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In this paper we study certain finite dimensional f-filbert modules over the 
function algebra d(Q), DC@“. These modules appear as locahzations of a 
Cowen-Douglas operator. We show that these modules are always bounded, where 
the bound is related to the solution of an extremal problem. In particular, we 
obtain necessary sufticient conditions for such a module to be contractive. We apply 
the above results to produce an example of a contractive module over d(B2), 
which is not completely contractive. 6 1990 Academic Press, Inc. 

1. INTRODUCTION 

1.1. In this paper, we choose to work in the framework of Hilbert 
modules introduced by R. G. Douglas [9]. A Hilbert module 2 over a 
normed (not necessarily complete) complex algebra LX! consists of a 
complex Hilbert space X together with a continuous map (a,f) --t a .f 
from d x 2 to 2 satisfying the following conditions: For a, b EJZJ, 
h, ~;EJ’?, and a, /?EC, 

(i) 1 .h=h, 

(ii) (u.b).h=a.(b.h), 

(iii) (u+b).h=u.h+b-h, and 
(iv) u.(crh,+Bh,)=a(u.h,)+B(u.h,). 
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The Hilbert module is bounded if there exists a constant K such that 

II a . h II .e < K II a II .d II h II x for all a E .c4 and hEXO, 

and is contractive if K d 1. 
For any region Q in C”, let d(9) denote the closure of the algebra 

g(Q) of the polynomial functions on Q with respect to the supremum 
norm 11. jj ~ on Q. We recall that, for a given m-tuple T = (T,, .,., T,,,) of 
pairwise commuting operators on a Hilbert spce X”, the closure D of Q is 
a K-spectral set for T if 

II P( 73 II = II P( T, 3 ..> T,)ll G K II P II x for all 9 E C[Z,, . . . . Z,], 

and $2 is a spectral set if K d 1. 

1.2. The Hilbert g(Q)-module structure on the Hilbert space X 
determines, and is completely determined by, a commuting m-tuple 
T = (T,, . . . . T,) of continuous operators on X defined by T;(h) = z, ‘h for 
h E H, 1 d idm. X is a bounded (respectively contractive) 8(Q)-module 
with bound K if and only if 0 is a K-spectral (respectively spectral) set for 
T; and, in this case, X can be made into an d(Q)-module and is denoted 
by ~8~. On the other hand, by an easy application of the uniform bounded- 
ness principle, if X is an .d(Q)-module and if T is the m-tuple of pairwise 
commuting operators on A0 corresponding to the action of z, EL?(Q), 
1 G i < m, on J?, then 0 is a K-spectral set for T for some K. Thus, the 
concept of 2 being an d(Q)-module is equivalent to Q being a K-spectral 
set for some m-tuple of pairwise commuting operators on 2. 

1.3. The central object of study in this paper is a Hiibert d(a)-module 
CL+ ’ described in 2.1, for a region Q as in 3.1, which appears as 
the localization of a Cowen-Douglas operator (see [S]). We show that 
this module is bounded (Remark 3.3) by a quantity M,( V, w) associated 
with Sz and N which can be realized as 1) L jl )I L-’ ’ Jj for some linear trans- 
formation L of C”+’ such that Cn+’ LNL-I is a contractive d(Q)-module 
(Theorem 3.5). We interpret M,( V, w) as the solution of an extremal 
problem, a particular case of which is familiar (see Remark 4.4, 
[3, p, 7721). Our extremal problem itself, in turn, can be seen in a more 
general perspective (Remark 4.5). Using Theorems 3.4 and 4.1, we obtain a 
curvature inequality (Theorem 5.2) for an m-tuple of Hilbert space 
operators in the Cowen-Douglas class P,(Q) and, in 5.4, we produce an 
example of a pair of joint weighted shift operators for which equality is 
attained. Finally, we apply the above results to solve in 6.1 a problem of 
Paulsen [21] and to show in 6.2 that, for an appropriate choice of N, Ch 
is a contractive, but not a completely contractive, module over &(B2). The 
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existence of such examples over various function algebras was conjectured 
in Cl, p. 2223. However, the only known examples are due to Parrott [20] 
over the tri-disk algebra. 

2. PRELIMINARIES 

2.1. For v E @” and 1 EC, we define the (n + 1) x (n + 1)-matrix 

I v 
Nv,A)= o [ 1 AI . n 

For vi = (ui,, . . . . 0:) E C”, 1 < i< m, and w  = (w,, . . . . w,) in a region Q in 
C”, we consider the m-tuple of pairwise commuting (n + 1) x (n-t. l)- 
matrices 

N = (N,, . . . . NJ = W(u’, WI 1, . . . . N(urn, w,)). 

The Hilbert d(0)-module structure C&+ ’ on then Hilbert space C“+ ’ 
defined using the m-tuple N of operators (as in 1.2 when Q is a K-spectral 
set for N for some K) is a central object of our study here. 

2.2. Let A%?~(@) denote the algebra of complex matrices of size n with 
respect to the operator norm 

I)A112=max {)AI:A is an eigen value of AA*). 

2.2.1. LEMMA. For u, v E C” and a, 1, p E @, we have 

(a) N(~,~)N(v,~L)=N(~v+~u,~~), 

(b) N(u,1)-‘=N(-(l/A*)u, l/A) ifA#O, 

(c) IINu, n)ll = II NII u IO l)ll, and 

(d) IIWa, J)l12=$Cla12+2 1112+ lal d-1. 
Proof: Part (c) follows because the characteristic polynomial in X of 

N(u, A) N(u, A)* is (X- (A12)“-* times the characteristic polynomial of 
N( II u II, A) N( II u 11, A)* in X. The rest is straightforward. 

2.2.2. LEMMA. Let SZI he a complex algebra, 8: & + @ be a continuous 
algebra homomorphism, and cp : JX! --) 62” be a continuous linear map such that 
q(ab) = O(a) q(b) + B(b) q(a). Then, the map aw N(cp(a), e(a)) is a 
continuous algebra homomorphism from JX? to ~2~ + ,(@). 

Proof. To see the continuity of the map, we use (c) and (d) of the 
lemma above. The rest is straightforward. 



BOUNDED MODULES 121 

For w E C”, let H(W) denote the algebra of the germs of complex valued 
analytic functions at w. Note that a sequence (fn} in H(w) converges to f 
in H(w) if and only if there exists a compact neighbourhood K of w  on 
which a representative off,, is defined for each n and the sequence of these 
representatives converges to a representative offin K. We denote by B(w) 
the (incomplete!) algebra of the elements of H(w) admitting a rational 
function defined in a neighbourhood of w  as a representative. 

2.2.3. PROPSITION. Let V be an n x n-matrix, vk its k th-row, and let N be 
as in 2.1. Then, the map f++ N(V'(w) . V,f(w)) is a continuous algebra 
homomorphism from H(w) to M, + ,(C) coinciding with the (evaluation) map 
r -+ r(N) on B(w). 

Proof. We first observe that if ( fn} is a sequence of functions defined 
on a compact neighbourhood U of w  converging to a function f, then, by 
the Weierstrass theorem [19, p. 1591, (a/&,)f, converges to (a/az,)fon U 
and ~0, ll('Vin-Vf)(w)l12 and (1 V(fn -f)(w) . V\( Z tend to zero as n 
approaches co. Now, the first part of the proposition follows by 
Lemma 2.2.2. above applied to H(w) by taking 8 to be the map f++ f (w) 
and CJI to be the map f~-+ Vf (w) . V. The second part of the proposition 
follows because the map is an (abstract) algebra homomorphism and 
zk H N(Vk, wk), 1 6 k d m, under this map. 

2.2.4. DEFINITION. For any complex holomorphic function f defined in 
a neighbourhood of w, we define f(N) =f,(N)= N(Vf(w) . V,f(w)). If 
{ pn} is a sequence of polynomial functions, all defined in a compact 
neighbourhood K of w, and converges to f on K, then p,(N) -S(N) in 
norm. 

2.3. HYPOTHESIS ON 52. Throughout this paper, 52 always denotes a 
bounded open neighbourhood of 0 in C” which (a) is convex (i.e., 
&? + (1 - n) Sz c Q for 0 < 1 d I); (b) is balanced (i.e., ,IsZ G G? for all A E C 
with ) I / d 1); and (c) admits a group of biholomorphic automorphisms of 
Q which is transitive on S2. 

We note that (a) implies that Sz is polynomially convex [ 12, p. 67 J and 
so, by Oka’s theorem [ 12, p. 841, a(Q) contains all functions holomorphic 
in a neighbourhood of $2; (a) and (b) imply that 52 can be considered as 
the unit ball in @” with respect to a suitable norm I(. /In on @” and that 
the Schwarz lemma [23, Theorem 8.12, p. 1611 applies to 52. The bounded 
symmetric domains [17, 1.6 and 4.61 satisfy our hypothesis. 

Throughout, (C”, )I I( *) denotes the complex linear space @” equipped 
with the norm (I .I/ *; Q* c C” denotes the set defined by the property: 
{qZ~Hom(C”,@) defined by cp,(x)=z.x:z~Q*} is the unit ball in (Cm, 
II .Iln)*; and, for a linear map f from @” to C” and domains 52 c @” and 
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52’ E C” 1) f IJ z’ (respectively /I f 1) 2:) denotes the norm off as a linear map 
from (@“, II. IIn) (respectively Cc”, II. IIn)*) to (cm, II. IIns). 

3. CONTRACTIVE AND BOUNDED MODULES 

For WE@ and VE J&J@), define Hol,(B, D) = {f: holomorphic in a 
neighbourhood of Q, f(w)=0 and lIfll,<lr); Da(w)= 
V’(w) :SE Hol,(Q, D)} E a)“; and M,( P’, w) = sup { (/ 2. V(I : z E DQ(w)}. 

3.1. Remark. d(Q),, the unit bell of S(Q), is closed with respect to 
the uniform convergence on compact subsets of Q and is a bounded family 
on Q. In view of Montef’s theorem [19, p. 1591, &(Qtl is a normal family. 
Since XI(G), is closed and normal, it must be compact. Since the map 

is continuous on d(Q), MQ( Y, w) is attained in 

3.2. LEMMA. Let N be us defined in 2.1 and )I f(N)11 < k for all 
f~ Hol,(Q, D). Then 1) g(N)JJ < 1) g )I o. . max (k, 1 } for all g E d(Q). 

ProojY We first note that, by 2.2.4, 2.2.3, and 2.2.1(d), 

II g(N)11 <l~llW~)~~lI <l-l-’ I gWl*. (*) 

Let 0 fg E d(G). Clearly, we can assume that 1) gl( m = 1. Consider 
f = q8(,) age HolJO, D), where pp(,+,) E Aut(D) is defined by cp,(,,(z) = 
z - g( w))/( 1 - g( w)z). The chain rule, our hypothesis, and (* ) imply that 

IIVY-( VII = IlVg(w). Vll(l- I g(w)l*)-‘<k 

and so, IlVg(w)- V(( <k(l- ( g(w)[‘). Now, since k(l- ( g(w)[*) is at most 
(1 -1 g(w)J2) if k< 1 and is at most k-k-’ ) g(w)\-’ if k> 1, the lemma 
follows from ( * ). 

3.3. Remark. By the Schwarz lemma [23, Theorem 8.1.2, p. 1611 and 
Theorem 4.1(a), D&I(w) G C” and so Ma( V, w) is bounded. Therefore, by 
2.2.1(d), (* ), and 3.2, (1) g(N)11 : g E d(Q) with 1) g 1) m = l} is bounded by 
max(1, Mn( P’, w)} and @i;‘” is a bounded d(O)-module with 
Max { 1, Mo( V, w)} as a bound. 

From ( * ), we have 

3.4. THEOREM. CG+ ’ is a contractive s&‘(D)-module if and only if 
M&V, w)<l. 
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3.5. THEOREM. Cg+' is a bounded d(Q)-module with the bound 
K=max { 1, MR( V, w)}. Further, if A4J V, w)> 1 then there exists an 
invertible (m + 1) x (m + 1)-matrix L such that 11 L I( I/L-’ 1) = M,( V, w) and 
62 Tci~ I is a contractive d(Q)-module. 

Proof. Let K, = sup ( 11 f(N)]] :f~ HolJSZ, D)} and let K be the bound 
of a=;+ ‘. Clearly, K, < K and by 2.2.1(d), K, = MQ( V, w). We note that if 
L is an invertible operator such that LNL-’ = L(N, , . . . . N,) L-’ = 
(LN, L-‘, . . . . LN,,,L-‘) determines a contractive module, then it is easy to 
see that N determines a bounded module with jl L /I . /I L -’ jl as a bound. 
Therefore K would then be at most (I L (1 I /( L ’ // . 

Choose L to be the diagonal matrix of size (nz + 1) with I in the (1, l)- 
position and M,( V, w) in the (r. r)th-position for 2 < r < m + I, then 

Let VL = M, ‘(V, w) . V. Since M,( V,, w) = MJ V, w)/Mn( V, w) = 1, it 
follows that C”‘+i LNL-l is a contractive d(Q)-module 3.4. But j( L /( . I\ L--I jj = 
M,( I’, w). Therefore, MQ( V, w) = K, d KG ]I L 1) I/ L ~ ’ 11 = M,( V, w). 

4. AN EXTREMAL QUANTITY 

The following alternative description of DQ(w) and Ma( I/, w) is crucial 
in this article. 

4.1. THEOREM. Let w E R and 8, be a biholomorphic automorphism qf R 
such that e,,,(w) = 0. Then, 

(a) DQ(w) = DQ(O) . (D%,,,(w)), 
(b) DQ(0) = 52*, 

(c) M,( V, w)=MQ(D%,(w). V, 0), where the linear map D%,, 
@” -+ C”’ is the usual Fr’rPchet derivative, and 

(d) M,(I’,O)= II V(I,~=sup(lI VXI/,:XEQ*}. 

Proof: Since the map f~fo 8, defines a bijection from Hol,(Q, D) to 
Hol,(Q, D), (a) follows by chain rule. 

To prove (b), we need to show that {cp, E Hom(@“, C) defined by 
(pJx)=z.x: ZEDO(D)) is the unit ball of (Cm, II.Iln)*. IffEHol,(SZ, D), 
then Vf(O)czDJZ(O) and IV’(O) Al < 1 for all 1 ESZ by the Schwarz 
lemma [23, Theorem 8.1.2, p. 1611. Therefore, Vf(O)~s2*, on the other 
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hand, if z E Q*, then qpz E Hol,(Q, D) and z = &,(D) E DQ(0). Therefore, 
Da(O) = Q*. 

Finally, (c) and (d) follow from the definitions of M,( V, w) and (1 V(I,,. 

The following corollary has an obvious generalization. 

4.2. COROLLARY. C;t”’ is a contractive d(D”)-module if @;l’ is a 
contractive d( D)-module for each k, 1~ k < m. 

Proof: By 3.4, 4.1(c), and 4.1(d), Ck+’ is a contractive d(D”)-module 
if and only if 1) LM,(w) . Vj( d 1 for some 0, E Aut(EP) such that 0(w) = 0. 
We can take 8 as 8,, x . . x O,,, where 8,, E Aut( D) such that 0,,( wi) = 0. 
Then, 

00,(w) = diag $ 0,,(w,), . . . . 
1 

Since 114”’ is the unit ball in @” with respect to the I,-norm, the dual norm 
is the Ii-norm. Thus, 

II Dew(w) . nil* 

= sup ( )I z . (00,(w) . V)(l 2 : z = (zi, . . . . z,) and II z )I i = 1) 

: z E cm, I( 2 (1 1 = 1 

Since equality is attained for some c = ek, we have that 

11 DO,(w). VII (Dn)* = max 
ill 

-$&,,,(Rk).vi~~2: 1 <k<m). 
k 

But @;z ’ is contractive if and only if II(d/dz,) QWk(wk) . Vk I( < 1. Therefore, 
the corollary follows. 

4.3. Remark. If V has only one non-zero column, then our extremal 
problem, in view of Remark 4.4, turns out to be a familiar one [3, 15, 
Section 21, namely, to find, for Q G C” and v E C”, 

sup {I ~?,f(w)l :fholomorphic on Q, I( f (( oo < 1 and f(w) = 01. 

4.4. Remark. In computing M,( V, w) it makes no difference even if we 
allow all functions f: Q + D, f(w) = 0, and f holomorphic on 51 and not 
merely holomorphic in a neighbourhood of 0, since the description of 
DQ(0) remains the same in both cases. 
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4.5. Remark. In view of Theorem 4.1, an alternate description of 
Ma( V, w) is as sup { I( u . V(I : u E L?* .00,,(w) c Cm}. If f: Q -+ @” is any 
holomorphic function such that Df(w) is V, then u . I/ represents the 
covariant derivative off in the direction u [ 13, p. 181. Thus computing 
M,( V, w) amounts to finding the maximum (in the sense of /,-norm) of the 
covariant derivative of a function over the set of vectors Q* .LM,,(w) in C”. 
In particular, when V has only one non-zero column, computing M,( V, w) 
amounts to maximizing the directional derivative of some f: 52 -t C, 
holomorphic over the set of vectors Q* .00,,(w) in C”. 

5. A CURVATURE INEQUALITY 

5.1. The following class PI(a) of m-tuples of operators on some Hilbert 
space J? was introduced by Cowen and Douglas [6, p. 3341 (see also [7]): 
An m-tuple T = ( T1, . . . . T,,,) is in P, (52) if 

(1) T,, . . . . T, pairwise commute, 

(2) dimn;=lKer(Tk-wk)=l for all w=(w,,...,w,)~Q, 

(3) the operator T,.: ~8 -+ Y? @ Cm defined by 

T,(h)= 6 (Tk- wk) h for hcz,% 
k=l 

has closed range for all w  E Sz, and 

(4) span(n;=, Ker(T,-w,): w~sZ)=&“. 

It was shown in [6] that each m-tuple T in P,(Q) determines a non-zero 
holomorphic map y : 52 ++ S? such that v(w) E fir=, Ker( Tk - wk) for all 
WEQ and such that the curvature matrix 

%-(w) = ( &log II r(w)!l’) 2 I 

is a complete unitary invariant for T. It is therefore of interest to relate the 
properties of T to its curvature. In this section, we obtain an inequality for 
the curvature when Z’.,. is a contractive d(Q)-module. 

For TEP,(Q), we define X(T) to be the subspace n;,= i Ker T,T, of 
X and the localization N(w) of T at w  as the m-tuple N = (N,, .,., N,), 
where 

Nk=Wklm+,+(TK-W )I k X((T, -w,L . CT,,,- w,,,li 
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with respect to the basis {Y(o), (Wdw,)(wh . . . . (Wow,)) for 
X(( T, - w,), . . . . (T, - w,)); the matrix for Nk is N(vk, wk) defined in 2.1. 
Note that the first k-entries in vk are zero. 

The curvature and the localization of T at w  are related by 

,X,(w) = (tr((NK- w,Z) . (Nj- wjZ)‘)))’ = (I@‘)-‘, 

where the kth-row of V is the vector vk [6, pp. 3363371: Note that the 
matrix V corresponding to the localization N(w) depends on w. 

5.2. THEOREM. rf A?+ is a con&active d(4)-module and 8, is a 
biholomorphic automorphism of 52 such that e,(w) = 0, then 

Proof. Since R;. is a contractive &(a)-module, we see that C&&f is 
also a contractive d(Q)-module. Thus, by 3.4, 4.1(c), and 4.1(d), 
I[De,(w). V(ln.6 1, where De,(w). V: (C, Il.lln)* -+ (en, II.112) is given by 
(De,(w). V)(z) = z. (De,(w) V). But the matrix for the localization 
operator in this section was computed with respect to the right action. 
Thus, we write De,(w) V(z) = (De,(w) V)‘,z’ and note that in this nota- 
tion, our hypothesis implies that //(De,(w) V)‘IJR* < 1. Therefore, 

G iiw,(w) vfiiR* vu~~ em. G 1. 

5.3. Remark. Any m-tuple of operators in P,(Q) for which equality 
occurs in the foregoing inequality is called an extremal operator. In 
particular, if Q is either the poly disk D” or the unit ball B” in C” and 
the m-tuple T in Pi(Q) is such that ,X,(w) =D~,,,(w)~, De,(w) for some 
8, E Aut(SZ)- with e,(w) = 0, then T is extremal. While (Mz, . . . . Mz*,) on 
H’(Q) is an extremal m-tuple in this sense for D”, it fails to be for B”. 
However, we construct below an m-tuple of joint weighted shifts in 
m-variables for the ball which is extremal. The extremal operator for the 
unit disk is unique (cf. [18]) while it does not seem to be so for either D” 
or IB” when m > 1. 

5.4. An Extremal Operator. (a) For a pair T = (T,, Tz) of operators in 
Pi(lS’), the localizations are of the form N, and N, with vf = 0. If %= is a 
contractive A( B2)-module, then 

II mh) ,X,(W) -1 mw ii2 6 1 

for any 0, E Aut(B,) with 0,(w) = 0. 
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After introducing some concepts from the theory of joint weighted shift 
operators following [14, p. 2083, we produce a pair T of operators 
in P,(B,) such that ,X,(w) =&I,,,(W) Dq,,(w) for cp,.EAut(B’) defined 
by cp,,(z)=(w-p,z--s,Q,z)/(l- (z, w)), WEBB, where P,,z= (z, w)/ 
(w, w), w  # 0, QW = I- P,, and s”, = (1 - j w  I’), so that T is an extremal 
operator. For the general properties of these automorphisms we refer to 
[23 Theorem 2.2.2, p. 261. 

(b) Let I= (iI, . . . . i,) be a multi-index of non-negative integers. Let E, 
be the multi-index having ik equal to 1 or 0 according as k is equal to j or 
not. Let I &- ek denote the multi-index (i, , . . . . i, + 1, . . . . i,). Let {e, > be an 
orthonormal basis for a complex Hilbert space 2 and let { w,.,:j= 1, . . . . m} 
be a bounded sequence of complex numbers such that 

A system of m-variable weighted shift operators with weights (wc} is a 
family of m operators T,, . . . . T,,, such that 

for each multi-index I. 
As in the one variable case, a commuting system of weighted shift 

operators are m multiplication operators on a suitable Hilbert space of 
formal power series defined as follows. 

Let {p,: I> 0} be a set of strictly positive numbers such that /?,, = 1, and 
let 

ff2(B)= 
i 

f= c f~z':IIfl12=~l"ff12B:< +a . 
I20 I 

Clearly, H’(P) 1s a Hilbert space with respect to the inner product 

For 1 <j< Gm, let Tz, denote the multiplication operator on z-z~(P) 
defined by 

Tz;f=zjf= C f,z’+“. 
I$0 

Then, T = (T,, . . . . r,) is a commuting m-tuple of weighted shift 
operators with weights 
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(c) If p(I)-* denotes the coefficient of w’ti’ in the multinomial 
expansion of (1 - jl w  II 2)-1, then the Kernel function for H2(p) is given by 

K&T, w)=(l -(z, w))-’ 

(see [14, p. 2191) and the corresponding m-tuple T, of weighted shift 
operators is determined by the weights 

Now, since 

w,,j=pI+,p;’ =(ij+ I)“2 (lrl + 1)-l/2. 

Tp~P1(B2) when m = 2 by a theorem of Curto and Salinas [8, 
Theorem 4.9(h), p. 1281. Further 

.x,P(M:) = &log(l- (w w>)-’ 
1 J 

where (p, is as in a. Therefore T, is a pair of extremal operators in Pr(B”). 

(d) Remark. It was observed by Lubin [ 16, Proposition 4, p. 8421 
that T, is a subnormal pair which does not possess a pair of commuting 
normal extensions. However, we observe that localization of T, at 0 is N 
with v’ = (LO) and v2 = (0, 1) (as in 2.1). We show in 6.2.2 that this pair 
of local operators does not determine a completely contractive module. 
Thus T, cannot determine a completely contractive module either. Equiva- 
lently, T, does not possess a normal dilation in the sense of ,[2, p. 2791. 

6. APPLICATIONS 

6.1. Solution to a Question of Paulsen 

Let DD, and 3, be domains in C and let D = a, x 33, and 
a,(D) = da, x dD2. Let V(B) dote the algebra of continuous complex- 
valued functions on 3 with the supremum norm, let S(D) denote the 
subalgebra of @(a) consisting of rational functions with poles ID, and let 
5&(D) denote the subalgebra of %?(adD) generated by @(a,), i= 1,2. The 
algebra S&(D) is contained in %?(a) and is algebraicaly isomorphic to 
?A!(~,)@~(~,), but is not necessarily dense in a(D); see [22, p. 1701. 
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Question 1121, p. 291. Let Tr, r, E Y(X) be such that T, T2 = T, T, and 
such that the spectrum p(T,) of Ti is contained in a,, i = 1,2. Let .Y&,, &, 

and J%,. w  denote JP”, considered as a Hilbert module over %?(a,), &?(a,), 
and Bd(B), respectively. Assume that &, is a contractive Hilbert $I(IJ;)- 
module, i = 1, 2. Then, is Y$,,,,~) necessarily a contractive Bd(B)-module? 

For k= 1, 2 and wk in Bk, let 

Rk = sup{ If’(wk)\ 1 f: ‘0 -+ III is holomorphic and f(wk) =O) 

and Fk: ak -+ D be the Ahlfors function [ 11, Theorem 1.6, p. 1143; i.e., F 
is holomorphic F(wk) = 0 and F’(wL) = R,. Note that DB,(w,) = D Rk and 
for s, t positive se”‘F, + teie2F2 maps D to D whenever s + t < 1, which 
shows that 

The fact that these two sets are in fact equal is the consequence of a 
theorem of Royden on the Caratheodory metric of product domains, which 
we recall. 

If XE @” is open and bounded then the infinitesimal form of the 
Caratheodory metric is given by 

F,(w, v) = sup f af (w) . ok If: X-, D is holomorphic and f(w) = 0 
,=I aZj 

Royden has proved the following theorem about the product of two 
complex spaces (cf. [15, Theorem 2.3, p. 3621). 

THEOREM (Royden). If X and Y are any two complex spaces then 

F,, A(z, 4, (w v)) =max(F,(z, u), F,(w, v) 

for z in X and w in Y. 

From this theorem it follows that 

However, @“N,’ * is a contractive module over %(a,) if and only if [ 18, 
Corollary 1.1, p. 3091 (Ivkl( <R;‘. Thus as in Corollary 4.2 we deduce that 
@ k+ ’ is a contractive module over g’(B) if and only if C;l 1 is a contrac- 
tive module over %?(a,). 
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6.2. Example of a Contractive Module Which is not Completely Contractive 

6.2.1. Following Arveson [2, p. 2781, we introduce the notion of a 
completely contractive module: For any complex function algebra JZZ’ and 
integer k> 1, let J&(SZZ’) N ~~20~ J&(C) denote the algebra of all k x k- 
matrices with entries from -01, 

Here, for F= (&) E Mk(&), the norm (( FIJ of F is defined by 

where D is the maximal ideal space for A. We note that, for the algebra 
A =A(Q), the maximal ideal space can be identified with D 
[12, Theorem 1.2, p. 671 and thus, 

II 4 =suP{lImj(4ll :=-QI. 

DEFINITION. If H is a bounded Hilbert A-module, then, clearly, 
H Oc Ck is a bounded M,(A)-module. For each k, let nk denote the 
smallest bound for H@ Ck. The Hilbert A-module H is completely bounded 
if n a, =lim,,, nk < + co and is completely contractive if nao < 1. 

The importance of completely contractive modules lies in, among other 
things, a dilation theorem due to Arveson [2, Corollary, p. 2791. We refer 
the reader to the forthcoming book of Paulsen [22] for more details; 
related material can also be found in [ 1,211. 

6.2.2. Let P= (pij)g Mk(P(fi)) and let, for w  ~52, 9P(w) denote the 
k x mk-matrix 

where -$w=(-&P,0). 

Thus, if N = (N,, . . . . N,) is as in 2.1 and Vis the matrix whose columns are 
v’, . ..) v”’ E @“, then 

P(N) = (P@)) = (N(Vp,(w). K p&4)) 

and, after a suitable rearrangement of the rows and columns, this can be 
written in the form 

p(w) gp(w) ’ (v@ zk) 

0 I LOP(w) . 
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Here, as usual, for a matrix A = (q) of size a and B of size b, A @ B 
denotes the matrix (QB) of size ab. 

If ,;+r is to be a completely contractive module, since by 2.2.1(d), 

II P(N)Il = II gP(w) . v@ Ik /I when P(w) = 0, (1) 

we must at least have 

SUP ( /I gp(wl V@ Ik II : p E =hA~‘(Q)L II p II d 1 and P(w)=O} < 1. 

However. 

ll~~~~~~~oz,Il=sup(I<~~~~w~~vo~,~x,y)l: 

x E cmk, y E Ck, I/ x II < 1 = I( y I( 6 1 }. 

We set, for x = (x1, . . . . xm) E Cmk with xi = (xi,, . . . . XL) E Ck, and y E Ck, 

~Px.,.(w) = kjw, qij(w) = $ <P(w) x’, y). 
*, 

Then, 

((9P(w). VOZ,)x,y) = (VP,(w), 6’) + ..’ + (VP,(w), 6”) 

= tr(DP,, y(w) V’), 

so that 

/I BP(w) . V@ Ik II = Sup { I tr(DP,X. Y( w) . V’)I : x E Vk, y E Ck 

with Ilxll~l=llylldl). (2) 

We illustrate that (1) and (2) can be used to generate examples of 
contractive modules which are not completely contractive. We choose Q to 
be the unit ball B2 in @*. 

First, we note that, if 
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then 

x:(w + CY2) Gv, + CY2vz) 
x:(bY, + 42) x:(b, + 42) 1 
((4 ch (Y*, Y2)) 

0 

and 

where 

By elementary computations, one can check that 

Therefore (or by direct checking), if we choose a = b = c = d= l/,,& then 
)I P )I 6 1. If we further choose y = (yi, y2) = (l/,,&, l/$), then 1 

DP,JO)= “; 4 [ 1 . 
x2 4 

- 
Also, notice that if T= [F z] E&$(C) with (1 T/J < l/J?, then 

(P, q)ll < l/G, II(r, s)ll < l/& so that II@, q, r, s)ll 6 1. If we choose 

x = (P, r, q, s) then DP,,(O) = T. 

Therefore, 

(DP,,(o):p~~~(~‘(52)), II PII < 1, P(w)=O, ~Ea=~,yEa=~ 

with II x II = 1 = II Y II > 

3 { T~,ll,(a=): II TII < l/d}. (3) 

For any VE&‘~(C), the norm of the map L,: d2(C) + C defined by 
L,(P) = tr(P. I”) is given by 
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The last equality follows by applying [4, Theorem 4.3, p. 201. This remark, 
together with (l), (2), and (3), implies that 

n, 2 sup (1 tr(C V’)l: (1 CJ( d l/J?] = l/J5 tr I VI. (4) 

Thus, we obtain the following 

EXAMPLE. In the definition of @k in 2.1, take Sz to be the unit ball in 
C*, u’ to be the origin of Q, and v’, v2 E c2 be such that if V= (::), then 
(/V\(<l andtr IVI>,,,/‘?.Th en, a=,?+ is a contractive, but not a completely 
contractive, d(Q)-module. 

The contractive part foIIows from Theorem 4.1(d) and that (ck is not 
completely contractive follows from (4) above. 

In particular, V= I, makes ch into a contractive module which is not 
completely contractive. 

Remark. Evidently, results on completely contractive modules are not 
in the final form. A more detailed study is under progress. 
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