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M O D U L E S  A N D  P A R R O T T ' S  E X A M P L E  
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1. In troduct ion  

In two earlier papers [9, 10] the present author together with Sastry 
studied certain finite dimensional Hilbert modules C~ +1 over the function 
algebra A(~) for fl a domain in C m. This paper is a continuation of that 
work and provides partial answers to some of the questions raised in [10] 
for the poly disk algebra. While most of the terminology and notations are 
from the two papers [9, 10] and will be used without any further apology, 
we point out in Remark 3.8 that the contractive module C2N n (respectively 
completely contractive) gives rise to a matricially normed 2m-dimensional 
vector space and a contractive (respectively completely contractive) linear 
map on it and conversely. 

In the two papers cited above the main result showed that a contractive 
module C n+l over the ball algebra A ( B  m) is completely bounded by v/m 
and examples were given to show that the bound is attained. This, in 
particular shows that for m _>__ 2, contractive modules are not necessarily 
completely contractive over the ball algebra. However, for the poly disk 
algebra .A (Dm), we know via Ando's theorem [2] that every contractive 
module over .A (D 2) is completely contractive while Parrott [11] provides 
an example of a contractive module over A (D 3) which is not completely 
contractive. As Paulsen [12] points out, it would be good to know the 
difference in the internal structure of JI (D 2) and A (D 3) that leads to 
this situation, see 4.4 for a partial answer. Our approach is to actually 
work out Parrot 's example using the notion of complete contractivity rather 
than dilation, these notions are of course equivalent [cf. 12]. The methods 
of [9, 10], seem to work well in the context of the ball algebra but the 
actual computations over the poly disk algebra seem to be very messy. In 
fact, we are not able to produce an example of a contractive module over 
.A (D 3) which is not completely contractive within the class of the very 
simple modules considering in [9, 10], however see Remark 4.8. Therefore, 
we are forced to consider slightly more general module action than those of 
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[9, 10]. This  necessitates generalising many  of the previous results to this 
new setup. Whenever  the proof of a natural  generalisation of results from 
[9, 10] is routine,  we omit  it. In this more general setup, apart  from being 
able to show tha t  there exists a contractive module over A (D 3) which is not 
even 2-contractive (Theorem 4.7), we show that  such phenomenon occurs 
in dual  pairs, tha t  is there also exists a contractive module over ,4 (/1(3)1) 
which is not completely contractive (Theorem 4.1). Another  interest ing 
fact is: In the example of a contractive module  over A (D 3) in Section 
4.6, we use only linear maps in A (D 3) | 342 to detect that  it fails to be 
completely contractive. Lastly following suggestions of Vern Paulsen,  we 
show in Section 4.3, how our methods  can be used to answer a question of 
Loebl [8]. 

To keep this work as self-contained as possible we have given more 
details t han  would seem necessary. In the rest of this section we give basic 
definitions. In Section 2, we show tha t  most  of the results in [10] can be 
modified to fit in to  the present context. The main new ideas are contained 
in Sections 3 and 4. The  following definitions and terminology can be found 
in many  places (of. [5, 9]). 

1.1.  DEFINITION. A Hilbert module  7-/over a (not necessarily complete)  
complex algebra A consists of a complex Hilbert space ~ together  with a 
continuous map  (a, f )  ~ a �9 f from A x ~ to ~ satisfying the following 
conditions: 

For a, b in .4, h, hi in ~ and c~,/3 in C 

(i) l . h = h ,  
(ii) a .  (b. h) = ( a .  b). h, 

(iii) (a+b).h=a.h+b.h, 
(iv) a .  ((~hl +/3h2) = (~ (a .  h i )  -t-/3 (a .  h2). 

The  Hilbert module  is bounded if there exists a constant  K such tha t  

Ila " hl[~ <= I(llallAIIh[I ~ 

for all a in A and h in 7-/, and is contractive if K -< 1. 

1.2.  For any region f~ in C m, let A(Ft) denote the closure of the 
polynomial  algebra 7)(f~) with respect to the supremum norm on f~ the 
closure of the region f~. Throughout  this paper  we will assume tha t  

(i) f~ is a bounded  open neighbourhood of the origin in C "~, and 
(ii) f~ is convex and balanced. 

We note  tha t  (i) and (ii) imply that  f~ is polynomiaily convex [6, p.67] 
and so, by Oka's theorem [6, p.84], A(f~) contains all functions tha t  are 
holomorphic  in a neighbourhood of f~. 
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The Hilbert P(f l )  module structure on the Hilbert space 7-[ determines 
and is completely determined by a commuting m-tuple T = (T1, . . . ,  Tin) of 
bounded operators on 7-[ defined by 

Tih = zih 

for h in ~ and 1 _< i _< m. If ~ is a bounded (respectively contractive) P ( ~ )  
module then the module map extends to A(gt) and we write 7-/T for this 
bounded Hilbert A(f~)-module. As explained in [9, Section 1.2] the notion 
of T admit t ing f~ as a k-spectral set is equivalent to "HT being bounded. 

1.3. For any function algebra A and an integer k __> 1, let M k ( A )  ~- A | 
| 3dk(C)  denote the algebra of k x k matrices with entries from A. Here 
for F = ( f i j ) in  .s the norm IIFtl of F is defined by 

IIFll = sup{II(f Az))ll:z �9 M } ,  

where M is the maximal ideal space for A. We note that"for A = A(ft), 
the maximal ideal space can be identified with ft [6, Theorem 1.2, p.67] and 
thus 

IIFII = sup TIl(f j(z))ll = z e a }  . 

1.4. DEFINITION. If 7-/ is a bounded Hilbert A-module, then 7-/| C k 
is a bounded Mk(A)-module .  For each k let nk denote the smallest bound 
for 7-/| Ck. Then the Hilbert A-module is completely bounded if 

nee = lim nk < oc 

and is completely contractive if n~r __< 1. 

1.5. In the following, lP(n) stands for the vector space C n with the 
usual /P-norm and (X)I will denote the open unit ball of the Banach space 
X. For T a linear operator on 12(n) and ca any complex number; define the 
operator N(T,  ca) on 12(n) | 12(n) ~- 12(2n) by 

caI~ " 

N o w ,  for ca ---- (ca l ,  . . .  , c a m )  in ft, consider the pairwise commuting m-tuple 
of operators 

N ( T , w )  = (N(TI ,Wl) , . . .  ,N(Tm, wm)). 

The central object of study is the Hilbert A(ft)-module 12(2n)N and to 
determine when it is contractive (respectively completely contractive). We 
write N for N(T,ca) when the meaning is clear from the context 

Acta Mathematica Hungarica 63, 1994 



294 G. MISRA 

2. The  func t iona l  calculus 

In this section we establish that the evaluation map p --+ p(N) on 7)(ft) 
extends continuously to H (co), the algebra of germs of holomorphic functions 
at co. This fact will be necessary in proving Lemma 3.3 in the next section. 

2.1. LEMMA. For S, T in/2 (/2(n)) and A,# in C 
(i) N(S,A)N(T,#) = N(AT + #S,A#), 1{ } 

(ii) IIN(,X,#)[I 2 = ~ IAI 2 + 21#12 + iAIV/IAI 2 + <#12 , 

(iii) IIN(S,:~)ll = IIN(llSll,l:~lDII. 
PROOF. (i) and (ii) are straightforward. To prove (iii), note that 

d e t [ ~  B] =detDdet(A-BD-1C) 

and 
SS* 

N(S,A)N(S,A)* = IAl2h~ + AS* 

For x C C, we have 

det SS;s,XIn -xIn = ( -x)n  det - z-1],,~[2SS *) = 

=(-x)~det(SS*(l+[Al2x - 1 ) - x I n )  = 

= (--x)n(1 +l/~12x-1)ndet ( ' ' * -  1-1-])~[2x - i x  i n )  . 

T h u s ' t h e m a x i m u m e i g e n v a l u e ~  SS*AS* A: I  is 

Ilsll2 (llsll+ V/llsll2+41al2). 
By the spectral mapping theorem, the maximum eigenvalue of 
N(S,A)N(S,A)* is 

1 {  21;q2 + 2  IIs112 + IlsllV/l[xl[2 + 41515} . 

Using (ii) to compute the norm of N(S, A) we verify that (iii) is correct. 
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2.2. LEMMA. Let r be a complex algebra, 0 : A -+ C be a continuous 
algebra homomorphism and ~ : .4 ~ s (12(n)) be a continuous linear map 
such that 

9~(ab) = O(a)9~(b ) + O(b)9~(a). 

Then the map a --+ N ( T ( a ) , O ( a ) )  is a continuous algebra homomorphism 
from A to 

PROOF. The continuity follows from (ii) and (iii) of the previous Lemma. 
As in [9] Lemma 2.1 (iii) and Lemma 2.2 yield the following proposition. 

2.3. PROPOSITION. For f in H(w) let Vf(a;)  be the vector ( a l , . . . ,  am). 
Then the map p:  f ---, N (a~T~ + . . .  + amT,~, f(a;)) is a continuous algebra 
homomorphism from H(w) to f_. (12(n)) coinciding with the evaluation map 
p - +  p ( N ( T , w ) )  on P(gt). 

2.4. Since the map p extends the evaluation map on T'(ft) it follows that  
p | Ik is also a continuous algebra homomorphism of A(f~) | Jt4k coinciding 
with the evaluation map on P(~t) | ~4k. 

Let X, Y be finite dimensional normed linear spaces and f~ be an open 
subset of  X.  A function f : f~ _C X ---, Y is said to be holomorphic if the 
Frechet derivative of f at ~ exists as a complex linear map from X to 
Y. Let I = ( i l , . . . , i m )  denote a multi-index of length III = il + . . .  + i,~ 
and let ek denote the multi-index with a one in the hth position and zero 
elsewhere. Let P : ft --, ~//k be a polynomial matr ix valued function, that  
is, P(z)  = (pij(z)), where each Pid is a polynomial function in m-variables. 
Then we can write 

P(z) : Z 

where each P / i s  a scalar h x h matrix. Now it is easy to verify that  the 
derivative D P ( ~ )  of P at co is 

DP(w)  = (P~I,. .  �9 ,P~m) 

which acts on a vector v = (v l , . . . , v ,~ )  by 

D P ( ~ ) .  v = v~Pel + . . .  + v,~Pem. 

However, for notat ional  convenience we always write DP(w)  for 
(P~I , ' - - ,  P~m)- We introduce a pairing between two m-tuples of operators 
S and T as follows: 

( S , T )  = S1 @ T1 + . . .  + Srn @ Tm 

where the matr ix  for A | B is just ((a~jb)). In this notation, we have 

( , |  [ I ~ |  ( D F ( a ; ) , N ) ]  
o | ' 
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where ~ indicates that the matrix on the right is obtained from the one on 
the left after elementary row and/or column operations. 

3. C h a r a c t e r i z a t i o n  o f  c o m p l e t e l y  c o n t r a c t i v e  m o d u l e s  

The  main  result in this section says tha t  to determine when lip | • 
1, it is enough to consider those functions which vanish at a fixed but  

arbi t rary point  of ~. However to prove this we need, as in [10], the following 
result of Douglas,  Muhly and Pearcy [4, Proposit ion 2.2]. 

3 .1 .  LEMMA. For i = 1,2 let Ti be a contraction on a Hilbert space 7-li 
and let X be an operator mapping 7-12 into 7-li. A necessary and sufficient 

[ ] condition for the operator on ~~1 �9 ~-~2 defined by the matrix T1 X 0 T2 to be 

a contraction is that there exist a contraction C mapping 7-12 into 7-ll such 
that 

1 1 

x = (I 1 - T T;) C(Iu: - T;r2)  

Again as in [10], we need some results about biholomorphic automor-  
phisms of the unit  ball in 3/[k, which can be found in Harris [7, Theorem 
2]. We collect the results we will need in the following. 

3 .2 .  LEMMA. For each B in the unit ball (Mk)a of fl4k, the Mobius 
transformation 

1 1 

= - B B * ) - ~ ( A +  ~B(A) (I  B ) ( I  + B*A) - I ( I  B*B)~ 

is a biholomorphic mapping of ( jt4k)l onto itself with ~B(O) = B. Moreover, 

~B 1 = ~ - B ,  ~B(A)* = ~B*(A*), [I~B(A)II ~  IIBII([IAII) 
and 

D~B(A)C = ( I -  B B * ) i ( I  + A B * ) - I c ( I  + B*A) - I ( I  - B'B)�89 

Now we are ready to prove the main result of this section. While this 
l emma  is similar to Lemma  3.2 in [9] and the l emma in [10], in the present 
si tuation,  some extra  care is necessary for the proof. 

3 .3 .  LEMMA. IftIF(N)I I < 1 for all r in Mk(Hol( f l ) )  with IIY{l~ <__ 1 
and F(w) = O, then liG(N)[] __< 1 for all G in ~4k(Hol(ft)) with (HG)II~ < 
<_1. 

PROOF. Any G in A~k(Hol(Ft)) of norm less than or equal to one, maps 
into (.Mk)l.  In part icular ,  for w in ft, IIa(. )ll < 1 we can form the Mobius 
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transformation c2_a(~) of (Mk)l .  Consider the map ~-G(~) o G, which maps 
w onto zero. Thus, 

However, 

(D (c2_a(~) o G) ,  T) = (Dc2_a(~)tGtw))PG(w), T} = 

= (I - G(w)G(co)*)l/2(DG(w), T} ( I -  G(a~)*G(w)) -1/2 

by Lemma 3.2. On the other hand, 

(I~k - G(a))G(w)* | I~)-I/2(DG(a), W)(I,k - G(w)*G(w) | s  = 

= ( ( a  -1/2 | 

= { ( h  - G(w)G(w)*)-l/2DG(w)(Ik - G(w)*G(w)) -1/2, T )  

and Lemma 3.1 implies that 

G(N)=[G(W)O| /DG(c~ | I~ 

has norm at most one. 

3.4. The hypothesis on fl guarantees that it can be realized as the unit 
ball in C m with respect to a suitable norm I1" IIn on C m. In the following, 
the norm of a map between two normed linear spaces is always understood 
to be the usual operator norm. The following definition is an adaptation of 
Definition 1.2 [10]. 

3.5. DEFINITION. For ,~ in f~, define 

D~kf t (w  ) = {DF(w) e s ((c~n, II. I l a ) ,Mk) :  F e Hol(fl), IIFII~ _-< 1}. 

The m-tuple N(T,w)determines a linear map 

p~) : J ~ ( ( c m ,  lI" Ha) ,  ./~k) "-~ s (Ckn ,C kn) 
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defined by 

P(Nk)(P1, �9 .. ,Pro) = /)1 | + . . .  + P~ | = (P ,T)  

We set 

and 

M~k(N(T,cz))= sup {llp~)(P)ll : P E D~4kft(w)} 

M~(N(T,w))  = sup {M~(N(T, ,~)) :  k E N } .  

In what follows, when k = 1, we will write PN and M~(N(T,w))  instead 

of p~) and M~(N(T,w)) .  The map PN is essentially the map p of Proposi- 
tion 2.3. In view of Lemma 3.3, it is straightforward to prove the following 
theorem. 

3.6. THEOREM. 12(2n)N is a completely contractive A(a)-module if 
and only if M~(N(T,w))  < 1. 

Parts (a) and (b) of the following theorem are identical to Theorem 
1.9 in [10]. However, part (e) and (d) are slightly different in view of the 
fact that we are using a more general module action than the previous set 
up. Also note that neither part (a) nor part (c) of the following theorem is 
very useful unless we assume fl admits a transitive group of biholomorphic 
automorphisms. 

3.7. THEOREM. Let w be in ~ and assume that there exists a biholo- 
morphic automorphism O~ of ~ such that 0~o(~) ~ O, and let DOk and 
DO k be the k th column and k th row respectively of the derivative DO,~(w). 
Then, 

(a) DMkgt(w) : DMk~t(0). DO~(w) : { (DP(0) .  D O I , . . . , D P ( O ) .  
�9 D O m ) : D P ( O )  e D,~kfl(0)}, 

(b) D ~ k ~ ( 0  ) = {P e s  m, [1" Ila),~dk) : HPI[ _-< 1}, 
(c) M k ( N ( T , w ) ) =  M ~ ( N ( D O ~ ( w ) . T , O ) ) =  M ~ ( N ( D 0 1 . T , . . . ,  

DO m- T; 0) ). 

(d) M ~ ( N ( T , 0 ) ) =  sup {[I(P,T)I l : P  e D~k~(0)} .  

3.8. REMARK. Note that for k = 1, D.~lf l(0 ) = {P  E s  (C "~, II" ll~), 
C) : IIPII < 1}. In other words, if 1]" I[~* denotes the norm on C "  that is 
dual to I1" ]]n then D ~ t ~ ( 0  ) can be identified with (C m, I1" ]lu*)l, which 
we write as fl*. Consequently, M~(N(T,  0)) is less than or equal to one if 
and only if IIPN[[ ~ 1, that is, [IzlT1 4 . . .  + zmTm[[ ~ 1 for all (zl . . . .  ,Zm) 
in fl*, that is, (T1, . . .  ,Tin) is in D~l~t*(0 ). 
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Note that  the inclusion (C m, I1" I[~*) in A(~)  via the map z ~ lz, where 
n 

for z in (era ,  I I �9 II~* ) and w in (C "~, It" II~), Iz(w) = ~ wj~j is an isometry. 
j= l  

We define, for each Ix{j] in ( cm,  II �9 lift.)| Mk the norm I[[xij]ll using the 
inclusion map, which turns (C m, II" I1~*) into a matricially normed space. 
(The definition and other related material is in [3].) Now, it is possible 
to talk of the cb-norm of the map PN : (C m,ll" II~*) --+ A/i~, we again 
refer the reader to [3] for this definition. It is easy to see, in view of 
Theorem 3.6, that  studyir~g completely bounded modules C~ ~ over A(~)  
is the same as studying completely bounded maps on the matrix normed 
space (C m, I1" I1~*)' We will have more to say about this in Section 4.3. 

4. P a r r o t t ' s  e x a m p l e  and  d u a l i t y  

The main theorem in this section is a duality result. As in the previous 
section, let fl be the unit ball in C m with respect to some norm N" I1~. Let 
]l" ]In* be the dual norm and ~t* be the unit ball in C m with respect to the 
dua  norm H" IIn.. 

4.1. THEOREM. The following statements are equivalent: 
(i) / f  I~(2n)N(T,O) is a contractive module over A(gl), then it is com- 

pletely contractive. 
(ii) I f  I~(2n)N(T,O ) is a contractive module over A(~I*), then it is com- 

pletely contractive. 

PROOF. We prove (i) implies (ii). Note that by Remark 3.8, 12(2n)N(T,0) 
is contractive over A( tP) ,  if and only if T is in D~n(l-/*)*(0 ). But (ft*)* is 
equal to ~ so that  the module 12(2n)N(T,0) is contractive over A(~*) if and 

only if T is in D.~, l~(0) .  By Theorem 3.7 (d), to show that 12(2n)N(T,O) is 
completely contractive, we have to establish for all k in N 

II(P,T>[[ =< 1, for all P in D~kf t*(0) .  

However, P in DMk~*(0)  is equivalent to saying /~(2k)N(P,O ) is a contrac- 
tive module over A(fl) ,  again by Remark 3.8. But we are assuming any 
contractive module over A(~)  is completely contractive, so 12(2k)N(P,O) is 
completely contractive. Or equivalently, via Theorem 3.7(d), for all k in N 

[[<T,P>I I __< 1, for all T in D ~  ft(0). 

Using the flip map to change the order of tensor products occurring in 
( T , P ) ,  we see that  for all k and n in N, we have 

II(P,T)I] = II(T,P>II __< I, 
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for all P in DMfl2*(0)  and all T in D2, . f~(0) .  This completes the proof of 
(i) implies (ii) and the other  implication can be verified in a similar manner .  

4 .2 .  COROLLARY. I f  ~ admits a transitive group of biholomorphic 
automorphisms and 12(2) is a contractive module over A(~2) then 12(2) is 
completely contractive. 

PROOF. Note tha t  in this case 

N(t,03)--([~1 031tl ] ' ' ' ' '  [ Om 03mtm ]) , 

If w = 0 then  N(t,03) is contractive if and only if t = ( t l , . . .  ,tin) is in ~t 
and the proof  is obvious. If 03 ~ 0 then N(t,03) is contractive if and only if 
D0~(03) �9 t is in ~.  To check complete contractivity we have to verify tha t  

M~(N(t ,03))  = M~(N(D |  t , 0 ) )  = 

= s u p { [ ( D 0 w ( w ) . t , P ) [ :  P e D ~ k ~ ( 0 ) }  _-< 1, 

but  the  last inequali ty is clearly true since D| �9 t C fl and the proof  is 
complete.  

We wish to point  out in this connection that ,  while the above corollary is 
not very hard  to prove, J. Agler [1] has shown by using a more refined form 
of Schwarz l emma  tha t  the same s ta tement  as in the previous corollary 
holds for arbi t rary convex bounded  subsets of C n. As a consequence he 
reproves a result f rom complex geometry,  which says tha t  for such domains 
the Cara theodory  and the Kobayashi metric are the same. 

4 .3 .  REMARK. Vern Paulsen has shown me that  the above theorem can 
be used to answer the following question. 

Note first tha t  PN is a linear map from (C m, [[ lie,) into the mat r ix  
algebra .h4n. W h a t  we have defined as M~ is nothing else but  the completely 
bounded  norm of PN provided we endow the normed space (C m, [[ []~,) with  
mat r ix  norm s t ructure  as follows [cf. 3]. If X is a normed space, then the 
canonical inclusion of X into the continuous functions on the unit  ball of 
its dual  allows us to identify X with a subspace of a C*-algebra and hence 
endows X with a matr ix  norm structure  such that  X is an operator  space. 
Given a matricial ly normed Banach space X and linear maps p : X - ,  s 
define 

~ ( X )  = sup {[Ipll=b : [Ipll < 1}. 

One na tura l  question is to determine matricially normed Banach spaces for 
which a(X)  = 1. The  affirmative answer to this question is equivalent 
to assert ing tha t  any contractive module  12(2n)N(T,O) over A(g/) is also 

completely contractive. This  question for 11(2) was first raised in Loebl [8]. 
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If we look at the finite dimensional vector space (C m, [[ [la*), then the 
mat r ix  norm s t ruc ture  it inherits  from A(f~), as discussed in 3.8, is the 
same as the mat r ix  norm structure  defined above. Note tha t  by Ando 's  
theorem [2], a( l~176 < 1 and examples can be given to show tha t  the 
bound  is a t ta ined,  thus  a(l~176 = 1. Ando's  result together  with the 
previous theorem imply tha t  a (P (2 ) )  = 1. 

4 .4 .  REMARK. The  example we wish to discuss here is like that  of 
Par ro t t  [11]. Our discussion is computat ional  in nature  and shows tha t  
there is a c o n t r ~ t i v e  Hilbert module  over A(D3),  which is not even 2- 
contractive.  (For a discussion see [12, p.92]). By Theorem 4.2, it follows 
tha t  the same is t rue for A ((P(3))1) ,  that  is, there is a contractive Hilbert 

module  over A ((P(3))1)  which is not 2-contractive. We hope this clarifies 
some of the mystery  surrounding Parrot t ' s  example. 

4.5. LEMMA. The norm of the map V : l~176 ~ 12(2) is 

IlVll = (llvlll 2 + IIv21l ~ + 2 I(Vl,V2}l)1/2, 

where Vl and v2 are the columns of the matrix for V.  

PROOF. It is enough to note tha t  

= : 

= IlvlJI 2 + IIv~fl 2 + e - ~ ( v l ,  v2) + & (v2, vl).  

The result follows by choosing 0 = arg(vl ,  v2). 
However, the na tura l  generalisation of this formula does not hold for 

V : l~176 ~ I2(n) for n > 2. In fact, IlVlloo is, in general, strictly 

smaller t han  ~ [(v~, vj}[. This is what  we exploit the following. 

' (1, v'3) and v3 ( 1 , - v / 3 )  4 .6 .  EXAMPLE. Let vl  = (1,0), v2 = 7 = �9 
It is easy to see tha t  the map  r]l : (1, e i~, e i~') ~ Vl + ei~v2 + ei~v3 f rom 

l~176 to 12(2) has norm strictly smaller than v~.  Similarly for Ul = (0, 1), 
u2 = 21- (v/-3,-1) and u3 = } (v/3,1),  we see that  the norm of the map  
r]2 : (1 ,e i# ,e  i~') ~ Ul + eiOu2 + ell'u3 from l~ to 12(2) is strictly less 

than  v/6. In fact, wi th  a little effort, one can show tha t  each of these norms 
equals ~ .  Let U be the uni tary  matr ix  whose rows are v2 and u2. Similarly 

let V be the un i ta ry  matr ix  whose rows are v3 and u3. Now, consider the 
m a p  

fl(e,u,v) : (1, ei~,ei~) --~ I - l - e i~u - i - e i~v  
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and no t e  tha t  the operator  norm of (I+eiOU + ei~~ is at most  

~/I[~IH 2 + 11~2112. However if at a fixed ~, ~ either of the norms I1~111 or 

HY2[] is equal to 3 / v ~  then  the other one is strictly less than  3/V~.  So tha t  
the  opera tor  norm of (I + ei~ + ei~V) is strictly less than  3. Thus  we 
have shown the form of the map  

(1,e~~ i~) -~ !+  eiOV + e~V 

f r o m / ~ ( 3 )  t o / :  (/2(2)) is strictly less than  3. 

4 .7 .  THEOREM. 12(4)N((I,V,Y),o) is contractive but not completely con- 
tractive over ,A(D3). 

PROOF. To show tha t  12(4)N is contractive we have to establish - -  by 
Remark  3.8 - -  tha t  

[IZlI + z2V + z~VII <= 1 

for all (zl,z2,z3) E (11(3))a. But the inequality holds since each of I ,  U 
and V is a contract ion operator.  Note tha t  the above discussion implies 
tha t  (I ,U,V)/~,  for some/~ < 3, is in DM2D3(0).  To show tha t  l~ is not 
completely contractive,  we compute  

II((x,u,v)/6, ( ~ , u , v ) ) l [  : 

: ~ - l l l I |  U | 1 7 4  : 

[i+Xu+�89 v ] 
I- U+�89 = 

= ~ ( ~ - 1  
2 

.00 ] 
1 1 0 
1 0 1 

= 35 -1 > 1. 

4.8.  REMARK. We have not been able to decide, whether  for operators  
of the form 

N(V, 0) = (N(Vl,  0 ) , . . . ,  N(vm, 0)) 

as in [9], where Vl, . . . ,  Vm are vectors in C a, contractivity implies complete  
contract ivi ty  over A(Dm) .  Vern Paulsen has shown that  in this case the 
complete  bound  for a contractive map can be at most  KG, the universal 
cons tant  of Grothendieck.  

Note added in proof (November 8, 1993). In the paper  "Contract ive 
homomorph i sms  and tensor product  norms",  writ ten jointly with B. Bagchi 
we have obta ined many results relating to Remark 4.8. 
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