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Abstract. In this short note, we present an elementary proof of Ando’s theorem within
a restricted class P of homomorphisms modeled after Parrott’s example. We also show by
explicit estimation that the cb-norm of the contractive homomorphism ρ of the tri-disc algebra,
induced by the commuting triple of Parrott, exceeds 1. Indeed, we construct a polynomial P
with matrix coefficients with the property ‖ρ(P )‖ > ‖P‖∞. In particular, we show that there
are contractive homomorphisms of the tri-disc algebra which are not even 2-contractive.

1. Introduction

Let Ω be a bounded, open and connected subset of Cm. The algebra of continuous functions
on the closure Ω̄ of Ω which are holomorphic on Ω is denoted by A(Ω). It is a Banach algebra
with respect to the supremum norm on Ω. If Ω is a polynomially convex domain then A(Ω)
is the closure of the polynomials with respect to the supremum norm. Let Mk be the C∗ -
algebra of k×k matrices over the complex scalars C. For ((fij)) in A(Ω)⊗Mk, define the norm

‖((fij))‖ = sup{‖((fij(z)))‖op : z ∈ Ω}.
Clearly, A(Ω) ⊗Mk is a Banach algebra with respect to this norm. Let H be a separable
Hilbert space and B(H) be the C∗ - algebra of bounded linear operators on H. Finally, let
ρ : A(Ω) → B(H) be an algebra homomorphism.

Recall that the homomorphism ρ is said to dilate if there exists a ∗ - homomorphism ρ̃ of the
algebra C(∂Ω) of continuous functions on the Silov boundary of the domain Ω into the bounded
linear operators on a Hilbert space K ⊇ H such that

PHρ̃(f)|H = ρ(f), f ∈ A(Ω),

where PH is the orthogonal projection on to the Hilbert space H. The ∗ - homomorphism ρ̃
is called a dilation of ρ. Clearly, if the homomorphism ρ dilates then it is contractive, that is,
‖ρ(f)‖ ≤ ‖f‖∞. Therefore, it is natural to ask if every contractive homomorphism dilates.

For each k = 1, 2, . . ., there is an induced homomorphism

ρ(k) def= ρ⊗ Ik : A(Ω)⊗Mk → B(H)⊗Mk ' B(H⊗ Ck).
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The supremum of the non-decreasing sequence {‖ρ(k)‖}k≥1 is called the “cb norm” of the
homomorphism ρ and is denoted by ‖ρ‖cb. Arveson [2, 3] has shown that the existence of a
dilation for ρ : A(Ω) → B(H) is equivalent to ‖ρ‖cb ≤ 1.

If Ω is the unit disc then the von Neumann’s inequality says that a homomorphism ρ of
the disc algebra A(D) is contractive if and only if ρ(id) is contractive for the identity function
id ∈ A(D). It was proved by B. Sz.-Nagy that if ρ is a homomorphism of the disc algebra and
ρ(id) is contractive then it dilates to a ∗ - homomorphism of the C∗ - algebra C(T). It is easy
to deduce von Neumann’s inequality from this result together with the spectral theorem for ∗
- homomorphisms.

Once we fix a domain Ω, we may ask what are the contractive homomorphisms, which among
these are completely contractive? In particular, one may ask if contractive homomorphisms are
necessarily completely contractive. We find that for the disc algebra, contractive homomor-
phisms are induced by contraction operators (von Neumann’s inequality), these contractive
homomorphisms always dilate (Sz.-Nagy’s theorem) and therefore they are completely con-
tractive. In the case of the bi-disc, the well-known dilation theorem of Ando [1] says that a
homomorphism of the bi-disc algebra A(D2), induced by a pair of contractions, dilates. (In par-
ticular, any commuting pair of contractions induces a contractive homomorphism of the bi-disc
algebra.) This shows that the case of the bi-disc is no different than that of the disc. However,
Parrott [11] produced examples of three contractions such that the induced homomorphism of
the tri-disc algebra is contractive but does not dilate! Also, Varopoulos [14] has shown that a
triple of contractions does not necessarily induce a contractive homomorphism of the tri-disc
algebra.

Now we consider a class P of homomorphisms defined from A(Ω) into B(Cp+q) which are
modeled after the examples due to Parrott - although, as we explain below, some of these
homomorphisms appear naturally as localizations of Cowen-Douglas operators.

Given any w ∈ Ω and any tuple V = (V1, . . . , Vm) of p× q matrices, the operator tuple

(1.1) N =
((

w1Ip V1

0 w1Iq

)
, . . . ,

(
wmIp Vm

0 wmIq

))

induces (via the usual functional calculus) a homomorphism ρw,V of the algebra A(Ω) into

Mp+q
def= B(Cp+q) defined by

ρw,V(f) =
(

f(w)Ip 〈∇f(w),V〉
0 f(w)Iq

)
.

Here 〈∇f(w),V〉 stands for V1
∂f
∂z1

(w) + · · ·+ Vm
∂f

∂zm
(w). Let P denote the class of homomor-

phisms {ρw,V : w ∈ Ω and V ∈Mp+q ⊗ Cm}.
As pointed out in the beginning, for each k = 1, 2, . . ., there is an induced homomorphism

ρ
(k)
w,V := ρw,V ⊗ Ik : A(Ω)⊗Mk →Mp+q ⊗Mk 'M(p+q)k.

It is easy to verify that ρ
(k)
w,V is unitarily equivalent (via a fixed unitary which happens to

be a permutation matrix) to the map

F 7→
(

F (w)⊗ Ip 〈DF (w),V〉
0 F (w)⊗ Iq

)
, F ∈ A(Ω)⊗Mk.
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Here 〈DF (w),V〉 = ∂F
∂z1

(w)⊗V1 + · · ·+ ∂F
∂zm

(w)⊗Vm. Using a bi-holomorphic automorphism
of the unit ball (Mk)1 of Mk which takes F (w) to 0, one can prove the following theorem (cf.
[7, Lemma 3.3] and [13]).

Theorem 1.1. If k is any positive integer, then ‖ρ(k)
w,V‖ ≤ 1 if and only if ‖〈DF (w),V〉‖ ≤ 1

for all F ∈ A(Ω)⊗ (Mk)1 satisfying F (w) = 0.
Let Hol(Ω1, Ω2) be the set of all holomorphic functions f from Ω1 into Ω2. It is easy to verify

that {∇f(w) : f ∈ Hol(Ω,D), f(w) = 0} ⊆ Cm is a unit ball with respect to some norm. The
dual of this norm, called the Carathéodory norm, is denoted by Cw,Ω. Thus the homomorphism
ρw,V is contractive if and only if the linear map Lw,V : (Cm, C∗

w,Ω) → (Mn, op) defined by
Lw,V : (z1, . . . , zm) 7→ z1V1 + · · · + zmVm is contractive. We record the particular case of
Ω = Dm and w = 0 as a separate Lemma.
Lemma 1.2. Every contractive homomorphism of A(Dm) which is in the class P is induced by
an m-tuple of contractions.

It is not much harder to verify that {DF (w) : F ∈ Hol(Ω,
(Mn

)
1
), F (w) = 0} ⊆ Mn ⊗ Cm

is a unit ball with respect to some norm. In analogy with the case of k = 1, we let C
(k)
w,Ω

denote the norm of the dual space. It is clear that DF (w) maps the unit ball in Cm with
respect to the Carathéodory norm contractively into the unit ball of Mn with respect to the
operator norm. However, the question of whether any such linear contraction is DF (w) for
some F in Hol(Ω,Mn) was first raised in Paulsen [12]. If Ω is a unit ball with respect to
some norm, say ‖ · ‖, and w = 0 then an easy application of the Schwarz lemma shows that
C0,Ω = ‖ · ‖. In this case, it is easy to see that the answer to the question of Paulsen is yes.
There are examples to show that the answer is no in general - even when Ω is a unit ball with
respect to some norm but w 6= 0. Now, the homomorphism ρ

(k)
w,V, for any integer k > 1, is

contractive if and only if the linear map L
(k)
w,V : (Cm ⊗Mn, C

(k)∗
w,Ω) → (Mn ⊗Mk, op) defined

by L
(k)
w,V : (Λ1, . . . ,Λm) 7→ Λ1 ⊗ V1 + · · · + Λm ⊗ Vm is contractive. The fact that contractive

homomorphisms from the class P, with p = q = 1, are completely contractive (cf. [7] and
[8]) plays a significant role in proving that Caratheodory metric coincides with the Kobayashi
metric for such domains (cf. [15]).

We now point out that many of the homomorphisms ρw,V are induced by localization of a
certain tuple T of commuting bounded linear operators in the Cowen-Douglas class Bk(Ω) (cf.
[5]). Such tuples satisfy (among other things) :

dim∩m
j=1 ker(Tj − wj) = k

for some positive integer k and for each w = (w1, . . . , wm) ∈ Ω. Adjoints of multiplication
operators on a functional Hilbert space consisting of holomorphic functions defined on Ω and
taking values in Ck provide an abundance of such operator tuples (cf. [6]). The study of such
operators was initiated in [5] by Cowen and Douglas using a slightly different language. If
γ

(`)
w is a joint eigenvector for the operator tuple for 1 ≤ ` ≤ k then differentiating the relation

(Tj − wj)(γ
(`)
w ) = 0, it is easy to see that (T` − w`)2∂jγ

(`)
w = 0 for 1 ≤ j ≤ m. Thus the

dimension of ker(T`−w`)2 is (m+1)k. Then it is easily verified that the localizations N(w1) =
(T1 − w1)|∩k

j=1 ker(Tj−wj)2
, . . ., N(wm) = (Tm − wm)|∩k

j=1 ker(Tj−wj)2
map (∩m

j=1 ker(Tj − wj))⊥

to ∩m
j=1 ker(Tj − wj). Hence their matricial representation is of the form (1.1). This operator

tuple therefore defines a homomorphism which is in the class P (with p = k, q = mk). It
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is possible to build the operator tuple T (up to unitary equivalence) from the localizations
{N(w) = (N(w1), . . . , N(wm)) : w ∈ Ω}. For a precise statement, we refer the reader to [5].
Therefore, it is likely that a better understanding of these localizations will play a significant
role in answering questions about the operator tuple T. In particular, one may ask under what
circumstance a dilation of the tuple T may be built out of given dilations of the localizations
N(w), w ∈ Ω.

In the next section, we study properties of the homomorphism ρw,V : A(Ω) → Mn in the
class P. From now on, we make the simplifying assumption p = q.

2. The homomorphism ρw,V

Suppose Ω is the unit ball with respect to some norm. If Ω is also homogeneous, that is, if
for each w in Ω there is a bi-holomorphic automorphism ϕ of Ω which maps w to 0 then

{G ∈ Hol(Ω,
(Mn

)
1
) : G(w) = 0} = {F ◦ ϕ : F ∈ Hol(Ω,

(Mn

)
1
), F (0) = 0}.

The chain rule then implies that Dϕ(w) is unitary with respect to the two norms C
(k)
w,Ω and

C
(k)
0,Ω. Consequently, it is easy to see that ρ

(k)
w,V is contractive if and only if ρ

(k)
0,V · Dϕ(w) is

contractive. Therefore, it is enough to consider only the case w = 0.
The first lemma is obvious and we omit the proof. If Vi = Vi1⊕Vi2 for all i = 1, . . . ,m, where

Vi1 are `× ` and Vi2 are (n− `)× (n− `), let V(j) = (V1j , . . . , Vmj) for j = 1, 2.
Lemma 2.1. ‖ρw,V‖ = max{‖ρw,V(j)

‖ : j = 1, 2} and ‖ρw,V‖cb = max{‖ρw,V(j)
‖cb : j = 1, 2}.

Given an n× n matrix V and a positive integer k, let V ⊗k ∈ B((Cn)⊗k) be the k-fold tensor
product V ⊗ · · · ⊗ V. Given a tuple V = (V1, . . . , Vm), we denote the tuple (V ⊗k

1 , . . . , V ⊗k
m ) by

V⊗k. When w = 0, we shall denote ρw,V by ρV for the sake of brevity.
Lemma 2.2. Let ρw,V defined on A(Dm) be completely contractive and k be a positive integer.
Then ρw,V⊗k is completely contractive.
Proof We first show that ρw,V⊗2 is completely contractive. The vector w can be taken to
be 0 without loss of generality. Let X1, . . . , Xm be such that ‖λ1X1 + · · ·+λmXm‖ ≤ 1 for any
choice of (λ1, . . . , λm) ∈ Dm. We have to show that ‖X1⊗ V1⊗ V1 + · · ·+ Xm⊗ Vm⊗ Vm‖ ≤ 1.
Let X̃i = ziXi for (z1, . . . , zm) ∈ Dm and i = 1, . . . , m. Then

‖λ1X̃1 + · · ·+ λmX̃m‖ = ‖λ1z1X1 + · · ·+ λmzmXm‖ ≤ 1,

because |λizi| = |λizi| ≤ 1. Since ρV is completely contractive, we have ‖X̃1 ⊗ V1 + · · ·+ X̃m ⊗
Vm‖ ≤ 1. So the tuple (X1⊗V1, . . . , Xm⊗Vm) is such that ‖z1(X1⊗V1)+· · ·+zm(Xm⊗VM )‖ ≤ 1
for any (z1, . . . , zm) with |zi| ≤ 1. Using the complete contractivity of ρV again, we have
‖X1 ⊗ V1 ⊗ V1 + · · · + Xm ⊗ Vm ⊗ Vm‖ ≤ 1. This, by our original assumption on X1, . . . , Xm

means that ρV⊗2 is completely contractive. The rest follows by induction. ¤
Given two tuples V = (V1, . . . , Vm) and W = (W1, . . . ,Wm), let V ⊗W denote the tuple

(V1 ⊗W1, . . . , Vm ⊗Wm). A generalization of the lemma above is the following whose proof is
similar and hence we omit.
Lemma 2.3. If ρw,V and ρw,W defined on A(Dm) are completely contractive, then ρw,V⊗W is
completely contractive.

The next Lemma, on the one hand, provides a natural proof of Ando’s theorem within the
class P. On the other hand, it also shows that if there were contractive homomorphisms in
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P of the tri-disc algebra which do not dilate then there must be one which is induced by a
triple (I, U, V ), where U, V are non-commuting unitaries. Therefore, in looking for Parrott-like
examples within the class P, it is natural to restrict to tuples V of unitaries (as Parrott actually
did without any apparent justification).

Lemma 2.4. If there is a contractive homomorphism ρV which is not completely contractive,
then there is a contractive homomorphism ρU with U1, . . . , Um unitaries which is not completely
contractive.

Proof If F : Dm → Mk is a holomorphic function with F (0) = 0, then ∂F
∂z1

(0), . . . , ∂F
∂zm

(0)
satisfy

‖z1
∂F

∂z1
(0) + · · ·+ zm

∂F

∂zm
(0)‖ ≤ 1 for all (z1, . . . , zm) satisfying |z1| ≤ 1, . . . , |zm| ≤ 1

and conversely given any X1, . . . , Xm ∈ B(H) satisfying

‖z1X1 + · · ·+ zmXm‖ ≤ 1 for all (z1, . . . , zm) with |z1| ≤ 1, . . . , |zm| ≤ 1,

the contractive function F : Dm →Mk given by F (z1, . . . , zm) = z1X1 + · · ·+ zmXm vanishes
at 0 and has X1, . . . , Xm as its first partial derivatives with respect to z1, . . . , zm respectively.
Thus,

‖ρV‖cb = sup{‖ρV(F )‖ : ‖F‖ ≤ 1}
= sup{‖X1 ⊗ V1 + · · ·+ Xm ⊗ Vm‖ : ‖z1X1 + · · ·+ zmXm‖ ≤ 1}.

Now if there is a contractive homomorphism ρV which is not completely contractive, then
sup{‖ρV‖cb : V1, . . . , Vm are contractions} > 1. But since the set of extreme points of the
convex set consisting of contractions, is the set of unitaries, this supremum is attained for a
unitary tuple U = (U1, . . . , Um). ¤

We end this section by proving that contractivity implies complete contractivity for the homo-
morphisms ρV on the bi-disc algebra. Of course, this is Ando’s theorem [1] for homomorphisms
in the class P.

Corollary 2.5. If Ω is the bi-disc and ρV is contractive then ρV is completely contractive.

Proof The computations of the above lemma show that

sup{‖ρV‖cb : V1, . . . , Vm are contractions}
= sup{‖ρU‖ : U1, . . . , Um are unitaries}
= sup{‖X1 ⊗ U1 + · · ·+ Xm ⊗ Um‖ : ‖z1X1 + · · ·+ zmXm‖ ≤ 1, U1, . . . , Um are unitaries}.

In the case m = 2, this last quantity is

sup{‖X1 ⊗ U1 + X2 ⊗ U2‖ : ‖z1X1 + z2X2‖ ≤ 1, U1, U2 are unitaries}.
Since norm is invariant under multiplication by a unitary, multiplying by I ⊗ U∗

2 from left and
putting W = U∗

2 U1, we get

‖ρV‖cb ≤ sup{‖X1 ⊗ I + X2 ⊗W‖ : ‖z1X1 + z2X2‖ ≤ 1,W unitary}
= sup{max ‖X1 + λ2X2‖ : ‖z1X1 + z2X2‖ ≤ 1, λ1, λ2 are eigenvalues of W} ≤ 1.

That completes the proof. ¤
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3. The tri-disc algebra

In this section, for the case Ω = D3, we characterize the homomorphisms ρV induced by a
triple of n× n unitaries V = (V1, V2, V3). We first make a simplification by putting U = V ∗

1 V2

and V = V ∗
1 V3. For the rest of the article, ρ will denote the homomorphism induced by the

vector (0, 0, 0) and the triple (I, U, V ) on A(D3). Since the operator norm is unitarily invariant,
we have ‖ρ(k)

V ‖ = ‖ρ(k)‖ for all k = 1, 2, . . .. Thus ρ
(k)
V is contractive (respectively completely

contractive) if and only if ρ is so. Moreover, UV = V U if V is a commuting tuple. Thus
without loss of generality, we shall henceforth be concerned with ρ and show, in this section
that the homomorphism ρ is completely contractive if and only if U commutes with V .
Lemma 3.1. If UV = V U , then ρ is completely contractive.
Proof Since UV = V U , there is a unitary W such that WUW ∗ = D1 = diag(λ1, . . . , λn) and
D2 = diag(µ1, . . . , µn), where λ1, . . . , λn and µ1, . . . , µn are eigenvalues of U and V respectively.
For any positive integer k, let X,Y, Z ∈Mk satisfy

(3.1) ‖αX + βY + γZ‖ ≤ 1

for any scalars α, β, γ of modulus at most 1. Thus,

‖In ⊗X + U ⊗ Y + V ⊗ Z‖ = ‖In ⊗X + D1 ⊗ Y + D2 ⊗ Z‖
= ‖ ⊕n

i=1 (X + λiY + µiZ)‖
= max

1≤i≤n
‖X + λiY + µZ‖ ≤ 1,

by (3.1). Now ‖ρ‖cb = sup{‖In⊗X +U ⊗Y +V ⊗Z‖}, where the supremum is over all positive
integers k and all X,Y, Z in Mk satisfying (3.1). So ‖ρ‖cb ≤ 1. ¤

Theorem 3.7 is the converse to this Lemma. We need the following lemmas to complete the
proof of this Theorem.
Lemma 3.2. The unitaries U and V have a joint eigenvector of joint eigenvalue (1, 1) if and
only if ‖I + U + V ‖ = 3.
Proof If there is a joint eigenvector of joint eigenvalue (1, 1), then obviously ‖I+U +V ‖ = 3.
Conversely, suppose ‖I+U+V ‖ = 3. Choose a unit vector x in Cn satisfying ‖(I+U+V )x‖ = 3.
Then there are nine terms in the expansion of ‖x + Ux + V x‖2, each of modulus at most 1.
Since their sum is 9, modulus of each term is equal to 1. By the condition of equality in
Cauchy-Schwarz inequality, we have Ux = cx and V x = dx for some scalars c, d of modulus 1.
But |1 + c + d| = ‖x + Ux + V x‖ = 3. Hence c = d = 1. Thus Ux = V x = x. ¤
Lemma 3.3. If U and V are any two n× n unitary matrices, the matrices U⊗n and V ⊗n have
a common eigenvector.
Proof Let λ1, . . . , λn be the eigenvalues of U and x1, . . . , xn be the corresponding orthonor-
mal eigenbasis for Cn, i.e., Uxi = λixi for all i = 1, . . . , n. Let µ1, . . . µn be the eigenvalues of
V and y1, . . . , yn the orthonormal eigenbasis corresponding to V . For any σ in the permutation
group Sn, let xσ

def= xσ(1) ⊗ · · · ⊗ xσ(n) and

x1 ∧ · · · ∧ xn
def=

∑

σ∈Sn

εσxσ

where εσ is ±1, depending on whether σ is an even or an odd permutation. Similarly define yσ

and y1 ∧ · · · ∧ yn. Then x1 ∧ · · · ∧ xn = eiθy1 ∧ · · · ∧ yn for some θ ∈ [0, 2π). Hence x1 ∧ · · · ∧ xn

is a common eigenvector of U⊗n and V ⊗n with eigenvalues
∏

λi and
∏

µi respectively. ¤
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Theorem 3.4. If U and V are two n×n unitary matrices, which do not have a joint eigenvector
of joint eigenvalue (1, 1), then ρ is not completely contractive.
Proof First note that Lemma 3.3 implies that the two matrices U⊗n ⊗ (U∗)⊗n and V ⊗n ⊗
(V ∗)⊗n have a joint eigenvector with joint eigenvalue (1, 1). Let ρ be completely contractive.
Then it follows from Lemma 2.2 and Lemma 2.3 that the homomorphism, say η, determined
by the triple (I, U⊗n ⊗ (U∗)⊗(n−1), V ⊗n ⊗ (V ∗)⊗(n−1)) is completely contractive. Consider the
function

f(z1, z2, z3) = z1In + z2U
∗ + z3V

∗.
Since U and V do not have a common eigenvector, by Lemma 3.2, we have ‖f‖ < 3. But
‖η(f)‖ = ‖I + U⊗n ⊗ (U∗)⊗n + V ⊗n ⊗ (V ∗)⊗n‖ = 3 by the observation above. That is a
contradiction. ¤
Remark 3.5. An inductive argument for the proof of the theorem above can also be given as
follows. First note that if η is the homomorphism determined by the triple (I, U∗, V ∗), then
ρ is completely contractive if and only if η is so. If f1(z1, z2, z3) = z1I + z2U

∗ + z3V
∗, then

‖f1‖ < 3 by Lemma 3.2, and so ‖ρ(f1)‖ = ‖I ⊗ I + U ⊗ U∗ + V ⊗ V ∗‖ ≤ 3. If ‖ρ(f1)‖ > ‖f1‖,
then ρ is not n-contractive. Otherwise, take f2(z1, z2, z3) = z1I ⊗ I + z2U ⊗ U∗ + z3V ⊗ V ∗
and observe that ‖f2‖ < 3. If ‖ρ(f2)‖ > ‖f2‖, then ρ is not n2-contractive. Otherwise, take
f3(z1, z2, z3) = z1I⊗I⊗I+z2U⊗U⊗U∗+z3V ⊗V ⊗V ∗. Then ‖f3‖ < 3. If ‖η(f3)‖ > ‖f3‖, then
η is not n3-contractive, and so ρ is not n3-contractive. Otherwise continue with this procedure
using η and ρ alternatively. This procedure will stop, by Lemma 3.3, since ‖η(f2n−1)‖ = 3.
Lemma 3.6. If U and V are two n×n non-commuting unitary matrices, then there is an n×n
unitary matrix W and an integer k between 0 and n− 2 such that

(a) WUW ∗ = Ik ⊕ Ũ and WV W ∗ = Ik ⊕ Ṽ ,
(b) ‖In−k + Ũ + Ṽ ‖ < 3.

Proof If ‖In + U + V ‖ < 3 to start with, then k = 0 and W = In. If ‖In + U + V ‖ = 3,
then by Lemma 3.2, we choose x1 ∈ C2 such that ‖x1‖ = 1 and Ux1 = V x1 = x1. Since U

and V are unitaries, the subspace L1
def= span {x1}⊥ is invariant under them. Either ‖In−1 +

UL1 + VL1‖ < 3 or we repeat the process till we reach a k such that for the invariant subspace
L def= span {x1, . . . , xk}⊥, we have ‖In−k + U |L + V |L‖ < 3. Choosing an orthonormal basis
{y1, . . . , yn−k} for L, put W to be the unitary with column x1, . . . , xk, y1, . . . , yn−k. ¤
Theorem 3.7. If U and V are two n × n non-commuting unitary matrices, then ρ is not
completely contractive.
Proof Let Ũ and Ṽ be as in Lemma 3.6. If ρ̃ is the homomorphism determined on A(D) by
the tuple (In−k, Ũ , Ṽ ), then we saw in Lemma 3.4 that ‖ρ̃‖cb > 1. But then Lemma 2.1 implies
that ‖ρ‖cb > 1. ¤

4. The 2-contractivity

In this section, we show that if U and V are 2×2 non-commuting unitary matrices, then the
induced homomorphism ρ on the tri-disc algebra is not even 2-contractive.
Lemma 4.1. If U, V ∈M2 and UV 6= V U , then ‖I2 + U + V ‖ < 3.
Proof If ‖I2 +U +V ‖ = 3, then by Lemma 3.2, there is a unit joint eigenvector x with joint
eigenvalue (1, 1). Choose y ⊥ x with ‖y‖ = 1. Then y is an eigenvector of both U and V . So
in the basis {x, y}, the unitaries U and V are diagonal. So they commute. ¤.
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Lemma 4.2. If U, V ∈M2, then ‖I2 ⊗ I2 + U ⊗ U∗ + V ⊗ V ∗‖ = 3.

Proof Let

L1 = span {x⊗ x : x ∈ C2 and x is an eigenvector of U} and
L2 = span {x⊗ x : x ∈ C2 and x is an eigenvector of V }.

Then dimL1 = dimL2 = 2. Since both L1 and L2 are subsets of the symmetric tensor product
of C2 with itself which has dimension 3, they have non-trivial intersection. Choose y ∈ L1 ∩L2

with ‖y‖ = 1. Note that (U ⊗U∗)y = (V ⊗ V ∗)y = y. So ‖(I2 ⊗ I2 + U∗ ⊗U + V ⊗ V ∗)y‖ = 3.
¤

Theorem 4.3. If U and V are 2 × 2 non-commuting unitaries, then the homomorphism ρ on
A(D3) is contractive, but not 2-contractive.
Proof The homomorphism ρ determined by I, U, V is always contractive. Let f : D3 →M2

be defined by f(z1, z2, z3) = z1I + z2U
∗+ z3V

∗. Then ‖f‖ < 3, but ‖ρ(f)‖ = 3. First note that
‖f‖ < 3 by Lemma 3.2. Then note that ‖ρ(f)‖ = 3 by Lemma 4.2. Hence the proof. ¤
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