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Abstract. A bounded linear operator T on a Hilbert space is said to be homogeneous if ϕ(T )
is unitarily equivalent to T for all ϕ in the group Möb of bi-holomorphic automorphisms of the
unit disc. A projective unitary representation σ of Möb is said to be associated with an operator
T if ϕ(T ) = σ(ϕ)?Tσ(ϕ) for all ϕ in Möb.

In this paper, we develop a Möbius equivariant version of the Sz.-Nagy–Foias model theory
for completely non-unitary (cnu) contractions. As an application, we prove that if T is a
cnu contraction with associated (projective unitary) representation σ, then there is a unique
projective unitary representation σ̂, extending σ, associated with the minimal unitary dilation
of T . The representation σ̂ is given in terms of σ by the formula

σ̂ = (π ⊗D+
1 )⊕ σ ⊕ (π? ⊗D−1 ),

where D±1 are the two Discrete series representations (one holomorphic and the other anti-
holomorphic) living on the Hardy space H2(D), and π, π? are representations of Möb living on
the two defect spaces of T and defined explicitly in terms of σ and T .

Moreover, a cnu contraction T has an associated representation if and only if its Sz.-Nagy–
Foias characteristic function θT has the product form θT (z) = π?(ϕz)∗θT (0)π(ϕz), z ∈ D, where
ϕz is the involution in Möb mapping z to 0. We obtain a concrete realization of this product
formula for a large subclass of homogeneous cnu contractions from the Cowen-Douglas class.

1. Introduction

All Hilbert spaces in this paper are complex and separable. All operators are linear and
bounded operators between Hilbert spaces. For any two Hilbert spaces H and K, B(H,K)
denotes the Banach space of all operators from H to K. We shall abbreviate B(H,H) to B(H).
The (Möbius) group of all bi-holomorphic self-maps of the unit disc D (in the complex plane
C) shall be denoted by Möb. As a topological group (with the topology of locally uniform
convergence) it is isomorphic to PSU(1, 1) and to PSL(2,R).

Recall from [12, 5, 1] that an operator T from a Hilbert space into itself is said to be homoge-
neous if ϕ(T ) is unitarily equivalent to T for all ϕ in Möb which are analytic in a neighbourhood
of the spectrum of T . It was shown in [1] that the spectrum of a homogeneous operator T is
either the unit circle T or the closed unit disc D, so that, actually, ϕ(T ) is unitarily equivalent
to T for all ϕ in Möb. Recall that (see [11, 16, 18] for instance) a projective unitary representation
σ of Möb on a Hilbert space H is a Borel function σ : Möb → U(H), satisfying σ(id) = I, for
which there is a function m : Möb×Möb→ T satisfying

(1.1) σ(ϕ1ϕ2) = m(ϕ1, ϕ2)σ(ϕ1)σ(ϕ2), ϕ1, ϕ2 ∈ Möb.
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Here U(H) is the topological group of unitary operators on the Hilbert space H. Clearly σ
determines the function m by the Equation (1.1) and m is Borel. This function is called the
multiplier of σ. Clearly, m(ϕ, id) = 1 = m(id, ϕ). Evaluating σ(ϕ1ϕ2ϕ3) in two different ways,
one sees that the multiplier m of any projective unitary representation satisfies the identity

(1.2) m(ϕ1, ϕ2)m(ϕ1ϕ2, ϕ3) = m(ϕ1, ϕ2ϕ3)m(ϕ2, ϕ3), ϕ1, ϕ2, ϕ3 ∈ Möb.

Two projective unitary representations σ, σ̃ of Möb living on the respective Hilbert spaces H,

H̃ are said to be equivalent if there is a unitary U : H → H̃ and a Borel function f : Möb → T
such that σ̃(ϕ) = f(ϕ)Uσ(ϕ)U∗ for all ϕ in Möb. In this paper, by the word “representation”,
we always mean a projective unitary representation of Möb.

We say that a projective unitary representation σ of Möb is associated with an operator T if

ϕ(T ) = σ(ϕ)∗Tσ(ϕ)

for all ϕ in Möb. We say that an operator from a Hilbert space into itself is an associator if
there is a projective unitary representation of Möb associated with it. Clearly, all associators
are homogeneous, though the converse is not true. However in [4, Theorem 2.2] it is shown that,
conversely, each irreducible homogeneous operator is an associator (see also [13]), and – further
– its associated representation is unique up to equivalence.

A huge number of (unitarily inequivalent) examples of homogeneous operators are known.
(See the survey article [2] as well as the more recent papers [4, 9, 10].) Since the direct sum
(more generally direct integral) of homogeneous operators is again homogeneous, a natural
problem is the classification (up to unitary equivalence) of atomic homogeneous operators, that
is, those homogeneous operators which can not be written as the direct sum of two homogeneous
operators. In this generality, this problem remains unsolved. A beginning in this direction
was made in [4] where we classified the homogeneous scalar weighted shifts. Moreover, all
the homogeneous operators in the Cowen-Douglas class have been described modulo unitary
equivalence in the paper [10]. Clearly, irreducible homogeneous operators are atomic. In this
connection, it is amusing to note that we know of only two examples of atomic homogeneous
operators which are not irreducible. These are the multiplication operators – by the respective
co-ordinate functions – on the Hilbert spaces L2(T) and L2(D). Both of these examples happen
to be normal operators. We do not know if all atomic homogeneous operators are associators.

Recall that an operator T is said to be a contraction if ‖T‖ ≤ 1. The objective of this paper is
to set up a theoretical framework for the eventual classification of all cnu contractive associators.
This is achieved by an application of the Sz.-Nagy–Foias theory [14] of cnu (completely non-
unitary) contractions. A contraction is said to be cnu if it has no unitary part (that is, if it
cannot be written as the direct sum of two operators one of which is unitary). A contraction T is
said to be pure if ‖Tx‖ < ‖x‖ for all non-zero vectors x. The afore-mentioned theory attaches to
any cnu contraction T a pure contraction valued analytic function on D, called the characteristic
function of T . Two cnu contractions are unitarily equivalent iff their characteristic functions θ1

and θ2 coincide (that is, if and only if there exist two unitaries u and v such that uθ1(z) = θ2(z)v
for all z ∈ D). In Section 2 of this paper, we briefly review this theory, mostly following Nikolski
in [15], but with some twists of our own. With any cnu contraction, we begin by associating its
characteristic operator. It carries exactly the same information as the characteristic function; in
fact it is easy to obtain one in terms of the other. But it is the characteristic operator which
emerges most naturally from the study of minimal unitary (power) dilations. Of course, this notion
was always implicit in the theory – we find it convenient to make it explicit. Another innovation
is to emphasize the natural relationship between the Sz.-Nagy–Foias theory and the Möbius
group. This is the content of Section 3. It is surprising that the role of the Möbius group in the
Sz.-Nagy–Foias theory was never made explicit nor was it used to its full potential.

In Section 4 of this paper we exploit this relationship to prove that if T is a cnu contraction
with associated (projective unitary) representation σ, then there is a unique projective unitary
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representation σ̂, extending σ, associated with the minimal unitary dilation W of T . Its existence
is a theorem from [5], while its uniqueness is quite easy to establish. What is surprising is that
we are able to write an explicit and pretty formula for σ̂ in terms of σ :

σ̂ = (π ⊗D+
1 )⊕ σ ⊕ (π∗ ⊗D−1 ),

where D±1 are the two Discrete series representations (one holomorphic and the other anti-
holomorphic) living on the Hardy space H2(D), and π and π∗ are representations of the Möbius
group living on the two defect spaces of T and explicitly defined in terms of σ by the rather
mysterious formulae presented in Theorem 4.5. In the language of Mackey (see [11]) the triple
(W, σ̂,T) is a system of imprimitivity of the Möbius group. The imprimitivity relationship, in
this case, is just the condition imposed by homogeniety on the operator W . Thus the study of
cnu contractive associators via their minimal unitary dilation is an equivariant version of the
model theory for contractions developed by Sz.-Nagy–Foias.

In continuation of these ideas, we obtain a characterization of cnu contractive associators
in terms of their characteristic functions. This involves a pleasant product formula for the
characteristic function θ of any cnu contractive associator:

(1.3) θ(z) = π∗(ϕz)
∗Cπ(ϕz), z ∈ D,

where for z ∈ D, ϕz is the unique involution in Möb which interchanges 0 and z. Also,
π, π∗ are two projective representations of Möb (living on the defect spaces of T ) with identical
multipliers. The operator C is a pure contraction (from the space of π to the space of π∗)
intertwining the restricted representations π|K and π∗|K of the maximal compact subgroup K of
Möb : K = {ϕ ∈Möb : ϕ(0) = 0}.

The representations π and π∗ of Möb which occur in the product formula are precisely the
same representations which occur in the above description of σ̂. In view of the product formula,
we refer to the representations π and π∗ as the (right and left) companions of the operator
with characteristic function θ. Notice that they are compatible in the sense of having identical
multipliers. (Mutual compatibility is the obvious necessary and sufficient condition on a family
of projective representations for its direct integral to define a projective representation.) As a
converse, we show that whenever π and π∗ are two compatible projective unitary representations
of Möb and C : Hπ −→ Hπ∗ is a pure contraction intertwining their restrictions to K, the
function θ defined by the product formula (1.3) is a homogeneous characteristic function (that
is, the characteristic function of a cnu contractive associator) – provided, of course, that θ is
analytic. Thus, within the class of cnu contractions, the associators are characterized by the
presence of such a product formula.

In the penultimate section, we find explicit product formulae for the characteristic functions
of most of the irreducible homogeneous contractions in the Cowen-Douglas class Bn(D) whose
associated representation is multiplicity free. In the final section, we present a similar description
for an extremal family in this class and state a conjectural complete description for the entire
class.

In consequence of the results of this paper, the problem of classification of cnu contractive
associators boils down to the following question. For any two compatible projective unitary
representations π and π∗ of Möb, living on the Hilbert spaces H and H∗, let V (π, π∗) denote the
Banach space of all bounded operators C : H → H∗ such that C intertwines π|K and π∗|K, and
the function z 7→ π∗(ϕz)

∗Cπ(ϕz) is holomorphic on D. Determine V (π, π∗) and find all pure
contractions in this space.

2. Sz.-Nagy–Foias Theory.

In this section we provide a convenient summary of the theory of cnu contractions, their
dilations and characteristic functions. This summary largely follows the exposition in [15].
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2.1. Minimal power dilations – isometric, co-isometric and unitary. If H is a Hilbert
subspace of a Hilbert space K, i : H −→ K is the inclusion map and X : K −→ K is an operator,
then T := i∗Xi : H 7−→ H is called the compression of X to H and X is called a dilation of
T . If, further, we have p(T ) = i∗p(X)i for all polynomials p ∈ C[z], then T is called the power
compression of X to H and X is called a power dilation of T . A famous lemma of Sarason
(cf. [15]) says that the dilation X of T is a power dilation if and only if H is a semi-invariant
subspace (that is, the intersection of an invariant subspace with a co-invariant subspace) for X.
If the power dilation X of T is an isometry/co-isometry/unitary then it is called an isometric/co-
isometric/unitary power dilation. If, further, there is no Hilbert space K0 with H ⊆ K0 ⊂ K such
that the compression of X to K0 is an isometric / co-isometric / unitary power dilation of T then
X is called a minimal isometric/ co-isometric / unitary power dilation of T . Obviously ‖T‖ ≤ ‖X‖
for any (power) dilation X of T . Thus, for the existence of an isometric/co-isometric/unitary
power dilation of T , T must be a contraction. A basic result due to Sz.-Nagy says that any
contraction has a minimal isometric/co-isometric/ unitary power dilation, and it is essentially
unique. We proceed to elaborate. However, in anticipation of this result, we shall use the
definite article ‘the’ when talking of these minimal dilations. Also note that X is the minimal
co-isometric dilation of T if and only if X∗ is the minimal isometric dilation of T ∗. Thus, for
most purposes, it suffices to look at the minimal isometric and unitary dilations.

The following lemma clearly includes the uniqueness (though not existence!) of the minimal
unitary (or isometric, or co-isometric) dilation. We shall need the full strength of this lemma in
the next section.

Lemma 2.1. For i = 1, 2, let Ti : Hi −→ Hi be Hilbert space contractions with corresponding

minimal isometric/co-isometric/unitary power dilations T̂i : Ĥi −→ Ĥi. Let U : H1 −→ H2

be a unitary such that UT1 = T2U . Then there is a unique unitary Û : Ĥ1 −→ Ĥ2 such that

Û |H1 = U and Û T̂1 = T̂2Û .

Proof. First assume that T̂i are isometric dilations. We begin by proving the uniqueness. To this

end, we claim that any unitary Û as in the conclusion of this lemma satisfies, for n = 0, 1, 2, ...

(2.4) Û(T̂n1 x) = T̂n2 (Ux) for all x ∈ H1.

This is easily proved by induction on n. Notice that this part of the proof does not make use of
the minimality of the dilations.

Now suppose T̂i are minimal isometric dilations. Then the closed linear span of the set

Ai := {T̂i
n
x : n = 0, 1, 2, ..., x ∈ Hi} ⊂ Ĥi

is invariant under T̂i and contains Hi. The restriction of T̂i to this invariant subspace is an
isometric power dilation of Ti. Therefore, the minimality of the isometric dilation implies that

Ai is a total set in Hi. Since (2.4) gives the value of Û on A1, Û is uniquely determined. To

show existence of the unitary Û , we verify that Û , defined on the total set A1 by (2.4) preserves
the inner product and maps A1 onto the total set A2, it then extends to a well-defined unitary.

Next suppose T̂i is a minimal co-isometric dilation of Ti for i = 1, 2. Then T̂i
∗

is a minimal
isometric dilation of T ∗i and U intertwines T ∗1 and T ∗2 . Therefore, by the previous part of

this result, there is a unique unitary Û which intertwines T̂ ∗1 and T̂ ∗2 and extends U . Then Û

intertwines T̂1 and T̂2. This completes the proof in the case of co-isometric dilations. Notice

that, in this case, the equation (2.4) applied to T ∗i shows that Û satisfies, for n = 0, 1, 2, . . . ,

(2.5) Û(T̂ ∗n1 x) = T̂ ∗n2 (Ux) for all x ∈ H1,

when T̂i are co-isometric dilations. Again, minimality of the dilations is not necessary for the
validity of this equation.
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Finally, let T̂i be a minimal unitary dilation of Ti for i = 1, 2. By the observation above, we
now have, for all n = 0,±1,±2, . . . ,

(2.6) Û(T̂ ∗n1 x) = T̂ ∗n2 (Ux) for all x ∈ H1,

Again, minimality of T̂i shows that the set Bi := {T̂i
n
x : x ∈ Hi, n = 0,±1,±2, . . .} is a total set

in Ĥi and Û is determined on the total set B1 by the equation (2.6). This proves uniqueness.

Also, Û preserves the inner product and maps B1 onto B2. Therefore it extends to a unitary on

Ĥ1, proving existence. �

Notation 2.2. (a) Let H2 = H2(D) be the usual Hilbert space of analytic functions on the open
unit disc D with square integrable boundary value (radial limit). Also, S : H2 → H2 be the
standard (un-weighted) unilateral shift (given by (Sf)(z) = zf(z)).

(b) For any contraction T : H → H, let D (respectively D∗) denote the closure of the range

of (I − T ∗T )1/2 (respectively, of (I − TT ∗)1/2). Let D : H → D (respectively D∗ : H → D∗)
be the operator given by x 7→ (I − T ∗T )1/2x (respectively x 7→ (I − TT ∗)1/2x). Thus, by
definition, D and D∗ are contractions with dense range. These are called the defect operators of
T , and their co-domains D and D∗ are called the defect spaces of T . In the existing literature,
it is customary to indicate the dependence of these defect operators and spaces on the initial
contraction T by means of a suffix in their names. We have departed from this established
practice for typographical and esthetic reasons. We hope this will not cause any confusion and,
in each case, the initial contraction will be clear from the context.

(c) We shall identify the tensor product Hilbert space D ⊗ H2 with the Hilbert space of D-
valued analytic functions on D with square integrable boundary value (via the usual identification
of v⊗ f with the function z 7→ f(z)v). Thus I ⊗ S : D⊗H2 → D⊗H2 is the unilateral shift of
multiplicity dim(D) – it is formally given by the same formula as S, when its domain is viewed
as a space of D-valued functions. Likewise, D∗ ⊗H2 is viewed as a Hilbert space of D∗-valued
analytic functions and I⊗S∗ is to be viewed as a backward shift (with multiplicity) on this space.

(d) Finally we let i : D → D ⊗H2 (respectively i∗ : D∗ → D∗ ⊗H2) be the ‘inclusion’ maps
given by the formula x 7→ x⊗ 1. (Here, of course, 1 is the constant function 1 in H2.)

The following result is, of course, well known. We include its proof for completeness and to
ease the development of related ideas.

Theorem 2.3. Every contraction T on a Hilbert space H has a minimal isometric (or co-
isometric) dilation. It is unique upto unitary equivalence (via a unitary which leaves the subspace
H invariant and restricts to the identity operator on this subspace).

Proof. The uniqueness is immediate from Lemma 2.1 with T1 = T2 = T , H1 = H2 = H and
U = I. If we prove the existence result in the isometric case then the co-isometric case follows
by applying this result to the contraction T ∗. Thus it suffices to prove the existence of a minimal
isometric dilation for T . Let T̃ be the operator on the Hilbert space K := (D ⊗H2)⊕H given
by

(2.7) T̃ =

(
I ⊗ S iD

0 T

)
.

We claim that T̃ is the minimal isometric dilation of T . Since S∗S = I and D∗D+T ∗T = IH
and the range closure of D (viewed as an operator into D ⊗ H2, see Notation 2.2) equals the

kernel of I ⊗ S, it follows that T̃ ∗T̃ = IK. Thus T̃ is an isometry. Since T is a diagonal entry
of the upper triangular (block) matrix T̃ , it follows that T̃ is a (power) dilation of T . (Note

that H = 0 ⊕ H is co-invariant under T̃ .) To show that T̃ is minimal, let K0 be the closed

linear span in K of the set {T̃nx : x ∈ H, n = 0, 1, 2, . . .}. We need to show that K0 = K. Let
{en : n = 0, 1, 2, . . .} be the standard orthonormal basis of H2. (Thus en(z) = zn, z ∈ D.)
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Clearly it suffices to show that v⊗ en ∈ K0 for all v ∈ D and all n ≥ 0. We do this by induction
on n. Trivially, this is true for n = 0 since D ⊗ e0 is the range closure of D. This starts the
induction.

Note that, for non-commuting variables a, b, c, we have :(
a b
0 c

)n
=

(
an

∑n−1
h=0 a

hbcn−1−h

0 cn

)
,

as may be seen by induction on n.
Therefore,

T̃n+1

(
0
x

)
=

(∑n
h=0(I ⊗ Sh)DTn−hx

Tn+1x

)
∈ K0.

Since, clearly, K0 ⊇ H, it follows that

n∑
h=0

(I ⊗ Sh)DTn−hx =

n∑
h=0

(DTn−hx)⊗ eh ∈ K0.

But, by induction hypothesis,
∑n−1

h=0(DTn−hx)⊗ eh ∈ K0. Subtracting, we get (Dx)⊗ en ∈ K0

for all x. Since D has dense range in D, it follows that v⊗en ∈ K0 for all v ∈ D. This completes
the induction. Thus D ⊗ H2 ⊆ K0. Since also, H ⊆ K0, it follows that K0 = K. Thus, the
operator T̃ defined by Equation (2.7) is indeed the unique minimal isometric dilation of T . Since
the minimal co-isometric dilation of T is the adjoint of the minimal isometric dilation of T ∗, it
follows that the unique minimal co-isometric dilation T̃∗ of T is given by the formula

(2.8) T̃∗ =

(
T (i∗D∗)

∗

0 I ⊗ S∗
)
,

acting on the Hilbert space H⊕ (D∗ ⊗H2). �

Theorem 2.4. Every contraction T on a Hilbert space H has a minimal unitary dilation which

is unique upto unitary equivalence. Explicitly, it is the unitary T̂ on the Hilbert space (D⊗H2)⊕
H⊕ (D∗ ⊗H2) given by the formula

T̂ =

I ⊗ S iD iC∗ i∗∗
0 T (i∗D∗)

∗

0 0 I ⊗ S∗

 ,

where C : D → D∗ is the operator x 7→ −Tx.

(Because of the well known identity T (I−T ∗T )1/2 = (I−TT ∗)1/2T , T maps D into D∗. Thus
C indeed maps D into D∗ and satisfies CD = −D∗T . The operators D, D∗ and spaces D, D∗
are as in Notation 2.2.)

Proof. Again, uniqueness follows from Lemma 2.1. To prove existence, let T̂ be a minimal

unitary dilation of T . Clearly the compressions of T̂ to the subspaces generated by the vectors

{T̂nx |n ≥ 0, x ∈ H} and {T̂nx |n ≤ 0, x ∈ H} are the minimal isometric and co-isometric
dilations of T . Therefore, by the above, these compressions may be identified with the operators
T̃ and T̃∗ (given by the formulae (2.7) and (2.8)) and consequently these two subspaces are

identified with (D⊗H2)⊕H and H⊕ (D∗⊗H2). Thus, T̂ acts on (D⊕H2)⊕H⊕(D∗⊗H2) and
is given by the formula in the statement of the theorem, except that the (1, 3)-entry of this block

operator has an unknown entry A : D∗⊗H2 → D⊗H2. Now, since T̂ ∗T̂ = I, equating entries of
this ‘matrix equation’, we find that A must satisfy (i) (I ⊗ S∗)A = 0 (ii) (iD)∗A = −(i∗D∗T )∗,
and (iii) A∗A = (I −D∗D∗∗) ⊗ P . (Here P = I − SS∗ : H2 → H2 is the orthogonal projection
Pf = f(0)1.) Now, (i) says that ker(A∗) ⊇ (D ⊗ 1)⊥ = D ⊗ range(I − P) and (ii) says that
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A∗(Dx ⊗ 1) = −(D∗Tx) ⊗ 1. This determines A∗ on all pure tensors v ⊗ f and hence it is
determined throughout D∗ ⊗H2 :

A∗(Dx⊗ f) = A∗(Dx⊗ (I − P )f) +A∗(Dx⊗ Pf) = −(D∗Tx)⊗ 1.

Thus A is determined by the requirements (i) and (ii). Since one readily verifies that iC∗i∗∗
satisfies (i) and (ii), it follows that we must have A = iC∗i∗∗. It is now easy to see that this

choice of A satisfies (iii) as well, so that T̂ given above is an isometry. Since T̂ ∗ is obtained from

this formula for T̂ by replacing T by T ∗ (and, consequently, replacing D by D∗ and so on) it

follows that T̂ is also a co-isometry. Therefore, T̂ is a unitary. �

2.2. Characteristic Operators and Characteristic Functions. We continue with the set-
up introduced above. Thus T is a contraction on a Hilbert space H with defect spaces D,

D∗, and defect operators D, D∗. The minimal unitary dilation T̂ of T lives on the space

Ĥ := (D⊗H2)⊕H⊕ (D∗⊗H2) and is given explicitly as in Theorem 2.4. From this description,
one sees that there is a ‘visible’ copy

F := (D ⊗H2)⊕ 0⊕ 0

of D ⊗ H2 inside the dilation space Ĥ. It is invariant under the dilation operator T̂ , and the

restriction of T̂ to this subspace is a copy of the unilateral shift of multiplicity dim(D). It turns

out that there is also an ‘invisible’ copy F∗ of D∗⊗H2 inside Ĥ which is also invariant under T̂

and such that the restriction of T̂ to F∗ is a copy of the unilateral shift of multiplicity dim(D∗).
(The visible copy of D∗⊗H2 inside the dilation space is co-variant under T̂ .) Namely, we have :

F∗ :=
∞⊕
n=0

T̂n(D∗ ⊗ 1).

Since T̂ is a unitary, it follows that T̂ ∗m(D∗ ⊗ 1) ⊥ D∗ ⊗ 1, m > 0, and therefore the sum is an

orthogonal direct sum, clearly invariant under T̂ . If we define Ψ : D∗ ⊗H2 → F∗ by

Ψ(v ⊗ en) = T̂n(v), n = 0, 1, 2, . . . , v ∈ D∗,

where en, n = 0, 1, 2, . . . is the standard orthonormal basis of H2 (thus e0 = 1 and en = Sen−1

for n ≥ 1), then it immediately follows that Ψ is a unitary which intertwines I ⊗ S with T̂ |F∗ .
Now, the characteristic operator Θ of the contraction T is defined to be the ‘part’ of T̂ ∗ which

goes from F to F∗. That is,

Θ := j∗∗ T̂
∗ j,

where j : F → Ĥ and j∗ : F∗ → Ĥ are the respective inclusion maps.
We use the unitary Ψ to identify F∗ with D∗ ⊗ H2. After this identification, we have Θ :

D ⊗ H2 → D∗ ⊗ H2. Let’s calculate the characteristic operator Θ explicitly. We need the
following formula for the restriction of the projection j∗∗ to H :

Lemma 2.5. For x ∈ H, we have j∗∗(x) =
∑∞

n=1 T̂
n(D∗T

∗n−1x⊗ 1).

Proof. Since j∗∗ is the orthogonal projection onto F∗ =
⊕∞

n=0 T̂
n(D∗⊗1) (orthogonal direct sum)

and x ∈ H is orthogonal to D⊗1, it follows that j∗∗(x) =
∑∞

n=1 T̂
n(αn(x)⊗1). Here, the vectors

αn(x) ∈ D∗ are uniquely determined by the requirement x− T̂n(αn(x)⊗1) ⊥ T̂n(αn(x)⊗1). So,
we need to show that αn(x) = D∗T

∗n−1x for n ≥ 1. Clearly, it suffices to show that α1(x) = D∗x
and αn+1(x) = αn(T ∗x) for n ≥ 1.

Now, using the explicit form of T̂ given in Theorem 2.4, we compute :
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〈x− T̂ (D∗x⊗ 1), T̂ (D∗x⊗ 1)〉
= 〈(−C∗D∗x⊗ 1)⊕ (I −D∗∗D∗)x, (C∗D∗x⊗ 1⊕D∗∗D∗x〉
= −〈C∗D∗x,C∗D∗x〉+ 〈(I −D∗∗D∗)x,D∗∗D∗x〉
= −〈(I − T ∗T )1/2T ∗x, (I − T ∗T )1/2T ∗x〉+ 〈TT ∗x, (I − TT ∗)x〉
= 0.

Here, to obtain the penultimate equality, we have used the identities D∗∗D∗ = I − TT ∗ and
C∗D∗ = −DT ∗. The last equality is a result of elementary formal manipulations. Thus, we get
α1(x) = D∗x. Next, we observe :

〈x− T̂n+1(αn(T ∗x)⊗ 1), T̂n+1(αn(T ∗x)⊗ 1)〉
= 〈T̂ ∗(x)− T̂n(αn(T ∗x)⊗ 1), T̂n(αn(T ∗x)⊗ 1)〉
= 〈T ∗(x)− T̂n(αn(T ∗x)⊗ 1), T̂n(αn(T ∗x)⊗ 1)〉
= 0.

Here, the first equality is because of unitarity of T̂ . The second equality holds since, for x ∈ H,

we have T̂ ∗(x)−T ∗(x) = D∗x⊗1 ∈ D∗⊗1 ⊥ T̂n(D∗⊗1). The last equality is from the definition
of αn(·). Thus we get αn+1(x) = αn(T ∗(x)). �

Now we are ready to obtain the formula for the characteristic operator :

Theorem 2.6. When its domain and co-domain are viewed as Hilbert spaces of vector-valued
analytic functions, the characteristic operator Θ : D⊗H2 → D∗⊗H2 of a contraction T is given
by Θ(f) = (z 7→ θ(z)f(z)), where θ : D→ B(D,D∗) is the analytic function defined by :

θ(z)D = D∗(I − zT ∗)−1(zI − T ), z ∈ D.

Proof. A calculation using the explicit form of T̂ from Theorem 2.4 shows that, for v = Dx ∈ D,

T̂ ∗(v⊗ 1) = (D∗v) + (Cv⊗ 1). Since D∗v ∈ H and (Cv)⊗ 1 ∈ D∗⊗ 1 ⊆ F∗, Lemma 2.5 implies
that

Θ(Dx⊗ 1) = j∗∗(CDx⊗ 1 +D∗Dx)

= (CDx⊗ 1) + j∗∗(D
∗Dx)

= −D∗Tx⊗ 1 +
∞∑
n=1

T̂n(D∗T
∗n−1(I − T ∗T )x⊗ 1).

Therefore, using Ψ to identify the target with D∗ ⊗H2, we get :

Θ(Dx⊗ 1) = (z 7→ −D∗Tx+

∞∑
n=1

znD∗T
∗n−1(I − T ∗T )x

= θ(z)Dx,

where θ(·) is as in the statement of this theorem. Thus, the action of Θ on the subspace D ⊗ 1
of D-valued constant functions is as stated.

We claim that Θ intertwines the compressions j∗T̂ j = I ⊗ S of T̂ on F = D ⊗ H2 and

j∗∗T̂ j∗ ≡ I⊗S on F∗ ≡ D∗⊗H2 (after identification via Ψ). Granting this claim for the moment,
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we get, for v ∈ D and m ≥ 0,

Θ(v ⊗ em) = Θ((I ⊗ S)m(v ⊗ 1))

= (I ⊗ S)m(Θ(v ⊗ 1))

= (z 7→ em(z)θ(z)v)

= (z 7→ θ(z)(em(z)v)).

Thus the action of Θ on the vectors v⊗ em is as stated. Since these vectors span D⊗H2, this
proves the theorem, subject, of course, to verification of the intertwining property of Θ claimed
above.

To verify this claim, let p, p∗ : Ĥ → Ĥ be the orthogonal projections onto the subspaces

T̂ ∗(D ⊗ 1) and T̂ (D∗ ⊗ 1) respectively. Since T̂ is a unitary and jj∗ and j∗j
∗
∗ are the orthogonal

projections onto F and F∗ respectively, it follows that T̂ ∗(jj∗)T̂ and T̂ (j∗j
∗
∗)T̂
∗ are the orthogonal

projections onto T̂ ∗(F) = F ⊕ T̂ ∗(D⊗ 1) and T̂ (F∗) = F∗	 T̂ (D∗⊗ 1), respectively. Therefore,

T̂ ∗(jj∗)T̂ = jj∗+p and T̂ (j∗j
∗
∗)T̂
∗ = j∗j

∗
∗−p∗. Also note that F is orthogonal to both T̂ ∗(D⊗1)

and T̂ (D∗ ⊗ 1). Therefore, we get pj = 0 = p∗j. Hence,

(j∗∗T̂
∗j)(j∗T̂ j) = j∗∗(jj

∗ + p)j = j∗∗j,

and,

(j∗∗T̂ j∗)(j
∗
∗T̂
∗j) = j∗∗(j∗j

∗
∗ − p∗)j = j∗∗j.

Thus we get :
Θ(I ⊗ S) = j∗∗j = (I ⊗ S)Θ.

This proves the claim. �

The analytic function θ obtained in this theorem is called the characteristic function of the
contraction T . Note that, from its definition, the characteristic operator is clearly a contraction:
‖Θ‖ ≤ 1. In consequence, the characteristic function is a contraction-valued analytic function:
‖θ(z)‖ ≤ 1∀z ∈ D. From its explicit formula, it is easy to verify that θ is pure contraction valued.
While θ clearly determines Θ by the formula Θ(f) = (z 7→ θ(z)f(z)), specialising this formula,
we find that, conversely, Θ determines θ by : θ(z)v = Θ(v ⊗ 1)(z). Thus, the characteristic
function and the characteristic operator encode the same information about the contraction T .

If T is a contraction and U is a unitary, then T and T ⊕ U have the same pair of defect

operators and defect spaces. It readily follows that if, as above, T̂ is the minimal unitary

dilation of T , then the minimal unitary dilation of T ⊕U is T̂ ⊕U . In consequence, T and T ⊕U
have the same characteristic operator and function. Thus, the characteristic function does not
see the unitary parts of the contraction. Therefore, in order that the characteristic function may
really characterise the contraction, it is necessary to restrict ourselves to the class of completely
non-unitary (cnu) contractions. Recall that a contraction T is said to be cnu if it has no unitary
part (direct summand). Every contraction can be written uniquely as the direct sum of a cnu
contraction and a unitary.

Now, let T and T̃ be two contractions. For each of the constructs attached to T in the

above, we shall indicate the corresponding construct for T̃ by a tilde. For instance, D̃ is the first
defect space of T̃ and θ̃ is the characteristic function of T̃ . We shall say that the characteristic
operators Θ and Θ̃ coincide (respectively,the characteristic functions θ and θ̃ coincide) if there

are unitaries v : D → D̃ and v∗ : D∗ → D̃∗ such that (v∗ ⊗ I)Θ = Θ̃(v ⊗ I) (respectively, such

that v∗θ(z) = θ̃(z)v for all z ∈ D). Clearly, the characteristic operators coincide if and only if
the characteristic functions coincide (via the same pair of unitaries).

Let G and G∗ be the reducing subspaces for T̂ generated by F and F∗, respectively. That is,

G :=
⊕∞

n=−∞ T̂
n(D ⊗ 1) and G∗ :=

⊕∞
n=−∞ T̂

n(D∗ ⊗ 1). We identify G and G∗ with D ⊗ L2(T)

and D∗ ⊗L2(T) in the obvious fashion. The inclusion maps j : F → Ĥ and j∗ : F∗ → Ĥ extend
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naturally to G and G∗. Since the formula for j∗∗(x), x ∈ H, obtained in Lemma 2.5 remains valid
for the extended j∗, it follows that the characteristic operator Θ also extends to G. Moreover,
it is given by the same formula, namely, Θ = j∗∗ T̂ j. In the proof of the following theorem, j, j∗
and Θ denote these extensions.

Theorem 2.7. If T and T̃ are unitarily equivalent contractions then their characteristic func-
tions θ and θ̃ coincide. Conversely, if T and T̃ are cnu contractions whose characteristic func-
tions coincide, then T and T̃ are unitarily equivalent.

Proof. First suppose T and T̃ are unitarily equivalent. Say U : H → H̃ is a unitary such that

UT = T̃U . Clearly U restricts to two unitaries u : D → D̃ and u∗ : D∗ → D̃∗. Then it easy to

verify that (u ⊗ I) ⊕ U ⊕ (u∗ ⊗ I) intertwines the minimal unitary dilation T̂ and ̂̃T . (This is
an instance where the intertwiner between a pair of contractions lifting an intertwiner between
the dilations - guaranteed by Lemma 2.1, can be made explicit.) In consequence, a computation

shows that (u∗ ⊗ I)Θ = Θ̃(u ⊗ I). This proves the easy direct part of the theorem. (One
needs to be careful here : in the last two sentences, u∗ ⊗ I refers to two distinct operators,
going between different spaces.) This part may also be proved by a direct appeal to the explicit
formula (Theorem 2.6) for the characteristic function.

For the converse, let T and T̃ be cnu contractions such that their characteristic functions θ

and θ̃ coincide. Since G and G∗ are reducing subspaces for T̂ , the subspace M := (G + G∗)⊥
is a reducing subspace of T̂ contained in H. Therefore, M is reducing for T and T |M = T̂ |M
is a unitary part of T . Since T is cnu, it follows that M = {0}. Thus G + G∗ = Ĥ. Likewise,

defining the spaces G̃ and G̃∗ corresponding to the cnu contraction T̃ , we get G̃ + G̃∗ =
̂̃H.

Let v and v∗ be as in the definition of coincidence. With the identification of G and G∗ with
D⊗L2(T) and D∗⊗L2(T), respectively, we have the unitaries v⊗I : G → G̃ and v∗⊗I : G∗ → G̃∗.
In view of the preceding paragraph, there is at most one isometry U : Ĥ → ̂̃H which restricts
to (v ⊗ I)|G and (v∗ ⊗ I)|G∗ on G and G∗ respectively. Further, if it exists, then this isometry
U is automatically a unitary. We proceed to verify the obvious consistency requirement for the
existence of such a unitary extension. For x ∈ G and x∗ ∈ G∗, we have,

〈(v ⊗ I)x, (v∗ ⊗ I)x∗〉 = 〈 ̂̃T ∗(v ⊗ I)T̂ x, (v∗ ⊗ I)x∗〉

= 〈 ̂̃T ∗(v ⊗ I)T̂ x, j̃∗(v∗ ⊗ I)x∗〉

= 〈̃j∗∗
̂̃T ∗(v ⊗ I)T̂ x, (v∗ ⊗ I)x∗〉

= 〈(v∗ ⊗ I)j∗∗x, (v∗ ⊗ I)x∗〉
= 〈j∗∗x, x∗〉
= 〈x, j∗x∗〉
= 〈x, x∗〉

Here, we have used j and j∗ to denote the inclusion maps from G and G∗ into Ĥ, and likewise for
T̃ (we are running out of notations!). The first equality is obtained because of the intertwining

relation (v∗ ⊗ I)T̂ ∗ = ̂̃T ∗(v ⊗ I). The fourth equality is obtained by applying the intertwining

relation (v∗⊗ I)Θ = Θ̃(v⊗ I), with the definitions of Θ and Θ̃ substituted. Thus, for x ∈ G and

x∗ ∈ G∗, we have 〈(v⊗ I)x, (v∗⊗ I)x∗〉 = 〈x, x∗〉. Hence we have the unitary U : Ĥ → ̂̃H defined
by

U(x+ x∗) = (v ⊗ I)x+ (v∗ ⊗ I)x∗
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for x ∈ G and x∗ ∈ G∗. Now, it is easy to verify that this unitary intertwines T̂ with ̂̃T and

maps H onto H̃. Hence its restriction to H is a unitary intertwining T with T̃ . Thus T and T̃
are unitarily equivalent. �

3. Möbius-equivariance of Sz.-Nagy–Foias Theory

We begin this section by listing some notations to be used throughout the rest of the paper.

Notation 3.1. (a) Choose and fix a Borel square root function s : T→ T, satisfying s(1) =
1. That is, for each β ∈ T, s(β) is one of the two square roots of β. Define the function
c : Möb ×D→ C as follows. For ϕ in Möb , ϕ can be written uniquely as ϕ(z) = β z−α

1−ᾱz ,
z ∈ D, where α ∈ D and β ∈ T. Then

c(ϕ, z) = s(β)

√
1− |α|2
1− ᾱz

, z ∈ D.

(Thus, c is a function, fixed throughout this paper, which is Borel in the first argument
and analytic in the second argument, such that its point-wise square is (ϕ, z) 7→ ϕ′(z).)
Notice that for fixed ϕ ∈ Möb , z 7→ c(ϕ, z) is a non-vanishing analytic function on a
neighbourhood of D. In consequence, for any contraction T , the operator c(ϕ, T ) (ob-
tained by plugging T into the second slot of c) is a well-defined and invertible bounded
linear operator.

(b) For ϕ ∈ Möb, let ϕ∗ ∈ Möb be defined by ϕ∗(z) = ϕ(z̄), z ∈ D. Thus ϕ 7→ ϕ∗ is the
unique outer automorphism of Möb (modulo inner automorphisms). For any projective
unitary representation σ of Möb, let σ] denote the representation given by σ](ϕ) = σ(ϕ∗),
ϕ ∈ Möb. Note that if m is the multiplier of σ, then the multiplier m# of σ] is given by
the formula

m#(ϕ1, ϕ2) := m(ϕ∗1, ϕ
∗
2), ϕ1, ϕ2 ∈ Möb.

(c) The holomorphic discrete series representation D+
1 : Möb → U(H2) is defined by :

D+
1 (ϕ−1)f := c(ϕ, ·) · (f ◦ ϕ), f ∈ H2, ϕ ∈ Möb .

The anti-holomorphic discrete series representation D−1 : Möb → U(H2) is defined by

D−1 (ϕ) := m0(ϕ,ϕ−1)D+
1 (ϕ∗).

Here m0 denotes the multiplier of D+
1 .

Remark 3.2. (a) Evaluating both sides of the equation D+
1 (ϕ1ϕ2) = m0(ϕ1, ϕ2)D+

1 (ϕ1)D+
1 (ϕ2)

at the constant function 1, we get

(3.9) m0(ϕ1, ϕ2) =
c(ϕ−1

2 ϕ−1
1 , z)

c(ϕ−1
2 , ϕ−1

1 (z))c(ϕ−1
1 , z)

, ϕ1, ϕ2 ∈ Möb, z ∈ D.

By the chain rule for differentiation, the square of the right hand side in this equation is
equal to 1. Hence m0 is ±1 valued. We shall often use this observation in what follows,
without further mention.

(b) Let ϕ1, ϕ2 ∈ Möb be given by ϕi(z) = βi
z−αi
1−ᾱiz

, i = 1, 2. Let ϕ := ϕ1ϕ2 be given by

ϕ(z) = β z−α
1−ᾱz . Thus α1, α2 ∈ D and β1, β2 ∈ T. Also, α, β are explicit functions of αi

and βi, i = 1, 2. Then, using the defining formula for c and the Equation (3.9), we get

(3.10) m0(ϕ1, ϕ2) =
s(β̄)

s(β̄1)s(β̄2)

1 + α1ᾱ2β̄2∣∣1 + α1ᾱ2β̄2

∣∣ .
(c) Specializing Equation (3.10), we see that if ϕ ∈ Möb is given by ϕ(z) = β z−α

1−ᾱz , then we
have

(3.11) m0(ϕ,ϕ−1) = s(β)s(β̄) = m0(ϕ∗, ϕ∗−1).
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(d) Using Equaion (3.10), it is easy to verify that m0(ϕ−1
2 , ϕ−1

1 ) = m0(ϕ∗1, ϕ
∗
2) for ϕ1, ϕ2 in

Möb. This equation, together with Equation (4.13) below shows that the representations
D−1 and D+

1 have the common multiplier m0.

In the following, we fix a contraction T and a Möbius map ϕ. For each of the constructs
corresponding to the (arbitrary but fixed) contraction T introduced above, the corresponding
construct for ϕ(T ), which is also a contraction, will be indicated by a ϕ in the superscript. For
instance, Dϕ and Dϕ

∗ are the defect operators for ϕ(T ), and so on. The proof of the following
Lemma is a straightforward verification and is omitted.

Lemma 3.3. For any contraction T and Möbius map ϕ, we have the identity

(Dϕ)∗(Dϕ) = (Dc(ϕ, T ))∗(Dc(ϕ, T )), (Dϕ
∗ )∗(Dϕ

∗ ) = (D∗c(ϕ, T )∗)∗(D∗c(ϕ, T )∗).

In consequence, there are unitaries (obviously depending on ϕ) u : D → Dϕ and u∗ : D∗ → Dϕ∗
which are uniquely determined by the identity

Dϕ = uDc(ϕ, T ), Dϕ
∗ = u∗D∗c(ϕ, T )∗.

Lemma 3.4. Let T̂ be the minimal unitary dilation of a contraction T . Then for any ϕ in Möb,

ϕ(T̂ ) has the 3× 3 block decomposition ϕ(T̂ ) =
((
Aϕij
))

1≤i,j≤3
, where Aϕij = 0 for i > j and

Aϕ11 = I ⊗ ϕ(S), Aϕ22 = ϕ(T ), Aϕ33 = I ⊗ ϕ(S∗),

Aϕ12 = (I ⊗ c(ϕ, S))iDc(ϕ, T ), Aϕ23 = c(ϕ, T )(i∗D∗)
∗(I ⊗ c(ϕ, S∗)).

(The explicit formula for Aϕ13 is irrelevant for our purpose.)

Proof. Since T̂ has a 3 × 3 upper triangular block decomposition (given by Theorem 2.4), it

is obvious that so has ϕ(T̂ ), and its diagonal blocks are as above. Next, we wish to find the

(1, 2)th entry Aϕ12 of ϕ(T̂ ). Take ϕ(z) = β(z − α)(1 − αz)−1 ( |β| = 1, |α| < 1). We have

(I − αT̂ )ϕ(T̂ ) = β(T̂ − αI). Equating the (1, 2)th entries of this matrix equation, we get

(I ⊗ (I − αS))Aϕ12 = iD(βI + αϕ(T ))

= β(1− |α|2)iD(I − αT )−1.

Therefore, we have

Aϕ12 = β(1− |α|2)(I ⊗ (I − αS)−1)iD(I − αT )−1

= (I ⊗ c(ϕ, S))iDc(ϕ, T ).

A similar computation shows that the (2, 3)th entry Aϕ23 of ϕ(T̂ ) is c(ϕ, T )(i∗D∗)
∗(I⊗ c(ϕ, S∗)).

�

Now we have :

Theorem 3.5. For any contraction T and Möbius map ϕ, the minimal unitary dilations ϕ̂(T )

and T̂ (of ϕ(T ) and T ) are related by the formula ϕ̂(T )V = V ϕ(T̂ ), where the unitary operator

V : Ĥ → Ĥϕ, depending on ϕ, is given by

V := (m0(ϕ,ϕ−1)u⊗D+
1 (ϕ))⊕ I ⊕ (m0(ϕ,ϕ−1)u∗ ⊗D−1 (ϕ)),

where u and u∗ are the unitaries given in Lemma 3.3.

Proof. The identities in Lemma 3.3 clearly imply that a contraction K is an isometry/co-

isometry/ unitary if and only if ϕ(K) is. In consequence, ϕ(T̂ ) is a minimal unitary dilation of
ϕ(T ). Therefore, we may apply Lemma 2.1 with T1 = ϕ(T ) = T2 and U = I to get a unique

unitary V : Ĥ → Ĥϕ such that ϕ̂(T )V = V ϕ(T̂ ) and V |H = I. Now, (D ⊗ H2) ⊕ H is the
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unique subspace of Ĥ on which ϕ(T̂ ) restricts to a minimal isometric dilation of ϕ(T ) Similarly,

(Dϕ⊗H2)⊕H is the only subspace of Ĥϕ on which ϕ̂(T ) restricts to a minimal isometric dilation

of ϕ(T ). Since the unitary V intertwines ϕ(T̂ ) with ϕ̂(T ), it follows that V maps (D⊗H2)⊕H
onto (Dϕ ⊗ H2) ⊕ H. Similarly, V maps H ⊕ (D∗ ⊗ H2) onto H ⊕ (Dϕ∗ ⊗ H2). Since V is a
unitary, it follows that V maps the spaces D ⊗ H2, H and D∗ ⊗ H2 onto the corresponding
spaces Dϕ ⊗ H2, H and Dϕ∗ ⊗ H2. In other words, V is a direct sum, say V = W ⊕ I ⊕W∗,
where W : D⊗H2 → Dϕ⊗H2 and W∗ : D∗⊗H2 → Dϕ∗ ⊗H2 are unitaries. In the block matrix

notation, V is a block diagonal : V = diag(W, I,W∗). Note that, also, ϕ̂(T ) has the 3× 3 upper

triangular form given by Theorem 2.4 (with ϕ(T ) in place of T ) and ϕ(T̂ ) has the 3× 3 upper

triangular form given by Lemma 3.4. Thus, the intertwining relation ϕ̂(T )V = V ϕ(T̂ ) may be
viewed as an equation involving 3× 3 matrices. Therefore, equating the (1, 1)th entries in this
intertwining relation, we get

(I ⊗ S)W = Wϕ(I ⊗ S).

Since D+
1 is the representation associated with S, we also have SD+

1 (ϕ) = D+
1 (ϕ)ϕ(S) and hence

(I ⊗ S)(I ⊗D+
1 (ϕ)) = (I ⊗D+

1 (ϕ))(ϕ(I ⊗ S)).

Therefore we deduce that the unitary W (I ⊗D+
1 (ϕ))∗ : D ⊗H2 → Dϕ ⊗H2 intertwines I ⊗ S

on D⊗H2 with I⊗S on Dϕ⊗H2. Note that Lemma 3.3 implies that D and Dϕ are isomorphic
Hilbert spaces, so that these two avatars of I ⊗ S may be identified. Now, the commutant
of I ⊗ S is well-known. If the Hilbert space on which I ⊗ S lives is identified with a Hilbert
space of vector-valued functions, then this commutant consists of (multiplication by) operator-
valued bounded analytic functions on the disc. In particular, any unitary commuting with I⊗S
must be given by a unitary-valued analytic function. But, by the strong maximum modulus
principle, any unitary-valued analytic function is a constant function. Thus, reverting to the
tensor product notation, we see that any unitary commuting with I ⊗ S must be of the form
w⊗ I. Coming back to our particular situation, we conclude that there is a unitary w : D → Dϕ
such that W (I ⊗ D+

1 (ϕ))∗ = w ⊗ I. That is, W = w ⊗ D+
1 (ϕ). Similarly, since D−1 is the

representation associated with S∗, comparing the (3, 3)th entry of the intertwining relation, it
follows that there is a unitary w∗ : D∗ → Dϕ∗ such that W∗ = w∗ ⊗ D−1 (ϕ). Thus, we have
V = (w ⊗ D+

1 (ϕ)) ⊕ I ⊕ (w∗ ⊗ D−1 (ϕ)). To conclude the proof, it now suffices to show that
w = m0(ϕ,ϕ−1)u and w∗ = m0(ϕ,ϕ−1)u∗.

Now, equating the (1,2)th entries of the intertwining relation (using the new-found diagonal
formula for V ), we get iϕDϕ = (w ⊗ D+

1 (ϕ)c(ϕ, S))iDc(ϕ, T ). Evaluating both sides at an
arbitrary x ∈ H, we obtain Dϕ(x) ⊗ 1 = (wDc(ϕ, T )x) ⊗ (D+

1 (ϕ)c(ϕ, S)1). But a little com-
putation shows that D+

1 (ϕ)c(ϕ, S)1 = c(ϕ−1, ·)c(ϕ,ϕ−1(·)) = m0(ϕ,ϕ−1)1 (by Equation (3.9)
with ϕ1 = ϕ and ϕ2 = ϕ−1). So we get Dϕ(x)⊗1 = (m0(ϕ,ϕ−1)wDc(ϕ, T )x)⊗1 for all x ∈ H.
Hence, we have wDc(ϕ, T ) = m0(ϕ,ϕ−1)Dϕ = m0(ϕ,ϕ−1)uDc(ϕ, T ), where the last equality
comes from the defining equation for u from Lemma 3.3. Since c(ϕ, T ) is invertible and D has
dense range, this forces w = m0(ϕ,ϕ−1)u.

Similarly, equating the (2, 3)th entry in the intertwining relation, we obtain (iϕ∗D
ϕ
∗ )∗(w∗ ⊗

D−1 (ϕ)) = c(ϕ, T )(i∗D∗)
∗(I ⊗ c(ϕ, S∗)). Evaluating both sides at x∗ ⊗ 1, x∗ ∈ D∗, we get

(D−1 (ϕ)1)(0)(Dϕ
∗ )∗w∗x∗ = (c(ϕ, S∗)1)(0)c(ϕ, T )D∗∗x∗

= (c(ϕ, S∗)1)(0)(Dϕ
∗ )∗u∗x∗.

Here the last equality follows from the defining equation for u∗ given in Lemma 3.3. But
(D−1 (ϕ)1)(0) = m0(ϕ,ϕ−1)c(ϕ∗−1, 0) and, since 1 ∈ kerS∗, c(ϕ, S∗)(1)(0) = c(ϕ, 0). It is easy

to verify that c(ϕ∗−1, 0) = c(ϕ, 0) 6= 0. Therefore we get (Dϕ
∗ )∗w∗x∗ = m0(ϕ,ϕ−1)(Dϕ

∗ )∗u∗x∗
for all x∗ ∈ D∗. Thus (Dϕ

∗ )∗w∗ = m0(ϕ,ϕ−1)(Dϕ
∗ )∗u∗. Since (Dϕ

∗ )∗ has trivial kernel, it follows
that w∗ = m0(ϕ,ϕ−1)u∗. �
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Theorem 3.6. Let Θ and θ be the characteristic operator and characteristic function of a
contraction T . Let ϕ ∈ Möb . Let Θϕ and θϕ be the characteristic operator and characteristic
function of the contraction ϕ(T ). Then we have :

(a) Θϕ = (u∗ ⊗ D+
1 (ϕ))Θ(u ⊗ D+

1 (ϕ))−1. Hence, Θϕ coincides with (I ⊗ D+
1 (ϕ))Θ(I ⊗

D+
1 (ϕ))−1;
(b) θϕ(z) = u∗(θ ◦ ϕ−1)(z))u∗ for all z ∈ D. Hence, θϕ coincides with θ ◦ ϕ−1.

(Here u and u∗ are the unitaries given in Lemma 3.3.)

Proof. Recall that Θ (respectively Θϕ) is the operator of multiplication by θ (respectively θϕ).
Therefore, assuming (b) ( θϕ = u∗(θ ◦ ϕ−1)u∗), we get that, for f ∈ D ⊗H2 and ϕ in Möb,

Θϕ(u⊗D+
1 (ϕ))f = Θϕ(z 7→ uc(ϕ−1, z)f(ϕ−1z))

= (z 7→ θϕ(z)uc(ϕ−1, z)f(ϕ−1z))

= (z 7→ u∗θ(ϕ
−1z)c(ϕ−1, z)f(ϕ−1z))

= u∗D
+
1 (ϕ)(z 7→ θ(z)f(z))

= (u∗ ⊗D+
1 (ϕ))Θ(f),

so that Θϕ(u ⊗D+
1 (ϕ)) = (u∗ ⊗D+

1 (ϕ))Θ. Thus, (b) implies (a). Reversing this computation,
we see that (a) implies (b). So (a) and (b) are equivalent statements. So it suffices to prove (b).

To prove (b), notice the easily verifiable (and wellknown) identities

c(ϕ, z)c(ϕ,w) =
ϕ(z)− ϕ(w)

z − w

c(ϕ, z)c(ϕ,w) =
1− ϕ(z)ϕ(w)

1− zw̄
.

Now, in view of the formula for θ (and the corresponding formula for θϕ) from Theorem 2.6,
and the identities from Lemma 3.3 defining the unitaries u and u∗, we have:

u∗θ(z)u
∗Dϕ = u∗θ(z)Dc(ϕ, T )

= u∗D∗(I − zT ∗)−1(zI − T )c(ϕ, T )

= Dϕ
∗ c(ϕ, T )∗−1(I − zT ∗)−1(zI − T )c(ϕ, T )

= Dϕ
∗ (I − ϕ(z)ϕ(T )∗)−1(ϕ(z)I − ϕ(T ))

= θϕ(ϕ(z))Dϕ.

(Here, for the penultimate equality, we have used the two identities displayed above, with T in
place of w.) Since Dϕ has dense range, we get u∗θ(z)u

∗ = θϕ(ϕ(z)). Replacing ϕ(z) by z, we
obtain (b). �

Remark : While the formula in (b) above (as well as its proof) is well known and essentially
already contained in Sz-Nagy–Foias [14], the equivalent formula (a), describing the transfor-
mation property of the characteristic operator under the Möbius group, is new. So is the
obviously closely related Theorem 3.5 describing the transformation property of the minimal
unitary dilation itself under this group. We believe that, although the characteristic function
is a computationally useful tool (as we hope to display further in the planned sequel to this
paper), the characteristic operator is theoretically more basic. Accordingly, there ought to be a
straightforward (and more revealing) proof of part (a) of Theorem 3.6 directly from the dilation
theory (perhaps from Theorem 3.5) without having to go through the formula in part (b), as we
have been forced to go. Unfortunately we have failed to find this direct proof. An obstacle is
that the characteristic operator does not behave nicely with respect to the intertwining unitary
V of Theorem 3.5. In particular, V does not take the range of Θ to that of Θϕ.
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4. Dilating associated representations and the product formula

4.1. Dilation of representations. Recall from Section 1 that an associator is a Hilbert space
operator with an associated (projective) unitary representation of the group Möb. Thus all
associators are homogeneous operators, and all irreducible homogeneous operators are associa-
tors. The following theorem is contained in [5]. However, since a projective representation is a
Borel function satisfying a transformation property, to complete the proof of this theorem it is
necessary to verify that the extension σ̂ is a Borel function. This subtlety was overlooked in [5].

Theorem 4.1. Let T be a contractive associator on the Hilbert space H. Let σ be a projective

representation of Möb associated with T and let T̂ : Ĥ → Ĥ be the minimal unitary dilation

of T . Then there is a unique projective representation σ̂ of Möb living on Ĥ such that σ̂ is

associated with T̂ and extends σ (that is, σ occurs as a direct summand of σ̂). In consequence,

T̂ is an associator.

Proof. Fix ϕ ∈ Möb . Notice that for any unitary U and for ϕ ∈ Möb , ϕ(U) is a unitary.

Therefore, ϕ(T̂ ) is the minimal unitary dilation of ϕ(T ). Therefore, applying Lemma 2.1 to

T1 = ϕ(T ), T2 = T and U = σ(ϕ), we get a unique unitary σ̂(ϕ) on Ĥ extending σ(ϕ) such that

σ̂(ϕ)ϕ(T̂ ) = T̂ σ̂(ϕ).

This defines a function σ̂ : Möb → U(Ĥ). To complete the proof, it suffices to show that it
is indeed a projective representation of Möb.

Firstly, since σ : Möb → U(H) is a Borel map, the set {(ϕ, Û) : Û |H = σ(ϕ), Ûϕ(T̂ ) = T̂ Û}
is clearly a Borel subset of Möb × U(Ĥ). But, because of the strong uniqueness of the map σ̂
discussed above, this set is simply the graph of σ̂. Thus, σ̂ is a map between two standard Borel
spaces with a Borel graph. Therefore σ̂ is a Borel function (cf. Theorem 4.5.2 in [17]) .

Letm be the multiplier of the projective representation σ. Now, σ̂(ϕ1)σ̂(ϕ2) extends σ(ϕ1)σ(ϕ2)

and intertwines (ϕ1ϕ2)(T̂ ) and T̂ . Therefore, m(ϕ1, ϕ2)σ̂(ϕ1)σ̂(ϕ2) extendsm(ϕ1, ϕ2)σ(ϕ1)σ(ϕ2) =

σ(ϕ1ϕ2) and intertwines (ϕ1ϕ2)(T̂ ) with T̂ . Since σ̂(ϕ1ϕ2) does the same thing, the uniqueness
statement in Lemma 2.1 implies that

σ̂(ϕ1ϕ2) = m(ϕ1, ϕ2)σ̂(ϕ1)σ̂(ϕ2)

for all ϕ1, ϕ2 ∈ Möb . This proves that σ̂ is a projective representation. �

Clearly, a similar argument shows that the minimal isometric dilation T̃ of a contractive
associator T is again an associator, and any given (projective) representation σ associated with

T extends uniquely to a representation σ̃ associated with T̃ . But we can do even better. We find
explicit formulae for σ̃ and σ̂ in terms of σ. This is the content of the next few results. What is
even more surprising is that these formulae involve the natural discrete series (holomorphic and
anti-holomorphic) projective representations D±1 of Möb living on H2. (Recall Notation 3.1.)

Theorem 4.2. Let T be a contractive associator on a Hilbert space H with associated projective
representation σ. Let T̃ be the minimal isometric dilation of T on the Hilbert space (D⊗H2)⊕H
as given by Formula (2.7). Then the unique projective representation σ̃ associated with T̃ and
having σ as a direct summand is given by σ̃ = (π ⊗ D+

1 ) ⊕ σ, where π : Möb → U(D) is the
projective representation of Möb given by the formula

π(ϕ)D = m0(ϕ,ϕ−1)Dσ(ϕ)c(ϕ, T )−1, ϕ ∈ Möb.

Proof. Using Equation (2.7) and arguing as in the proof of Lemma 3.4, we get

ϕ(T̃ ) =

(
ϕ(I ⊗ S) (I ⊗ c(ϕ, S))iDc(ϕ, T )

0 ϕ(T )

)
.
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Now, let σ0 be the projective representation of Möb living in D ⊗H2 such that σ̃ = σ0 ⊕ σ.
Thus, σ0(ϕ)⊕ σ(ϕ) intertwines T̃ and ϕ(T̃ ). That is,

(4.12)

(
σ0(ϕ) 0

0 σ(ϕ)

)
ϕ(T̃ ) = T̃

(
σ0(ϕ) 0

0 σ(ϕ)

)
.

Substituting the formulae for T̃ and ϕ(T̃ ) and equating the (1, 1)th entry in the resulting
matrix equation, and arguing as in the proof of Theorem 3.5, we see that there is a unique
unitary π(ϕ) on D such that σ0(ϕ) = π(ϕ)⊗D+

1 (ϕ), that is, σ̃(ϕ) = (π(ϕ)⊗D+
1 (ϕ))⊕ σ. This

defines a Borel function π : Möb → U(D). Since D+
1 , σ and σ̃ are projective representations of

Möb and σ̃ = (π ⊗D+
1 )⊕ σ, it follows that π is a projective representation of Möb. It remains

to determine the formula for π.
Substituting in Equation (4.12) π(ϕ) ⊗ D+

1 (ϕ) in place of σ0(ϕ) and equating the (1, 2)th
entry and noting that D+

1 (ϕ)c(ϕ, ·) = D+
1 (ϕ)D+

1 (ϕ−1)1 = m0(ϕ,ϕ−1)1, we get π(ϕ)D =
m0(ϕ,ϕ−1)Dσ(ϕ)c(ϕ, T )−1. Since D has dense range in D, this formula determines π uniquely.

�

Theorem 4.3. If σ is an associated representation of a contractive associator T then the unique
projective representation σ̃∗ extending σ and associated with the minimal co-isometric dilation
T̃∗ of T is given by σ̃∗ = σ⊕ (π∗⊗D−1 ), where π∗ : Möb→ B(D∗) is the projective representation
of Möb given by the formula

π∗(ϕ)D∗ = m0(ϕ,ϕ−1)D∗σ(ϕ)c(ϕ, T )−1∗, ϕ ∈ Möb .

Proof. Arguing as in the proof of Theorem 4.2, we see that σ̃∗ = σ ⊕ (π∗ ⊗ D−1 ), where π∗
is a projective representation of Möb living on D∗. To find the formula for π∗, note that
T̃ ∗∗ is the minimal isometric dilation of the contractive associator T ∗ and σ# is an associated

representation of T ∗. Thus ϕ 7→ σ̃#
∗ (ϕ) = σ#(ϕ) ⊕ (π#

∗ (ϕ) ⊗m0(ϕ,ϕ−1)D+
1 (ϕ)) is the unique

representation associated with T̃ ∗∗ and extending σ#. Therefore, by Theorem 4.2 applied to T ∗,

we see that π#
∗ (ϕ)D∗ = D∗σ

#(ϕ)c(ϕ, T ∗)−1. That is,

π∗(ϕ)D∗ = π#
∗ (ϕ∗)D∗ = D∗σ(ϕ)c(ϕ∗, T ∗)−1.

But it is easy to see from Equation (3.11) that c(ϕ∗, z̄) = m0(ϕ,ϕ−1)c(ϕ, z). Hence c(ϕ∗, T ∗) =
m0(ϕ,ϕ−1)c(ϕ, T )∗. Thus we get the above formula for π∗. �

Since the minimal unitary dilation T̂ of a contraction T is built by gluing together its (minimal)
isometric and co-isometric dilations as described in Theorem 2.4, it follows that :

Theorem 4.4. If T is a contractive associator with associated representation σ then the unique

projective representation σ̂ extending σ and associated with the minimal unitary dilation T̂ of T
is given by the formula

σ̂ = (π ⊗D+
1 )⊕ σ ⊕ (π∗ ⊗D−1 ),

where π and π∗ are the projective representations of Möb living on D and D∗ given by Theorems
4.2 and 4.3.

The appearance of the representations π and π∗ in these two theorems is rather mysterious.
We give below a direct verification that these are indeed projective representations of the group
Möb.

Theorem 4.5. Let T be a contractive associator with associated representation σ. Then the
functions π : Möb → U(D) and π∗ : Möb → U(D∗) given by the formula

π(ϕ)D = m0(ϕ,ϕ−1)Dσ(ϕ)c(ϕ, T )−1, π∗(ϕ)D∗ = m0(ϕ,ϕ−1)D∗σ(ϕ)c(ϕ, T )−1∗

are projective representations of Möb. If m is the multiplier of σ then the common multiplier of
π and π∗ is m ·m0 (pointwise product).
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Proof. Clearly π and π∗ are Borel functions. For ϕ1, ϕ2 in Möb we get from Equation 3.9

π(ϕ1)π(ϕ2)D = m0(ϕ2, ϕ
−1
2 )π(ϕ1)Dσ(ϕ2)c(ϕ2, T )−1

= m0(ϕ1, ϕ
−1
1 )m0(ϕ2, ϕ

−1
2 )Dσ(ϕ1)c(ϕ1, T )−1σ(ϕ2)c(ϕ2, T )−1

= m0(ϕ1, ϕ
−1
1 )m0(ϕ2, ϕ

−1
2 )Dσ(ϕ1)σ(ϕ2)c(ϕ1, ϕ2(T ))−1c(ϕ2, T )−1

= m̄(ϕ1, ϕ2)m0(ϕ1, ϕ
−1
1 )m0(ϕ2, ϕ

−1
2 )m0(ϕ−1

2 , ϕ−1
1 )Dσ(ϕ1ϕ2)c(ϕ1ϕ2, T )−1

= m̄(ϕ1, ϕ2)m0(ϕ1, ϕ
−1
1 )m0(ϕ2, ϕ

−1
2 )m0(ϕ−1

2 , ϕ−1
1 )m0(ϕ1ϕ2, ϕ

−1
2 ϕ−1

1 )π(ϕ1ϕ2)D.

Applying Equation (1.2) with ϕ3 = ϕ−1
2 ϕ−1

1 , we get

m0(ϕ1, ϕ2)m0(ϕ1ϕ2, ϕ
−1
2 ϕ−1

1 ) = m0(ϕ1, ϕ
−1
1 )m0(ϕ2, ϕ

−1
2 ϕ−1

1 ).

Applying Equation (1.2) to m0 after the substitutions ϕ1 7→ ϕ2, ϕ2 7→ ϕ−1
2 , ϕ3 7→ ϕ−1

1 , we get

m0(ϕ2, ϕ
−1
2 ) = m0(ϕ2, ϕ

−1
2 ϕ−1

1 )m0(ϕ−1
2 , ϕ−1

1 ).

Thus

m0(ϕ1, ϕ2)m0(ϕ1ϕ2, ϕ
−1
2 ϕ−1

1 )m0(ϕ1, ϕ
−1
1 ) = m0(ϕ2, ϕ

−1
2 ϕ−1

1 ) = m0(ϕ2, ϕ
−1
2 )m0(ϕ−1

2 , ϕ−1
1 ).

Hence we get

(4.13) m0(ϕ1, ϕ
−1
1 )m0(ϕ2, ϕ

−1
2 )m0(ϕ1ϕ2, ϕ

−1
2 ϕ−1

1 )m0(ϕ−1
2 , ϕ−1

1 ) = m0(ϕ1, ϕ2).

Thus, π(ϕ1ϕ2) = (m·m0)(ϕ1, ϕ2)π(ϕ1)π(ϕ2). It is clear from the formula for π that π(id) = I.
Therefore, to show that π is a (projective unitary) representation with multiplier m ·m0, it only
remains to establish that π(ϕ) is unitary for all ϕ in Möb. In view of the ‘quasi-homomorphism’
property of π already verified, it suffices to show that π(ϕ) is an isometry. Now, to verify that
π(ϕ) is an isometry, one observes:

〈π(ϕ)Dx, π(ϕ)Dy〉 = 〈Dσ(ϕ)c(ϕ, T )−1x,Dσ(ϕ)c(ϕ, T )−1y〉
= 〈σ(ϕ)∗D∗Dσ(ϕ)c(ϕ, T )−1x, c(ϕ, T )−1y〉
= 〈(Dϕ)∗Dϕc(ϕ, T )−1x, c(ϕ, T )−1y〉
= 〈c(ϕ, T )∗D∗Dx, c(ϕ, T )−1y〉
= 〈D∗Dx, y〉
= 〈Dx,Dy〉

for x, y ∈ H. Here to get the fourth equality, we have used Lemma 3.3. This proves that π
is indeed a projective unitary representation with multiplier m ·m0. An analogous calculation
shows that π∗ is also a projective unitary representation with multiplier m ·m0. �

4.2. The Product Formula. In this subsection we present the product formula for homoge-
neous characteristic functions. An existential proof of the direct part of this result was given in
[2] for the class of irreducible homogeneous contractions. The theorem presented here is con-
structive and works in the greater generality of contractive associators. (Recall from [4, Theorem
2.2] that all irreducible homogeneous operators are associators; but the converse is not true.)
Moreover, the converse part of the following Theorem is entirely new.

Let A(D) be the Banach space of all continuous functions on D̄ which are holomorphic on D,
with sup norm. Clearly, Möb may be viewed as a subset of A(D).

Lemma 4.6. Möb is a total set in A(D).

Proof. It suffices to show that if η is a bounded linear functional on A(D) such that η(ϕ) = 0 for
all ϕ ∈ Möb,then η ∼= 0. Note that A(D) may be viewed as a closed subspace of C(T), the space
of continuous functions on T. Therefore, by Hahn-Banach Theorem and the Riesz representation
Theorem, there is a complex Borel measure µ on T such that η(f) =

∫
fdµ, f ∈ A(D). For

n ≥ 0, let en in A(D) be the function z 7→ zn. By Mergelyan’s Theorem, the set {en : n ≥ 0} is
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a total set in A(D). Therefore, to complete the proof, it suffices to show that
∫
ϕdµ = 0 for all

ϕ in Möb implies
∫
endµ = 0 for all n ≥ 0. Take ϕ(z) = z−α

1−ᾱz , where α ∈ D is arbitrary. Note

that we have the representation (Taylor expansion)

ϕ = −αe0 +

∞∑
n=1

(1− αᾱ)ᾱn−1en,

where the series converges in the norm of A(D). Therefore, integrating with respect to µ, we get

−α
∫
e0dµ+

∞∑
n=1

(1− αᾱ)ᾱn−1

∫
endµ = 0

for all α ∈ D. Hence
∫
endµ = 0 for all n ≥ 0. �

Notation 4.7. a) For z ∈ D, ϕz is the unique involution (element of order 2) in Möb
which interchanges 0 and z. Explicitly, we have ϕz(w) = z−w

1−z̄w for w ∈ D. Also,

K = {ϕ ∈ Möb : ϕ(0) = 0} = {z 7→ βz : β ∈ T} is the standard maximal compact
subgroup of Möb.

b) Let π, π∗ be two compatible projective unitary representation of Möb (i.e., π, π∗ have a
common multiplier). Say π, π∗ live on the Hilbert spaces D,D∗ respectively. Then we
define the Banach subspace V (π, π∗) of B(D,D∗) by

V (π, π∗) =
{
C ∈ B(D,D∗) : Cπ(k) = π∗(k)C for all k ∈ K

and the function z 7→ π∗(ϕz)
∗Cπ(ϕz) is holomorphic on D

}
.

Theorem 4.8. Let T be a cnu contraction with characteristic function θ. Then T is an asso-
ciator if and only if there are compatible projective unitary representations π, π∗ of Möb and a
pure contraction C ∈ V (π, π∗) such that θ(z) = π∗(ϕz)

∗Cπ(ϕz) for all z ∈ D.

Proof. Let T be a cnu contraction with associated representation σ and characteristic function
θ. Define C by C = θ(0). Thus by Theorem 2.6 C : D → D∗ is given by x 7→ −Tx. Let π and
π∗ be given by Theorem 4.5. By Theorem 4.5, π and π∗ are compatible.

Using the formulae for π(ϕ)D and π∗(ϕ)D∗ from Theorem 4.5 and the easy identity CD =
−D∗T , we get, when T is a cnu contractive associator and ϕ ∈ Möb,

π∗(ϕ)∗Cπ(ϕ)D = m0(ϕ,ϕ−1)π∗(ϕ)∗CDσ(ϕ)c(ϕ, T )−1

= −m0(ϕ,ϕ−1)π∗(ϕ)∗D∗Tσ(ϕ)c(ϕ, T )−1

= −D∗c(ϕ, T )∗σ(ϕ)∗Tσ(ϕ)c(ϕ, T )−1

= −D∗c(ϕ, T )∗ϕ(T )c(ϕ, T )−1.

Thus

(4.14) π∗(ϕ)∗Cπ(ϕ)D = −D∗c(ϕ, T )∗ϕ(T )c(ϕ, T )−1, ϕ ∈ Möb.

Taking ϕ = k ∈ K in Equation (4.14), we get π∗(k)∗Cπ(k)D = −D∗T = CD, k ∈ K. Since D
has dense range, this shows that

Cπ(k) = π∗(k)C, k ∈ K.
Thus C intertwines π|K and π∗|K.

Taking ϕ = ϕz, z ∈ D, in Equation (4.14) and noting that

c(ϕz, T )∗ϕz(T )c(ϕz, T )−1 = (I − zT ∗)−1(T − zI),

we get π∗(ϕz)
∗Cπ(ϕz)D = D∗(I − zT ∗)−1(zI − T ) = θ(z)D (by Theorem 2.6). Since D has

dense range, it follows that θ(z) = π∗(ϕz)
∗Cπ(ϕz) for all z ∈ D. Since θ is holomorphic, this

shows that C is a pure contraction belonging to V (π, π∗).
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For the converse, let π and π∗ be compatible representations of Möb and C be a pure con-
traction in V (π, π∗). Thus θ(z) := π∗(ϕz)

∗Cπ(ϕz) is a holomorphic function on D. Since C
is a pure contraction and θ(z) is obtained from C by pre- and post-multiplying by unitaries,
it follows that θ is pure contraction valued. Hence by [14], θ is the characteristic function of
a cnu contraction T : H → H. Since ϕ0 ∈ K, C intertwines π(ϕ0) with π∗(ϕ0). Therefore
C = π∗(ϕ0)∗Cπ(ϕ0) = θ(0). Since θ is given in terms of T by Theorem 2.6, it follows that the
domain and codomain of C are the defect spaces D, D∗ of T . For ϕ ∈ Möb and w ∈ D, write
ϕwϕ = kϕz where k ∈ K and z = (ϕwϕ)−1(0) = ϕ−1(w). Then we have

π∗(ϕ)∗θ(w)π(ϕ) = π∗(ϕ)∗π∗(ϕw)∗Cπ(ϕw)π(ϕ)

= π∗(ϕwϕ)∗Cπ(ϕwϕ)

= π∗(kϕz)
∗Cπ(kϕz)

= π∗(ϕz)
∗π∗(k)∗Cπ(k)π(ϕz)

= π∗(ϕz)
∗Cπ(ϕz)

= θ(ϕ−1(w)).

(Here, for the second and fourth equality we have used the assumption that π∗ and π are pro-
jective representations with a common multiplier. For the penultimate equality, the assumption
that C intertwines π|K and π∗|K has been used.) Now, part (b) of Theorem 3.6 implies that
the characteristic function θϕ of ϕ(T ) is related to θ by the equation

θϕ(w) = u∗(ϕ)π∗(ϕ)∗θ(w)(u(ϕ)π(ϕ)∗)∗,

where u(ϕ), u∗(ϕ) are the unitaries given by Lemma 3.3. Thus, θϕ coincides with θ. Therefore,

following the proof of Theorem 2.7 (with T̃ = ϕ(T ) and v(ϕ) = u(ϕ)π(ϕ)∗, v∗(ϕ) = u∗(ϕ)π∗(ϕ)∗)

we get a unitary U(ϕ) : Ĥ → Ĥϕ such that U(ϕ) maps H onto H and ϕ̂(T ) = U(ϕ)T̂U(ϕ)∗. Let
σ(ϕ) : H → H be the unitary obtained by restricting m0(ϕ,ϕ−1)U(ϕ)∗ to H. Since T and ϕ(T )

are the compressions of T̂ and ϕ̂(T ) (respectively) to H, it follows that ϕ(T ) = σ(ϕ)∗Tσ(ϕ),
ϕ ∈ Möb. Therefore, to complete the proof, it suffices to show that ϕ 7→ σ(ϕ) is a projective
unitary representation of Möb. We shall do so by finding an explicit formula for σ(ϕ). Indeed
we shall find a total subset Z of H on which σ(ϕ) acts as a signed permutation.

Explicitly, for n ≥ 0, let en ∈ A(D) be as in the proof of Lemma 4.6. Then the proof of
Theorem 2.7 (converse part) shows that

X :=
{
en(T̂ )(x⊗ 1) : n ≥ 0, x ∈ D ∪ D∗} ∪ {en(T̂ )∗(x⊗ 1) : n ≥ 0, x ∈ D ∪ D∗

}
is a total set in Ĥ, and U(ϕ) is given on this total set by the formulae (for n ≥ 0, x ∈ D, x∗ ∈ D∗)

U(ϕ)(en(T̂ )(x⊗ 1)) = en(ϕ̂(T ))(u(ϕ)π(ϕ)∗x⊗ 1)

U(ϕ)(en(T̂ )∗(x⊗ 1)) = en(ϕ̂(T ))∗(u(ϕ)π(ϕ)∗x⊗ 1)

U(ϕ)(en(T̂ )(x∗ ⊗ 1)) = en(ϕ̂(T ))(u∗(ϕ)π∗(ϕ)∗x∗ ⊗ 1)

U(ϕ)(en(T̂ )∗(x∗ ⊗ 1)) = en(ϕ̂(T ))∗(u∗(ϕ)π∗(ϕ)∗x∗ ⊗ 1).

Since, by the spectral theorem, f 7→ f(T̂ ) is a contractive linear transformation from A(D) to

B(Ĥ) and since the set X above is total in Ĥ, Lemma 4.6 implies that the set

Y := {ψ(T̂ )(x⊗ 1) : ψ ∈ Möb, x ∈ D ∪ D∗} ∪ {ψ(T̂ )∗(x⊗ 1) : ψ ∈ Möb, x ∈ D ∪ D∗}
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is also a total set in Ĥ, and U(ϕ) is given on this total set by the formulae (for ψ ∈ Möb, x ∈ D,
x∗ ∈ D∗)

U(ϕ)(ψ(T̂ )(x⊗ 1)) = ψ(ϕ̂(T ))(u(ϕ)π(ϕ)∗x⊗ 1)

U(ϕ)(ψ(T̂ )∗(x⊗ 1)) = ψ(ϕ̂(T ))∗(u(ϕ)π(ϕ)∗x⊗ 1)

U(ϕ)(ψ(T̂ )(x∗ ⊗ 1)) = ψ(ϕ̂(T ))(u∗(ϕ)π∗(ϕ)∗x∗ ⊗ 1)

U(ϕ)(ψ(T̂ )∗(x∗ ⊗ 1)) = ψ(ϕ̂(T ))∗(u∗(ϕ)π∗(ϕ)∗x∗ ⊗ 1).

For ψ in Möb, x ∈ D, x∗ ∈ D∗, define the vectors v[ψ, x], v∗[ψ, x∗] in H by

v[ψ, x] := c(ψ, T )∗D∗x, v∗[ψ, x∗] := c(ψ, T )D∗∗x∗.

Let p be the orthogonal projection from Ĥ onto H. It follows from Lemma 3.4 that, for x ∈ D,
x∗ ∈ D∗,

p(ψ(T̂ )(x⊗ 1)) = 0 = p(ψ(T̂ )∗(x∗ ⊗ 1)),

and, in terms of the notation in Lemma 3.4,

(4.15)

{
p(ψ(T̂ )∗(x⊗ 1)) =

(
Aψ12

)∗
(x⊗ 1) = c(ψ, 0)v[ψ, x],

p(ψ(T̂ )(x∗ ⊗ 1)) = Aψ23(x∗ ⊗ 1) = c(ψ, 0)v∗[ψ, x∗].

Since the image under p of the total subset Y of Ĥ is a total subset of H, and since c(ψ, 0) 6= 0,
it follows that the set

(4.16) Z := {v[ψ, x] : ψ ∈ Möb, x ∈ D} ∪ {v∗[ψ, x∗] : ψ ∈ Möb, x∗ ∈ D∗}

is a total subset of H.
Let V (ϕ) : Ĥ → Ĥϕ be the 3× 3 block diagonal unitary given by

V (ϕ) := diag(m0(ϕ,ϕ−1)u(ϕ)⊗D+
1 (ϕ), I, m0(ϕ,ϕ−1)u∗(ϕ)⊗D−1 (ϕ)).

By Theorem 3.5, we have ϕ̂(T ) = V (ϕ)ϕ(T̂ )V (ϕ)∗, and hence ψ(ϕ̂(T )) = V (ϕ)(ψϕ)(T̂ )V (ϕ)∗.

Therefore, letting q be the orthogonal projection from Ĥϕ onto H, we have

qU(ϕ)(ψ(T̂ )∗(x⊗ 1)) = q(ψ(ϕ̂(T ))∗(u(ϕ)π(ϕ)∗x⊗ 1))

= m0(ϕ,ϕ−1)
(
Aψϕ12

)∗
(π(ϕ)∗x⊗D+

1 (ϕ)∗1)

= m0(ϕ,ϕ−1)(c(ψϕ, S)∗D+
1 (ϕ)∗1)(0)v[ψϕ, π(ϕ)∗x].

qU(ϕ)(ψ(T̂ )(x∗ ⊗ 1)) = q(ψ(ϕ̂(T ))(u∗(ϕ)π∗(ϕ)∗x∗ ⊗ 1))

= Aψϕ23 (π∗(ϕ)∗x∗ ⊗D−1 (ϕ)∗1)

= m0(ϕ,ϕ−1)(c(ψϕ, S∗)D−1 (ϕ)∗1)(0)v∗[ψϕ, π∗(ϕ)∗x∗].

Now we compute

(c(ψϕ, S)∗D+
1 (ϕ)∗1)(0) = 〈c(ψϕ, S)∗D+

1 (ϕ)∗1,1〉
= 〈1, D+

1 (ϕ)c(ψϕ, S)1〉
= 〈1, D+

1 (ϕ)c(ψϕ, ·)〉
= 〈1, c(ϕ−1, ·)c(ψϕ,ϕ−1(·))〉
= m0(ϕ,ϕ−1ψ−1)〈1, c(ψ, ·)〉

= c(ψ, 0)m0(ϕ,ϕ−1ψ−1).

Here the penultimate equality is by Equation (3.9) with ϕ1 = ϕ, ϕ2 = ϕ−1ψ−1.
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Note that, up to scaling, c(ϕ∗, ·) is the Szegö kernel at ϕ−1(0). Therefore, c(ϕ∗, ·) is an
eigenvector of S∗ with eigenvalue ϕ−1(0). Hence c(ϕ∗, ·) is an eigenvector of c(ψϕ, S∗) with
eigenvalue c(ψϕ,ϕ−1(0)). Hence we get

(c(ψϕ, S∗)D−1 (ϕ)∗1)(0) = m0(ϕ,ϕ−1)(c(ψϕ, S∗)D−1 (ϕ−1)1)(0)

= (c(ψϕ, S∗)c(ϕ∗, ·))(0)

= c(ψϕ,ϕ−1(0))c(ϕ∗, 0)

= c(ψϕ,ϕ−1(0))c(ϕ−1, 0)

= c(ψ, 0)m0(ϕ,ϕ−1ψ−1).

(Here the last equality is by (3.9) with ϕ1 = ϕ, ϕ2 = ϕ−1ψ−1, z = 0.) Therefore we have

(4.17)

{
qU(ϕ)(ψ(T̂ )∗(x⊗ 1)) = c(ψ, 0)m0(ϕ,ϕ−1)m0(ϕ,ϕ−1ψ−1)v[ψϕ, π(ϕ)∗x]

qU(ϕ)(ψ(T̂ )(x∗ ⊗ 1)) = c(ψ, 0)m0(ϕ,ϕ−1)m0(ϕ,ϕ−1ψ−1)v∗[ψϕ, π∗(ϕ)∗x∗].

Since c(ψ, 0) 6= 0 and σ(ϕ)∗p = m0(ϕ,ϕ−1)qU(ϕ), it follows from the equations (4.15) and
(4.17) that σ(ϕ)∗ maps v[ψ, x] to m0(ϕ,ϕ−1ψ−1) v[ψϕ, π(ϕ)∗x] and v∗[ψ, x∗] to m0(ϕ,ϕ−1ψ−1)
v∗[ψϕ, π∗(ϕ)∗x∗]. Doing the substitutions ψ 7→ ψϕ−1, x 7→ π(ϕ)x, x∗ 7→ π∗(ϕ)x∗, we conclude
that σ(ϕ) is determined by its values on the total set Z of Equation (4.16) by the formula

(4.18)

{
σ(ϕ)(v[ψ, x]) = m0(ϕ,ψ−1)v[ψϕ−1, π(ϕ)x],

σ(ϕ)(v∗[ψ, x∗]) = m0(ϕ,ψ−1)v∗[ψϕ
−1, π∗(ϕ)x∗],

for x ∈ D, x∗ ∈ D∗, ψ ∈ Möb.
Let M be the linear span of Z. Define σ0 : Möb → B(M) by ϕ 7→ σ(ϕ)|M . It is immediate

from the formula (4.18) that the graph of σ0 is a Borel subset of Möb × B(M). But, since
M is dense in H, B(M) may be identified with B(H) by the restriction map B(H) → B(M),
which is a homeomorphism. The graph of σ0 may be identified with the graph of σ via this
homeomorphism. Thus the graph of σ is Borel. Therefore, as in the proof of Theorem 4.1
one concludes that σ is a Borel map. Clearly, (4.18) shows that σ(id) fixes each vector in Z.
Therefore σ(id) = I.

Let m be the common multiplier of π and π∗. Applying Equation (1.1) to π, π∗ and applying
Equation (1.2) to m0, it is trivial to conclude from Equation (4.18) that the two unitaries
σ(ϕ1ϕ2) and (m ·m0)(ϕ1, ϕ2)σ(ϕ1)σ(ϕ2) agree on the total set Z. Therefore these two unitaries
are equal. Thus, σ is a projective representation with multiplier m · m0 (pointwise product).
Since σ is associated with T , T is an associator. �

5. Contractive associators in the Cowen-Douglas classes: the generic case

By Theorem 4.8, the characteristic function of any cnu contractive associator is given as a
product involving two “companion representations” π, π∗ of Möb, and a “middle operator” C.
The object of this section and the next is to demonstrate that, in any concrete case, the explicit
determination of this product formula is a highly non-trivial and challenging problem.

Note that, for any operator T , T is a cnu contraction if and only if T ∗ is. Further, T is an
associator if and only if T ∗ is. Indeed, if the representation σ is associated with T , then σ# is an
associated representation of T ∗. If θ is the characteristic function of T , then the characteristic
function θ∗ of T ∗ is given by the formula θ∗(z) = θ(z̄)∗, z ∈ D. In consequence, if π, π∗, C are

the companions and the middle operator for T , then those of T ∗ are π#
∗ , π

#, C∗ (respectively).
Thus, the explicit determination of the product formula for T and T ∗ are equivalent problems.

We shall say that an associator T is multiplicity free if T has an associated representation σ
which is multiplicity free, i.e., σ is a direct sum of mutually inequivalent irreducible projective
unitary representations of Möb.
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Recall that for positive integer n, the Cowen-Douglas class of rank n, denoted Bn(D), is the
class of all bounded linear operators T such that for all w ∈ D, T − wI has dense range and a
kernel of dimension n. We shall denote by B∗n(D) the class of all operators whose adjoint is in
Bn(D).

In Theorem 5.13 of this section, we determine the product formula for generic contractive
associators in B∗n(D) such that the associated representation is multiplicity free. All multiplicity
free irreducible associators in B∗n(D) were described in [9]. In [10], it was shown that up to unitary
equivalence these are all. We now describe them explicitly. However, our parametrization is
slightly different. The parameters µi here are µ2

i in the notation of [9, 10]. We have been forced
into this re-parametrization by the contingencies of the proofs.

For positive real numbers λ, let H(λ) denote the Hilbert space of holomorphic functions on D
with reproducing kernel (z, w) 7→ (1 − zw̄)−λ. Let D+

λ denote the holomorphic Discrete series

representation of Möb living on H(λ) (see [2]). It is given by the formula

(D+
λ (ϕ−1)f)(z) = (ϕ′(z))

λ
2 f(ϕ(z)), z ∈ D, ϕ ∈ Möb.

Here the branch of the function (ϕ, z) 7→ (ϕ′(z))
λ
2 is chosen to be Borel in the first argument

and analytic in the second. Let H(λ)
n denote the Hilbert space ⊕n−1

i=0H
(λi), where λi = λ+ 2i and

n ∈ N. Given an n - tuple of strictly positive real numbers µ := (µ0, µ1, . . . , µn−1), let Γ(λ,µ) be

the map: H(λ)
n → Hol(D,Cn) defined by:(

Γ(λ,µ)(f)
)
`

=
∑

0≤j≤`

√
µj
(
`
j

)
(λ+ 2j)`−j

f
(`−j)
j

for 0 ≤ ` < n, f = ⊕0≤j<nfj ∈ H(λ)
n .

Here, and in what follows, for a real number x and a non-negative integer p, the Pochammer
symbol (x)p is defined by the formula:

(x)p :=
∏

0≤i<p
(x+ i).

Finally, let H(λ,µ) be the image of Γ(λ,µ). The map Γ(λ,µ) is injective, see [9]. Therefore,

transplanting via Γ(λ,µ) the inner product from H(λ)
n makes H(λ,µ) a reproducing kernel Hilbert

space. The representation

D(λ,µ) := Γ(λ,µ)
( ⊕

0≤i<n
D+
λi

)(
Γ(λ,µ)

)∗
is a projective unitary representation of Möb living on H(λ,µ). The multiplication operators
M (λ,µ) on the Hilbert space H(λ,µ) are irreducible associators in B∗n(D) with associated repre-

sentation D(λ,µ). These are the only irreducible associators in B∗n(D) whose associated repre-

sentation is multiplicity free (see [10, Corollary 4.1]). Further, M (λ,µ) and M (λ′,µ′) are unitarily
equivalent if and only if λ = λ′ and µ and µ′ differ by a scalar multiple.

The first lemma of this section is essentially Lemma 5.1 in [8].

Lemma 5.1 (Faraut-Koranyi). Let H be a functional Hilbert space consisting of Cn valued
functions on a set Ω. Suppose H is the orthogonal direct sum of m non-trivial subspaces Hj with
corresponding reproducing kernels Kj (0 ≤ j < m). Let aj, 0 ≤ j < m, be real numbers. Then
the kernel

∑
0≤j<m ajKj is non-negative definite if and only if aj ≥ 0 for all j.

Proof. The “if” part is trivial. To prove the “only if” part, let Pj : H → Hj be the orthog-
onal projections. Note that the reproducing kernel of H is K :=

∑
0≤j<mKj and we have

PjK(·, w)ξ = Kj(·, w)ξ for w ∈ Ω, ξ ∈ Cn.
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Take f =
∑`

p=1 bpK(·, wp)ξp, where bp ∈ C, wp ∈ Ω, ξp ∈ Cn. We observe:

∑
0≤j<m

aj‖Pjf‖2 =
∑̀
p,q=1

bpb̄q
〈 ∑

0≤j<m
ajKj(wq, wp)ξp, ξq

〉
Cn ≥ 0.

Here, the inequality holds because of our assumption that the kernel
∑

0≤j<m ajKj is non-
negative definite. Since the functions f as above form a dense set in H, it follows that∑

0≤j<m aj‖Pjf‖2 ≥ 0 for all f in H. In particular, fixing an index j and taking f ∈ Hj ,
f 6= 0, we get aj‖f‖2 ≥ 0. Hence aj ≥ 0. �

Lemma 5.2. Let λ ∈ R, µ = (µ0, . . . , µn−1) ∈ Rn, where µ0 > 0. Then the kernel B(λ,µ) :

D× D→ Cn×n defined by

B(λ,µ)(z, w) =
(( `∧p∑

j=0

(
`
j

) (
p
j

)
µj

(λ+ 2j)`−j(λ+ 2j)p−j
∂`−j ∂̄p−j(1− zw̄)−(λ+2j)

))
0≤`,p<n

is non-negative definite if and only if λ ≥ 0 and µ ≥ 0 (entrywise). If λ ≥ 0, µ ≥ 0, then B(λ,µ)

is the reproducing kernel of H(λ,µ).

(Here ∂ and ∂̄ denote partial differentiation with respect to z and w̄, respectively.)

Proof. Suppose B(λ,µ) is a non-negative definite kernel. Then each diagonal entry in the matrix
defining B(λ,µ) is a scalar valued non-negative definite kernel on D. In particular, the kernel
(z, w) 7→ µ0(1− zw̄)−λ, being the top left corner entry of B(λ,µ), is non-negative definite. Since
µ0 > 0, this forces λ ≥ 0.

Let e =
∑

0≤j<n ej , where {ej : 0 ≤ j < n} is the standard basis of Rn. Then, by the

construction of the functional Hilbert space H(λ,e), this space is the orthogonal direct sum of

n subspaces with reproducing kernels B(λ,ej), 0 ≤ j < n. Since B(λ,µ) =
∑

0≤j<n µjB
(λ,ej) is

assumed to be non-negative definite, it therefore follows from Lemma 5.1 that µ ≥ 0.

For the converse, note that when λ ≥ 0, µ ≥ 0, [9] shows that B(λ,µ) is the reproducing kernel

of H(λ,µ), and hence it is non-negative definite. �

For integers k ≥ 0 and real λ′ ≥ λ + 2k, λ ≥ 0, let ∂k : H(λ) → H(λ′) denote the bounded
operator of k times differentiation. The exact domain and co-domain of any occurrence of this
operator should be clear from the context.

Lemma 5.3. For 0 ≤ j ≤ i, define the operator aij : H(λ+2j) → H(λ+2i) by

aij =

{
M (λ+2i) if i = j,

− (j+1)i−j

(λ+2j)2i−2j−1
∂i−j−1 if i > j.

Let A : H(λ)
n → H(λ)

n be the operator
(

Γ(λ,µ)
)∗
M (λ,µ)Γ(λ,µ). Then A admits a block decompo-

sition of the form A = ((Aij))
n−1
i,j=0, where Aij = 0 for i < j and Aij =

√
µj
µi
aij for i ≥ j.

Proof. We verify the equality Γ(λ,µ)A = M (λ,µ)Γ(λ,µ), where A is the block operator given

in this lemma. Note that, for 0 ≤ ` < n and f = ⊕n−1
i=o fi ∈ H

(λ)
n , the `th component of(

Γ(λ,µ)A −M (λ,µ)Γ(λ,µ)
)
f is

∑`−1
j=0 αj

√
µjf

(`−j−1)
j , where αj is the difference between the two

sides of (5.19) below. Therefore to complete the proof it suffices to show that:

(5.19)
l∑

i=j+1

(j + 1)i−j
(
l
i

)
(λ+ 2j)2i−2j−1(λ+ 2i)l−i

=
(l − j)

(
l
j

)
(λ+ 2j)l−j

, 0 ≤ j < l.
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Note that it is enough to prove the identity (5.19) for j = 0. The general identity then follows
from this special case after the substitutions λ 7→ λ+ 2j, i 7→ i− j and ` 7→ `− j.

Now using the trivial identity

1

(λ)`+k
− 1

(λ)2k+1(λ+ 2k + 2)`−k−1
=
`− k − 1

(λ)`+k+1
, 1 ≤ k < `,

it is easy to prove by finite induction on k that

k∑
i=1

i!
(
`
i

)
(λ)2i−1(λ+ 2i)`−i

=
`

(λ)`
− (`− k)k+1

(λ)`+k

for 1 ≤ k ≤ `. The j = 0 case of the identity (5.19) is just the k = ` case of the last identity. �

Lemma 5.4. For 0 ≤ j ≤ i, define the operator bij : H(λ+2j) → H(λ+2i+1) by bij =
(j+1)i−j

(λ+2j)2i−2j
∂i−j .

Let B : H(λ)
n → H(λ+1)

n be the operator
(

Γ(λ+1,µ′)
)∗

iΓ(λ,µ), where i : H(λ,µ) → H(λ+1,µ′) is the

inclusion map. Then B admits a block decomposition of the form B = ((Bij))
n−1
i,j=0 where Bij = 0

for i < j, and Bij =
√

µj
µ′i
bij for i ≥ j.

Proof. We verify the equality Γ(λ+1,µ′)B = iΓ(λ,µ), where B is the block operator given above.

Note that, for 0 ≤ ` < n and f = ⊕n−1
j=0 fj ∈ H

(λ)
n , the `th component of

(
Γ(λ+1,µ′)B−iΓ(λ,µ)

)
f is∑`

j=0 βj
√
µjf

(`−j)
j , where βj is the difference between the two sides in (5.20) below. Therefore,

to complete the proof, it suffices to show that:

(5.20)
l∑
i=j

(j + 1)i−j
(
l
i

)
(λ+ 2j)2i−2j(λ+ 2i+ 1)l−i

=

(
l
j

)
(λ+ 2j)l−j

, 0 ≤ j ≤ l.

Note that to prove the identity (5.20), it is enough to verify it for the case j = 0. The general
case follows from its special case j = 0 on substituting i 7→ i− j, ` 7→ `− j and λ 7→ λ+ 2j.

Using the trivial identity

1

(λ)`+k+1
− 1

(λ)2k+2((λ+ 2k + 3)`−k−1
=
`− k − 1

(λ)`+k+2
, 0 ≤ k < `,

it is easy to prove by finite induction on k that , for 0 ≤ k ≤ `,
k∑
i=0

i!
(
`
i

)
(λ)2i(λ+ 2i+ 1)`−i

=
1

(λ)`
− (`− k)k+1

(λ)`+k+1
.

The j = 0 case of (5.20) is just the case k = ` of this last identity. �

Remark 5.5. Note that Lemma 5.4 shows that for all λ ≥ 0 and all µ, µ′ ∈ Rn+, the Hilbert

space H(λ,µ) is contained in H(λ+1,µ′), and the corresponding inclusion map is bounded. Since the

polynomials are dense in all these spaces, it follows that H(λ,µ) is densely contained in H(λ+1,µ′).

Lemma 5.6. The operator M (λ,µ) is a contraction if and only if λ ≥ 1 and
µk+1

µk
≥ (k+1)2

(λ+2k−1)(λ+2k)

for 0 ≤ k ≤ n− 2.

Proof. Put λ′′ = λ− 1 and define µ′′ = (µ′′0, . . . µ
′′
n−1) by

(5.21) µ′′0 = µ0, µ
′′
k+1 = µk+1 −

(k + 1)2µk
(λ+ 2k − 1)(λ+ 2k)

, 0 ≤ k < n− 1.

Then a computation shows that

(5.22) (1− zw̄)B(λ,µ)(z, w) = B(λ′′,µ′′)(z, w).
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It is well known that if H is a Hilbert space of holomorphic functions on D with reproducing
kernel K, then the multiplication operator M on H is a contraction if and only if the kernel
(z, w) 7→ (1− zw̄)K(z, w) is non-negative definite. Therefore, Lemma 5.2 implies that M (λ,µ) is
a contraction if and only if λ′′ ≥ 0, µ′′ ≥ 0. �

Lemma 5.6 prompts the following definition.

Definition 5.7. The operator M (λ,µ) is said to be a generic contraction if λ > 1 and
µk+1

µk
>

(k+1)2

(λ+2k−1)(λ+2k) for 0 ≤ k ≤ n− 2.

Lemma 5.8. Let M (λ,µ) be a generic contraction. Let D and D be the first defect operator and
the first defect space (respectively) of M (λ,µ). Then there exists µ′ ∈ Rn+ and a unitary operator

U : D → H(λ+1,µ′) such that UD is the inclusion map from H(λ,µ) to H(λ+1,µ′).

Proof. Let us write M for M (λ,µ) and i : H(λ,µ) → H(λ+1,µ′) be the inclusion map. Since
i has a dense range, it suffices to show that the map U : Dh 7→ ih (h ∈ H(λ,µ)) preserves
inner product (and hence is well defined) for suitable choice of µ′. That is, we must show
i∗i = D∗D (= I − M∗M). In view of Lemma 5.3 and Lemma 5.4, it suffices to show that
B∗B = I − A∗A. Fix indices 0 ≤ j ≤ k < n. Equating the (j, k)th blocks of the two sides, we
see that we must prove: ∑

i

B∗ijBik = δjkI −
∑
i

A∗ijAik.

Substituting the formulae for these blocks from Lemma 5.3 and 5.4, we are reduced to proving∑
k≤i<n

1
µ′i
b∗ijbik =

δjk
µk
I −

∑
k≤i<n

1
µi
a∗ijaik, 0 ≤ j ≤ k < n.

Because of the genericity assumption on M , we may choose µ′ ∈ Rn+ given by

(5.23)
1

µ′k
=

λ+2k−1
λ+2k

1
µk
−
(
k+1
λ+2k

)2
1

µk+1
, 0 ≤ k ≤ n− 2,

λ+2k−1
λ+2k

1
µk
, k = n− 1.

Substituting these values of µ′ in the last equation, we see that, in order to show that this choice

of µ′ works, we need to prove:

1
µk

λ+ 2k − 1

λ+ 2k
b∗kjbkk +

∑
k<i<n

1
µi

(λ+ 2i− 1

λ+ 2i
b∗ijbik −

( i

λ+ 2i− 2

)2
b∗i−1,jbi−1,k

)
= 1

µk

(
δjkI − a∗kjakk

)
−
∑
k<i<n

1
µi
a∗ijaik.

Note that both sides of this equation are linear combinations of 1
µi

, k ≤ i < n, with operator

valued coefficients. Therefore, equating corresponding coefficients, we find that in order to
complete the proof we must show that the operators aij , bij defined in Lemma 5.3 and 5.4
satisfy:

a∗kkakk = I − λ+ 2k − 1

λ+ 2k
b∗kkbkk, k ≥ 0

a∗kjakk = −λ+ 2k − 1

λ+ 2k
b∗kjbkk, 0 ≤ j < k,

a∗ijaik =
(

i
λ+2i−2

)2
b∗i−1,jbi−1,k −

λ+ 2i− 1

λ+ 2i
b∗ijbik, 0 ≤ j ≤ k < i.
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For integers p ≥ 0, let hp ∈ H(λ+2k) be the function defined by hp : z 7→ zp. Since, up to

suitable scalar factors, these vectors form an orthonormal basis of H(λ+2k), to verify the operator
identities given above it suffices to note that both sides map each fixed hp into the same vector.
We omit the elementary details of this verification. �

Lemma 5.9. Let M (λ,µ) be a generic contraction. Let D∗ and D∗ denote the second defect
operator and the second defect space (respectively) of M (λ,µ). Then there is a µ′′ ∈ Rn+ and a

unitary operator V : D∗ → H(λ−1,µ′′) such that V D∗ is the adjoint of the inclusion map from

H(λ−1,µ′′) to H(λ,µ).

Proof. In view of the genericity assumption, λ − 1 > 0 and there exists µ′′i > 0, 0 ≤ i ≤ n − 1,
given by (5.21). We claim that this choice of µ′′ works.

The sets X :=
{
B(λ,µ)(·, w)ζ : w ∈ D, ζ ∈ Cn

}
and Y :=

{
B(λ−1,µ′′)(·, w)ζ : w ∈ D, ζ ∈ Cn

}
are total in H(λ,µ) and H(λ−1,µ′′) respectively. Since by definition, D∗ has dense range, it follows
that D∗(X) is total in D∗. The equation (5.22) implies that the map from D∗(X) onto Y , given
by

D∗B
(λ,µ)(·, w)ζ 7→ B(λ−1,µ′′)(·, w)ζ,

preserves inner product. Therefore it extends to a unitary V from D∗ onto H(λ−1,µ′′). We have

(V D∗)
∗B(λ−1,µ′′)(·, w)ζ = D∗∗V

∗(B(λ−1,µ′′)(·, w)ζ)

= D∗∗D∗(B
(λ,µ)(·, w)ζ)

= B(λ−1,µ′′)(·, w)ζ.

Here the last equality follows again by Equation (5.22). Thus, (V D∗)
∗ agrees on the total subset

Y of H(λ−1,µ′′) with the inclusion map from H(λ−1,µ′′) to H(λ,µ). Therefore, V D∗ is the adjoint
of this inclusion. �

Remark 5.10. Lemma 5.8 implies that the defect operator D has trivial kernel. In other words,
the generic contractions M (λ,µ) are pure contractions. In consequence, they are cnu contractions.

Therefore, the theory developed in the previous sections applies to them. Since H(λ−1,µ′′) is
densely contained in H(λ,µ), Lemma 5.9 implies that D∗ also has trivial kernel. Therefore, the
adjoint of the generic contraction M (λ,µ) is also a pure contraction. In consequence, for a generic
contraction M = M (λ,µ), the operators (I −M∗M)1/2 and (I −MM∗)1/2 have trivial kernels.
Since these operators are self adjoint, it follows that they have dense range. Hence, the defect
spaces of this generic contraction are D = H(λ,µ) = D∗.

Lemma 5.11. Let π, π∗ be the representations of Möb occurring in the product formula for the
characteristic function of the generic contraction M (λ,µ). Also, let µ′, µ′′, U, V, be as in Lemma

5.8 and Lemma 5.9. Then Uπ(ϕ)U∗ = D(λ+1,µ′)(ϕ) and V π∗(ϕ)V ∗ = D(λ−1,µ′′)(ϕ), ϕ ∈ Möb.

Proof. Let i+ : H(λ,µ) → H(λ+1,µ′) and i− : H(λ−1,µ′′) → H(λ,µ) be the respective inclusion maps.
Thus, i+ = UD, i− = D∗∗V

∗.
We recall from [9] that, for λ > 0, µ ∈ Rn+, there is a function J (λ) : Möb × D → Cn×n such

that (
D(λ,µ)(ϕ−1)f

)
(z) = J (λ)(ϕ, z)f(ϕz)

for f ∈ H(λ,µ), z ∈ D, ϕ ∈ Mob. The explicit formula for J (λ) (available in [9]) does not concern

us here. It suffices to note that J (λ) depends only on λ and n (and not on µ), and it satisfies

J (λ+1)(ϕ, z) = c(ϕ, z)J (λ)(ϕ, z), λ > 0,

J (λ−1)(ϕ, z) = c(ϕ, z)−1J (λ)(ϕ, z), λ > 1.
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Using the formula for π from Theorem 4.5 (with σ = D(λ,µ), T = M (λ,µ)), we get, for f ∈ H(λ,µ),

(Uπ(ϕ)U∗)(i+f) = Uπ(ϕ)Df

= m0(ϕ,ϕ−1)UDD(λ,µ)(ϕ)
(
c(ϕ,M (λ,µ))−1f

)
= m0(ϕ,ϕ−1)i+D(λ,µ)(ϕ)

(
c(ϕ,M (λ,µ))−1f

)
= D(λ+1,µ′)(ϕ)(i+f).

Since i+ has dense range (see Remark 5.5), this shows that Uπ(ϕ)U∗ = D(λ+1,µ′)(ϕ). (Here, for
the last equality in the above string, we have used the identity c(ϕ,ϕ−1z))−1 = m0(ϕ,ϕ−1)c(ϕ−1, z)

from Equation (3.9) and the relation between J (λ) and J (λ+1) noted above.)

Next, the formula for π∗ from Theorem 4.5 (with σ = D(λ,µ), T = M (λ,µ)) may be manipulated

to yield π∗(ϕ)∗D∗ = m0(ϕ,ϕ−1)D∗c(ϕ,M
(λ,µ))∗D(λ,µ)(ϕ)∗. Hence, taking adjoints, we get

D∗∗π∗(ϕ) = m0(ϕ,ϕ−1)D(λ,µ)(ϕ)c(ϕ,M (λ,µ))D∗∗.

Hence we have for g ∈ H(λ−1,µ′′), z ∈ D,

(V π∗(ϕ)V ∗g)(z) = (i−V π∗(ϕ)V ∗g)(z)

= (D∗∗π∗(ϕ)V ∗g)(z)

= m0(ϕ,ϕ−1)
(
D(λ,µ)(ϕ)c(ϕ,M (λ,µ))D∗∗V

∗g
)
(z)

= m0(ϕ,ϕ−1)
(
D(λ,µ)(ϕ)c(ϕ,M (λ,µ))i−g

)
(z)

= (D(λ−1,µ′′)(ϕ)g)(z).

Thus V π∗(ϕ)V ∗ = D(λ−1,µ′′)(ϕ). (Here again, for the last equality in the above string, we have

used the identity c(ϕ,ϕ−1z) = m0(ϕ,ϕ−1)c(ϕ−1, z)−1 and the formula for J (λ−1) in terms of

J (λ).) �

Lemma 5.12. Let M (λ,µ) be a generic contraction. Let C : H(λ+1)
n → H(λ−1)

n be the operator

defined by C = −Γ(λ−1,µ′′)∗VM (λ,µ)U∗Γ(λ+1,µ′), where µ′, µ′′, U and V are as in Lemma 5.8 and

5.9. Then C =
((
xjk(∂

k−j+1)∗
))

0≤j,k<n where the real matrix ((xjk))0≤j,k<n is given by

xjk =


0 if j > k + 1,

+ (k+1)µk√
µ′kµ

′′
k+1(λ+2k−1)

if j = k + 1,

−
√
µ′′j(j+1)k−j√

µ′k(λ+2j−1)2k−2j+1
if j < k + 1.

Proof. Let i+ : H(λ,µ) → H(λ+1,µ′), i− : H(λ−1,µ′′) → H(λ,µ) be the inclusion maps. Define

A = Γ(λ,µ)∗M (λ,µ)Γ(λ,µ), B+ = Γ(λ+1,µ′)∗i+Γ(λ,µ) and B− = Γ(λ,µ)∗i−Γ(λ−1,µ′′). Note that, by
Remark 5.10, H(λ,µ) is the co-domain of both the defect operators of M (λ,µ), hence it is the
domain of both U , V . This is why the product defining C makes sense. Since U , V , Γ(·,·) are
unitaries, using the formulae i+ = UD, i− = D∗∗V

∗, M (λ,µ)D∗ = D∗∗M
(λ,µ), we routinely derive

the equation

(5.24) B−C = −AB+∗.

Note that the n × n block decompositions of the operators A, B± are given by Lemma 5.3
and Lemma 5.4. Since i− has trivial kernel, so has B−. Therefore, the operator C is uniquely
determined by Equation (5.24). Therefore, to complete the proof, it suffices to verify that the
block operator C given in the statement of this lemma is a solution to Equation (5.24).
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For 0 ≤ j ≤ i, let aij be the operator from Lemma 5.3, let b+ij be the operator which we called

bij in Lemma 5.4 and let b−ij be the operator obtained from b+ij by the substitution λ 7→ λ− 1 in

its description. For 0 ≤ j ≤ k + 1, let cjk : H(λ+2k+1) → H(λ+2j−1) be the operator defined by:

cjk =

{
k+1

λ+2k−1I if j = k + 1,

− (j+1)k−j

(λ+2j−1)2k−2j+1
(∂k−j+1)∗ if j < k + 1.

Thus the blocks of the n× n block operators A, B±, C are given by

Aij =

{
0 if j > i,√

µj
µi
aij if j ≤ i.

B+
kj =

{
0 if j > k,√

µj
µ′k
b+kj if j ≤ k.

B−ij =

{
0 if j > i,√

µ′′j
µi
b−ij if j ≤ i.

Cjk =


0 if j > k + 1,

µk√
µ′kµ

′′
k+1

cjk if j = k + 1,√
µ′′j
µ′k
cjk if j < k + 1.

Fix indices 0 ≤ i, k < n. To prove the equation (5.24), it suffices to equate the (i,k)th blocks of

its two sides. That is, we must show that
∑

j B
−
ijCjk = −

∑
j AijB

+
kj
∗
. In view of the preceding

formulae, this reduces to:

µkδi>kb
−
i,k+1ck+1,k +

∑
0≤j≤i∧k

µ′′jb
−
ijcjk = −

∑
0≤j≤i∧k

µjaijb
+
kj
∗
.

Here we have used the following variation of the Kronecker delta, δi>k :=

{
1 if i > k,

0 if i ≤ k
. Sub-

stituting the formulae for µ′′· from Equation (5.21), this in turn reduces to (with ` := i ∧ k)

µ`
(
b−i`c`k+δi>kb

−
i,k+1ck+1,k

)
+
∑

0≤j<`
µj
(
b−ijcjk−

(j + 1)2

(λ+ 2j − 1)(λ+ 2j)
b−i,j+1cj+1,k

)
= −

∑
0≤j≤`

µjaijb
+
kj
∗
.

Note that both sides here are linear combinations of µj , 0 ≤ j ≤ i∧k, with operator coefficients.
Equating corresponding coefficients, we see that, to complete the proof, we need to verify the
following operator identities:

aiib
+
ki
∗

= −b−iicik, 0 ≤ i ≤ k.
aikb

+
kk
∗

= −b−ikckk − b
−
i,k+1ck+1,k, 0 ≤ k < i.

aijb
+
kj
∗

=
(j + 1)2

(λ+ 2j − 1)(λ+ 2j)
b−i,j+1cj+1,k − b−ijcjk, 0 ≤ j < i ∧ k.

This verification may be done as in the proof of Lemma 5.8. We omit the details. �

For λ > 0, let M (λ) be the operator of multiplication by the coordinate function on the Hilbert
space H(λ) with reproducing kernel Kλ(z, w) = (1 − zw̄)−λ defined on D × D. The operator

M (λ) is an associator in the class B∗1(D). Its associated representation is D+
λ , the holomorphic

Discrete series representation of Möb on the Hilbert space H(λ). These are all the unitarily
inequivalent associators in B∗1(D) (cf. [12]).



A PRODUCT FORMULA 29

It was shown in [3, Theorem 3.1] that the characteristic function of the homogeneous con-

traction M (λ), λ > 1, coincides with the purely contractive holomorphic function θλ : D −→
B(H(λ+1),H(λ−1)), where

(5.25) θλ(z) =
1√

λ(λ− 1)
D+
λ−1(ϕz)

∗∂∗D+
λ+1(ϕz).

Here ∂ : H(λ−1) → H(λ+1) is the derivation: ∂f = f ′.

Theorem 5.13. Let M (λ,µ) be a generic contraction. Then the characteristic function of M (λ,µ)

coincides with the function θ(λ,µ) : D → B
(
⊕0≤k<n H(λ+2k+1),⊕0≤j<nH(λ+2j−1)

)
given by the

formulae

θ(λ,µ)(z) =
( ⊕

0≤j<n
D+
λ+2j−1(ϕz)

∗
)
C
( ⊕

0≤k<n
D+
λ+2k+1(ϕz)

)
=
((
θj k(z)

))
0≤j,k<n, z ∈ D,

where C is the block operator given by Lemma 5.12 and

θj k(z) =


0 if j > k + 1,

yjk
∏

j≤`≤k
θλ+2`(z) if j ≤ k + 1,

with yjk = xjk
√

(λ+ 2j − 1)2k−2j+2, j ≤ k + 1.

(Here the constants xjk are as in Lemma 5.12, and the factors in the second formula are given
by Equation (5.25). As usual, the empty product (which occurs when j = k + 1) denotes the
identity.)

Proof. In view of Remark 5.10, the product formula for the characteristic function θ of M (λ,µ)

takes the form θ(z) = −π∗(ϕz)∗M (λ,µ)π(ϕz). Define θ(λ,µ) by

θ(λ,µ)(z) = Γ(λ−1,µ′′)∗V θ(z)U∗Γ(λ+1,µ′), z ∈ D.

Since Γ(·,·), U, V are unitaries, it follows that θ coincides with θ(λ,µ). The first formula for θ(λ,µ)

(in this theorem) is now immediate from Lemmas 5.11 and 5.12. Doing this block multiplication,

we obtain θ(λ,µ)(z) =
((
θj,k(z)

))
, where θj k(z) = 0 when j > k + 1 and, when j ≤ k + 1,

θj k(z) = xj kD
+
λ+2j−1(ϕz)

∗(∂k−j+1)∗D+
λ+2k+1(ϕz).

But we have, for j ≤ k + 1,

D+
λ+2j−1(ϕz)

∗(∂k−j+1)∗D+
λ+2k+1(ϕz) =

∏
j≤`≤k

(
D+
λ+2`−1(ϕz)

∗∂∗D+
λ+2`+1(ϕz)

)
=
∏

j≤`≤k

(√
(λ+ 2`)(λ+ 2`− 1)θλ+2`(z)

)
=
√

(λ+ 2j − 1)2k−2j+2

∏
j≤`≤k

θλ+2`(z).

This completes the proof. �
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6. Contractive associators in the Cowen-Douglas classes: an extremal case

In Theorem 5.13 of the last section, we obtained the explicit product formula for the generic
irreducible multiplicity free contractive associators in B∗n(D). In this section, we do the same
in the extreme opposite case, namely, we look at the irreducible multiplicity free contractive
associators in B∗n(D), which are the most non-generic, in a definite sense. Thus we introduce:

Notation 6.1. For positive integers n, and real numbers λ > 1, let Mλ,n denote the operator

M (λ,µ) ∈ B∗n(D), where µ ∈ Rn+ is given by µk = k!2

(λ−1)2k
, 0 ≤ k < n.

In other words, Mλ,n is the operator M (λ,µ) with λ > 1, µ0 = 1 and µk+1 = (k+1)2µk
(λ+2k−1)(λ+2k) for

0 ≤ k < n− 1. Thus by Lemma 5.6, Mλ,n is a contraction. But Mλ,n are the only multiplicity
free irreducible contractive associators in B∗n(D) which violate all the requirements (except the
inequality λ > 1) in the definition of genericity. The main result of this section is:

Theorem 6.2. For real numbers λ > 1, integers n ≥ 1, Mλ,n is a cnu contraction, and its

characteristic function coincides with the function θλ,n : D→ B
(
H(λ+2n−1),H(λ−1)

)
given by

θλ,n(z) =
1√

(λ− 1)2n

D+
λ−1(ϕz)

∗(∂n)∗D+
λ+2n−1(ϕz)

=
∏

0≤k<n
θλ+2k(z), z ∈ D.

(Here, again, the factors in the second formula are given by Equation (5.25).)
The rest of this section is devoted to a proof of this theorem. For λ > 0, we identify the

Hilbert space H(λ) ⊗H2 with a Hilbert space of holomorphic functions on the bidisc D2 via the
map

f ⊗ g 7→ ((z, w) 7→ g(z)f(w)), f ∈ H(λ), g ∈ H2.

For p ≥ 0, let Hom(p) denote the vector space of all homogeneous polynomials of degree p in
two complex variables z, w. Note that we have the orthogonal decomposition

H(λ) ⊗H2 =
⊕
p≥0

Hom(p).

Let 4 := {(z, z) : z ∈ D}, the disc diagonally embedded in the bidisc. For λ > 0, k ≥ 0, let Vk,λ
denote the maximal subspace of H(λ)⊗H2 which is orthogonal to all h ∈ H(λ)⊗H2 such that h
vanishes to order ≥ k on 4. Define Vk,λ(p) := Hom(p) ∩ Vk,λ. Note that we have the filtration

(6.26) {0} = V0,λ(p) ⊆ V1,λ(p) ⊆ · · · ⊆ Vp+1,λ(p) = Hom(p)

as well as the orthogonal decomposition

(6.27) Vk,λ =
⊕
p≥0

Vk,λ(p).

For 0 ≤ j ≤ p, define the polynomial hλj,p ∈ Hom(p) by

hλj,p(z, w) :=
∑
j≤i≤p

(
i

j

)(
p− i+ λ− 1

p− i

)
ziwp−i.

Lemma 6.3. For 0 ≤ k ≤ p+ 1, the set {hλj,p : 0 ≤ j < k} is a basis for Vk,λ(p).

Proof. Consider the (p+1)×k matrix D =
(((

i
j

)))
0≤i≤p
0≤j<k

. As usual, we view D as a linear operator

from Ck into Cp+1, with the standard inner products. A straightforward calculation shows that
a polynomial

∑
0≤i≤p aiz

iwp−i ∈ Hom(p) is orthogonal to Vk,λ if and only if the vector a belongs
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to the kernel of D∗. Therefore, a polynomial
∑

0≤i≤p biz
iwp−i ∈ Hom(p) is in Vk,λ if and only

if it is orthogonal in H(λ) ⊗H2 to
∑

0≤i≤p aiz
iwp−i for all a in kerD∗, i.e., if and only if,∑

0≤i≤p

āibi(
p−i+λ−1

p−i
) = 0, ∀a ∈ kerD∗.

That is,
∑

0≤i≤p biz
iwp−i is in Vk,λ if and only if the vector

(
bi(

p−i+λ−1
p−i

))
0≤i≤p

is orthogonal to

kerD∗ in Cp+1, i.e., if and only if this vector belongs to ImD. Since the k columns of D form
a basis of ImD, the result follows. �

For λ > 1, let Θλ : H(λ+1) ⊗H2 → H(λ−1) ⊗H2 be the characteristic operator corresponding
to the characteristic function of M (λ). The following formula for the action of Θ∗λ is from [3]:

(6.28) (Θ∗λf) (z, w) =
1√

λ(λ− 1)

∂

∂w
f(z, w)−

√
λ− 1

λ

f(z, w)− f(w,w)

z − w
, z, w ∈ D,

for f ∈ H(λ−1) ⊗H2.

Lemma 6.4. For λ > 1, n ≥ 1, the operator Θ∗λ maps Vn,λ−1 into Vn−1,λ+1 and V ⊥n,λ−1 into

V ⊥n−1,λ+1.

Proof. Using the formula (6.28), it is easy to see that f ∈ V ⊥n,λ−1 implies Θ∗λf ∈ V ⊥n−1,λ+1. Thus

Θ∗λ maps V ⊥n,λ−1 into V ⊥n−1,λ+1. In view of the decomposition (6.27), in order to prove that Θ∗λ
maps Vn,λ−1 into Vn−1,λ+1, it suffices to show that it maps Vn,λ−1(p) into Vn−1,λ+1(p− 1) for all
p. Since Vn−1,λ+1(p− 1) = Hom(p− 1) for p < n, and since it is clear from equation (6.28) that
Θ∗λ maps Hom(p) into Hom(p− 1), it is enough to fix p ≥ n and show that Θ∗λ maps Vn,λ−1(p)
into Vn−1,λ+1(p−1) for this p. In view of Lemma 6.3 and the filtration (6.26), it suffices to show
that

(6.29) Θ∗λ(hλ−1
j, p ) ∈ Vj,λ+1(p− 1), 0 ≤ j ≤ p.

Using equation (6.28) it is not hard to prove that Θ∗λ(hλ−1
0, p ) = 0 (and hence (6.29) is true for

j = 0), and√
λ

λ− 1
(z−w)Θ∗λ(hλ−1

j, p ) =

(
λ+ p− 1

p− j

)
z0wp−

∑
1≤i≤p

(
i− 1

j − 1

)(
λ+ p− i− 1

p− i

)
ziwp−i, 1 ≤ j ≤ p.

Using this formula, it is easy to verify that, for 0 ≤ j < p, there is a real number c (depending
on j, p, λ) such that

Θ∗λ(hλ−1
j+1,p)/

(
λ+ p− 1

p− j − 1

)
−Θ∗λ(hλ−1

j, p )/

(
λ+ p− 1

p− j

)
= c hλ+1

j,p−1.

(Namely, to verify this, multiply both sides by z − w and use the previous equation.) Using
Lemma 6.3 and the filtration (6.26), it is now trivial to prove (6.29) by finite induction on j. �

Now, for λ > 1, n ≥ 1, let θλ,n be as in Theorem 6.2:

θλ,n(z) :=
∏

0≤k<n
θλ+2k(z), z ∈ D.

Since θλ,n is a finite pointwise product of pure contraction valued holomorphic functions, it
follows that θλ,n is a pure contraction valued holomorphic function on D. Therefore, it is a

characteristic function. Let Θλ,n : H(λ+2n−1)⊗H2 → H(λ−1)⊗H2 be the characteristic operator
corresponding to θλ,n.
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Lemma 6.5. For λ > 1, n ≥ 1, the kernel of Θ∗λ,n is Vn,λ−1.

Proof. By [3, Theorem 3.2], ker Θ∗λ = V1,λ−1 . Since θλ,1 = θλ, this proves the result for n = 1.
Now, let n > 1. Then θλ,n = θλθλ+2,n−1 (pointwise product) and hence Θλ,n = ΘλΘλ+2,n−1.

Therefore, ker(Θ∗λ,n) = Θ∗λ
−1
(

ker(Θλ+2,n−1)
)

for n > 1. Hence, to complete the proof by

induction on n, it suffices to show that Θ∗λ
−1(Vn−1,λ+1) = Vn,λ−1.

Let f ∈ Θ∗λ
−1(Vn−1,λ+1). That is, Θ∗λf ∈ Vn−1,λ+1. Write f = g + h, where g ∈ Vn,λ−1,

h ∈ V ⊥n,λ−1. By Lemma 6.4, Θ∗λh ∈ V ⊥n−1,λ+1 and Θ∗λg ∈ Vn−1,λ+1, so that Θ∗λh = Θ∗λf −Θ∗λg ∈
Vn−1,λ+1. So Θ∗λ(h) ∈ Vn−1,λ+1 ∩ V ⊥n−1,λ+1 = {0}. Thus h ∈ ker Θ∗λ = V1,λ−1 ⊆ Vn,λ−1.

Hence h ∈ Vn,λ−1 ∩ V ⊥n,λ−1 = {0}. Thus h = 0, and hence f = g ∈ Vn,λ−1. This proves that
Θ∗λf ∈ Vn−1,λ+1 =⇒ f ∈ Vn,λ−1. Conversely, by Lemma 6.4, f ∈ Vn,λ−1 =⇒ Θ∗λf ∈ Vn−1,λ+1.

So, Θ∗λ
−1(Vn−1,λ+1) = Vn,λ−1. �

Proof of Theorem 5.2. The formula (5.25) implies that that two definitions of θλ,n are equivalent.
Since, by [3], θλ is an inner function for each λ > 1, the second formula for θλ,n shows that θλ,n
is a pointwise product of finitely many inner functions. Therefore, θλ,n is an inner function.
Hence the description of the Nagy-Foias model [14] for the cnu contractive operator T with
characteristic function θλ,n simplifies as follows.

Let T be the compression of I ⊗ S : H(λ−1) ⊗ H2 → H(λ−1) ⊗ H2 (where, as before, S is
the multiplication operator on H2) to the subspace ker Θ∗λ,n = Vn,λ−1 (Lemma 6.5). Then the
characteristic function of T is θλ,n.

Let us identify 4 with D via the map z 7→ (z, z), z ∈ D. Define the map J : Vn,λ−1 →
Hol(D,Cn) by

Jf =
( 1

(λ− 1)i

∂if

∂zi

∣∣∣
4

)
0≤i<n

, f ∈ Vn,λ−1.

Let H be the image of J . It is immediate from the definition of Vn,λ−1 that J is a bijection
between Vn,λ−1 and H. Use this bijection to transfer the inner product from Vn,λ−1 to H. This
converts H into a Hilbert space, and J : Vn,λ−1 → H is a unitary. Following the argument in [6],
it is easy to see that (a)H is a functional Hilbert space with reproducing kernelK : D×D→ Cn×n
given by

K(z, w) = (1− zw̄)−1B(λ−1,e0)(z, w), e0 = (1, 0, . . . , 0) ∈ Rn,
and (b) J intertwines T with the multiplication operator M on H. This is a minor variation of
the jet construction discussed in [6].

Now, if µ is the special parameter described in Notation 5.1, then, in the notation of (5.21),

we have µ′′ = e0. Therefore, by Equation (5.22), we have (1− zw̄)B(λ,µ)(z, w) = B(λ−1,e0)(z, w).

Hence K = B(λ,µ), and therefore H = H(λ,µ), M = Mλ,n. Thus Mλ,n is unitarily equivalent to
T via J . Therefore, Mλ,n is a cnu contraction and the characteristic function of Mλ,n coincides
with the characteristic function θλ,n of T . �

Theorem 5.2 prompts us to pose:

Conjecture 6.6. The characteristic function of any multiplicity free cnu contractive associa-
tor in B∗n(D) is the pointwise product of the characteristic functions of finitely many generic
multiplicity free contractive associators from ∪1≤m≤nB

∗
m(D).
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