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1. Introduction

In two earlier papers [9, 10] the present author together with Sastry
studied certain finite dimensional Hilbert modules C%? over the function
algebra A(Q) for Q a domain in C™. This paper is a continuation of that
work and provides partial answers to some of the questions raised in [10]
for the poly disk algebra. While most of the terminology and notations are
from the two papers [9, 10] and will be used without any further apology,
we point out in Remark 3.8 that the contractive module C3" (respectively
completely contractive) gives rise to a matricially normed 2m-dimensional
vector space and a contractive (respectively completely contractive) linear
map on it and conversely.

In the two papers cited above the main result showed that a contractive
module C"t! over the ball algebra A (B™) is completely bounded by \/m
and examples were given to show that the bound is attained. This, in
particular shows that for m 2 2, contractive modules are not necessarily
completely contractive over the ball algebra. However, for the poly disk
algebra A (D™), we know via Ando’s theorem [2] that every contractive
module over A (D2) is completely contractive while Parrott [11] provides
an example of a contractive module over A (D3) which is not completely
contractive. As Paulsen [12] points out, it would be good to know the
difference in the internal structure of A (D?) and A (D3) that leads to
this situation, see 4.4 for a partial answer. Qur approach is to actually
work out Parrot’s example using the notion of complete contractivity rather
than dilation, these notions are of course equivalent [cf. 12]. The methods
of [9, 10], seem to work well in the context of the ball algebra but the
actual computations over the poly disk algebra seem to be very messy. In
fact, we are not able to produce an example of a contractive module over
A (D3) which is not completely contractive within the class of the very
simple modules considering in [9, 10], however see Remark 4.8. Therefore,
we are forced to consider slightly more general module action than those of
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292 G. MISRA

[9, 10]. This necessitates generalising many of the previous results to this
new setup. Whenever the proof of a natural generalisation of results from
[9, 10] is routine, we omit it. In this more general setup, apart from being
able to show that there exists a contractive module over A (D?) which is not
even 2-contractive (Theorem 4.7), we show that such phenomenon occurs
in dual pairs, that is there also exists a contractive module over A ({1(3),)
which is not completely contractive (Theorem 4.1). Another interesting
fact is: In the example of a contractive module over A (DB) in Section
4.6, we use only linear maps in A (D3) ® My to detect that it fails to be
completely contractive. Lastly following suggestions of Vern Paulsen, we
show in Section 4.3, how our methods can be used to answer a question of
Loebl [8]. ‘

To keep this work as self-contained as possible we have given more
details than would seem necessary. In the rest of this section we give basic
definitions. In Section 2, we show that most of the results in [10] can be
modified to fit into the present context. The main new ideas are contained
in Sections 3 and 4. The following definitions and terminology can be found
in many places (cf. [5, 9]).

1.1. DEFINITION. A Hilbert module H over a (not necessarily complete)
complex algebra A consists of a complex Hilbert space H together with a
continuous map (a, f) — a- f from A x H to H satisfying the following
conditions: ,

For a,bin A, h, h; in H and «, § in C

(i)1-h=h,

(i)a-(b-h)=(a-b)-h,

(iii) (a+b)-h=a-h+b-h,

(iv) a- (ahy + Bho) = a(a-h1)+ B (a- hy).

The Hilbert module is bounded if there exists a constant K such that
lla - Blly £ Klaf] 4l[~{l5

for all @ in A and h in H, and is contractive if K < 1.

1.2. For any region Q in C”, let A(Q) denote the closure of the
polynomial algebra P(Q?) with respect to the supremum norm on  the
closure of the region 2. Throughout this paper we will assume that

(i) © is a bounded open neighbourhood of the origin in C™, and
(ii) € is convex and balanced.

We note that (i) and (ii) imply that Q is polynomially convex [6, p.67]
and so, by Oka’s theorem [6, p.84], A({2) contains all functions that are
holomorphic in a neighbourhood of Q.
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The Hilbert P(£2) module structure on the Hilbert space H determines
and is completely determined by a commuting m-tuple T = (T3,...,T};) of
bounded operators on ‘H defined by

Tih = Zz'h

forhin H and 1 £ 7 £ m. If H is a bounded (respectively contractive) P(£2)
module then the module map extends to A(£2) and we write Hr for this
bounded Hilbert A(Q)-module. As explained in [9, Section 1.2] the notion

of T admitting Q as a k-spectral set is equivalent to H being bounded.

1.3. For any function algebra A and an integer k£ 2 1,let Mi(A) = A®
® My (C) denote the algebra of k X k matrices with entries from A. Here
for F = (f;;) in My(A), the norm ||F|| of F is defined by

|F|l = sup {|I(fi;(2))]l : = € M},

where M is the maximal ideal space for A. We note that-for A = A(Q),
the maximal ideal space can be identified with  [6, Theorem 1.2, p.67] and
thus

|1} = sup {{|(fis(2))]] : 2 € 2}

1.4. DEFINITION. If H is a bounded Hilbert A-module, then H ® C*
is a bounded My(A)-module. For each k let n) denote the smallest bound
for H @ Ci. Then the Hilbert A-module is completely bounded if

e = lim n; < 00
k—c0

and is completely contractive if no, < 1.

1.5. In the following, {?(n) stands for the vector space C™ with the
usual {P-norm and (X); will denote the open unit ball of the Banach space

X. For T a linear operator on {?(n) and w any complex number; define the
operator N(T,w) on 1?(n) @ I?(n) = 1?(2n) by

_Jwl, T
N(T,w)—[ 0 wIn]'
Now, for w = (w1,...,wn ) in Q, consider the pairwise commuting m-tuple

of operators
N(T,w) = (N(Tl,wl), ... ,N(Tm,wm)) .

The central object of study is the Hilbert A(2)-module [*(2n)y and to
determine when it is contractive (respectively completely contractive). We
write N for N(T,w) when the meaning is clear from the context
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2. The functional calculus

In this section we establish that the evaluation map p — p(IN) on P(2)
extends continuously to H (w), the algebra of germs of holomorphic functions
at w. This fact will be necessary in proving Lemma 3.3 in the next section.

2.1. LEMMA. For S, T in £ (1*(n)) and A,p in C
(1) N(S,\)N(T,p) = N(AT + p§, M),
@) VORI = 5 { NP+ 20+ P + 4l
(i) V(S = ([ NQIST D -
PRrooOF. (i) and (ii) are straightforward. To prove (iii), note that

A B

det [C D

} = det D det (A - BD_lc’)
and

N(S,\N(S, )" = |A"Lan + [f\g* /\05} :

For z € C, we have

det [SS* —z2I, AS ]

g " oy | = edet (88T el £ 2T APSST) =

= (—2)" det (55" (14 A% = aL,) =

(T 2 -1 m *____"L.—
= (-a) (1+|/\|x ) det (55 1+1A|2x—11">'

59 NS,
AS* o]‘s

S
B0 Chsi+ Visie + ).

By the spectral mapping theorem, the maximum eigenvalue of

N(S,A)N(S,A)" is

Thus, the maximum eigenvalue of [

1
3 {208 + s + s isIE + 4P |

Using (ii) to compute the norm of N(5, ) we verify that (iii) is correct.
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2.2. LEMMA. Let A be a complex algebra, © : A — C be a continuous
algebra homomorphism and ¢ : A — L (12(72)) be a continuous linear map

such that
o(ab) = O(a)p(b) + O(b)p(a).
Then the map a — N(yp(a),0(a)) is a continuous algebra homomorphism
from A to L (I*(n)).
ProoF. The continuity follows from (ii) and (iii) of the previous Lemma.
Asin [9] Lemma 2.1 (iii) and Lemma 2.2 yield the following proposition.

2.3. ProPOSITION. For f in H(w) let V f(w) be the vector (a1,...,ay).
Then the map p: f — N(aiTy + ...+ anTh, f(w)) is a continuous algebra
homomorphism from H(w) to L (I*(n)) coinciding with the evaluation map
p — p(N(T,w)) on P(Q).

2.4. Since the map p extends the evaluation map on P() it follows that
p ® Iy is also a continuous algebra homomorphism of A(Q) ® My coinciding
with the evaluation map on P(Q) ® M.

Let X, Y be finite dimensional normed linear spaces and ! be an open
subset of X. A function f:Q £ X — Y is said to be holomorphic if the
Frechet derivative of f at w exists as a complex linear map from X to
Y. Let I = (iy,...,%y) denote a multi-index of length |I| = 43 + ... + iy,
and let e; denote the multi-index with a one in the k" position and zero
elsewhere. Let P : Q — M, be a polynomial matrix valued function, that
is, P(2) = (pij(2)), where each p;; is a polynomial function in m-variables.

Then we can write
P(z) = Z P(z —w)!

where each Pj is a scalar k¥ X k& matrix. Now it is easy to verify that the
derivative DP(w) of P at w is

DP(w) = (P.y,...,P.,.)

»" Em

which acts on a vector v = (v1,...,0m) by

DP(w)-v=v1Pe, +...+ onP

€m "

However, for notational convenience we always write DP(w) for
(Peyy.--, Pe,,). Weintroduce a pairing between two m-tuples of operators
S and T as follows:

(S, T)=51T71+ ...+ 5, ®Tn
where the matrix for A ® B is just ((a;;b)). In this notation, we have

(0o 1) (F)~ |81 DI,
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where ~ indicates that the matrix on the right is obtained from the one on
the left after elementary row and/or column operations.

3. Characterization of completely contractive modules

The main result in this section says that to determine when ||p ® Ii|| <

< 1, it is enough to consider those functions which vanish at a fixed but

arbltrary point of 2. However to prove this we need, as in [10], the following
result of Douglas, Muhly and Pearcy {4, Proposition 2.2].

3.1. LEMMA. Fori = 1,2 let T; be a contraction on a Hilbert space H;
and let X be an operator mapping Hy into H;. A necessary and sufficient

condition for the operator on Hy, ® Hs defined by the matriz [1(;1 %; to be

a contraction is that there exist a contraction C mapping Hq into Hy such
that

1 oo A L
X =(In, —-NI7)2C(In, — T5Ty)2.
Again as in [10], we need some results about biholomorphic automor-

phisms of the unit ball in M, which can be found in Harris [7, Theorem
2]. We collect the results we will need in the following.

3.2. LEMMA. For each B in the unit ball (My), of My, the Mobius
transformation

N[

¢B(A) = (I — BB*) 3(A+ B)(I+ B"A)"\(I - B*B)

is a biholomorphic mapping of (My), onto itself with ¢p(0) = B. Moreover,

o5 = ¢-B, ¢B(A) =B (A4"), lle(A)l < ousIAID

and
Deg(A)C = (I - BB*)i(I + AB*Y"'C(I + B*A)""(I - B*B)?.

Now we are ready to prove the main result of this section. While this
lemma is similar to Lemma 3.2 in [9] and the lemma in [10], in the present
situation, some extra care is necessary for the proof.

3.3. LeMMA. If{|F(N)|| £ 1 for all F in Mk(Hol(g)) with || Fl|, £1
and F(w) = 0, then [G(N)|| £ 1 for all G in M (Hol(Q)) with (J|G)|l, <
<1.

PRrOOF. Any G in My (Hol(f2)) of norm less than or equal to one, maps
Q into (My),. In particular, for w in @, ||G(w)|| < 1 we can form the Mobius
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transformation ¢_g(,) of (My),. Consider the map ¢_g ()© G, which maps
w onto zero. Thus,

12 ||(¢-g) 0 G) (N)] = H [g (D (¢-61)°6) (w),T] “ |
However,
(D (¢-c(w) ©G),T) = (Dp_g)(G(w))DG(w), T) =

= (I — G(W)G(W))*(DG(w), T) (I - G(w) G(w))™/?
by Lemma 3.2. On the other hand,

(It = G()G(w)" ® L) /H(DG(w), TY (Lt = G(w) G(w) ® L) /" =
= (I - G)Gw)) @ 1) (DG(w), T) -
(U - G G) ™ o 1) =

= ((lk - GG ) D)1, - 6wy Gw) ™, T)

and Lemma 3.1 implies that

_[G@) oL (DG(w),T)
o) = | )@ (hae) |

has norm at most one.

3.4. The hypothesis on 2 guarantees that it can be realized as the unit
ball in C™ with respect to a suitable norm || - |l on C™. In the following,
the norm of a map between two normed linear spaces is always understood

to be the usual operator norm. The following definition is an adaptation of
Definition 1.2 [10].

5. DEFINITION. For w in §, define
D, w) = {DF(w) € LUC™ ||+ llg) , M) : F € Hol(Q), || Fllo, S 1}
The m-tuple N(T,w)determines a linear map
A L((C - llg) s My) = £ (T, CF)
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defined by
P (P, Pu) = PL@Ti + ...+ P ® Ty = (P, T)

We set
MEN(T,w) = sup {4 (P)]|: P € Dy, 2w) }

and
M§(N(T,w)) = sup { ME(N(T,w)) : k € N} .

In what follows, when k = 1, we will write py and Mg(N(T,w)) instead
of pg) and M}(N(T,w)). The map py is essentially the map p of Proposi-
tion 2.3. In view of Lemma 3.3, it is straightforward to prove the following

theorem.

3.6. THEOREM. [*(2n)y is a completely contractive A()-module if
and only if MG(N(T,w)) £ 1.

Parts (a) and (b) of the following theorem are identical to Theorem
1.9 in [10]. However, part (c) and (d) are slightly different in view of the
fact that we are using a more general module action than the previous set
up. Also note that neither part (a) nor part (c) of the following theorem is
very useful unless we assume 2 admits a transitive group of biholomorphic
automorphisms.

3.7. THEOREM. Let w be in §} and assume that there exists a biholo-
morphic automorphism O, of Q such that O,(w) = 0, and let DOy and
DOF be the kth column and k™ row respectively of the derivative DO, (w).
Then,

(a) Da, Aw) = D, 2(0) - DO (w) = {(DP(0) - DOy,...,DP(0) -
. DO,,): DP(0) € Dy, (0},

(b) D, 2(0) = {P € L((C™, || - [lg) , M&) : [|P]] £ 1},

(¢) ME(N(T,w)) = ME(N(DO,(w) - T,0)) = ME(N(DO' - T,...,
DO™ - T, 0) ).

(d) ME(N(T,0)) = sup {[|(P,T)|| : P € Dy, 2(0)}.

3.8. REMARK. Note thatfork =1,D, Q(0)= {P € L((C™, |- |lq),
C) :||P|| £ 1}. In other words, if || - ||» denotes the norm on C™ that is
dual to |} - || then Dy, ©(0) can be identified with (C™, || - ||g.),, which
we write as 2*. Consequently, Mq(N(T,0)) is less than or equal to one if
and only if ||pn|| £ 1, that is, [|217h + ... + 20 Tn|| £ 1 for all (21,...,2,)
in %, that is, (T1,...,T,,) is in D, 2%(0).
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Note that the inclusion (C™, || - ||g+) in A(R) via the map z — [,, where

for z in (C™,|| - ||g+) and w in (C™,]| - ||q), la(w) = }_ w;Z; is an isometry.
J=1

We define, for each [z;;] in (C™,|| - |q.) ® My the norm |[|[z;]|| using the

inclusion map, which turns (C™, || -||n+) into a matricially normed space.

(The definition and other related material is in [3].) Now, it is possible
to talk of the cb-norm of the map pn : (C™,|| - |lqs) = My, we again
refer the reader to [3] for this definition. It is easy to see, in view of
Theorem 3.6, that studying completely bounded modules C%* over A(Q)
is the same as studying completely bounded maps on the matrix normed
space (C™,|| - |lqx). We will have more to say about this in Section 4.3.

4. Parrott’s example and duality

The main theorem in this section is a duality result. As in the previous
section, let  be the unit ball in C™ with respect to some norm || - ||,. Let
Il - [[q+ be the dual norm and Q* be the unit ball in C™ with respect to the
dual norm || - [|g..

4.1. THEOREM. The following statements are equivalent:

(i) If 12(2n)N(T,0) is a contractive module over A(Q), then it is com-
pletely contractive.

(ii) If 12(2n)N(T’0) is a contractive module over A(Y*), then it is com-
pletely contractive.

PRrROOF. We prove (i) implies (ii). Note that by Remark 3.8, 12(2n)N(T,O)
is contractive over A(£*), if and only if T is in Dy, (2*)%(0). But (2%)" is
equal to £ so that the module 12(2n)N(T,0) is contractive over A(Q*) if and
only if T is in D1, Q(0). By Theorem 3.7 (d), to show that I*(2n)y (g is
completely contractive, we have to establish for all £ in N

(P, T)[ <1, forall P in Dag,Q%(0).

However, P in Dy, 27(0) is equivalent to saying 12(2k)N(P,0) is a contrac-
tive module over A({1), again by Remark 3.8. But we are assuming any
contractive module over A(f) is completely contractive, so 12(2k)N(P’0) is

completely contractive. Or equivalently, via Theorem 3.7(d), for all £ in N
(T, P)|| <1, forall T in Da,Q(0).

Using the flip map to change the order of tensor products occurring in
(T,P), we see that for all £k and n in N, we have

(B, TH = [KT, Pl £ 1,
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for all' P in D s, 2%(0) and all T in D g, €2(0). This completes the proof of
(i) implies (ii) and the other implication can be verified in a similar manner.

4.2. COROLLARY. If Q admits a transitive group of biholomorphic
automorphisms and [?(2) is a contractive module over A(Q) then [2(2) is
completely contractive.

Proor. Note that in this case

veo=([3 8] [ &)

If w = 0 then N(t,w) is contractive if and only if t = (¢1,...,%n) is in Q
and the proof is obvious. If w # 0 then N(t,w) is contractive if and only if
DO, (w) -t isin Q. To check complete contractivity we have to verify that

ME(N(t,w)) = ME(N(DO,(w) - £,0)) =

= sup {|{DOu(w) - t,P)| : P € Dy, 0)} £ 1,

but the last inequality is clearly true since DO (w)-t € Q and the proof is
complete.

We wish to point out in this connection that, while the above corollary is
not very hard to prove, J. Agler [1] has shown by using a more refined form
of Schwarz lemma that the same statement as in the previous corollary
holds for arbitrary convex bounded subsets of C*. As a consequence he
reproves a result from complex geometry, which says that for such domains
the Caratheodory and the Kobayashi metric are the same.

4.3. REMARK. Vern Paulsen has shown me that the above theorem can
be used to answer the following question.

Note first that px is a linear map from (C™,|| ||q+) into the matrix
algebra M,,. What we have defined as Mg is nothing else but the completely
bounded norm of py provided we endow the normed space (C™, || ||g.) with
matrix norm structure as follows [cf. 3]. If X is a normed space, then the
canonical inclusion of X into the continuous functions on the unit ball of
its dual allows us to identify X with a subspace of a C*-algebra and hence
endows X with a matrix norm structure such that X is an operator space.
Given a matricially normed Banach space X and linear maps p : X — L(H),
define

a(X) = sup {|lplly : lloll < 1}.

One natural question is to determine matricially normed Banach spaces for
which o(X) = 1. The affirmative answer to this question is equivalent
to asserting that any contractive module 12(2n)N(T’0) over A(Q) is also

completely contractive. This question for I1(2) was first raised in Loebl [8].
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If we look at the finite dimensional vector space (C™,|| ||g»), then the
matrix norm structure it inherits from A(), as discussed in 3.8, is the
same as the matrix norm structure defined above. Note that by Ando’s
theorem [2], a({*°(2)) £ 1 and examples can be given to show that the
bound is attained, thus a(l°°(22) = 1. Ando’s result together with the
previous theorem imply that a(l*(2)) = 1.

4.4. REMARK. The example we wish to discuss here is like that of
Parrott [11]. Our discussion is computational in nature and shows that
there is a contractive Hilbert module over A(D?), which is not even 2-
contractive. (For a discussion see [12, p.92]). By Theorem 4.2, it follows
that the same is true for A ((I'(3)),), that is, there is a contractive Hilbert
module over A (({1(3)) ,) which is not 2-contractive. We hope this clarifies
some of the mystery surrounding Parrott’s example.

4.5. LEMMA. The norm of the map V : 1°°(2) — 1?(2) is

Wl = (vl 4+ ivall? + 210, va)l)

where vy and vy are the columns of the matriz for V.

ProoOF. It is enough to note that

v (4]

= vill® + [Vall + €7 (ve, va) + €7 (va, 1),

The result follows by choosing ¥ = arg(v, va).

However, the natural generalisation of this formula does not hold for

2
V :1%®(n) — [*(n) for n > 2. In fact, (HV“io) is, in general, strictly
smaller than Y |(v;,v;}|. This is what we exploit the following.
]

4.6. EXaMPLE. Let vi = (1,0), vo = %(1,\/?_)) and vy = (1,—\/3).
It is easy to see that the map m : (l,e"’?,ew) — vi + e, + e¥vy from
1°°(3) to [%(2) has norm strictly smaller than v/6. Similarly for u; = (0,1),
ug = %(\/5,—1) and uz = %(\/ﬁ,l), we see that the norm of the map
79 : (1,6“9,6"‘”) — up + euy + euy from [*(3) to 2(2) is strictly less
than v/6. In fact, with a little effort, one can show that each of these norms
equals 3’3 Let U be the unitary matrix whose rows are v, and uy. Similarly

1
= e, =

let V' be the unitary matrix whose rows are vs and uz. Now, consider the
map

p([,U,V) : (1, eiﬁ,eiw) — I+ eiﬂU + ei(pv
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and note that the operator norm of (I + €0y +ei‘pV) is at most

imll® + ||m2l®>. However if at a fixed 9, ¢ either of the norms ||| or

||72]| is equal to 3/+/2 then the other one is strictly less than 3/+v/2. So that

the operator norm of (I + U + ei‘PV) is strictly less than 3. Thus we
have shown the form of the map

(1,ei’9,ei¢) — I+ €U + eV

from [°(3) to £ (I*(2)) is strictly less than 3.

4.7. THEOREM. l2(4)N((I,U,V),0) is contractive but not completely con-
tractive over A(D3).
Proor. To show that [?(4)y is contractive we have to establish — by
Remark 3.8 — that
”2'11 + 20U + Z3V|| g 1
for all (z1,22,23) € (I}(3));. But the inequality holds since each of I, U
and V is a contraction operator. Note that the above discussion implies

that (I,U,V)/§, for some § < 3, is in D, D3(0). To show that % is not
completely contractive, we compute

KLU, V)6, (LU, V)| =
=§NIRI+URU+VQRV|=

— s—1

[i+%u+%v (U - V)
Bw+v) I1-v+1v
V3 0
:ﬁé—l 1 1
2 1 01 -1
V3 0 0 V3

4.8. REMARK. We have not been able to decide, whether for operators
of the form

0 V3

0 -1 g1

1 =36 > 1.
0

N(V,0) = (N(v1,0),...,N(vi,0))

as in [9], where vy, ..., Vv, are vectors in C", contractivity implies complete
contractivity over A(D™). Vern Paulsen has shown that in this case the
complete bound for a contractive map can be at most K¢, the universal
constant of Grothendieck.

Note added in proof (November 8, 1993). In the paper “Contractive
homomorphisms and tensor product norms™, written jointly with B. Bagchi
we have obtained many results relating to Remark 4.8.
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