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For any n× n matrix A = ( ai j ), define

‖A‖∞,1
def= sup


n∑

i=1

∣∣∣∣∣∣
n∑

j=1

ai j αj

∣∣∣∣∣∣ : |αj | ≤ 1, αj scalars.

 ,

and

γ(A) def= sup


n∑

i=1

∥∥∥∥∥∥
n∑

j=1

ai,jxj

∥∥∥∥∥∥ : ‖xj‖ ≤ 1, xj in `2(n)

 .

Define the numerical constant

KG(n) def= sup {γ(A) : A = An×n, ‖A‖∞,1 ≤ 1} .

The constant KG(n) depends on the ground field. We shall use KC
G (n) and KR

G(n) to
distinguish the complex and the real case. The complex constants arise naturally in the
study of certain Hilbert modules, see [2].

The fact that KG(n) remains finite as n →∞ was established by Grothendieck (cf. [6,
Corollary 5.7]). The limit of this sequence is denoted by KG, and is called the Grothendieck
constant. Its exact value is not known.

It should be clear that the value of KG(n) does not change if in its definition we replace
`2(n) by `2. While it would be quite natural to call this constant the n - dimensional
Grothendieck constant, in the literature some other constant κG(n) has received this name.
The definition of κG(n) is obtained from that of KG(n) by allowing the size of the matrix
A in the supremum to be arbitrary while holding the dimension of the Hilbert space fixed
at n. Clearly we have κG(n) ≥ KG(n), and both approach the Grothendieck constant in
the limit.

The constant κG(n) has been studied in the literature,( see [3] and [4]) though its exact
value is not known for any n > 1 except for the isolated result κR

G(2) =
√

2 in [4] . On
the other hand KG(n) has not received any attention so far. In this paper, we intend to
show that the constants KG(n) have their own advantages and surprises. One advantage
is that extreme point methods are applicable in their study. The major surprise is that,
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contrary to what one might expect, the sequence KG(n) is not strictly increasing with n
either in the real or in the complex case. In fact, we show that KR

G(2) = KR
G(3) =

√
2 and

KC
G (1) = KC

G (2) = 1. Another surprise is the equality KR
G(2) = κR

G(2) as follows from [4].
Remark : Let’s call two n × n matrices A and B equivalent if there are diagonal

matrices D1, D2 with unimodular diagonal entries, and permutation matrices P1, P2 such
that B = D1P1AP2D2. Obviously, in this case we have ‖A‖∞,1 = ‖B|∞,1 and γ(A) = γ(B).
Therefore, in the supremum defining KG(n), it is enough to run over representatives of
equivalence classes rather than over all A.

Again, since the expression within braces in the defintion of ‖A‖∞,1, (resp.ly, of γ(A))
is convex in each αj (resp.ly in each xj), we may take this supremum over |αj | = 1 (resp.ly,
over ‖xj‖ = 1) without changing its value.

Theorem 1 KC
G (2) = 1.

The following proof is inspired by a lemma of Arias et al in [1].

Proof : Let A =

(
a b
c d

)
be any 2 × 2 complex matrix. We have to show that γ(A) =

‖A‖∞,1. By the remark, we may replace A by an equivalent matrix in which any three
prescribed entries are non-negative. Thus, we may assume without loss of generality that
a, b, c are all non-negative. Let ĪD and T be the closed unit disc in the complex plane and
its boundary, respectively. Let’s put d = eα, α ∈ T, e ≥ 0.

Consider the function φ : ĪD → IR+, defined by

φ(z) = (a2 + b2 + 2abRe(z))1/2 + (c2 + e2 + 2ceRe(αz))1/2.

Note that for α1, α2 ∈ T, we have, |aα1 + bα2|+ |cα1 + dα2| = φ(z) where z = α1α2 ∈ T.
Also, for unit vectors x1, x2 ∈ `2(2), we have ‖ax1 + bx2‖ + ‖cx1 + dx2‖ = φ(z), with z =
〈x2, x1〉 ∈ ĪD. Therefore, in view of the remark above, we have ‖A‖∞,1 = sup {φ(z) : z ∈ T} ,
and, γ(A) = sup

{
φ(z) : z ∈ ĪD

}
. Hence, we have to show that φ assumes its maximum on

the boundary T. If any of the entries of A is zero, then this is trivial. So, we may assume
a, b, c, e > 0.

If α = ±1, φ depends on z only through Re(z), so that it attains its maximum on the
boundary. On the other hand, we claim that if α 6= −1, then the function φ has no local
maximum in the interior of ĪD. For z in the interior, we can find a positive constant ε such
that z + εβ is in ID for β ∈ T. Given α ∈ T, α 6= −1, there exists a β ∈ T such that both
Re(β) and Re(αβ) are strictly positive. Then, if z is replaced by z + εβ, both terms in the
definition of φ increase strictly, so that φ(z + εβ) > φ(z) and the claim is verified. 2

Now we go over to the real case.
Remark : Note that KG(n) is the maximum of γ on the closed unit ball IBn of the space

L(`∞(n), `1(n)), of operators from `∞(n) to `1(n), and γ is convex on this ball. Therefore,
KG(n) is the maximum of γ(A) as A runs over the set of the extreme points of IBn. Although
this is true in the complex case as well, this observation is particularly useful in the real
case since here IBn is a polyhedron with only finitely many extreme points which, at least
in principle, can be determined algorithmically for any fixed n. On the other hand, in the
complex case we don’t know the extreme points of IBn even for n = 2.

Theorem 2 KR
G(2) =

√
2
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Proof: Since `1(2) and `∞(2) are isometric via the map U : (x1, x2) 7→ (x1+x2, x1−x2)
the space L(`∞(2), `1(2)) is isometric to L(`1(2), `∞(2)), which in turn is isometric to `∞(4).
Thus, the extreme points in the unit ball IBn are obtained from the extreme points of the
unit ball in L(`1(2), `∞(2)) by applying the isometry B 7→ U−1BU−1. From the 24 = 16
extreme points of the latter ball one thus obtains as many extreme points of IBn. It turns

out that 8 of them are equivalent to A1 =

(
1 0
0 0

)
and 8 of them are equivalent to

A2 =

(
1/2 1/2
1/2 −1/2

)
. Thus, KR

G(2) is the maximum of γ(A1) and γ(A2). A trivial com-

putation gives γ(A1) = 1 & γ(A2) =
√

2. 2

Theorem 3 KR
G(3) =

√
2.

Proof : 90 extreme points of IB3 are now clearly visible : 3× 3× 2 = 18 extreme points
equivalent to B1 = A1⊕0, and 3×3×4×2 = 72 extreme points equivalent to B2 = A2⊕0,
where A1, A2 are as in the proof of Theorem 2. But in Corollary 6 of [5], Lima proves
that IB3 has exactly 90 extreme points. Hence, upto equivalence, B1 & B2 are the only
extreme points of IB3. But, clearly, γ(Bi) = γ(Ai), i = 1, 2. 2
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