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Abstract. LetM be a Hilbert module of holomorphic functions over a natu-

ral function algebra A(Ω), where Ω ⊆ Cm is a bounded domain. LetM0 ⊆M
be the submodule of functions vanishing to order k on a hypersurface Z ⊆ Ω.
We describe a method, which in principle may be used, to construct a set of

complete unitary invariants for quotient modules Q =M	M0. The invariants
are given explicitly in the particular case of k = 2.

1. Preliminaries

Let Ω be a bounded domain in Cm and Z ⊆ Ω be an analytic hypersurface defined
(at least, locally) as the zero set of a single analytic function ϕ. Let A(Ω) be the
algebra of functions obtained by taking the closure with respect to the supremum
norm on Ω of all functions which are holomorphic on a neighbourhood of Ω. Let
M be a Hilbert space consisting of holomorphic functions on Ω. We assume that
the evaluation functionals h → h(w), h ∈ M, w ∈ Ω are bounded. This ensures,
via the Riesz representation theorem, that there is a unique vector K(·, w) ∈ M
satisfying the reproducing property

h(w) = 〈h,K(·, w)〉, h ∈M, w ∈ Ω.

In this paper, a moduleM over the function algebra A(Ω) will consist of a Hilbert
space M as above together with a continuous action of the algebra A(Ω) in the
sense of [8, Definition 1.2]. Suppose, we are given a quotient module Q over the
function algebra A(Ω). This amounts to the existence of a resolution of the form

(1) 0←− Q←−M←−M0 ←− 0,

whereM0 ⊆M are both modules over the algebra A(Ω). We make the additional
assumption that the submodule M0 consists of functions in M which vanish to
some fixed order k on the hypersurface Z. Then (cf. [7, (1.5)]) the module M0

may be described as

M0 = {f ∈M :
∂`f

∂z`
1

(z) = 0, z ∈ U ∩ Z, 0 ≤ ` ≤ k − 1},

where U is some open subset of Ω.
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2 DOUGLAS AND MISRA

Let ∂ denote the differentiation along the unit normal to the hypersurface Z.
Recall (cf. [7]) that the map J :M→M⊗ Ck defined by

h 7→ (h, ∂h, ∂2h, . . . , ∂k−1h), h ∈M
plays a crucial role in identifying the quotient module. The requirement that

{(en, ∂en, . . . , ∂
k−1en)n≥0 : (en)n≥0 is an orthonormal basis inM }

is an orthonormal basis in ran J , makes the map J unitary onto its range JM ⊆
M ⊗ Ck. Thus we obtain a pair of modules JM0 and JM, where JM0 is the
submodule of all functions in JM which vanish on Z. In this realisation, the module
JM consists of holomorphic functions taking values in Ck. Let Ck×k denote the
linear space of all k× k matrices over the field of complex numbers. We recall that
a function K : Ω× Ω→ Ck×k satisfying

(2)
n∑

i,j=1

〈
K(ωi, ωj)ζj , ζi

〉
E
≥ 0, w1, . . . , ωn ∈ Ω, ζ1, . . . , ζn ∈ E,n ≥ 0

is said to be a non negative definite (nnd) kernel on Ω. Given such an nnd kernel
K on Ω, it is easy to construct a Hilbert space M of functions on Ω taking values
in Ck×k with the property

(3)
〈
f(ω), ζ

〉
Ck

=
〈
f,K(·, ω)ζ

〉
, w ∈ Ω, ζ ∈ Ck, f ∈M.

The Hilbert spaceM is simply the completion of the linear span of all vectors of the
form K(·, ω)ζ, ω ∈ Ω, ζ ∈ Ck, with inner product defined by (3). Conversely, let
M be a Hilbert space of functions on Ω taking values in Ck. Let eω :M→ Ck be
the evaluation functional defined by eω(f) = f(ω), ω ∈ Ω, f ∈M. If eω is bounded
for each ω ∈ Ω, then it is easy to verify that the Hilbert space M possesses a
reproducing kernel K(z, ω) = eze

∗
ω, that is, K(z, ω)ζ ∈ M for each ω ∈ Ω and K

has the reproducing property (3). Finally, the reproducing property (3) determines
the reproducing kernel K uniquely. If en is an orthonormal basis in M then it is
not hard to verify that the reproducing kernel K has the representation

K(z, w) =
∞∑

n=0

en(z)en(w)∗, z, w ∈ Ω,

where en(z) is thought of as a linear map from C to Ck. Of course, this sum is
independent of the choice of the orthonormal basis en since K is uniquely deter-
mined.

The module JM possesses a reproducing kernel JK in the sense described above.
It is natural to construct this kernel by forming the sum:

JK(z, w) =
∞∑

n=0

(Jen)(z)(Jen)(w)∗, z, w ∈ Ω.

This prescription then allows the identification of the reproducing kernel JK :
Ω× Ω→ Ck×k for the module JM:

(4) (JK)`,j(z, w) =
(
∂`∂̄jK

)
(z, w), 0 ≤ `, j ≤ k − 1.

It is then easy to verify, using the unitarity of the map J , that JK has the repro-
ducing property:

〈h, JK(·, w)ζ〉 = 〈h(w), ζ〉, w ∈ Ω, ζ ∈ Ck.
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The module action for JM is defined in a natural manner. Indeed, let Jf be the
array

(5) (Jf)`,j =

{(
`
j

)
(∂`−jf), 0 ≤ ` ≤ j ≤ k − 1

0 otherwise,

for f ∈ A(Ω). We may now define the module action to be Jf : h→ Jf ·Jh. Notice
that Jf is a k× k matrix-valued function on Ω while Jf is the module action, that
is, it is an operator on JM. The action of the adjoint is then easily seen to be

(6) J∗fJK(·, w) · xxx = JK(·, w)(Jf)(w)∗ · xxx, xxx ∈ Ck.

We will say that two modules over the algebra A(Ω) are isomorphic if there
exists a unitary module map between them.

It is shown in [7] that the quotient module Q is isomorphic to JM	JM0. Once
this is done, we are reduced to the multiplicity free case. Thus our previous results
from [6] apply and we conclude that the quotient module Q is the restriction of
JM to the hypersurface Z.

LetM be any Hilbert module over the function algebra A(Ω). In particular, each
of the coordinate functions zi, 1 ≤ i ≤ m in Cm acts boundedly as the multiplica-
tion operator Mi on M. Let MMM denote this commuting m-tuple of multiplication
operators. We denote by MMM∗ the m-tuple (M∗

1 , . . . ,M
∗
m). To each m-tuple MMM , we

associate the operator DMMM : M → M⊗ Ck defined by DMMMh = (M1h, . . . ,Mmh),
h ∈M.

The class Bn(Ω) was introduced in [3] for a single operator. This definition was
then adapted to the general case of an m-tuple of commuting operators (cf. [4]).
We let Ω∗ ⊆ Cm denote the domain {w ∈ Cm : w̄ ∈ Ω} and say that MMM∗ is in
Bk(Ω∗) if

(i): Ran DMMM∗−w is closed for all w ∈ Ω∗

(ii): span {kerDMMM∗−w : w ∈ Ω∗} is dense inM.
(iii): dim kerDMMM∗−w = n for all w ∈ Ω∗,

where MMM∗ − w = (M∗
1 − w1, . . . ,M

∗
m − wm).

If the adjoint of the m−tuple of multiplication operators is in Bn(Ω∗) (for some
n ∈ N), then we say that M is in Bn(Ω∗). The assumption that M is in B1(Ω∗)
includes, among other things, (a) the existence of a common eigenvector γ(w) ∈M,
that is, M∗

i γ(w) = w̄iγ(w), for w ∈ Ω∗, (b) the dimension of the common eigenspace
at w̄ is 1. Furthermore, it is possible to choose γ(w) so as to ensure that the map
w → γ(w) is anti-holomorphic. Thus we obtain an anti-holomorphic hermitian line
bundle E over Ω whose fiber at w is the one dimensional subspace ofM spanned by
the vector γ(w), that is, γ is an anti-holomorphic frame for E. In the case of n > 1,
a similar construction of an anti-holomorphic hermitian vector bundle of rank n can
be given. In our case, it is easy to verify that K(·, w), the reproducing kernel at
w, is a common eigenvector for the m- tuple (M∗

1 , . . . ,M
∗
m). Since K(·, w) is anti-

holomorphic in the second variable, it provides a natural frame for the associated
bundle E. The metric with respect to this frame is obviously the real analytic
function K(w,w).

Before we continue, we make the additional assumption that the module M,
which occurs in the resolution (1) of the quotient module Q, lies in the class B1(Ω∗).
Let i : Z → Ω be the inclusion map and i∗ : A(Ω)→ A(Z) be the pullback. Then
Q is clearly also a module over the smaller algebra i∗

(
A(Ω)

)
. We identify this
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latter algebra with A(Z). Let (Q,A(Z)) stand for Q thought of as a module over
the smaller algebra A(Z). Although it is possible that (Q,A(Z)) lies in Bk(Z∗)
whenever M is in B1(Ω∗), we were able to prove it only in some special cases
[7, Proposition 3.6]. However, in this paper, we assume that the quotient module
(Q,A(Z)) always lies in Bk(Z∗). These assumptions make it possible to associate
(a) an anti-holomorphic hermitian line bundles E over the domain Ω with the
module M and (b) an anti-holomorphic jet bundle JE|res Z of rank k over the
domain Z with the module (Q,A(Z)). The details of the jet construction are given
in [7, pages 375–377]. One of the main results in [3] states that two modules M
and M̃ in Bk(Ω) are isomorphic if and only if the associated bundles are locally
equivalent. While the local equivalence of bundles is completely captured in the
case of line bundles by the curvature, it is more complicated in the general case
(cf. [3]). We recall that the quotient module Q may be described completely by
specifying the action of the algebra Ak(Z) := A(Z)⊗Ck×k (cf. [7, page 385]). The
action of the algebra Ak(Z), in particular, includes the multiplication induced by
the local defining function ϕ, namely,

(Jϕ)|res Z : JM|res Z → JM|res Z .

To exploit methods of [3], it is better to work with the adjoint action. To describe
the adjoint action, we first construct a natural anti-holomorphic frame (not neces-
sarily orthonormal) for the jet bundle E on Ω. Let {ε` : 1 ≤ ` ≤ k} be the standard
orthonormal basis in Ck. For a fixed w ∈ Ω, let e1 =

∑k
`=1 ∂

`−1K(z, w) ⊗ ε` be
simply the image of K(z, w) in JM. It is then clear that {ej(w) : 1 ≤ j ≤ k}, where
ej(w) := (∂̄j−1e1)(w) is a natural anti-holomorphic frame for JE. (Of course, as
is to be expected, e`(w), 1 ≤ ` ≤ k are the columns of the reproducing kernel JK
given in (4)). Thus the fiber of the jet bundle JE at w ∈ Ω is spanned by the set
of vectors {e`(w) ∈ JM : 1 ≤ ` ≤ k}.

Suppose we start with a resolution of the form (1). Then we have at our disposal
the domain Ω ⊆ Cm and the hypersurface Z ⊆ Ω. Let ϕ be a local defining function
for Z (cf. [7, page 367]). Then ϕ lies in A(Z) and induces a nilpotent action on
each fiber of the jet bundle JE|res Z via the map J∗ϕ, that is,

(7) (J∗ϕe`)(w) = JK(·, w)(Jϕ)(w)∗ε`.

Therefore in this picture, with the assumptions we have made along the way, we
see that the quotient modules Q must meet the requirement listed in (i) – (iii) of
the following Definition.

Definition. We will say that the module Q over the algebra A(Ω) is a quotient
module in the class Bk(Ω,Z) if

(i): there exists a resolution of the module Q as in equation (1), where the
module M appearing in the resolution is required to be in B1(Ω∗),

(ii): the module action on Q translates to the nilpotent action Jϕ on JM|res Z
which is an isomorphic copy of Q,

(iii): the module
(
Q,A(Z)

)
is in Bk(Z∗).

In this paper, we obtain a complete set of unitary invariants for a module Q in
the class B2(Ω,Z). This means that the module Q admits a resolution of the form
(1) and the moduleM that appears in this resolution lies in B1(Ω). However, it is
possible to considerably weaken this latter hypothesis as explained in the Remark
below.
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Remark. Although we have assumed the module M to be in the class B1(Ω), it
is interesting to note that the proof of our Theorem requires much less. Specifically,
the requirement that the “Ran DMMM∗−w is closed” is necessary to associate an anti-
holomorphic vector bundle with the module. However, in our case, there is already
a natural anti-holomorphic vector bundle which is deteremined by the frame w →
K(·, w). Indeed, if we assume that the module M contains the linear space P of
all the polynomials and P is dense in M, then the eigenspace at w is forced to be
one dimensional. (To prove this, merely note that for any eigenvector x at w and all
polynomials p, we have

〈p, x〉 = 〈Mp1, x〉 = 〈1,M∗
px〉 = p(w)〈1, x〉 = 〈p, cK(·, w)〉,

where c = 〈1, x〉. It follows that x = cK(·, w).) Finally, the linear span of the set of
eigenvectors {K(·, w) : w ∈ Ω} is a dense subspace of the module M. Therefore, for
our purposes, it is enough to merely assume that

(a): M is a Hilbert module consisting of holomorphic functions on Ω
(b): the module M contains the linear space of all polynomials P and that P is

dense
(c): M possesses a reproducing kernel K.

It is then clear that the same holds for the quotient module Q, where P consists of
Ck - valued polynomials and K takes values in Ck×k. Hence, if x is an eigenvector at w
for the module (Q,A(Z)), we claim that it belongs to the range of K(., w) which is the
k - dimensional subspace {K(·, w)v ∈ Q : v ∈ Ck} of Q. As before, for 1 ≤ j ≤ k, let

εj be the standard unit vector in Ck and p =
∑k

j=1 pj⊗εj be a Ck - valued polynomial.

Then we have 〈p, x〉 =
∑k

j=1〈Mpj
εj , x〉 =

∑k
j=1〈εj ,M

∗
pj
x〉 =

∑k
j=1 pj(w)〈εj , x〉 =∑k

j=1〈p,K(·, w)εj〉〈εj , x〉 = 〈p,
∑k

j=1 cjK(., w)εj〉, where cj = 〈εj , x〉. Thus x is in

the range of K(·, w) as claimed. Therefore the dimension of the eigenspace at w equals
the dimension of range K(., w) which is k.

We now raise the issue of adapting the techniques of [3] to find a complete set of
unitary invariants for characterizing the quotient modules Q in the class Bk(Ω,Z).
While the methods described below will certainly yield results in the general case,
we have chosen to give the details of our results in the case of k = 2. The reason
for this choice is dictated by the simple nature of these invariants in this case.
Furthermore, these are extracted out of the curvature and the canonical metric for
the bundle E.

2. Canonical metric and Curvature

Let M be a module in B1(Ω∗) and the reproducing kernel K(·, w) be the anti-
holomorphic frame for the associated bundle E. If M̃ is another module in the
class B1(Ω∗) with reproducing kernel K̃(·, w), then it is clear that any isomorphism
between these modules must map K(·, w) to a multiple ψ(w) of K̃(·, w), where
ψ(w) is a non zero complex number for w ∈ Ω. Moreover, the map w → ψ(w)
has to be anti-holomorphic. It follows that M and M̃ are isomorphic if and only
if K̃(z, w) = ψ(z)K(z, w)ψ(w) (cf. [4, Lemma 3.9]) for some anti-holomorphic
function ψ. There are two ways in which this ambiguity may be eliminated.
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The first approach is to note that if the two modules M̃ andM are isomorphic,
then K̃(z, z)/K(z, z) = |ψ(z)|2. Since ψ is holomorphic, it follows that

(8)
m∑

i,j=1

∂i∂̄j log
(
K(z, z)/K̃(z, z)

)
dzi ∧ dz̄j = 0.

On the other hand, if we have two modules for which equation (8) holds, then
the preceding argument shows that they must be isomorphic. It is then possible to
find, in a small simply connected neighbourhood of some fixed point w0, a harmonic
conjugate v(w) of the harmonic function u(w) := log K̃(w,w)/K(w,w). The new
kernel defined by ˜̃K(z, w) = exp(u(z)+iv(z))K̃(z, w)exp(u(w) + iv(w)) determines
a module ˜̃M isomorphic to M̃ but with the additional property that the metric
˜̃K(w,w) = K(w,w). It is then easy to see that the map takingK(·, w) to ˜̃K(·, w) ex-
tends linearly to an isometric module map. Therefore,

∑m
i,j=1 ∂i∂̄j logK(z, z)dzi ∧

dz̄j is a complete invariant for the module M
The second approach is to normalise the reproducing kernel K, that is, define

the kernel K0(z, w) = ψ(z)K(z, w)ψ(w), where ψ(z) = K(z, w0)−1K(w0, w0)1/2 for
z in some open subset Ω0 ⊆ Ω and some fixed but arbitrary w0 ∈ Ω0. Also, Ω0

can be chosen so as to ensure ψ|res Ω0 6= 0. This reproducing kernel determines
a module isomorphic to M but with the added property that K0(z, w0) is the
constant function 1. If M and M̃ are two modules in B1(Ω∗), then it is shown in
[4, Theorem 4.12] that they are isomorphic if and only if the normalisations K0 and
K̃0 of the respective reproducing kernels at some fixed point are equal. As before,
it is then easy to see that the map taking K(·, w) to ˜̃K(·, w) extends linearly to an
isometric module map. The normalised kernel K0 is therefore a complete unitary
invariant for the module M.

Notice that if a module M is isomorphic to M̃, then the module map Γ is
induced by a nonvanishing function Φ on Ω, that is, Γ = MΦ [4, Lemma 3.9].
Consequently, ifM0 is the submodule of functions vanishing to order k on Z, then
Γ(M0) is the submodule of functions vanishing to order k in M̃. It follows that if
M and M̃ are isomorphic modules, then the corresponding quotient modules must
be isomorphic as well. Therefore we can make the following assumption without
any loss of generality.

Hypothesis. Now we make the standing hypothesis that the kernel for the module
M appearing in the resolution of the quotient module Q is normalized.

Recall that if E is a hermitian holomorphic vector bundle of rank k over the
domain Ω ⊆ Cm, then it is possible to find a holomorphic frame sss = (s1, . . . , sk)
such that (a) 〈si(w0), sj(w0)〉 = 1, (b) ∂j〈sss(w), sss(w)〉|w=w0 = 0 for 1 ≤ j ≤ m (cf.
[12, Lemma 2.3]). We offer below a variation of this Lemma for the jet bundle JE
corresponding to the hypersurface Z ⊆ Ω and the Hilbert module M in the class
B1(Ω). We state the following Lemma in terms of a frame for the bundle associ-
ated with the module M. There is an obvious choice for such a frame in terms of
the reproducing kernel of the module. The relationship between the reproducing
kernel of the module and the hermitian metric of the associated bundle was ex-
plained in [7, section 2]. Let 〈sss(w), sss(w0)〉 be the matrix of inner products, that
is, 〈sss(w), sss(w0)〉ij = 〈si(w), sj(w0)〉M, 1 ≤ i, j ≤ k for some fixed but arbitrary
w0 ∈ Z and all w ∈ Z.
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Lemma. Let M be Hilbert module in B1(Ω) and M0 ⊆ M be the submodule con-
sisting of functions vanishing on the hypersurface Z ⊆ Ω. Then there exists an
anti-holomorphic frame sss for the jet bundle JE satisfying

〈sss(w), sss(w0)〉|res Z =
(

1 0
0 S(w)

)
,

for w ∈ Z and some anti-holomorphic function S on Z.

Proof. Let us assume, without loss of generality, that w0 = 0. We first observe that
if we replace the moduleM by an isomorphic copy, then the class of the associated
bundle JE does not change. Indeed, if M and M̃ are isomorphic modules, then
there is an anti-holomorphic map ϕ which induces a metric preserving bundle map
of the associated bundles E and Ẽ. It is then clear that the map J∗ϕ induces a bundle
map of the corresponding jet bundles. Therefore, we may assume that reproducing
kernel K for the module M is normalised, that is, K(z, 0) = 1. Let (z̃, w̃) denote
(temporarily) the normal coordinates in Ω× Ω. From the expansion

K(z, w) =
∞∑

`,n=0

K`,n(z, w)z̃` ¯̃wn, z, w ∈ Z

it is clear that K`n(z, 0) = 0 for ` 6= 0 and n = 0. Since K(z, w) = K(w, z),
it follows that K`n(0, w) = 0 for ` = 0 and n 6= 0. However, K`n(z, w) =
(∂`∂̄nK)|z̃=0,w̃=0(z, w). Hence ((K`n(z, w)))k−1

`,n=0 = JK|res Z(z, w) for z, w ∈ Z
by definition (4). Recall that e`(w) =

∑k
j=1 ∂̄

`−1∂j−1K(·, w)⊗ ε`, for 1 ≤ ` ≤ k is
an anti-holomorphic frame for the jet bundle JE. It follows that 〈e`(w), en(0)〉 =
(JK)`n(0, w). But (JK)`n(0, w) = K`n(0, w) = 0 for ` = 0 as long as n 6= 0. The
proof is completed by taking sss(w) = {e1(w), . . . , ek(w)}. �

There is a canonical connectionD on the bundle JE which is compatible with the
metric and has the property D′′ = ∂̄. Let C∞1,1(Ω, E) be the space of C∞ sections
of the bundle ∧(1,1)T ∗Ω⊗E. The curvature tensor K associated with the canonical
connection D is in C∞1,1(Ω,herm(E,E)). Moreover, if h is a local representation
of the metric in some open set, then iK = ∂̄(h−1∂h). The holomorphic tangent
bundle TΩ|res Z naturally splits as TZ+̇NZ, where NZ is the normal bundle and
is realised as the quotient TΩ|res Z/TZ. The conormal bundle N∗Z is the dual of
NZ; it is the sub-bundle of TΩ|res Z consisting of cotangent vectors that vanish
on TZ ⊆ TΩ|res Z . Indeed, the class of the conormal bundle N∗Z coincides with
[−Z]|res Z via the Adjunction formula I [10, page 146]. Let P1 be the projection
onto N∗Z and P2 = (1−P1) be the projection onto T ∗Z. Now, we have a splitting
of the (1, 1) forms as follows:

∧(1,1)T ∗Ω|res Z =
2∑

i,j=1

Pi

(
∧(1,0) T ∗Ω|res Z

)
∧ Pj

(
∧(0,1) T ∗Ω|res Z

)
.

Accordingly, we have the component of the curvature along the transversal direction
to Z which we denote by Ktrans. Clearly, Ktrans = (P1 ⊗ I)K|res Z . Similarly, let
the component of the curvature along tangential directions to Z be Ktan. Again,
Ktan = (P2⊗I)K|res Z . (Here I is the identity map on the vector space herm(E,E).)

Recall that the fiber of the jet bundle JE|res Z at w ∈ Z is spanned by the set of
vectors ∂̄`−1K(·, w), 1 ≤ ` ≤ k. Thus the module action J∗ϕ can be determined by
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calculating it on the set {∂̄`−1K(·, w) : 1 ≤ ` ≤ k and w ∈ Z}. This calculation is
given in equation (7). We therefore obtain an anti-holomorphic bundle map J∗ϕ on
the bundle JE|res Z . Thus the isomorphism of two quotient modules in Bk(Ω,Z)
translates to a question of equivalence of the pair (JE|res Z , J∗ϕ). This merely
amounts to finding an anti-holomorphic bundle map θ : JE|res Z → JE|res Z which
intertwines J∗ϕ. It is clear that if we could find such a bundle map θ, then the the line
sub-bundles corresponding to the frame K(·, w), w ∈ Z must be equivalent. From
this it is evident that the curvatures Ktan in the tangential directions must be equal.
Also, we can calculate the matrix representation for the nilpotent action at w, as
given in equation (7), with respect to the orthonormal basis obtained via the Gram-
Schmidt process applied to the holomorphic frame at w. A computation shows that
the matrix entries involve the curvatures Ktrans in the transverse direction and its
derivatives. It is not clear if the intertwining condition can be stated precisely in
terms of these matrix entries. In the following section we show, as a result of some
explicit calculation, that if k = 2 then the curvature in the tarnsverse direction
must also be equal. We also find that an additional condition must be imposed to
determine the isomorphism class of the quotient modules.

3. The case of rank 2 bundles

In this case, the adjoint action of ϕ on Q ∼= JM|res Z produces a nilpotent bundle
map on JE which, at w ∈ Z, is described easily:

e(w) :=
(

K(·,w)
∂K(·,w)

)
→ 0 and (∂̄e)(w) :=

(
∂̄K(·,w)

∂∂̄K(·,w)

)
→ (∂ϕ)(w)e(w)

on the spanning set {e(w), (∂̄e)(w) : w ∈ Z} for the fiber JE(w) of the jet bundle
JE at w ∈ Z. Thus the adjoint action induced by ϕ determines a nilpotent N(w)

of order 2 defined by
(

0 (∂ϕ)(w)
0 0

)
on each fiber JE(w), w ∈ Z with respect to

the basis {e(w), (∂e)(w)}. Now, consider the orthonormal basis: {γ0(w), γ1(w)},
where

γ0(w) = ‖e(w)‖−1e(w),
γ1(w) = a(w)e(w) + b(w)(∂̄e)(w), w ∈ Z.

The coefficients a(w) and b(w) can be easily calculated (cf. [3, page 195]):

−a(w)‖e(w)‖3 = 〈(∂e)(w), e(w)〉(−Ktrans(w))−1/2,

b(w)‖e(w)‖ = (−Ktrans(w))−1/2,

where Ktrans(w) denotes the curvature in the transversal direction. In the case of
a line bundle, we have the following explicit formula:

(9) Ktrans(w) = P1

( m∑
i,j=1

∂i∂̄j log ‖e(w)‖2dzi ∧ dz̄j

)
, w ∈ Z.

The nilpotent action North(w) at the fiber JE(w), w ∈ Z with respect to the

orthonormal basis {γ0(w), γ1(w)} is given by
(

0 b(w)‖e(w)‖(∂ϕ)(w)
0 0

)
.

Now, we are ready to prove the main theorem which gives a complete set of
invariants for quotient modules in the class B2(Ω,Z). At first, it may appear that
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the condition angle of the Theorem stated below depends on the choice of the
holomorphic frame. But we remind the reader that the normalisation of the kernel
K for the module M ensures that it is uniquely dtermined. Therefore so is JK.

Theorem. If Q and Q̃ are two quotient modules, over the algebra A(Ω), in the
class B2(Ω,Z), then they are isomorphic if and only if

tan: Ktan = K̃tan

trans: Ktrans = K̃trans

angle: 〈(∂̄e)(w), e(w)〉 = 〈(∂̄ẽ)(w), ẽ(w)〉.

Proof. Suppose, we are given two quotient modules Q and Q̃ which are isomor-
phic. Then the module map Φ : Q → Q̃ induces an anti-holomorphic bundle
map Φ : JE|res Z → JẼ|res Z . For w ∈ Z, let JE(w) and JẼ(w) denote the
two dimensional space spanned by {e(w), (∂̄e)(w)} and {ẽ(w), (∂̄ẽ)(w)}, respec-
tively. Then the bundle map Φ defines a linear map Φ(w) : JE(w) → JẼ(w).
The map Φ(w) must then intertwine the two nilpotents N(w) and Ñ(w) which
implies that Φ(w) must be of the form Φ(w) =

(
α(w) β(w)

0 α(w)

)
, where α, β are anti-

holomorphic functions for w in some small open set in Z. We observe that Φ(w)
maps γ0(w) to α(w)‖ẽ(w)‖‖e(w)‖−1γ̃0(w). Since Φ(w) is an isometry, it follows
that α(w) = ‖e(w)‖‖ẽ(w)‖−1. Because we have chosen to work only with nor-
malised kernels, we infer that ‖e(w)‖‖ẽ(w)‖−1 = 1 for all w ∈ Z which is the same
as saying that α(w) = 1 for w ∈ Z. The condition tan of the theorem is evident.

The module map φ has to satisfy the relation

JK(z, w) = Φ(z)JK̃(z, w)Φ(w), z, w ∈ Z.

However, JK(z, 0) =
(

1 0
0 S(z)

)
, and similarly K̃ at (z, 0) has a matrix representation

with S replaced by S̃. Now, evaluate the formula relating JK and JK̃ at w = 0 to
conclude that β(z) = 0 for all z ∈ Z.

Now, since Φ(w) has to preserve the inner products, it follows that 〈(∂̄e)(w), e(w)〉−
〈(∂̄ẽ)(w), ẽ(w)〉 = β(w)‖e(w)‖2. Hence it follows that 〈(∂̄e)(w), e(w)〉 = 〈(∂̄ẽ)(w), ẽ(w)〉
which is the condition angle of the theorem.

Finally, the requirement that the nilpotents N(w) and Ñ(w) must be unitarily
equivalent for each w ∈ Z amounts to the equality of the (1, 2) entry of North(w)
with that of Ñorth(w). Since we have already ensured ‖e(w)‖ = ‖ẽ(w)‖, it follows
that b(w) = b̃(w). This clearly forces the condition trans of the theorem which
completes the proof of necessity.

For the converse, first prove that the natural map from JE(w) to JẼ(w), w ∈ Z,
which carries one anti-holomorphic frame to the other is an isometry. It is evident
that this map, which we denote by Φ(w), defines an anti-holomorphic bundle map
and that it intertwines the nilpotent action.

To check if Φ(w) is isometric, all we have to do is see if it automatically maps the
orthonormal basis {γ0(w), γ1(w)} to the corresponding orthonormal basis {γ̃0(w), γ̃1(w)}.
Clearly, Φ(w)(γ0(w)) = ẽ(w)‖e(w)‖−1 = γ̃0(w)‖ẽ(w)‖ ‖e(w)‖−1. Suppose that the
two curvatures corresponding to the bundles JE and JẼ agree on the hypersurface
Z. Then it is possible to find sections of these bundles which have the same norm.
Or, equivalently, we may assume that ‖γ0(w)‖ = ‖γ̃0(w)‖. It then follows that
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Φ(w)(γ0(w)) = γ̃0(w). Notice that

Φ(w)(γ1(w)) = a(w)ẽ(w) + b(w)(∂ẽ)(w)

= a(w)‖ẽ(w)‖γ̃0(w) + b(w)(b̃(w))−1(γ̃1(w)− ã(w)‖ẽ(w))‖γ̃0(w)

= (a(w)b̃(w)− ã(w)b(w))‖ẽ(w)‖(b̃(w))−1γ̃0(w) + b(w)(b̃(w))−1γ̃1(w).

A simple calculation shows that

a(w)b̃(w)− ã(w)b(w)

= ‖e(w)‖3‖ẽ(w)‖(−K(w))−1/2(−K̃(w))−1/2
(
〈(∂̄e)(w), e(w)〉 − 〈(∂̄ẽ)(w), ẽ(w)〉

)
.

It follows that Φ(w) maps γ1(w) to γ̃1(w) if and only if b(w) = b̃(w) and 〈(∂̄e)(w), e(w)〉 =
〈(∂̄ẽ)(w), ẽ(w)〉.

We have therefore shown that the two bundles JE and JẼ are locally equivalent
(via the bundle map Jϕ). We now apply the Rigidity Theorem [3, page 202] to
conclude that the two modules Q and Q̃ must be isomorphic.

�

It is not clear if the condition “angle” of the theorem can be reformulated in
terms of intrinsic geometric invariants like the second fundamenatl form etc.

In case k > 2, if we show that the bundle map is the identity transform on
each of the fibers, then it will follow that the matrix entries of the two nilpotent
actions on each of these fibers must be equal. These entries are expressible in
terms of the curvature in the transverse direction and its normal derivatives. So if
two quotient modules are isomorphic, then it follows that these quantities must be
equal. However, we are not sure what a replacement for the condition “angle” in
the theorem would be.
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