operators on H is denoted by F(H).

Some elementary properties of Fredholm operators is immediate from the
definition, they are collected together in the following.

Proposition 2.12. If H is a Hilbert space then F(H) is an open subset of
L(H), which is self adjoint, closed under multiplication and invariant under
compact pertubations.
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Proof. Since 7 : L(H) — U(H) is continuous and F(H) is the inverse image
of the group of invertible elements in U(H), it follows that F(H) is open.
Again the fact that 7 is multiplicative implies F(H) is closed under multi-
plication. The fact that F(H) is invariant under compact pertubations is
all but obvious. Lastly, if 7" is in F(H) then there exists an operator S and
compact operators K; and K such that

ST=1+K;and TS =1+ K.

Taking adjoints, we see that 7(7*) is invertible in the Calkin algebra U(H)
and F(H) is self adjoint.

While the vector sum of two closed subspaces M and M of a Hilbert
space H is not closed in general, it is true true that the sum is closed if one
of the subspaces say M is finite dimensional. To prove this, let E be the
projection onto the subspace M+ and note that F(M,) is finite dimensional,
therefore, closed and M + My = E~1(E(M,)). O

Theorem 2.13. (Atkinson). If H is a Hilbert space then T in L(H) is a
Fredholm operator if and only if the range of T s closed, dimker T is finite
and dim ker T is finite.

Proof. If T is a Fredholm operator, then there exists an operator S in L(H)
and compact operator K such that ST = I+ K. If f is a vector in the kernel
of I + K implies that K f = —f, and hence f is in the range of K. Thus,

kerT C ker ST =ker] + K Cran K

and therefore, dimker T is finite. Similarly, dim ker T is finite. Moreover,
there exists a finite rank operator F' such that ||K — F|| < 5. Hence for f in
ker F', we have

ISTIT Il ST =I11f+ Efll = Ilf+ Ff+ Kf = Ff]

A=K f = EfIF = N1£11/2.

Therefore, T is bounded below on ker F'; which implies that T'(ker F') is
a closed subspace of H. To show range of T is closed, observe that (ker F')*
is finite dimensional and

AVARLY,

ran T' = T(ker F) + T/[(ker F))*].

Conversely, assume that range of T' is closed and both kernel and cokernel
of T" are finite. The operator

Ty : (ker T)* — ran T defined by Tof = T'f

11



is one to one and onto and hence invertible by the open mapping theorem.
If we define the operator S on H by

[ T7'f feranT
Sf_{O feranT

then S is a bounded,
ST=1—P,and TS =1— P,

where P is the projection onto ker T" and P is the projection onto (ran T')*+ =
ker T*. Therefore, 7(.S) is the inverse for 7(7) in the Calkin algebra U(H)
and the proof is complete. O]

3 Index and Basic Spectral Properties

If 'H is a Hilbert space and T : ' H — H is a Fredholm operator then the two
numbers
ar = dimker T" and Gy = dim ker T

would seem to contain important information concerning the operator 7' It
turns out, their difference

indT = (0% —6'1“

is of even greater importance.
If T:V — W is any finite dimensional operator then

dimV — ar =dim W — gy = rank T.

Thus, for any such operator 7" maping one finite dimensional space to an-
other,
ind7 =dimV — dim W.

Let L and L' be any two invertible operators on the Hilbert space H. The
operator T': H — H is Fredholm if any only if LT L’ is Fredholm. Moreover,
arrr = o, B = Br and  ind LTL = indT.

Index of any invertible operator is zero. Finally, if T'=T) ® T, then ker T’ =
ker T} @ ker T3, consequently, ap = aq, + ap,. Similarly, 8r = O, + B, and
hence

indTy @715 =ind T} + ind 7.

12



Let Hy & Hy = H = H} & H) be any two direct sum decompositions of the
Hilbert space H. Write the operator T as

_ | Tn T | ) )
T—[Tm T22:|.H1@H2—>H1@H2

with respect to this decomposition.

Lemma 3.1. If in the decomposition of T as above Ty : Hy — H) is in-
vertible and T = T} — T12T2_21T21 : Hy — H) then ay = ar, By = Br and
ndT = ap — ﬂ’f“

Proof. The proof is a sort of row reduction

Ty Tio _ Ty Tio 1 0
Ty Ty Ty Ty 0 T2_21

_ [ Ty T12T2§1 - 1 —T12T251 Tn T12T251
L T21 I 0 1 T21 1
[ T = Telyn'Tn 0] [ Tu—Tiln'Ta 0 10
L T21 1 T21 1 _TQI T22
[T o
B L 0 Ty

Thus, we obtain Invertible operators L and L’ such that
LTL =T & Ty
Since T, is invertible, ker LTL' = ker T'@® {0} and it follows that
ar = arrp = Qp

Similarly,
Br = Brrr = B
This completes the proof of the Lemma. n

Most of the basic properties of index are contained in the following the-
orem.

Theorem 3.2. The index of a Fredholm operator is
(i) locally constant

(ii) invariant under compact pertabution
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(i1i) a homomorphism, that is, if S,T are any two Fredholm Operators then
ST is Fredholm and

md ST = indS + indT

Proof. Let T : ' H — 'H be any Fredholm operatoar. Decompose the Hilbert
space H as
ker T @ (ker T)*" = H = ker T* @ (ker T*)*

Write T" as a 2 x 2 block matrix with respect to this decomposition. Since 7' is
Fredholom ran T is closed and it follows that (ker T*)* = cl(ran T') = ran 7.
Hence the operator Ty : (ker T)* — (ker T*)* = ran T is invertible. If S
is any other Fredholm operator such that ||[S — T'|| < € and S is written as
a 2 x 2 block matrix with respect to the same decomposition of ‘H as above
then Sy, is invertible for sufficiently small e. By the preceeding lemma,

ind S = g — ﬁg.
But the operator S : ker T — ker T* is finite dimensional. Therefore,
ag—PBg=ar—Pr=indT

Thus ind 7" is locally constant.
To prove (iii), note that the map,

Yt — ind(T 4+ tK), K in C(H)
is locally constant, therefore constant on any connected set. In particular,
ind7 =(0) =¢(1) = ind(T + K).

To prove (iii), note that

ST &I =LQ.L,
where,
[S 0], [I —'s [T el
QE—LI T]’L_[O I }andL_[—d o}

The two operators S and T" are Fredholm and hence S & T is Fredholm.
Since L and L’ are invertible, for sufficiently small € the operator ST & [ is
Fredholm and hence ST is Fredholm. By part (i) index is locally constant.
Therefore, for sufficiently small e,

indST =ind(ST @) =indQ, =ind(S®7T) =ind S +ind 7.

This completes the proof of the theorem. O
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Example 3.3. Let U, : (*(Z,) — (*(Z,) be the shift operator,
Ui(ag, ... an,...) = (0,a0,...,a,,...)

Clearly, ran U, is closed and ker U, = {0}. A simple computation shows
that dimker U} = 1. Thus,

indUy = —1 and ind U} = 1.
Since index is a homomorphism, it follows that
indU} = —n and ind U}" = n.

The basic spectral properties of a compact operator are contained in the
following theorem.

Theorem 3.4. If K is a compact operator on the Hilbert space H then o(K)
1s countable with 0 the only possible limit point. If X\ is a nonzero point in
o(K) then X is an eigen value of finite multiplicity and X\ is an eigen value
of K* with the same multiplicity.

Proof. If X\ is a nonzero complex number then —\[ is invertible and hence
K — X is Fredholm and ind(K — A) = 0. Therefore, if A is in o(K) then
ker(T'— A) # {0} and hence X is an eigen value of K of finite multiplicity.
Moreover, since ind(K — \) = 0, we see that \ is an eigenvalue of K* of the
same multiplicity.

Let {\,} be a sequence a distinct eigenvalues of K with corresponding
eigen vector {f,,}. If M,, = span{fi,..., fu} then My G My G, ..., since the
eigen vectors corresponding to distinct eigenvalues are linearly independent.
Let g, be a unit vector in M,, orthogonal to M,,_;. For any h in 'H,

h= (h,gn)gn + 90:90 L gn Vn

Since ||k]| = > |(h, ga)]? + ||g0]|?, it follows that (h, g,) — 0. Therefore, the
sequence ¢, — 0 weakly and hence K¢, — 0 in norm. Since g, € M,,, there
exists scalars aj such that g, = EZ=1 g fr,

Kg, = Z%ka = Zak)\kfk =\ Z ap fr + Z ar( A — M) fr
k=1 k=1 k=1 k=1
- )\ngn + hna hnEMn—l'
Therefore,

Tim Aol < Tim (AP lgal + 1all?) = lim (K, ]* = 0.
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2 Chapter 2: Ext(x) as a Semigroup with
Identity

4 Extensions and Essential Unitary Operators

While classifying essentially normal operators is our main goal, it turns out
that to solve our specific problem it is useful to consider a related problem of
a more general nature. First, observe that if Sy is the C*-algebra generated
by the essentially normal operator T, the compact operators C(H) and the
identity operator I on the Hilbert space H then Sr/C(H) is isomorphic to
the C*-algebra generated by 1 and m(7") in the Calkin algebra U(H). Since
T is essentially normal, it follows that S/C(H) is commutative and we have

Sr Clouay(m(T))) = Cloess(T))
wl QT Lsp/e)
Sr/C(H) = Sr/C(H) CU(H)
where, I's; /c(x) is the Gelfand map and we have an extension, that is
0— C(H) = St 25 C(0es(T)) — 0

is exact. Conversely, if S is any C*-algebra of operators on the Hilbert space
H containing compact operators, that is C(H) € S C L(H) and X is any
compact subset of the complex plane C such that

0—C(H) 585 C(X)—0.

is exact then for any 7' in S, p(TT* — T*T) = 0 and it follows that 7' is
essentially normal. Fix any T in S such that ¢(T) = id|x. Let Sy be
the C*-algebra generated by the operator T', the compact operators and
the identity on H. Now, ¢(S7) is a C*-subalgebra of C'(X) containing the
identity function and therefore must be all of C(X). If S is any operator in
S then there is always an operator S’ in Sy such that ¢(S) = p(S5’) so that
o(S—5")=0,5—5"is compact and hence S is in Sr.

We have shown that there is a natural correspondence between essentially
normal operators 7" with essential spectrum, a compact set X C C and
extensions of C(H) by C(X). We now relate unitary equivalence modulo
the compacts of essentially normal operators to extensions. If (Si,¢1) and
(S2,p9) are two extensions corresponding to equivalent essentially normal
operators T} and Ty, that is, U"T,U = T + K for some unitary operator
U and compact operator K then U*S;U = S; by continuity of the map
T — U*TU and ¢o(T) = o1 (U*TU) for all T in So.
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Definition 4.1. Two extensions (S, ¢1) and (S, o) are equivalent if there
exists a unitary operator U such that U*S;U = Sy and ¢po(T) = 1 (U*TU).

Thus, if the essentially normal operators T} and 75 are equivalent modulo
the compacts then the corresponding extensions are equivalent. Conversely,
if the extensions are equivalent then

1 (U"TLU) = @o(Ty) = id|x = @1(T)

and we see that U*T,U — T} is compact.

The classification problem for essentially normal operators and for exten-
sions of C(H) by C(X) are identical for any compact subset X of C. The
extension point of view of course has many advantages. For any compact
metrizable space X, let Ext(X) denote the equivalence classes of the exten-
sions of C(H) by C(X), if X is a compact subset of the complex plane C
then Ext(X) is just the equivalence classes of essentially normal operators N
with oess(N) = X. Note that if A is a subset of the real line and if S is any
operator such that 7(.S) is normal with spectrum A then 7(.5) is self adjoint,

(S —8") =0= S =ReS + compact.

By the Weyl-von Neumann Theorem any two of these operators are equiva-
lent modulo the compacts or in other words, Ext(A) = 0, for A C R.

Proposition 4.2. If X andY are homeomorphic then there is bijection from
Ezxt(X) to Ext(Y).

Proof. If p : X — Y is any homeomorphism, then the map p* : C(Y) —
C(X) defined by f — fop for fin C(Y) is an isomorphism. If (S, )
is an extension of C(H) by C(Y) then (S,p*p) is an extension of C(H) by
C(X). If (S1,¢1) and (Sy,¢2) are two equivalent extensions of C(H) by
C(Y) and U is the unitary operator implementing this unitary equivalence
then p*o1 (U*TU) = p*po(T') and the two extensions (S, p*p1) and (Sa, p*¥2)
are equivalent. This completes the proof. O

In particular, if 7" is an essentially normal operator with essential spec-
trum homeomorphic to a subset of the real line then T is in N+ C.

What about essentially normal operators with essential spectrum home-
omorphic to the unit circle T. The next theorem shows that Ext(T) = Z.

Theorem 4.3. If n(T) is a unitary then T is a compact perturbation of
a unitary operator, a shift of multiplicity n or the adjoint of the shift of
multiplicity n, according as ind T =0, ind T = —n <0 ormdT =n > 0.
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Proof. If m(T) is unitary then T*T—1I is compact. Multiplying by ((T*T)"/?+
I)7, we see that (T*T)Y2 — I is also compact. If T = W/|T| is the polar
decomposition for 7" then 7' = W + K for some compact operator 7. If
indT =n <0 then ind W =ind T'=n < 0 and dimker W < dim[ran W]*.
Choose a partial isometry L with initial space ker W and final space contained
in [ranW]+. The operator V = W + L is an isometry. We can now apply the
Wold-von Neumann decomposition to the isometry V' to obtain an unitary
operator U and a unilateral shift S of some multiplicity such that V =U®S.
Since
ind7T =indV =indU +ind S = ind S.

it follows that ind S = n, which in turn implies S is a shift of multiplicity
n. If ind T"= 0 then T"= U + K for some compact operator K. However, if
ind T < 0, then T"= U & S + compact with S a shift of multiplicity n. To
obtain the desired result, we would have to show U &S ~ S+ compact. This
is indeed correct as will be seen in the next lecture. Assuming this result to
be called, ‘Absorption Lemma’, for the moment, the proof of the theorem is
complete for operators 7" with ind T" < 0. For an operator 7" with ind T" > 0,
apply the preceding method to the adjoint operator 7. This completes the
proof. O]

We have already seen that the problem of classifying essentially normal
operators is equivalent to that of classifying extensions of C(H) by C'(X) for
compact sets X C C. We now introduce yet another way of looking at the
same problem. Let (S, ) be the extension

0—CH) — S = C(X)—0

| | LT
0— C(H) — L(H) "~ UH) — 0

The map 7 is determined by 7¢(T) = «(T). It is easily verified that 7 :
C(X) — U(H) is a unital *-monomorphism. On the other hand, given
a unital *-monomorphism 7 : C(X) — U(H), define S = 7 ![Im 7] and
¢ =7 Lom. The pair (S, ¢) obtained in this manner is an extension of C(H)
by C'(X). Given an essentially normal operator T', we obtain the associated
extension (Sz,¢r) which in turn gives rise to the unital *-monomorphism
7 : C(X) — U(H), what is the relationship of 7 to the operator 77 Note
that ¢(p(T)) = p for a polynomial the relationship of 7 to the operator 77
Note that ¢(p(1")) = p for a polynomial and therefore, 7¢(p(T)) = n(p(T)) =
p(m(T)). Thus the map 7 is just the functional calculus for the operator 7 (7).
If we start with a unital *-monomorphism 7 : C(X) — U(H) then by taking
T to be any operator such that n(7") = 7(id|x), we obtain an essentially
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normal operator with essential spectrum X. How do we define equivalence
for the unital *-monomorphisms 7 : C(X) — U(H)? If we start with two
equivalent essentially normal operators 77,7, and obtain the corresponding
unital *-monomorphisms 71, 75 then for f in C'(X)

n(p) = f(7(Th)) = f(r(U"TLU + K))
= f(n(U")n(Ta)7(U)) = (av)(7a2(p))-

Definition 4.4. Any two unital *-monomorphisms 7 : C(X) — U(H), k =
1,2 are equivalent if 71 = (ay)7e.

In the preceeding paragraph, we have seen that equivalent extensions give
rise to equivalent operators. The converse statement for X a compact subset
of C is easily verified. Thus the classification problem for essentially normal
operators is again identical to that of classifying unital *-monomorphisms
7 C(X) — U(H). We will for the rest of these notes work only with
these objects and occasionally use essentially normal operators for motivating
certain definitions. The equivalence class [7] of a *-monomorphisim 7 will
be called an extension, and Ext(X) will be the set of all such equivalence
classes for fixed compact metrizable space X. Some times we will write [7,],
to emphasize that [7,] is an element of Ext(X).

Since our main problem is to study normal elements in the Calkin al-
gebra, it would seem that the correct notion of equivalence is some what
weaker. Define two extensions [r1] and [r1] to be weakly equivalent if there
is an essentially unitary operator T' such that 7(T)7(f)m(T)* = m(f) for
all f in C(X). Weak equivalence, perhaps is the more natural equivalence
in our setting. We will however show that the weaker notion of equiva-
lence is actually equivalent to the equivalence we have defined for unital
*-monomorphism 7 : C'(X) — U(H). This is no longer true if we consider
unital *-monomorphisms of non abelian C*-algebras.

5 Absorption Lemma

In this section, we will prove the absorption lemma, which was used in proving
Ext(T) = Z. Keeping later developments in mind, we prove a little more than
the absorption lemma.

Lemma 5.1. Let T = (Ty,...,T,) be such that (w(T}),...,n(T},)) is a com-
muting family of normal elements on U(H) and let A in C" be in the joint
essential spectrum of T. Given € > 0 and a finite dimensional subspace
M CH, there exists a nonzero vector ¢ in ML such that

(T, — M) || < € for all m.
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Proof. Let S = > (T, — An)* (T — \) and Uy C U(H) be the C*-algebra
generated by 7 (7}),...,m(T,). Since there exists a unital *-homomorphism
p : Ur — C such that

p(m(Ty,)) = Ay, for all m

and 7(S) is on Uy, it follows that p(m(S)) = 0. Hence, 0 € 0ess and x[o,¢)(S) is
a projection of infinite rank. If (ran yjo¢)) N (M*\{0}) = @ then the projec-
tion Py would map the infinite dimensional space ran x|, injectively into
the finite dimensional space M. This contradiction guarantees the existence
of

p € MH\{0} Nran x(0,0(5), [l¢] =1
To complete the proof, note that

€>(Sp,0) 2 ) 1T = Aol
O

Theorem 5.2. Let {T,,}2°, be a family of operators on H such that {m(T,)}
is a commuting family of normal elements in U(H). If A7) € Oess(L) for
r = 1,2,... then there exists an orthonormal sequence {1}, in H such
that

D,, 0
Tm_{o Rm]Jer,KmEC(H)

The decomposition of T,, is with respect to the subspaces M = Clos Span {1, }
and M. The operator D,, in L(M) is diagonal and D1, = A%)wr.

Proof. First consider the case of self adjoint operators {7,,}. Construct an
orthonormal sequence {1, } such that

| Tnthy — A0, < (1/2)7 m<r

If {¢1,...,9,_1} are pairwise orthogonal and satisfy the inequality above
then apply the lemma with n = r, A = AW M = Span{¢y,...,¥,_1} and
e = (1/2)""! to obtain 1), as desired. Now, decompose each T}, with respect
to M and M as )

o[ X Y ]
" Y Rn
and note that

[ X, — D, Y7
Tm_Dm@Rm:_Ym 0 :|a
H(Xm - Dm)erz + HmeTHQ = H(Tm - Dm)%Hz
))e.

= | Twthr = A |* < ((1/2)7)?
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It follows that, X,, — D,, and Y,,, are both Hilbert—-Schmidt and hence T,,, —
D,, ® R,, is compact. To complete the proof in the general case, apply this
technique to the sequence {Re T}, ImT,,}. [

Corollary 5.3. (Absorption lemma). If T is essentially normal and N is
normal with essential spectrum contained in that of T then T & N ~ T

Proof. Let the sequence A" be dense in o.(7), isolated points being counted
infinitely often. The theorem implies that

I'=D®R+K

for some compact operator K and D is diagonal with eigen values A, The
operators 1" and D have the same essential spectrum and hence

Uess(T) = UBSS(D) = Uess(D ) N)

By the Wely—von Neumann theorem, D@ N is equivalent to D and therefore,
T & N is equivalent to T'. This completes the proof. Il

In a different direction, theorem 5.2 can be used to show that the two
notions of equivalence (strong and weak) we have introduced are in fact the
same.

Proposition 5.4. Weakly equivalent extensions are equivalent.

Proof. Let 1, : C(X) — U(Hy), k = 1,2 be weakly equivalent *-monomorphisms.
Any unitary map U : Hy — Hi, induces an isomorphism «, : U(Hy) —
U(H,) and oy, 7y is strongly equivalent to 5. Thus, we need to only show that
71 and ay,, 7o are strongly equivalent. Therefore, we may assume H; = H = H,
without loss of generality.

If 7,77 : C(X) — U(H) are weakly equivalent *-monomorphisms then
there exists an operator S such that 7(5) is unitary and

(as7)(f) = 7(S)T(f)m(S") = 7'(f).

If 7(S’) is any other unitary element in ¢(H) commuting with Im 7 then
(s 7)(f) = 7(S)m (S)(f)m(S™)m(S7)
= m(S)T(f)m(S™) =7'(f)

If S” can be chosen such that SS’ is a compact perturbation of an unitary
then 7 would be strongly equivalent to 7/. The fact that SS" = U + K for
some unitary U and compact K in turn would follow from showing

ind S5’ = 0, that is, ind S’ = —ind S.
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We now establish the existence of the operator S’. Let {fi,..., fm,...}
be dense in C(X) and A = (A1,..., A\m,...) be in the joint spectrum of
(7(f1),...,7(fm),...). Fix operators T/1,... T/m .. . such that 7(T/m) =
7(f) for m = 1,2,.... Apply theorem 5.2 with A"} = )\ for all r to obtain
an orthonormal sequence 1, such that

T/ =\, I & R,, + K,,

where K, is compact and the decomposition of 77" is with respect to H =
M B ML, M = clso span {¢,}. Let U, be the shift operator on M and

define
Ur n<o0
U—E_n) _ + —
v n>0

Define the operator

Id on M*
Sl =
(n) U(n)

. on M

and note that 57, is essentially unitary, ind S, = n. To verify that m(57,)
commutes with Im 7, observe that

[S(ny: T] = S( T/ — TS,
= )\mUJ(rn) ® R, — )\mUJ(rn) @ R,, + compact
= compact
Thus,
T (Se))7(fm) = 7(SeyTI™) = 7(T7" S(y) = 7(fin)7(S(m))

Since 7(S(,)) commutes with dense subset of Im 7, it follows that 7(S,))
commutes with all of Im 7 and the proof is complete. Il

6 Splitting

Given a *-monomorphism 7 : C(X) — U(H) and f € C(X), write T" for
any operator T in £(H) such that 7(T") = 7(f), it will be always understood
that 7" is determined only up to simultaneous unitary equivalence modulo
the compacts. If T is in L(H) and E is a projection in £(H) then write Tx
for the operator ET|gy in L(EH).

Lemma 6.1. Suppose 7. : C(X) — U(H) is a *monomorphism with 7.(1) =
e # 1, where e is a projection in the Calkin algebra U(H).
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(a) There exists a projection E in L(H) such that m(E) = e.

(b) There exists a unital *~monomorphism 1. = C(X) — U(EH) such
that
Te,E(f) = W(Tg)v where W(Tf> = Te(f)'

(c¢) If F is another projection such that w(F) = e, then [T.g] = [Te.r].

Proof. (a) First, if 7(T) = e then m(T — T™*) = 0 which implies T' = Re T+
compact. Thus ReT is a self adjoint lifting of e and o.(ReT) = o(e). We
can now perturb ReT" by a compact operator so as to obtain a self adjoint
operator E such that oes(E) = 0(F) = 0es(ReT). The operator E then
would be a projection.

(b) Note, 7.(1) = e implies that 7.(f) = 7.(1 - f - 1) = e7.(f)e, that
is, 7(T/ — ET/E) = 0. Thus, the map 7.p : f — 7(T%) is well defined.
Note, 7.(1) = e also implies that the projection e commutes with Im 7, and
therefore 7(T/E — ET7) = 0. If we decompose the operator T/ with respect
to E and I — FE, then the off diagonal entries are compact. Thus, the map
o [ — m(T}) is *-homomorphism.

(c) Let U and V be isometries on H such that UU* = E'H and VV* =
FH. Define 7. 5 : C(X) - U(H) and 7. p : C(X) — U(H) by

Fou0(f) = n(UTLU) and  7.p(f) = n(V*TLV).

It follows that [7. g] = [Te.g] and [Ter| = [Ter]. We will show that 7. p is
weakly equivalent to 7. p. Observe that

(VU 5(UV) = a(VU)r(UTLU)n(U*V)
= n(V*UU*TLUU*V) = n(V*ETLEV)
=a(V*ET'EV) = n(V*FT'FV) = 7, .

In the last but one equality, we have used the fact that £ and F differ by a
compact operator. Finally note that,

U'VV*U =U"FU = U*(E + compact)U = I + compact

and similarly, V*UU*V = 14compact. Thus, the operator V*U is essentially
unitary and the proof of the lemma is complete. n

If Z is a separable abelian C*-subalgebra of the Calkin algebra U(H) and
I'z: Z — C(X) is the Gelfand map,
ox) s o(X)
7l 1Tz
Im7— Z CU(H)
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then I'z o7 is an injection of C'(X) into C (X) and is induced by a continuous
surjection p : X — X, that is,

Lzor(f ) p(f
() =13
p-(I'z
In particular, if e is an projection in U (H) commuting with Im 7 and the
algebra Z = C*[Im,e] then it is possible to split the extension [r] with
respect to certain subsets of X. In the following, we make this precise.
Since e is a projection in Z and I'z is the Gelfand map, it follows that
there exists a clopen subset X; of X and the characteristic function Xz, Of
the set X; maps to e under the Gelfand map I'z. Let X, = X\Xl. Thus,
X = X, U Xy is the disjoint union of the two sets X; and X,. We claim
that the map p : X — X is one to one on X; and on Xs, therefore p is
a homeomorphism on these sets. In fact, y,, together with I'z(Im7) must
separate points of X. However on X3, the function Xz, can not distinguish
any points, therefore all the points in X; must be separated by I'z(ImT).
But if p(x) = p(y), for any two points in X; then they are not separated.
The fact that p is one to one on X, follows similarly. Note that p* is an
injective map by construction and therefore the map p : X — X must be
surjective. In particular, p(X;) Up(X;) = X.
We identify X, with the closed subset X; = p(f(l) of X and similarly, X,
is identified with the closed subset Xy = p(f(g) of X such that X; U X, = X.
Now, if 74 : C'(X) — U(H) is the *~homomorphism defined by, 7(f) =
er(f) then 72 is not unital and

kerté = {f € O(X) : f|x, = 0}, for some closed subset X; of X.

)
)
)

Define, 7. to be the *-monomorphism induced by 7¢ from C(X;) =~
C(X)/(ker %) into the Calkin algebra U(H). The map 7. is not unital, in
fact, 7.(1) = e. By applying the preceeding lemma, we obtain the extension
[Te.£], which depends only on the class e and not on the representative E.
We now collect what we have said so far plus a little more in the following
lemma.

Lemma 6.2. If e in U(H) commutes with Im7,Z = C*[ImT,e] and I'z :
Z — C(X) be the Gelfand map then

X = Xl L Xg, there exists a continuous surjection p : X — X,

which, is injective on both X; and Xo. If 74 = er, then C(X)/(ker7?) =
C(Xy) and if 7&_ = (1 — e)7, then C(X)/(ker7{ ) = C(X5) where X; =
p(X1) and Xy = p(Xs).
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Proof. We have already proved the first part in the preceeding discussion.
To prove the second half, note that

0=1(f) & 0=er(f) & 0="Tz(er(f)) &
0=xz0"(f) 0= (fop)xs & 0= f(X1)

This completes the proof of the lemma. O

Hence 7¢ induces a *-monomorphism 7, : C(X;) — U(H), which is not
unital, indeed 7.(1) = e. However, Lemma 6.1 allows us to choose a unital

*-monomorphism 7, = T, p : C(X;) — U(H). Similarly, by considering the

*-homomorphism 7¢ _ : C(X) — U(H), we obtain the map 75 =71 . p.

Definition 6.3. Given a function f in C'(X; U X5) and extensions [7,,] and
[T2,], define the map 7, U7,, : C(X1UX3) — U(H1) DU (H2) — U(H1 B Hs)
by

Ty U Ty () = Ty (Flay) © Ty (fla)-

Now, we claim that

pe([m U n]) = [7] = (izy ) * [11] + (izyz) * [T2]-

First for f in C'(X),

(i Un)(fop)=7(foplz) ® (S oplz)
- Tl(f Oiacl,ac) @TQ(f © Z..Z’Q,Z‘)

Thus, we get
Pl Uma]) = (iay.2) * [T1] 4 (ias,2) * [T2].

Secondly for f in C'(X),

(71 (g )" + T2l )] () = Ti(f 0ty 2) ® Tollizy0) O Rx
= T1(fla1) © 72(flen) © Rx
=er(f) @ (1 —e)7(f) ®Rx
=7(f) & Rx

Thus, we get
(7] = (izy2) * [11] + (la,2) * [T2]-

There is a rather pretty way of saying all this in metrical language. Note
that 71(f) = ET/| gy, where 7(T7) = 7(f) and that in the matrix decompo-
sition of TV with respect to E'H and (I — E)H the off diagonal entries are
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compact. For f in C(X; U X5), we see that

(U n)(f) =71(fler) ® 72(fln)
= 7[ET! | pr] & w[(I — E)T' | (1—pyn]
= BT |z & (I = BT |u_py] = =(T7) = 7(f)

What we have done is to simultaniously obtain a direct sum decomposi-
tion of the operators 77 modulo the compacts.

For any two extensions [7,, ] and [7,,] in Ext(X;) and Ext(X5) respectively,
define the two maps [ : Ext(X;) @ Ext(X,) — Ext(X) by

Bll7er]; [Taall = (g 2) [Ty ] + (g 2) [ Ts ]

and A : Ext(X;) & Ext(Xy) — Ext(X; U X3) by

M7y )5 [Taol] = [Ty U Ty

Note that the class of 7y, Ll 7x, depends only on the class of 7y, and 7x,.
What we have shown above is that p,A = . Now we make the following
definition.

Definition 6.4. An extension [7x]| is said to split with respect to a closed
cover { X7, Xo} of X if it is in the range of 5 or equivalently in the range of
DiA.

Proposition 6.5. If {X1, Xo} is a closed cover of X then the natural map
p: X1 U Xy — X is a continuous surjection and the operation U induces an
isomorphism X : Ext(X;) @ Ert(Xy) — Ext(X; U X5).

Proof. Let x be the characteristic function of X; and e = p(x). If [7] is an
extension in Ext(X; U X5) then as in Lemma 6.2, we obtain two extensions
[11] = [re.g] and [12] = [Ti—es—g] which depend only on the projection e
and [r; U ] = [r]. Define, p : Ext(X; U X3) — Ext(X;) @ Ext(X,) by
p([7]) = ([n], [m2]). It is clear that A o p = id on Ext(X; U X3). To show
that po A = id on Ext(X;) @ Ext(X5), let E be the projection onto H; in
L(H; @& Hs) and in view of Lemma 6.1, we may use this projection to define
the map p, if we do that then p o A obviously the identity map.

Finally, we remark that if X is the union of two disjoint closed sets X;
and X, then X is actually equal to X;11X5 and the map p, is just the identity
map. Since \ is just seen to be an isomorphism, it follows that p, o A is an
isomorphism, in other words, every extension in such a space splits. O]

26



7 Uniqueness of the Trivial Class

The main goal in this section is to show that Ext(X) is an abelian semigroup
with an identity for any compact metric space X, the fact that Ext(X) is a
group will be established much later.

First note that if 77 and Ty are two essentially normal operators with
fixed essential spectrum X then T = T) & Tj is also essentially normal with
essential spectrum equal to X and the class of T' depends only on those of
T) and T,. Thus, for X C C, we may define addition in Ext(X) by

[Th] + [To] = [Ty & T3]

If 7 and 75 are the unital *-monomorphisms corresponding to the operators
Ty and T5 then we have defined the sum 7 + 7 by the functional calculus
for Ty & T,

(11 +72)(f) = f(r(Th © T3)).

However, if p is the map determined by the diagram

L(Hy) ® L(Hz) — L(H1 @ H2)
ThT] I
Z/{(H1) @U(HQ) -—> Z/{(H1 @ HQ)

then

(1 +7m)(f) = f(r(Th © Tz)) = p(f(7(T1)) © f(7(12))) = p(m1(f) ® T2(f)).

For any compact metrizable space X, we define the sum 7, 4+7 by the formula

(11 +72)(f) = p(na(f) ® 12(f)), for fin C(X).

Now 71 + 75 is a unital *-monomorphism form C(X) into U(H;) & U(Ha),
however and we can think of U(H;) @U(Hs) as a sub algebra of U(H; B Hs).
We also note that the class [11 + 73] depends only on the class of 71 and 75 and
is therefore well defined as an element of Ext(X). The sum we have defined
in Ext(X), obviously makes it into an abelian semigroup.

What would be the identity element in Ext(X)? Again, we examine an
essentially normal operator to answer this question. If an essentially normal
operator N with essential spectrum ce(N) = X is in the class N+ C then
the absorption lemma implies that for any essentially normal operator T" with
0ess(T') = X, the operator T'® N is equivalent to 7. Thus for X C C and
any operator N in N & C we have,

[T] = [T & N]=[T]+[N].
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This amounts to saying that the class [N], N in A/ 4C acts as the identity
in Ext(X), for this reason, operators in N'@C will be called trivial. For X C
C, the Weyl-von Neumann theorem states that the class of any such operator
must be uniquely determined. As we have pointed out, we can compactly
perturb normal operator N to obtain N’ such that o(N') = X = ge(N'). If
R, is the associated unital *-monomorphism, R, : C(X) — U(H) then the
diagram

is commutative, where Ry is defined by Ro(f) = f(N').

Definition 7.1. For any compact metrizable space X, a unital *-monomorphism
R: C(X) — U(H) is trivial if we can find a unital *-monomorphism R :
C(X) — L(H) such that ® = 7 o Ry. We say that Ry trivializes R and that

R lifts to L(H).

We next show that the class [7] of a trivial element in Ext(X) is uniquely
determined. This is a generalisation of the Weyl-von Neumann Theorem.
But, we will first need a lemma on projections.

Lemma 7.2. If U is an abelian C*-algebra generated by countably many
projections then the maximal ideal space M of U Is totally disconnected,
that is M has a basis of Clopen sets. Moreover, U has a single self adjoint
generator.

Proof. Let e, be the projections generating the algebra U. There exists
Clopen sets U, such that I'y(e,) = xu,, where Iy, is the Gelfand map. The
U,.’s separate points since the e,,’s generate the algebra /. Consider the map

7 M= {0,117, y(2) = (xv,(2)).
Then, 7 is a homeomorphism onto a compact subset of {0,1}". The map

P01 = 0,1 () = D

is a one to one map of {0, 1} onto the Cantor set. The map h = @ o~ is
one to one and by Stone—Weirstrass theorem, the C*-algebra generated by h
is isomorphic to C'(M) and the proof is complete. n
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The following theorem establishing the unity of the trivial element is a
generalisation of the Weyl-von Neumann theorem.

Theorem 7.3. If X is a compact metric space then there exists a trivial
extension R, in Ext(X). Any two trivial extensions are equivalent.

Proof. Let {x,} be a dense set in X, where each isolated point z,, is counted

infinitely often. Take H = ¢?(N) and define R, : C(X) — U(H) by
Ro(f) = mldiag(f(za))],

where, diag(f(z,)) is the diagonal operator with respect to the standard
orthonormal basis in ¢*(N). The map R, is obviously a *-homomorphism
that factors through 7. If R, (f) = 0 then diag(f(z,)) is compact. Therefore,
f(x,) — 0 and it follows that f = 0. Thus, &, is a *-monomorphism.

We next show that any two *-monomorphism of this type are equiva-
lent. Let s be a *-monomorphism corresponding to another such sequence
{yn}. It is easy to show that there exists a permutation v of N such that
d(Zn, Yu(n)) — 0 where, d is the metric on X. Let U be the unitary operator,
which sends e, to e,(,). We have,

U(diag(f(zn)))en = f(2n)evm)
(dlag(f(yn))Uen = f(yu(n))eu(n)>

which implies

Udiag(f () — diag(f(yn))U = diag( (@) — f(yn))) = compact.

Therefore, Xx and RN’y are equivalent.

Finally, we show that any trivial map is equivalent to the one we have
described. If ® : C(X) — U(H) is trivial then there is a trivializing map
Ry : C(X) — L(H) such that 7o Ry = R.

Let E be the spectral measure on X such that

R(/) = [ e

If U, is a basis of open sets in X and Zj is the C*-algebra generated by
E(U,) then by the preceeding lemma, Z; has a single self adjoint generator
H. Let Tz, : 2y — C(X) be the Gelfand map, where, Xy = o(H).

Let ¢ > 0 and f be a continuous function on X. There exists a finite
number of U,, covering X such that

|f(x) — f(2)| <e, if z,2" are in U,
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Fix x,, in U, and note that

1fF = )yl < e

It follows that Im Ry € Z, and that the map 'z, Ry : C(X) — C(X,) is
injective, therefore, it is induced by a surjection

Po - XO _>Xa
P = C(X) --» C(Xo)

9%O l T FZo

Thus, I'z,Ro = pi; : C(X) — C(X,) is given by
Ro(f) = F%&?S(f) = F:z;(f opo) = fopo(H).

However, by Weyl’s theorem, there exists a diagonal operator D with
Oess(D) = Oess(H) such that H — D is compact. We may further assume that
0(D) = 0es(D) = X,. Since 7(f opo) = (f o po)(m(D)), it follows that

Ro(f) = fopo(H) = fop(D+ K) = fopy(D)+ Ky.

If D = diag(\,) then {\,} is dense in X, and consequently, {z,, = po(\,)}
is dense in X. Moreover,

R(f) = mRo(f) = 7(f o po(D)) = wdiag(f(2n))

for all f in C(X). Therefore, R, arises as above from the sequence {z,}.
This completes the proof. Il

The proof of the following corollary is contained in that of the theorem.
The converse statement will be proved later.

Corollary 7.4. The image of a trivial map is contained in a C*-algebra
generated by projections.

8 Identity for Ext(X)
We have seen that the class of a trivial map

L(H)

Ro /|7

R C(X) — UH)

is uniquely determined. We now show that the class [R] acts as the ideality
in the abelian semi group Ext(X).
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Theorem 8.1. If [1] is any extension in Ext(X) and R : C(X) — U(H) is
trivial then [7] + [R] = [7].

Proof. Let {X,} be a countable dense set in X and A% = fo(z,). If {fm}

is dense in C'(X) and 77 in L£(H) is chosen such that 7(T77") = 7(f,,) then
T/m is essentially normal,

(TP [T™]*] € C(H) for all m,n and
A = {Agﬁ) = fm(z,)m > 1} € UeSS(Tfm)mzl'

Let M = Clos Span{#,} as in Lemma 5.2, £ = P, be the projection onto
M and obtain the decomposition

Tfm — |: l)om RO :| + Km7 Km c C(H) ......... (*)

as in that lemma. Since (*) holds for a dense set it follows that for any f in
C(X) and T7 in L(H) satisfying m(T7) = 7(f) we have

Tf:[sf 0 ]—FKf, KfEC(H)

The fact that Sy and Ry are determined upto a compact operator implies
the maps
n:f—Sy and T f — Ry

are well defined. The off diagonal entries in 77 are compact therefore, both
71 and 75 are homomorphisms. Furthermore, in obtaining the decomposition
(*) by using the A" twice in succession, the operator R, itself can be written
as R, =D, ® R,,.

In particular,

Uess<Rm) - Uess(Tfm) - O-ess(Dm>'
Therefore,
T(Ru) = m(T) = || funlloo
and similarly
7 (D)l = (7 ()| = || fonll

Both the maps 71 and 75 are thus *-monomorphisms.

If Ry : X — L(H) is the *monomorphism f — diagf(z,) then 7, and
m o Ry agree on a dense set therefore, 7 = m o Ry = R is the trivial map.
Since 7 = 1 + 73 by construction it follows that

THR=T+n+R=R+n+R=n+R=n+n=r1

This completes the proof. O
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If R : C(X) — U(H) is trivial with trivializing map Ry : C(X) —
L(H) then for any invertible f in C(X),7(f) is invertible and ind (7(f)) =

Since 79(f) is a normal operator. Let 7!'(X) be the first cohomotopy
group of X. Define the map ~yx : Ext(X) — Hom(7'(X),U) by

(vx[TD((f]) = ind 7(f).

The map vy is well defined. The relation

ind7(fg) = ind7(f)7(g) = ind7(f) + ind 7(g)

shows that vx[7] : #'(X) — U is a homomorphism.
Finally,

ind(m; + 72)(f) = ind (71.(f) & =2(f)) = ind 7 (f) + ind 7 (f)

Shows that vx is a homomorphism. We ask, whether vx is injective.
An affirmative answer will characterize the trivial maps. In 1972, Brown,
Douglas and Fillmore showed that for X a compact subset of the complex
plane C, the map vy is, in fact, injective.

Corollary 8.2. Ezt is a covariant function from compact metrizable spaces
to abelian semigroups.

Proof. Given a continuous function p : X — Y and an extension 7 : C(X) —
U(H), we may define p,7 in a natural way by

(p«7)(f) =7(fop), feC(Y)

The map, p.7 : C(Y) — U(H) is easily seen to be a *-homomorphism,
which is injective if p is surjective. In general the kernel of this map may be
non-trivial. To eliminate this kernel and obtain a *-monomorphism, define

(p7)(f) = T(po f) + Ry (f),

Ry : C(Y) — U(H) is any trivial map. However, while p,7 is not well
defined, it determines a well defined map p, : Ext(X) — Ext(Y") by

p+([7]) = [p.7],

where we have used a fixed but arbitrary trivial map in defining p,7. Since
p.7 and p,7’ are equivalent if and only if 7 and 7" are equivalent, it follows
that the map, p, : Ext(X) — Ext(Y) is well defined. If p is surjective then
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Top* is a *-monomorphism, by the preceeding theorem 7op* and 7op* + Ry
determine the same class in Ext(Y’). Clearly, p. preserves the semigroup
structure,

(id]s) = id|pxe x,)

and for any ¢ : Y — Z continuous

(qp)+ = qups
Thus, Ext is a covariant function. This completes the proof. O

It was shown in the proof of the Theorem 8.2 that if 7 is a trivial map
then Im 7 is contained in an abelian C*-algebra generated by projections. The
following theorem establishing the converse leads naturally to the concept of
splitting.

Theorem 8.3. If 7 : C(X) — U(H) is a *monomorphism with ImTt con-
tained in a abelian C*-algebra Z generated by countable projections then T s
trivial.

Proof. The abelian C*-algebren Z generated by countable projections is *-

isomorphic to C(X), for X a subset of R. If I'z : 2 — C(X) is the *
isomorphism,

cx) 5 oX)
7| [
Im7 — Z CU(H)

then I'z o 7 is injective and is induced by a subjective continuous map, p :
X - X.
Thus,
Fzor=p or7 =07 op*=p.(I3").

But I';! is trivial since X is a subset of R therefore, 7 is also trivial. O
Chapter 3: The Mayer—Vietrois Sequence

9 First Splitting Lemma

In this section, we prove the first splitting lemma which is the first step in
the iterated splitting argument.
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Proposition 9.1. Let X andY be compact metrizable spaces and q: X — 'Y
be a continuous surjection. Let [1] in Ezt(X) be any extension such that
[R] = q.[7] is trivial in Ext(Y') and let Ry be the trivializing map. The map
Ro : C(Y) — L(H) is induced by a spectral measure E on Y, that is,

Rulf) = [ f aE

if C is any closed subset of Y such that q|q—1(ac) is one—one then the projec-
tion m(E(C)) commutes with ImT.

Proof. If f is any continuous function on X then f og¢~! is well defined and
continuous on AC, hence extends to a continuous function f; on all of Y.
The function g = f — f o ¢ is continuous on X and vanishes on ¢~1(9C).
There exists a continuous function G on X vanishing in a neighbourhood of
¢ 1 (0C) such that ||g — G|| < ¢, where € > 0 is arbitrary. Any such function
G is a sum of two functions f, and f3 such that Suppf, C ¢ !(int C) and
Suppfs C ¢ }(Y'\C). Hence, any function f in C(X) can be approximated
by a function of the form f; o ¢ + f5 + f3. Therefore, it is enough to check
that the projection e = m(E(C)) commutes with each of

7(f10q), 7(f2) and 7(fs).
Note that,
R=(rq")(fi) =7(fioq) = 7T/fl dE,

and hence
R(EB(C))r(f00) = 7(E(C) [ i dB)
= W/chl dE = 7(f1 0 )7 (E(C)).

Since the set K = suppf, is a compact subset of X, it follows that we can find
a continuous function h on Y, which is one on ¢(K) and supp h is contained
in int C. Further,

fa= fa(hoq) = (hoq)fa,

and hence

m(E(C))7(f2)

(EC)7((heq)f2)
(E(C)7((hoq)7(f2))

~(E(C) / b dE)r(f,)

™
™
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= 7r(/ xch dE)7(f2)

= / b dE)7(f,)
T((h © Q)fz) = T(fz)

Similarly,
T(f2)m(E(C)) = 7(f2).

The proof that 7(f;) commutes with 7(E(C)) is identical and the proof of
the theorem is complete. O

Remark 9.2. If f is any continuous function on X such that f o ¢ *(C) =0
then suppf C ¢ !(int C') and as in the proof of the theorem,

7(f) = m(E(C)7(f),

that is, the function f is in ker 7 _, where the projection e = 7(E(C)). If
X = X; U X, is the maximal ideal space of the C*-algebra Z generated by
Im7 and e then X; C ¢ '(C). Similarly, if f is any continuous function
vanishing on ¢~ 1(Y'\int C) then f is in ker 7¢ and X, C ¢~ (Y \int C).

Lemma 9.3. (First Splitting Lemma). If X = AU B with AN B = {0}
then [ : Ext(A) ® Ext(B) — Ext(X) is an isomorphism.

Proof. Define a continuous function ¢ : X — [—1,1] by
(@) d(zo,z)/(d(z0, ) +d(z,a)) x€A
€Tr) =
K —d(z0,7)/(d(x0,z) + d(z,b)) =€ B

where a in A\{zo} is arbitrary and b in B\{zo} is arbitrary. Let C' be the
closed interval [0, 1]. If [7] is any extension in Ext(X) then g.([7]) is trivial
and 7(E(C)) commutes with Im 7, thus, [7] splits into [r1] and [rp] with
respect to some closed cover {X;, Xs} of X, that is,

(7] = i1u[11] + da[a],

where iy : Xy — X, k= 1,2 is the inclusion map. However, as pointed out
in the preceeding remark



Since i1 = ip x 04y, p and iy =14 x O ix, 4, it follows that

7]

(15.x)«((ix1,8)+[]) + (a,.x)+((ix5,4)[72])

(iB,x)«[T1] + (1a.x)«[T2]

Therefore, (3 is surjective.

The map r: X — A,
r €A
r(z) =
o T € B.

is a retraction of X onto A and let s : X — B be a similar retraction of X
onto B. Note that,

((rs, 5:)0) (1], [72])

= (reine[m] + Tudou[ ], Buiri[ 1] + Sud24[72]).

But r,i1.[m1] = (r ody).[n] = [11] and r.ig.[m] is trivial.
Similarly, s.ii.[71] is trivial and s.is.[72] = [m2]. Therefore, (r.,i.)58 =
id|EXt(A)@EXt(B) and [ is injective. O

10 If X/A is Totally Disconnected then (i4 x). is Sur-
jective

Lemma 10.1. If A is a closed subset of a compact metrizable space X such
that X /A is totally disconnected then

(a) X\A can be written as the disjoint union of clopen sets such that diam
Xn — 0,

(b) the function r : X — A defined by r|s = id and r(z) = a,, for all x in
X, where a,, in OA is chosen such that dist(a,, X,) = dist(0A, X,,), is
a retraction.

Proof. Recall that a totally disconnected metric space has a basis of clopen
sets. Let ¢ : X — X/A be the quotient map and {U, : n > 1} be a
decreasing neighbourhood basis of ¢(A) consisting of clopen sets U, in X/A.
The set ¢~ 1(U¢) is homeomorphic to U¢. Since U¢ is a clopen set in a totally
disconnected space, it follows that, US is itself is totally disconnected and
hence so is ¢~*(US). Therefore, there exists a finite cover of ¢~(US) by
clopen sets F),;,1 < k < m,, which can be chosen to have the additional
properties
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(i) diam F,; < 1/n for all k
(11) Fn,k N Fn,k’ = (Z) for k 7£ K

Any enumeration {X,} of {F,x :n > 1,1 < k < m,} would satisfy (a).
Since dist(X,,, A) — 0, its follows that the map r in (b) is continuous and
the proof of the lemma is complete. O

Lemma 10.2. Let T € L(H) be self adjoint and F,, be orthogonal projections,
F= Zzozl F,. If there exist scalars \,, such that T'F,, — A\, F,, is compact for
all n then there exist projections F, C F,, such that F,, — F] is of finite rank
and

(i) T =T, + K, K compact.

(i) T,, = M\ I+ K,,, K,, compact for n > 1 with respect to the decomposition
H = ®u>oF H, where Fj = I — > " F!. In fact, if T(m) is any

n

commuting family of self adjoint operators such that T'(m)E,—\,(m)F,
is compact for all m,n then (a) and (b) hold simultaneously for all m.

Proof. 1If TF,, — A\, F,, is compact then TF, — F,,T and F,TF, — \,F,, are
also compact. Note that,

1T, EPY| = ITE® — FOT|
= |TF,F — FMET|
= |TF,F® + E,TF® + || FWTE, — E,TF®
—FWTE, — EMET|
<17, BJFP| + | B TEP — EPTE,|| + | FP (T, F|

and

E,TF® - FWTE, = F,TE,F® — FOE TE,
= [F,TF,, F™]
=[MF,+ K, F)]
= [K, KM,

Now, if Fék) is any projection such that F}Lk) C F,, and F,&’“) — 0 strongly
then ||[T, F{"]|| — 0 as k — cc. Therefore, there exists projections F C F,
of finite codimension such that ||[T, F!]|| < 1/n?. Consider the matrix of the

operator T with respect to the decomposition,

H= ol . Fy=1- F,.

n>1
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All entries above the diagonal are compact, since
FTF) = F[T,F/]F, for alln > k > 0,

and similarly all entries below the diagonal are also compact. We have
| F/TF,|| < 1/n*,k # n and hence the operator formed by these entries
is compact. Therefore,

T = ®p>0ly + compact,
where T,, = F}T|pr%. Moreover,
T, = Ip 1 + compact, for n > 1.

If T(m) is commuting family of self adjoint operators satisfying the hy-
pothesis of the lemma then

|[T(m), F{P] — 0 as k — oo, for all m,n.

n

Hence for each n, there exists a projection F! of finite codimension in F),
such that
[T (m), E']|| < 1/n* for all m < n.

In the decomposition of T(m) all entries above the diagonal are compact.
The difference is that, except for a finite number of entries with n < m, we
have

|[FLT(m)F)| < 1/n® for all m < n.

However, the operator formed by the entries above the diagonal is still com-
pact. Since T'(m) is self adjoint the operator formed by entries below the
diagonal is also compact. The proof in this case is completed as before. [

Remark 10.3. If T = A+ compact, is any self adjoint operator with oess(7) =
A and x. is the characteristic function x[x—cx+¢ then

(a) x(T) = I— compact.
(b) xe(T)H is a reducing subspace for T
(¢) T = x(T)+ K+ T(I —x(T)), where K is compact and | K| < e.

Remark 10.4. If {e,} is a family of commuting projections in the Calkin
algebra U(H), then there exist orthogonal projection F, on H such that
w(E,) = e,. To see this, note that the C*-algebra generated by the family
{en} is isomorphic to C'(X), where X is totally disconnected. The inverse of
the Gelfand map I'"! is a *-monomorphism, which must be trivial since X is
totally disconnected. Let 'y be the trivializing map. If E, = I'¢I'(e,) then
E,’s are orthogonal projections and 7(E,) = e,.
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Theorem 10.5. If A is a closed subset of X such that X/A is totally dis-
connected then the map i, : Ext(A) — Ext(X) induced by the inclusion map
1: A— X is an isomorphism.

Proof. Let X4,...,X,,...betheclopen sets and r : X — A be the retraction
of Lemma 10.1. Since r is a retraction, r o7 = id| 4, and it follows that r.i, =
id|Ext( ) We will show that 7,7, = id|Ext( x): Fix a *-monomorphism 7 :
C(X) — U(H). We claim that there exist mutually orthogonal projections
E, such that 7(E,) = 7(xn), where x,, is the characteristic function of y,,
and

(1) 7(gor)=71(gor)m(Ey) + (>, g(a,)E,) for all g € C(A).

(2) 7":g— 71(gor)m(Ep) is a *-monomorphism, where Ey = [ — Z E,.

n=1

To establish (1), it is enough to find projections FE,, such that (1) holds
for a sequence {g,,} dense in Cgr(A). Choose self adjoint operators H9™ such
that w(H9") = 7(gm o). Since 7(xy,) is a family of commuting projections
in U(H), it follows by Remark 10.4 — that there exist mutually orthogonal
projections F,, such that m(F},) = 7(x»). Note that

T(H" Fy — gm(an) F) = 7((gm © 7)Xn — gm(an)xn) = 0,

so that HI F,, — gm(ay,)F, is compact for all m,n and Lemma 10.2 applies.
We have,
H9 = @,>oHI™ + K, Ky, compact,

where HJm = F; H9™ |y, and
HI™ = gp(an) I, + K, Ky compact,

n

where I, is the identity on F/H.

Now, apply Remark 10.3 to obtain projection Fém’ of finite codimension
in F! such that

HE = () Y™ 4+ K 4 (1 — B

with K™ compact and |[K{™|| — 0 as n — co. For each n, let F be the

projection on the intersection of the ranges of F,gl), . ,Fﬁn). Then F is of
finite dimension in F}, and

H9 = H & gn(a,)F + compact, n > 1

39



with respect to the decomposition H = (I =) o, F/YH® > o, F)/H. Fi-
nally, let E, be any projection of codimension 1in F! and Eq = =3 ., En.
Then 7(E,) = 7(X,,) for n > 1 and (1) is satisfied for all g,, in Cr(A) and
hence for all g in C'(A).

To see that (2) is satisfied, observe first that 7(g o r) commutes with
w(Ey) for g = g, by construction and hence for all g. Therefore 7/ is a
*-homomorphism. The final dropping down from F” to E,, implies that the
spectrum of 7(g,, or)m(Ey) contains the cluster points of {g,,(a,)}, and hence
that

limy, oo |gm (an)| < (7 (gm 0 )7 (Eo) |-

It follows that this relation holds for all real g. Let k& € ker7’ be real
valued. Then k(a,) — 0,s0 f = > k(a,)xn, and h = kor — f are continuous.
But h = 0 outside A, so h = 0 on JA. Since f = 0 on 0A it follows that k
vanishes there and k(a,) = 0 for all n. Then from (1) it follows that k& = 0.

To complete the proof, define u : C(X) — L(I — Ey)H as follows. The
decomposition f = (f — for)+ f shows that C(X) is the linear direct sum
of the ideal S(A) of functions vanishing on A and the subalgebra r*C(A).
Since X, is totally disconnected, there exist u, : C(X,) — L(E,H) such that
T|c(x,) = Thin- Let gy =3 pn. Define the map po : r*C(A) — L(I — Eo)H
by

Let u(f) = m(f — for)+ uo(for). Note that,
(0 + p1) = 7lsa),

where 0 is the zero map into L(EyH). This map is *-linear; in order that it
be a homomorphism, it is necessary and sufficient that

p((gor)f) = pa(gor)u(f)

for all f in S(A),g € C(A). For f in S(A), the expansion f = > fxn
converges in norm, so by linearity and continuity it is enough to verify this
relation for f’s satisfying > fx, = f. Then (gor)f = g(a,)f, So

m((gor)f)=glan)p(f);
on the other hand, p1(f) = pu(f)p1(xn) = p1(f) En. So

p(gor)u(f) = polgor)Enp(f)
= f(an)Enpn(f) = glan)pa(f).
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We now show that 7 is equivalent to 7o r* o ¢* 4 u, that is,

T(f) ~7(f or) & mu(f).

The claims (1) and (2) imply that r.[7] is equivalent to [7']. If U : H — EyH
implements this equivalence, then U® [ : H® (I — Eg)H — EeH® (I — Eo)H
converts the relation 7(f) ~ 7(f o r) @ wu(f), which is equivalent to

T(f) ~ 0B mua(f), f € S(A)

T(gor)~1(gor)®dmug(gor),g € C(A)

into
T(f) ~ 0@ T (f), f € S(A)
T(f) ~71(gor)m(Ey) ®muo(gor), g € C(A).
The last relations are equalities and the proof is complete. Il

11 Ext(A) — Ext(X) — Ext(X/A) is Exact
In this section, we would prove the following theorem.

Theorem 11.1. If A is a closed subset of X, then
Ext(A) 25 Ext(X) % Ext(X/A)

is exact, where i : X — A is the inclusion map and q : X — X/A is the
quotient map.

Note that, ¢ o4 is a constant map and hence (g o f).([Ta]) is always
trivial. Therefore, im 7, C ker g, and the other inclusion is a consequence
of the following Proposition, where we add enough projections to Im 7 and
obtain the C*-algebra Z such that part of it’s maximal ideal space is totally
disconnected. Thus, we are able to apply Theorem 10.5.

Let g : X — Y be a continuous surjection, B be a closed subset of Y such
that g|,—1y\p) is injective and let A = ¢~'(B) C X. We have,

A & X
g1 g1
B <L v

where ¢’ = g|4 and i, j are the inclusion maps.
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Proposition 11.2. ker g, C i,(kerq)).

Proof. Let 7 : C(X) — U(H) be any *-monomorphism such that [7] is in
ker g., that is, ¢ = q.([7]) is trivial, so that

gR(g):T(g<>Q)=7r/Yg dE, geC(Y)

for some projection valued measure E on Y. Let {U,} be a basis of open sets
for X\ A such that clU, is disjoint from A for all n and let C,, = g(cl U,,). If
Z is the C*-algebra generated by Im 7 and all projections e, = 7wFE,,, where
E, =E(C,), then Z is commutative by Theorem 9.1. Thus, we have

cy L ox) LooXx)
) 1Tz
Im7 — ZCU(H)
where the map p* is induced by a continuous surjection p : X — X and I'z is

the Gelfand map such that p,([7]) = [7], where 7 = T'Z'. Let A=p (A C
X. We claim that

(1) p is homeomorphism on A.

(2) X\A is totally disconnected.
For any arbitrary but fixed Z in X, if = p(i) ¢ cl U, then y = gop(z) ¢ C,,.
There exists a function ¢ € C(Y) with g(y) = 1 and ¢ = 0 on C,, and
therefore,

R(g)en, = W/gXCn dE,, = 0.

On the other hand, if 7(x,) = €,, where x, is the characteristic function of
C,, € X then we have

0=Tz(R(9))en) (@) = ((gogop)xn)(@) = g(y)xn(Z) = Xu(Z),

which implies that y,(zZ) = 0.

In particular, if # € A then Xn(Z) = 0 for all n. Since Z is generated by
the projections e, and Im 7, it follows that Im 7 must separate points of X,
which completes the proof of (1).

Proof of (2) is similar. Let # in X be such that p(Z) is in U,, qp(&)
y € int C,, C C,,. There exists a continuous function g on Y with g(y) =
and supp ¢ contained in C),. Since g = gx¢,, we have

e.R(g) = [7E(C,)][m / g dE)

=7r/g><cn dE:ﬂ/ngZ%(g),

1
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which implies
Iz((1—en)R(g))(2) = 0.

But, I'z2(R(9))(Z) = ¢g(y) and hence x,(Z) = 1. Thus, p(Z) € U, implies
that Z € C,, that is, p~'(U,) C C,. Let &, %, be any two points in X\ A
such that p(Z) # p(Z2). Since the U,,’s form a basis for X\ A4, it follows that
p(Z1) € U, and p(Z2) ¢ cl U,, for some n. So, there exists e, such that

(Pz(en)) (1) =1 and  (I'z(en))(Z2) = 0,

that is, there exists a clopen set C’n such that 7, € C’n and Ty ¢ é’n and
hence ; and T are distinguished by a clopen set. If p(Z1) = p(Z2) then

Pz(r(f)) = fop

and Im 7 can not distinguish these two points so that either they are sep-
arated by a clopen set or they are equal. We have shown that X \fl has a
basis of consisting of clopen sets and hence it is totally disconnected. The
quotient space X / A is obtained by identifying A to a single point is also
totally disconnected. This completes the proof of (2).

Recall that if is i : A — X is the inclusion map then 7, is a surjection
by Theorem 10.5. Since the map p: X — X is a homeomorphism on A, it
follows that (i o (p|z)~1). is also surjective. Therefore, [7] = (io(p|z)~ >*[7'/],
for some [7'] in Ext(A). Since p.([7]) = [7], it follows that

[7] = pu([F]) = (pein(p 1) DT = (1a0):[7],

where i4, =po 70 (p|z)~': A — X is the inclusion map. To complete the
proof of the Proposition, we have to show that ¢.([7]) = 0.

If Z’ is the commutative C*-algebra generated by Im ¢.[7] C Im 7 and the
projections e, then Z’ is isomorphic to C(Y)). We obtain the commutative
diagram

where k =i o (p|;)~", ¢ = jo(p|z)~" and note that §o k = £ o ¢’. However,
G.k.([7']) is trivial, since Z’ is contained in the algebra generated by the
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projections e, so (£ o ¢').[7’] is also trivial. We can again show that the map
p is a homeomorphism on p~!(B) and that Y\p~'(B) is totally disconnected.
We apply Theorem 10.5 one more time to infer that ¢, [7'] is trivial. The proof
is complete. Il

12 Mayer—Vietoris Sequence

Let X; and X, be closed subsets of X such that X; U Xs = X and let
A = X; N Xy, Exty(A) be the group of invertible elements in Ext(A) and
i A— Xp, Jr: X — X for £k = 1,2 be inclusion maps. Define the map
a: Ext;(A) — Ext(X;) & Ext(X3) by

a([a]) = [0.([74]); 2. (=[7a])].
Theorem 12.1. (Mayer—Vietoris). The sequence
Exti(A) % Brt(X)) @ Eot(Xo) 2 Ext(X)
1s exact, that is, Im o = ker (3.
Proof. We have the commutative diagram
XiuXo 5 X
J1 Ti
AuAd L4
where i, j are inclusion maps. If 5([r], [r2]) = 0 then

¢:([n] U [r]) = B([n], [r2]) = 0.

Proposition 11.2 guarantees the existence of [74.,4] in Ext(A U A) such
that

JilTava) = [m] U 7] and q. [Taual =0

Since 74,4 is in Ext(A U A), it follows that
Taua = 7, U1y for some [74] U [74] in Ext(A).
Note that,
0= qu(rava) = ¢.([TA] U [74]) = [74] + [74].

So, [14] and [7{] are invertible and —[7/] = [7]}].
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For f in C'(X; U X3), we have

hii(flx) @ R, (flx) + 7465 (F1x,) © R (F1xa)
= 7';1(][.|A) + TA(f|A) + %Xl (f|X1) + 8%)(2(f|X2)
= 74 (fla) + 74(fla) + Rxyux, (f)-

It follows that
ina[T] Uiau[74] = J([74] U [74)).
However, if p @ Ext(X; U X5) — Ext(X;) @ Ext(X3) is the isomorphism
discussed in Section 6.

afry] = (in7al,i2(=[74])) = (n[T4], d2c[74))
= p(ir[7] Win[74]) = pis([74] U [74])
= pi[Thual = p([n] U [r2]) = ([71], [72]).
This shows that ker 3 C Im o and completes the proof. n

Corollary 12.2. Let X be of any compact metric space. If Ext(X) is a group
then Ezxt(B) is also group for any closed subset B of X.

Proof. Take X; = B and X, = X. Let [7] be any extension in Ext(B). Since
Ext(X) is a group, ji«[7] is invertible and

B[], =jislr]) = 0.

There exists 7/ € Ext(B) such that a([7']) = ([7'],i2.(=[7"])) = ([7], —j1*[T])[-]

Chapter 4: Determination of Ext(x) as a Group
for Planar Sets

13 The Second Splitting Lemma

The first splitting lemma allowed us to split every extension [7] in Ext(X),
where X = AUB and AN B = {xy}, with respect to the closed cover {A, B}
of X. However, we will actually need a stronger form of splitting, one that
allow any extension [7] in Ext(X) to split with respect to the closed cover
{A, B} of X such that AN B is homeomorphic to a closed interval rather
than a point. The precise statement is given by Corollary at the end of this
section.
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Lemma 13.1. If H is a self adjoint operator on H, M is a finite dimensional
subspace and € > & then there exist a finite dimensional subspace M' 2O M
and a compact self adjoint operator K such that H + K is reduced by M’
and | K|| < e.

Proof. Let {A;} be a decomposition of o(H) into a finite number of Borel
sets of diameter less than e and let

M = E(A)M.

where E the spectral resolution of H. If E; is the projection E(A;)M, E =
Z Ez and
K=—(I-EHE - EH(I - E)

then H + K commutes with £/ and K is compact, since F is finite rank. To
complete the proof, we will have to show

(I - EYHE|| < e.
Fix \; € A;; then

(I-E)HE=(I-E)Y HE;=(I-E)) (H-\)E,

I(I = EYHE| < || Y (H = \)Ei|
< max |[(H — X)) E4|
<max |[(H — N)E(A)|| <€

Since Y J(H — X\;)E is essentially an orthogonal sum. O

Definition 13.2. An operator matrix A; ; is n-diagonal if A;; = 0 for |i—j| >
n.

Lemma 13.3. For any compact self adjoint operators Hy, Hy, ... on H there
exist compact self adjoint operators Ky, Kq,... on 'H and a decomposition
H = @r>oHy into finite dimensional subspaces relative to which the operator
matriz for Hy + Ko is diagonal and that for H, + K, is (n + 1) diagonal,
n>1.

Proof. Fix an orthonormal basis {¢;;|0 < j < i < oo} for H.

Step 1: Choose a finite dimensional subspace Mg containing ¢y and a
compact self adjoint operator Koo, ||Koo|| < 1 such that Hy+ Ko is reduced
by M[)().
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Step 2: Choose a finite dimensional subspace M containing (Mg —+¢10)
and compact Ko, |[|[Kio| < 1/4 such that (Hy + Koo) + Kjp is reduced
by both Mgy and Mo (apply Lemma 13.1 to (Ho + Ko)[pg ). Choose
a finite dimensional subspace M, containing (Mo + ¢11) and compact
Ky, || K11]| < 1/4 such that Hy + K7 is reduced by My;.

Iteration of this procedure making n applications of Lemma 13.1 at the
nth step, produces finite dimensional subspaces M;; and compact operators
K;;, 0 < j <i < oo such that

(1 Pij € M”
(it

)
) K| < 1/(i+1)?

(iii) Hy+ >, Ky is reduced by M,,,, m > n.
iv)

(iv) M;; € M; ;41 and My € Mg

The operator K, = Y~ K, is compact and put Hj, = My o & My_1y.

Then H = ®r>oHy by (i) and (iv) and this decomposition reduces Hy + Ky
by (iii). Moreover,

Hi € Mio € Mignn € Migntio

imply that
Hi € Mignpn €T Mo@D MiD, -+, OMpynia

and hence that
(Hn + Kn)Hk’ - 7_{O b---b Hk+n+1

for all k£ and n. Since H, + K, is self adjoint it follows that it is (n + 1)
diagonal. O

Theorem 13.4. For any self adjoint elements hg, hy,... of U(H) such that
ho commutes with all h,, there exist ¢ € U(H),0 < ¢ < 1 such that, ¢
commutes with all h,, forn >0 and

(a) cf(ho) = f(ho) for all continuous f vanishing on [%,oo).

(b) cf(ho) =0 for all continuous f vanishing on [—o0, 3).

Proof. By Lemma 13.3, there exist self adjoint operators H,, with w(H,,) = h,
and decomposition H = @y>¢Hy into finite dimensional subspaces relative
to which Hy = @®>oHo; is diagonal and H,, is (n + 1)-diagonal, n > 1.
Construct a sequence of continuous functions ¢y : R — [0, 1] such that
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1

(i) {¢w} decreases to the characteristic function of (—oo, 5

on [2,00).

| and vanishes

(i) 1k — rslloe — 0
(if) Ty oe [lpx (Ho), Hullrg, || = 0,n > 1.

Then with C' = @g>opr(Hok), it follows that ¢ = 7(C) has the required
properties.

Obviously, 0 < C < I and [C, Hy] is compact. To see that [C, H,] is
compact observe; if S is diagonal and 7' is n-diagonal with respect to the
decomposition H = @&Hj, then [S, T is compact if and only if

IS, T|2, || — 0 as k — oc.

For,
[Sv T] = @k20[57 T]

and each of these is essentially an orthogonal sum.

Hin+1)k+q? 0 S q S n

[C, Hyllw,, = [C — wx(Ho), Hyl[2,, + [r(Ho), Hnllr,,

the second term tends to zero by (iii) and the first term is dominated in norm
by
2| H,|ISup{llp; — @rlloc s k=1 —1<j <k+n+1}

(since H,, is (n + 1)-diagonal) which tends to zero by (ii).

Moreover, if f vanishes on |1, 00) then ¢, f = f for all k, so that C'f(Hy) =
f(Ho); if f vanishes on (—o0, 3] then || [l — 0 and therefore C f(Hy) is
compact.

To construct the sequence {y}, let f; be continuous,

1 (—00,1/2]

fite)=4 0 , (1/2+1/j,00)
—jr+ 3+ 1 otherwise

Then f; decreases to the characteristic function of (—oo,1/2] and ||f; —
fi+1lleoc — 0. Since [Hy, H,] is compact, it follows that [f(Hy), H,] is compact
for all continuous f, and hence that ||[f(Ho), Hu)|#, || — 0. Choose N; <
Ny < ..., such that

1

I1£3(Ho), Hullw, || < ; forkzNjandn <
The sequence {py} defined by ¢, = f1 for k < Ny and ¢, = f; for N; < k <
Nj41 then has the required properties and the proof is complete. O
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We postpone the proof of the following important corollary to section 16.

Lemma 13.5. (Second Splitting Lemma). Let X C [0,1] x [0, 1] be a closed
set containing {(1/2,y) : 0 <y < 1}. Let A = X N[0,1/2] x [0,1] and
B =XnN[1/2,1] x[0,1]. If [7] in Ext(X) is any extension then [T] splits with
respect to A and B.

14 Projective Limits

Let p, : X,41 — X, be continuous. The projective limit of (X,,p,) is a
space X together with projection maps m, : X — X,, such that

Pr © Tpy1 = Ty for all meii (%)

and if Y is another space together with projection maps ¢, satisfying (*) we
require that

X
P lwn
Y — X,

is commutative, that is, there exists a unique continuous map ¢ and 7/, =
T, © ¢. Thus we may take the projective limit to be

X = liin(Xn,pn) ={zr e HXn :Pn(Tpt1) = @0}

and 7, is defined by 7, (x) = x,. All this we can do for Groups (semi groups)
and homomorphisms. In particular, if p, : X,;1 — X, is continuous then
Pns » Ext(X,11) — Ext(X,,) and lim(ExtX,,, p,.) is defined as above. There

is always a natural map P : Ext(im(X,,p,)) — lim(Ext(X,,), pn.) defined

by
P(rx)=71xom,m: X — X,

To see that [P(7x)] is in im(Ext(X},,), pn«), note that
Tx (Pn © Tny1)" = TxD},
and that pp. : (Ext(X,), pne) — Ext(X,,) with
PrsTont 14 ([Tx]) = o [Tx].-

The map P may, in general, may have a nn trivial kernel. However, for
our purposes, it is important to show that the map P is surjective, while this
is true, we prove it under some what restrictive hypothesis.
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Theorem 14.1. If (X,,p,) is an inverse system with p, : X1 — X,
surjective then the induced map

P : Ext(lim X,,) — lim Ext(X,)
1s also surjective.

Proof. Let ([1,])n>0 be in lim Ext(X,,), that is,

PrslTat1] = [Tl
we claim, 7,41 can be chosen in such a way that the following diagram

C<Xn+1)

p;; / l Tn+1

T C(X,) — U(H)
is commutative, that is,
Tpt1 0D, =T, for all n.

We proceed inductively. Let 7; be arbitrary. Given py.[m] = [m1], for any
T in [73], the map
g — m(gop),g € C(X1)

is equivalent to 7. Let ay be the automorphism inducing this equivalence.
Define,
Ty = QUTy

note that
(1201)(9) = (avmepi)(g9) = auTa(g o p1) = Ti(g).
Let P = Up>1mi{C(X,,)}, where 7, : lim X,, — X, is the projection. It is

easy to verify that P is a dense subalgebra of C'(X) via the Stone—Weirstrass
Theorem. The extensions [7,] determine a map 7: P — U(H),

T(g o Wn) = Tn(g)
Since T,41p}, = Ty, it follows that
7(9 0 Pn 0 Tny1) = Tuy1(g 0 pu) = Tulg) = (g 0 ).

Thus, the map 7 is a well defined *-monomorphism. By construction, P([7]) =
(Prs[T))n>0 = ([Tn])n>0. The proof is complete. O
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We end the discussion of inverse limits with a very useful lemma. Let X
be any compact metrizable space and [7] any extension in Ext(X). For any
multi index € : {1,...,n} — {a, b} of size n, let

X, = |_| X, and 7, = |_| 7., and n > 0,

klek|=n klexl=n

where Xg = X and 79 = 7. If p, : X,,;1 — X, is the natural map then
P * Ext(X,41) — Ext(X,,) is surjective if and only if each 7., |ex| = n splits.

Lemma 14.2. (Iterated Splitting) Let X,, == Uy |c,|=nXc, be a closed cover
X, and p, : X1 — X, be the natural map. If the diameter of components
in X, goes to zero as n — oo and Py, s surjective then Ext(X) is trivial.

Proof. Note that if the diameter of components in X, goes to zero then
lim X, is totally disconnected and Ext(lim X,,) = 0. By the preceeding

theorem,
P : Ext(lim X,,) — lim Ext(X,,)

—

is surjective. Since each py. @ Ext(X,+1) — Ext(X,,) is surjective, there is a
surjection 3
P : lim Ext(X,,) — Ext(X)

and it follows that Ext(X) = 0. O

Remark 14.3. Note that when p,, is not surjective the method of the lemma
can be applied to any [r] € Ext(X) for which 7., |ex| = n splits for all n to
infer that [7] is trivial.

15 Ext(X) is a Group

In this section, we will show that Ext(X) is a group for any compact metric
space X. First, we will establish that Ext([0,1]N) = {0}. In particular, it
would follow that Ext([0,1]Y) is a group and hence we would have shown
that Ext(A) is a group for any closed subset A of [0, 1] by Corollary 12.2.
Any compact metric space X is homomorphic to a closed subset of [0, 1]N,
therefore, Ext(X) is seen to be a group for any such X. Before showing that
Ext([0, 1]) is a group, we prove the second splitting lemma.

Lemma 15.1 (Second Splitting Lemma). Let X C [0,1] x [0,1] be a closed
set containing {(1/2,y) : 0 <y < 1}. Let A = X N[0,1/2] x [0,1] and
B =XnN[1/2,1] x[0,1]. If [7] in Ext(X) is any extension then [T] splits with
respect to A and B.

51



Proof. Since X C C, there exists an essentially normal operator /N such that
Oess(N) = X and 7(f) = f(n(N)). Let 7(N) = n = hyo+1ih, n is normal and
ho, hy are self adjoint in U(H). Since,

o(1/2+4+ih) C{1/2} x I C X,
it follows that

n(f) = f(1/2 +ih)
is a well defined *-homomorphism of C'(X). If 7/ = 7+n, then 7’ is equivalent
to 7. There exists ¢ in U(H), 0 < ¢ < 1, commuting with hy and h such that

cf(ho) =0, for all continous functions vanishing on [—o0, 1/2]

cf(ho) = f(ho), for all continuous functions vanishing on [1/2, oo].

Cc cll —c 1/2
(c(1 —c))'/? ( (11 _ ? be in My(U(H)). Identifying

Im 7" as diag(7(f),n(f)) in Ma(U(H)), we claim that e commutes with Im 7.
This amounts to verifying

(c(1 = e)2n(f) = 7(f)(c(l = )2

Let e =

Let
0 x € [1/2,00]
filx) =49 z—=1/2 z€]0,1/2]
-1/2  z € [-00,0]
and let
1/2 x € [1, 0]
folz)=<¢ x—=1/2 z€[1/2,1]
0 T € [—00,1/2]

Note that, (f1 + f2)(x) = x — 1/2 for z in [0, 1], and that

(ho + ih)c" =

(ho — 1/2+ih +1/2)
=c
C

(
"(ho —1/2) + "(ith +1/2)

"(f1(ho)) + fa(ho) 4 c"(ih 4 1/2)
= fi(ho) + c"(ih + 1/2).

Thus, for any polynomial g, we have

7(f)g(c) = g(1) fr(ho) + g(c)n(f).

52



Since the function (z(x —1))/? can be approximated by polynomials vanish-
ing at 1, it follows that

T(f)(e(L = )2 = (c(1 = ) /*n(f).

Therefore, the projection e commutes with Im 7/. Define,

By Lemma 6.2, if Zy, and Zx, are the ideals corresponding to ker 7¢ and
ker 7¢ _ then there are unital *-monomorphism 7; and 7, such that

[Tk] S EXt(Xk),k’ =1,2

and
Q14 [T1] + dou[T2] = [7'/] = [7].
Let f in C]0,1] be such that f vanishes precisely on [0,1/2]. Define a
continuous function g on X by setting g(z) = f(x). We have

7(g) = em'(9) = eg(n @ (1/2 +ih)) = e(g(n) & f(1/2)) = e(f (ho) ® 0) = 0.

So, g is in ker 7¢. Since the zero set of ¢ = B, it follows that X; C B.
Similarly, it can be shown that Xy C A. We have shown that 7 splits with
respect to A and B and the proof is complete. O]

To use the technique of the proof of the second splitting lemma for the
Hilbert cube [0, 1]N and show that Ext([0, 1]V) is a group, we have to discuss
the infinite sum of extensions. While, the sum of two extensions was defined
as

(n+m)(f) =n(T{ & 1)),

there is no obvious way to define the sum of infinitely many extensions, for
the simple reason that an infinite sum of compact operators need not be
compact. However, some times, it is possible to define such a sum.

Let Xq,...,X,,,... be closed subsets of X such that diameter of X,,
converges to zero and UX,,, = X. If there exists operators T,fn and z,, € X,,
such that ©(TY) = 7,,(f|x,,) and || T — f(x,,,)|| — O then define the extension

7= 2 mzollap.a)e(Tm) - C(X) = U(@m0Hm) by
7(f) = 7(Bm=oT?) for f in C(UX,).
For any other choice of points ¥, in X,, and operators S/, we have
1T, = Sl < (N7 = flam) L+ 1 = S5+ Fym)ll + 1f (@m) = fy) ] — 0.
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Therefore, @507 — @057, is compact and 7 is well defined. Since,

17 (flx) = F (@) = [[fx = f(@m)]loo =0,

it follows that the required T/ exists. The following observation will be
necessary for us.

Remark 15.2. If ¢ : X — Y is continuous, Y, = ¢(X,,), and p, : X — Y}, is
the restriction of ¢ and ¢’ = qlgx then ¢, (3 insTn) = D Gne(Tn).

Theorem 15.3. Ext([0,1)Y) = 0.

Proof. Let X, = [0,2] x [0, 1], X, = [1,1] x [0,1]",X; = X, U X, and
po: X, UXy — [0,1]N = X. If [7] in Ext(X) is any extension and 7(x;) = h;
then the map 1o : C(X,) — U(H) defined by

Uo(f) - f(%?hlv)

is a *-homomorphism. As in the proof of the second splitting lemma 74 + 7
splits that is, there exists [7,] in Ext(X,) and [r] in Ext(X}) such that
Pox[7a U o] = [10 + 0], po + Xo U Xy — X

Since both X, and X, are homeomorphic to Xy, we may iterate this procedure
to obtain

(1) Xq,...,Xp,...such that the maximum diameter of the 2" components
in X,, goes to zero as n — oo.

(2) if 7 = L, jmn e a0d 0 = L, 2 %, then pra[mnia] = [70] + [1a],
where p, : X411 — X,.

Since diameter of components in X, goes to zero, we may define the
infinite sum

7—7/1 =T, + " + pn*(nnJrl) + Pnx © pn+1*(77n+1) + e
We claim that (77,),>¢ is in lim(Ext(X,)). Note,

pn*<7—7/1+1> = Pnx (TnJrl) + pn*<nn+1> + pn*pn+1*<77n+1) + -
=T, + M +pn*(nn+1) + pn*pn—i—l*(nn—i—l) +---= Tns

by Remark 15.2. Therefore, ([7),])n>0 is an element of

displaystylelim._Ext(X,). The map p, : X,41 — X, is surjective. An
application of Lemma 14.2 shows that [7]] is trivial, or in other words, [7] is
invertible. O

Corollary 15.4. Ezt([0,1]V) is a group.
Corollary 15.5. Ext(X) is a group for any compact metric space X.
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16 ~x is Injective

We have now all the ingredients to prove that the map ~x is injective for
X C C. Injectivity of vy is established by showing that any extension [7]
in ker yx splits into [71] and [m3] with respect to some closed cover {X;, X5}
of X such that [r] is in kervyx, for & = 1,2. We iterates this procedure
and apply Remark 14.3, to see that [r] = 0. The inductive step in this
argument depends on injectivity of 7j9,1)/4, where A C [0, 1] is an arbitrary
closed subset. The injectivity of the map =, in this special case, in turn
depends on the following lemma.

Lemma 16.1. Let 7 : C(X) — U(H) be a *monomorphism such that the
extension [1] is in ker yx. If T admits a splitting into [11] and |[s] with respect
to a closed cover {X1, X2} of X, X1 N Xy = {xo} then [13] is in keryx, for
k=1,2.

Proof. If T/ is any operator such that 7(f) = m(77) and 7 splits then there
exist operators 7" and TJ* inducing *-monomorphisms

T fi — (TP, fL € C(X1) and 72 ¢ fo — 7(T3?), f € C(Xa).

T g
0o T
Let fi : X7 — C\{0} be continuous, define f: X — C\{0} by

B filz) ze X,
f(x) N { fl(XO) xr € X2

T(f) = [ eC(X)

Note that,
T 0
w=r| B ]

where C' is the constant function C'(x) = fi(xg) # 0 for all z in X5 and ind
72(C) = 0. Thus,

("}/Xl [Tl])(fl) = ind T1 (fl) = ind Tlfl =ind T(f) =0
This completes the proof. n

Proposition 16.2. If X = [0,1]/A, where A is some closed subset of [0, 1],
then ~y, 18 injective.

95



Proof. By considering components in the compliment of A, it is easy to see
that X is the union of a sequence X,, of closed subsets, each homeomorphic
to a circle or an interval with diameter X,, — 0 and there is a xy in X such
that X, N X,, = {xo} for all m # n. Moreover, X can be regarded as a
subset of C.

Note that, ~,,, is injective since each X,, is homomorphic to a circle or
an interval. Let 7 : C(X) — U(H) be a *monomorphism, [7] € ker~, and
let Y, Upsn Xon. Since X; and Y7 intersect in a single point, [7] splits into [7y]
and [1y,] with respect to the closed cover {X7,Y;} of X by the first splitting
lemma. If we write Y7 as X, U Y3, the extension [ry,| will again split into
[T2] and [7y,] with respect to the closed cover { X5, Y5} of Ys. Continuing, we
obtain

() = 1(fla) © - @ Ta(flan) © 7 (flyn)-

Each [7x] is in ker+y,, by the preceeding lemma and therefore it is trivial.
Let f be any function in C'(X) which is constant on Y,, for some n, these
functions are dense in C'(X). Let

70(f) = 110(fla1) © -+ @ Tao(fla) ® f(20),

where Ty is the trivializing map for 7. Since 7y is defined on a dense subset,
it has a continuous extension to C(X). But, 779 = 7 on a dense set and hence
1o = 7 on all of C'(X). Therefore, 7 is trivial and the proof is complete. [

Just as we needed Lemma 16.1 to prove injectivity of v in this special
case, we would need the following lemma to prove injectivity of v in general.

Lemma 16.3. If X C C, X; and X5 are the intersections of X with
the closed half planes determined by a straight line L and (5 : Ext(X;) &
Ext(X3) — Ezt(X) then

kervx 3 C kervx, & ker vx,.

Proof. Let g : X; — C\{0}, define ¢’ : X; UL — C\{0} by extending ¢
linearly while taking care to avoid the origin, if necessary. Let p : X — X UL
be the map

Proj onto L, x € X,
pr) =

x, ZEGXl

which is continuous. Finally, let f = ¢’ o p. The function f|x, = ¢'|7 is null
homotopic. If [7] is ker yx 3 then

ind(71(fx,) @ 12(f]x,)) = 0.
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For the particular function f constructed above f|x, is null homotopic and
flx, = g and hence
ind 71 (g) = 0.

Therefore, [r1] is in ker~,,. Similarly, we can show [r] is in ker-y,, and the
proof is complete. n

Theorem 16.4. Let X C C, X; and X, be the intersections of X with the
closed half planes determined by a straight line L. If [T] is any extension in
kery, then T splits into [T1] and [12] with respect to the closed cover { X1, Xs}
of X. Furthermore, [11] is in ker~y,, and [r3] is in ker~y,,.

Proof. We will need the following diagram and inclusion maps. Let J be any
compact interval containing X N L. Consider

X,UJ 5% XUJ <2 x,uJ
T 17 T j2

X1 il X i2 XQ

where i, j are the inclusion maps. If [7] is in kervy, then j.[7] is in ker vxy.
By the second splitting lemma, there exists 7x,us and Tx,us such that

j* [T] = Z-/1*[,7-)(1UJ] + 2/2* [TX2UJ]‘

By the preceeding lemma, 7x,; € keryx,us and 7x,us € keryx,us. Let
Qs XpUJ — X UJ/ Xy, k= 1,2 be the quotient map. Again, gx.[Tx,us] is
in the kervx, s, k= 1,2. However, X} U J/X}, k= 1,2, homeomorphic to
J/X1 N X, and 7 is injective on such spaces. Therefore, qi.[7x,0s], k =1,2
is trivial. But

Ext(Xy) — Ext(X, U J) — Ext(Xx U J/Xy), k=1,2
is exact, so there exist [7x,] such that jr.[7x,] = [rx,us].- The proof is
completed by showing
B([7a,], [22]) = [71].

Since it is easy to J.8([Tz,], [Tzs]) = J«[7], it is enough to show j, is injective.
But, the Mayer—Vietoris sequence

Ext(X NJ) — Ext(X) ® Ext(J) — Ext(X U J).

is exact and Ext(X N J) = {0} and hence j, is injective. The last statement
in the theorem is merely the previous lemma, so the proof is complete. [

As explained in the first paragraph, this allows us to apply iterated split-
ting argument, establishing the injectivity of ~.

Corollary 16.5. For any closed subset X of the complex plane C, the map
v Ext(X) — Hom(w'(X), Z) is injective.
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Concluding Remarks

The following theorem, determines the essential unitary equivalence classes
of essential normal operators with essential spectrum X C C.

Theorem 16.6. Two essentially normal operators Ty and Ty are essentially
equivalent if and only if Oess(T1) = Oess(T2) = X and

ind(Ty — A) = ind(Ty — \) for A in C\X.

Proof. 1f we let C\X = O, UO; U... denote the components, where O, is
the unbounded one, then 7!(X) is the free abelian group with one generator
[O;] for each bounded component. If [7] is the extension corresponding to
an essentially normal operator then the map vx([7]) is defined by [O;] —
n;, where n; = ind(T — )\;) for some \; in O; and proof of the theorem is
complete. Il

It is actually possible to show that 7y is a surjective mapping [cf. 1].
Therefore the equivalence classes of essentially normal operators with essen-
tial spectrum X is obtained by prescribing arbitrary integers for the bounding
components of C\ X.

Finally, note that for X C C,

Ext(X) ~ Hom(7'(X), Z).
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