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In this paper we continue our study of certain finite dimensional Hilbert modules
over the function algebra &/(£2), 2 < C”. We show that these modules are always
completely bounded with the bound obtained as the matrix valued analogue of a
certain scalar valued extremal problem. In particular, we obtain a necessary and
sufficient condition for our module to bc completely contractive. We produce a
contractive module C{ over .o/(B™) such that it is completely bounded with the
complete bound equal to V'/;; that is, C{ is not completely contractive. 1990

Academic Press. Inc.

INTRODUCTION

This is a continuation of our earlier work in [6]. We retain most of the
notation from [6] and recall only a minimum of definitions and terminol-
ogy, when necessary. For v in C” and in C, define the (n+1)x{(n+1)-

matrix
AV
Ny, A)= .
v (0 1)

For v'= (v}, .., v}), | <i<m, and w=(w, .., w,,) in a region 2 in C”, we
consider the m-tuple of pairwise commuting operators

N= (le veesy Nm) = (N(vl9 M’yl)’ cees N(vm5 \47,,1)).

Here we study the bounded .o/(Q)-module C%*' and determine when it is
a completely bounded module.
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l. C%T' As A COMPLETELY BOUNDED MODULE OVER ./ ()

In this section we assume that

(a) € is a bounded open neighbourhood of 0 in C™;

(b) Q is convex and balanced;

(c) £ admits a group of biholomorphic automorphisms, which acts
transitively on Q.

We note that (a), (b) implies £ is polynomially convex [4, p.67] and
so by Oka’s theorem [4, p. 84], &/(£2) contains all functions holomorphic
in a neighbourhood of Q.

Following Arveson [1] and Douglas [2], we give the definition of a
completely bounded &/ (Q)-module.

For any function algebra 4 and an integer k=1, let 4. (A4)=
o Q@ M, (C) denote the algebra of (k x k)-matrices with entries from .o/.
Here for F=(f;) in .4(</), the norm |[F|| of F is defined by

IFIE=Sup{l(f;(z))lI: ze M},

where M is the maximal ideal space for 4. We note that for .o/ = .o/(Q), the
maximal ideal space can be identified with [4, p. 67] and thus

IFIE=Sup {I(f;(z))Il: ze 2}

1.1. DerINITION. If O is a bounded Hilbert s/-module, then # ® C* is
a bounded .#,(A)-module. For each k, let n, denote the smallest bound for
# ® C*. The Hilbert «/-module is completely bounded if

n.= lim n, <o

k— x>

and is completely contractive if n_, < 1.

Throughout this paper V' will denote the (m xn)-matrix whose rows

v!, ..., v™ and we will write v,, ..., v, for the columns of the matrix V. It was

shown by the authors in [6, 2.2.4] that the map
p: P(Q) - L(E"),
p(p)=p(N)=N(Vp(w)-V, p(w))
extends continuously to Hol(£2). Indeed, we have
p(f) = F(N) = N(VF(w) - ¥, f())
for all f in Hol(2). It follows that the map p®I,: MH(P(Q2))-
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A (L (C" 1)) extends continuously to .#,(Hol(Q)) and we have (as shown
in [6, 6.2.27)

(fiw)) (D)) w) - (V@ 1)
(P@Ik)(fi/)=< 0 Ik@(.fij(w)) >

Let X, Y be finite dimensional normed linear spaces and Q2 be an open
subset of X. A function /:Q2< X — Y is said to be holomorphic if the
Frechet derivative of f at w exists as a complex linear map from X to Y.
Let I=(i, .., i,) denote a multi-index of length /=i, + --- +i,, and ¢,
denote the multi-index with a one in the kth position and zeros elsewhere.
If P:Q— 4 is a polynomial matrix valued function, ie., P(z)=(p;(z)),
where each p, is a polynomial function in m variables, then we can write

P(z)=) Plz—w),

where each p, is a scalar (k x k)-matrix.
Now it is easy to verify that the derivative DP(w) of p at w is

DP(W)= (o), s P
which acts on a vector v= (v, .., v,,) by

DP(w) v=uv,P, + --- +0v, P

€m”*

Recall that 2P(w) was defined in [6, 6.2.1] as

<<8§, P) w), ..., <5§m P> (w)),
¢ ¢

Thus, it is easy to see that

where

(ZP)w) - (V®I,)=(DP(w) v, .., DP(w)-v,).

Let (X, lix) and (Y, ]| ||,) be normed linear spaces. By the operator
norm for Tin L{X, || | v; Y. | || 4), we shall mean

170 =Sup{] Tx[ly: llx|l y < 1}

As in [6], we choose a norm || |, for C” such that the unit ball of C” with
respect to this norm is Q and write the corresponding normed linear space
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as (C™, || || o). If no norms are mentioned for C*, it is understood to be the
I,-norm. We identify .#,, the (k x k)-matrices, with #(C*, C¥) and the
norm of such a matrix is the operator norm (with respect to the /,-norm
on C*) as above. By the same token, a linear transformation from #(X, Y)
to £(X,, Y,) is an element of L(L(X, Y), L(X,, Y,)) and possesses the
operator norm.

1.2. DerFINITION. For we @, define
D, Q(w)={DF(w)e L((C", || | ); #): Fe #,(Hol(Q)), |[F| <1}.

Of course, V determines a map p,: LUC", | |o); M) — (L(C*, C*))
defined by

PPy, .., P = ( Y viPh Y ULP,->
i=1 i=1
and we set

MGEV, w)=Sup{|p (Tl ycincr): TED 4, Q(w)}
MS(V, w)=Sup{M“*(V,w): keN}.

1.3. Remark. Here we emphasize that for T in Z(C™, || | o; #,) since
1715 =Sup{ [(T(2)ll ,,: z€ R}, it follows that ||| 5*< 1 is equivalent to
saying that 7 maps Q into the unit ball in .#,.

The next lemma says that to determine when |p® I, | <1, it is enough
to consider those functions which vanish at a fixed but arbitrary point of
Q2. However, to prove it we need the following result of Douglas, Muhly,
and Pearcy [3, Proposition 2.27.

1.4. LemmMa (DMP). For i=1,2 let T, be a contraction on a Hilbert
space ¥, and let X be an operator mapping #, into H#,. A necessary and suf-
ficient condition that the operator on H#, @ H#; defined by the matrix (3} 7,)
be a contraction is that there exist a contraction C mapping H#, into 3, such
that

X=(1,,— T\ TH)'"? C,—TFT,)'">

We need some results about biholomorphic automorphisms of the unit
ball in .#,, which can be found in Harris [5, Theorem 2]. We collect the
results we will need in the following proposition.

1.5. ProposITION (Harris). For each B in the unit ball (#),), of M, the
Mébius transformation

¢s(4)=(I—BB*) '>(4+B)(I+B*4)"'(I— B*B)'"”
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is a biholomorphic mapping of (M), onto itself with ¢ z(0)= B. Moreover,
05 =0 5 @A) =0g(4%),  logA)l<epl4])

and
D@ 4(A)C=(I—BB*)'">(I+ AB*) 'C(I+ B*4) '(I— B*B)'”

for A in (M), and C in M.

Now, we prove

1.6. Lemma. If |F(NY| <1 for all F in M (hol(Q)) with |F| <1 and
F(w)=0, then |GN)|| <1 for all G in M (Hol(Q)) with |G| <1.

Proof. Any G in .4, (Hol(£2)) of norm less than or equal to one maps
Q into (.#,),. In particular for w in Q, |G(w) <1 and we can form the
Mobius map ¢ _ g, of (.#,),. Consider the map ¢ ., G, which maps w
onto zero. Thus,

0 [D(@ oo GHw)]- V)“
0 .

1210 e GN)| = “(0

However,
LD(@ _ 6wy > GYW)] -V = (LD o) NG(W))] - [DG(w) ¥, ], ...
LD¢ 6o G(w))] - [DG(w) v, ]).
Let R=(I-G(w) G(w)*)"'? and S=(I—G(w) G(w)*)" . Thus

[D(@ G > GYw)T -V =(R(DG(w)-¥,)S, ... RIDG(w)-v,)S)

S
= R(DG(w)-vy), ... (DG(w)-v,)) . .
S
We can apply Lemma 1.4 to conclude that
_|(Gw) DG(w)-V
o= H( 0 1k®G(w)>H
_ <G(w) DG(w)-v,, .., DG(w) v, <1
_“ 0 1,®G(w) )‘ o

which completes the proof of the lemma.
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1.7. THEOREM. CL™' is a completely contractive of (Q)-module if and
only if MS*(V, w)<1 for all k.

The proof of this theorem is identical to that of Theorem 3.4 in [6].
With this lemma at our disposal, the proof of the following proposition
becomes identical to that of Theorem 3.5 in [6].

1.8. PROPOSITION.  CZ*' is a completely bounded o/ (Q)-module with the
bound n,. =max{1, MS(V, w)}. Further, if MS(V, w)>1 then there exists
an invertible (m+1)x (m+ | )y-matrix L such that |L|||L '|=MS(V,w)
and C7'$,-1 is a completely contractive of (Q)-module.

The following theorem is analogous to Theorem 4.1 in [6], where only
scalar valued functions were considered.

1.9. THEOREM. Let we £ and 0, be a biholomorphic automorphism of §2
such that 0 ,(w)=0. Then,
(a) D, Q2w)=D_,Q(0) DO (w).
(b) D 20)={TeLC" | | o 4):] |1}
(€) MSH*(V,w)=MS (DO, (w)-V,0).
(d) MGV, 0)=lp et

AT 25 # )

Proof. Since the map F— F-0, defines a bijection from {Fe Hol(Q):
[FIl<1 and F(0)=0} to {FeHol(Q): |F| <1 and F(w)=0}, (a) follows
by the Chain rule.

To prove (b} first note that the Schwarz lemma as stated in Rudin [7,
Theorem 8.12] actually applies to functions holomorphic from C™ to .#,.
Recall that C™ is given the norm |||, with respect to which 2 becomes the
unit ball and .#, has the usual uniform operator norm. Thus if F is in
A (Hol(2)) with | F|| <1, then F must map £ into (.#,), and the Schwarz
lemma would guarantee that the linear operator DF(0) maps £ into
(A,),. On the other hand if T is in L (€7, | llo: #) and |T| <1 then T
automatically maps Q into (#;), and T(0)=0. Thus T lies in D_,, Q(0).

Part (c) follows from the definition of MS(V, w).

Part (d) is also immediate from the definition, once we note that

lpul =Sup{lp AT Te L | g5 M), 1 TH <1}
= Sup{lp,(T)l: TeD_,2(0)}.

2. THE UNIT BALL, POLYDISK, AND SOME RELATED EXAMPLES

In this section, we explicitly compute |p,.[, when the domain under
consideration is the unit ball in C™.
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2.1. THEOREM. M S.(V,0)=p,|=(Z7_, Iv]?)
Proof. Note that
MSEV, 0)
=Supfllp Py PPz + - + Pzl < forall (z,, .., z,)eB™}

=sw (] (2, et (2, 7o)

D

<Sup{< )'”:(PI,.. )eD , B 0)}(2 v 12 u)

J=1

172
> (Py,...P,)eD ,B"0)}

Since the bound for MS:X(V, 0) is independent of &, it follows that
MSAV, 0) = <2nw>
i=1

Now, Choosing T=(T,, .., T,,) with T, =e¢,,, where e, is the (m x m)-
matrix with 1 at the (1, k) position and zeros elsewhere, it is trivially
verified that |T(z)|| <1 for all z in B”. However,

o, (T :< z U/;Tkv N, Z UﬁTk>

k=1 k=1
(S

CoOROLLARY. [f CLt' is a contractive module over o/ (B™) then it is a
completely bounded module with bound at most

Proof. Assume without loss of generality that N=(N(v}0),..,
N(v™, 0). Recall that CZ* ' is contractive over .«/(B™) if and only if || V]| < 1
[6, Theorem 4.1(d)]. However, by the preceding theorem it is completely

contractive if and only if 37, [v/|?< 1.

22. The polydisk. From [6] , we know that CJ'' is a contractive
module over &(D™) if and only if max, ..., {[v*]*<1}. However, to
answer the corresponding question about completely contractive modules,
we need a rather exact description of those T in the unit ball of
LEC" N s A4), that is, T:D"— (#,),, so that we can compute
Sup{llp (T y(cincx): TeD ,,D™(0)}. This at the moment seems to be a
very difficult task. Of course, if we write T: C” - .4, as (T,, ..., T,,) then
KT\l + - +17,I <1 implies T: D" — (M),

However, the pair ((5 o), (3 %)) which maps D" into (.#,), with
T + T, =2 shows that T+ --- +||T,]l<1 is not a necessary
condition for T to map D" into ..



220 MISRA AND SASTRY

2.3. A Family of Examples over the Ball Algebra. Let ¢, .., e, denote
the usual basis in C™; set

N, = (N(0, e,), ..., N(0, ¢,,)).

Thus, in this case V' =/, and it follows that C%*' is a contractive module
over the ball algebra [6, Theorem 4.1(d)]. However, C%*' is not a com-
pletely contractive module over .o/(B™). Indeed, Theorem 2.1, above,
implies that

n.(N,,)=/m.
Thus,
n.,(N,,)— x as m— oo

even though each N,, determines a completely contractive module. This
example suggests that asymptotically it is possible to have a contractive
module which is not even similar to a completely contractive module.

This family of examples perhaps should be compared to those of
Varoupoulos [8].
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