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ON THE IRREDUCIBILITY OF A CLASS OF

HOMOGENEOUS OPERATORS

GADADHAR MISRA AND SUBRATA SHYAM ROY

Abstract. In this paper we construct a class of homogeneous Hilbert modules over the disc

algebra A(D) as quotients of certain natural modules over the function algebra A(D2). These

quotient modules are described using the jet construction for Hilbert modules. We show that

the quotient modules obtained this way, belong to the class Bk(D) and that they are mutually

inequivalent, irreducible and homogeneous.

1. Introduction

Let M be a Hilbert space. All Hilbert spaces in this paper will be assumed to be complex

and separable. Let A(Ω) be the natural function algebra consisting of functions holomorphic in

a neighborhood of the closure Ω̄ of some open, connected and bounded subset Ω of Cm. The

Hilbert space M is said to be a Hilbert module over A(Ω) if M is a module over A(Ω) and

‖f · h‖M ≤ C‖f‖A(Ω)‖h‖M for f ∈ A(Ω) and h ∈ M,

for some positive constant C independent of f and h. It is said to be contractive if we also have

C ≤ 1.

Fix an inner product on the algebraic tensor product A(Ω) ⊗ Cn. Let the completion of

A(Ω)⊗Cn with respect to this inner product be the Hilbert space M. Assume that the module

action

A(Ω) ×A(Ω) ⊗ Cn → A(Ω) ⊗ Cn

extends continuously to A(Ω) × M → M. With very little additional assumption on M, we

obtain a quasi-free Hilbert module (cf. [13]).

The simplest family of modules over A(Ω) corresponds to evaluation at a point in the closure

of Ω. For z in the closure of Ω, we make the one-dimensional Hilbert space C into the Hilbert

module Cz, by setting ϕv = ϕ(z)v for ϕ ∈ A(Ω) and v ∈ C. Classical examples of contractive

Hilbert modules are the Hardy and Bergman modules over the algebra A(Ω).

Let G be a locally compact second countable group acting transitively on Ω. Let us say that

the module M over the algebra A(Ω) is homogeneous if ̺(f ◦ ϕ) is unitarily equivalent to ̺(f)

for all ϕ ∈ G. Here ̺ : A(Ω) → B(M) is the homomorphism of the algebra A(Ω) defined by

̺(f)h := f ·h for f ∈ A(Ω) and h ∈ M. It was shown in [19] that if the module M is irreducible

and homogeneous then there exists a projective unitary representation U : G→ U(M) such that

U∗
ϕ̺(f)Uϕ = ̺(f · ϕ), f ∈ A(Ω), ϕ ∈ G,

where (f · ϕ)(w) = f(ϕ · w) for w ∈ Ω.

A ∗ - homomorphism ̺ of a C∗ - algebra C and a unitary group representation U of G on

the Hilbert space M satisfying the condition as above were first studied by Mackey and were
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2 MISRA AND SHYAM ROY

called Systems of Imprimitivity. Mackey proved the Imprimitivity theorem which sets up a cor-

respondence between induced representations of the group G and the Systems of Imprimitivity.

The notion of homogeneity is obtained by compressing the systems of imprimitivities, in the

sense of Mackey, to a subspace N of M and then restricting to a subalgebra of the C∗ - alge-

bra C (cf.[3]). However, it is not clear if the notion of homogeneity is in some correspondence

with holomorphically induced representations, at least when the module M is assumed to be in

Bk(Ω).

An alternative description, in the particular case of the disc may be useful. The group of

bi-holomorphic automorphisms Möb of the unit disc is {ϕθ,α : θ ∈ [0, 2π) and α ∈ D}, where

(1.1) ϕθ,α(z) = eiθ
z − α

1 − ᾱz
, z ∈ D.

As a topological group (with the topology of locally uniform convergence) it is isomorphic to

PSU(1, 1) and to PSL(2,R).

An operator T from a Hilbert space into itself is said to be homogeneous if ϕ(T ) is unitarily

equivalent to T for all ϕ in Möb which are analytic on the spectrum of T . The spectrum of a

homogeneous operator T is either the unit circle T or the closed unit disc D̄, so that, actually,

ϕ(T ) is unitarily equivalent to T for all ϕ in Möb. We say that a projective unitary representation

U of Möb is associated with an operator T if

ϕ(T ) = U∗
ϕTUϕ

for all ϕ in Möb. We have already pointed out that if T is irreducible then it has an associated

representation U . It is not hard to see that U is uniquely determined upto unitary equivalence.

Many examples (unitarily inequivalent) of homogeneous operators are known [6]. Since the

direct sum (more generally direct integral) of two homogeneous operators is again homogeneous,

a natural problem is the classification (up to unitary equivalence) of atomic homogeneous oper-

ators, that is, those homogeneous operators which can not be written as the direct sum of two

homogeneous operators. In this generality, this problem remains unsolved. However, the irre-

ducible homogeneous operators in the Cowen-Douglas class B1(D) and B2(D) have been classified

(cf. [18] and [22]) and all the scalar shifts (not only the irreducible ones) which are homogeneous

are known [7, List 4.1, page 312]. Some recent results on classification of homogeneous bundles

are in [8] and [15].

Clearly, irreducible homogeneous operators are atomic. Therefore, it is important to under-

stand when a homogeneous operator is irreducible.

There are only two examples of atomic homogeneous operators known which are not irre-

ducible. these are the multiplication operators – by the respective co-ordinate functions – on

the Hilbert spaces L2(T) and L2(D). Both of these examples happen to be normal operators.

We do not know if all atomic homogeneous operators possess an associated projective unitary

representation. However, to every homogeneous operator in Bk(D), there exist an associated

representation of the universal covering group of Möb [15, Theorem 4].

It turns out an irreducible homogeneous operator in B2(D) is the compression of the tensor

product of two homogeneous operators from B1(D) (cf. [6]) to a suitable invariant subspace.

In the language of Hilbert modules, this is the statement that every homogeneous module in

B2(D) is obtained as quotient of the tensor product of two homogeneous modules in B1(D) by

the sub-module of functions vanishing to order 2 on △ ⊆ D2. However, beyond the case of

rank 2, the situation is more complicated. The question of classifying homogeneous operators in

the class Bk(D) amounts to classifying holomorphic and Hermitian vector bundles of rank k on

the unit disc which are homogeneous. Classification problems such as this one are well known
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in the representation theory of locally compact second countable groups. However, in that

context, there is no Hermitian structure present which makes the classification problem entirely

algebraic. A complete classification of homogeneous operators in Bk(D) may still be possible

using techniques from the theory of unitary representations of the Möbius group. Leaving aside,

the classification problem of the homogeneous operators in Bk(D), we show that the “generalized

Wilkins examples” (cf. [6]) are irreducible.

If one considers a bounded symmetric domain in Cm, the classification question probably

is even more complicated (cf. [4], [1]). Here part of the difficulty lies in the fact that no

classification of the irreducible unitary representations of the group Aut(Ω), the bi-holomorphic

automorphism group of Ω, is known.

In the following section, we discuss reproducing kernels for a functional Hilbert space on a

domain Ω ⊆ Cm and the m-tuple of multiplication operators M of multiplication by coordinate

functions. Although, our applications to the question of irreducibility is only for the multipli-

cation operator M on a functional Hilbert space based on the unit disc D, the more general

discussion of this section is not any simpler in the one variable case.

In subsection 2.2, we explain the realization of a m-tuple of operators T in the class Bk(Ω)

as the adjoint of a m-tuple of multiplication operators M on a Hilbert space of holomorphic

functions, on the bounded connected open set Ω∗ := {w ∈ Cm : w̄ ∈ Ω}, possessing a reproducing

kernel K. We point out, as in [11], that the normalized kernel
˜̃
K obtained from the kernel K by

requiring that
˜̃
K(z, 0) = 1, for all z ∈ Ω, determines the uniatry equivalence class of the m-tuple

T . We then obtain a criterion for the irreducibility of the m-tuple T in terms of the normalized

kernel
˜̃
K. Roughly speaking, this says that the m-tuple of operators is irreducible if and only

if the coefficients, in the pwer series expansion of
˜̃
K, are simultaneously irreducible. Following,

[12] and [14], we describe the jet construction for Hilbert modules and discuss some examples.

In section 3, we show that if H is a Hilbert space of holomorphic functions, on a bounded

connected open set Ω and possesses a reproducing kernel K then it admits a natural multiplier

representation of the automorphism group of Ω if K is quasi-invariant. We show that if K is

quasi-inavariant, then the corresponding multiplier representation intertwines M and ϕ(M ),

that is, the m-tuple of multiplication operators M is homogeneous.

Our main results on irreducibility of certain class of homogeneous operators is in Section 4.

The kernel B(α,β)(z,w) = (1−z1w̄1)
−α(1−z2w̄2)

−β , z = (z1, z2), w = (w1, w2) ∈ D2, determines

a Hilbert module over the function algebra A(D2). We recall the computation of a matrix valued

kernel on the unit disc D using the jet construction for this Hilbert module which consists of

holomorphic functions on the unit disc D taking values in Cn. The multiplication operator on

this Hilbert space is then shown to be irreducible by checking that all of the coefficients of the

“normalized” matrix valued kernel, obtained from the jet construction, cannot be simultaneously

reducible.

In section 5, we show that the kernel obtained from the jet construction is quais-invariant and

consequently, the corresponding multiplication operator is homogeneous. This proof involves

the verification of a cocycle identity, which in turn, depends on a beutiful identity involving

binomial coefficients.

Finally, in section 6, we discuss some examples arising from the jet construction applied to a

certain natural family of Hilbert modules over the algebra A(D3). A more systematic study of

such examples is to be found in [20].

2. Reproducing Kernels and the Cowen-Douglas class
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2.1. Reproducing kernel. Let L(F) be the Banach space of all linear transformations on a Hilbert

space F of dimension n for some n ∈ N. Let Ω ⊂ Cm be a bounded open connected set. A

function K : Ω × Ω → L(F), satisfying

(2.2)

p∑

i,j=1

〈K(w(i), w(j))ζj, ζi〉F ≥ 0, w(1), . . . , w(p) ∈ Ω, ζ1, . . . , ζp ∈ F, p > 0

is said to be a non negative definite (nnd) kernel on Ω. Given such an nnd kernel K on Ω, it is

easy to construct a Hilbert space H of functions on Ω taking values in F with the property

(2.3) 〈f(w), ζ〉F = 〈f,K(·, w)ζ〉, for w ∈ Ω, ζ ∈ F, and f ∈ H.

The Hilbert space H is simply the completion of the linear span of all vectors of the form

S = {K(·, w)ζ, w ∈ Ω, ζ ∈ F}, where the inner product between two of the vectors from S is

defined by

(2.4) 〈K(·, w)ζ,K(·, w′)η〉 = 〈K(w′, w)ζ, η〉, for ζ, η ∈ F, and w,w′ ∈ Ω,

which is then extended to the linear span H◦ of the set S. This ensures the reproducing property

( 2.3 ) of K on H◦.

Remark 2.1. We point out that although the kernel K is required to be merely nnd, the equation

( 2.4 ) defines a positive definite sesqui-linear form. To see this, simply note that |〈f(w), ζ〉| =

|〈f,K(·, w)ζ〉| which is at most ‖f‖〈K(w,w)ζ, ζ〉1/2 by the Cauchy - Schwarz inequality. It

follows that if ‖f‖2 = 0 then f = 0.

Conversely, let H be any Hilbert space of functions on Ω taking values in F. Let ew : H → F

be the evaluation functional defined by ew(f) = f(w), w ∈ Ω, f ∈ H. If ew is bounded for

each w ∈ Ω then it admits a bounded adjoint e∗w : F → H such that 〈ewf, ζ〉 = 〈f, e∗wζ〉 for all

f ∈ H and ζ ∈ F. A function f in H is then orthogonal to e∗w(H) if and only if f = 0. Thus

f =
∑p

i=1 e
∗
w(i)(ζi) with w(1), . . . , w(p) ∈ Ω, ζ1, . . . , ζp ∈ F, and p > 0, form a dense set in H.

Therefore we have

‖f‖2 =

p∑

i,j=1

〈ew(i)e
∗
w(j)ζj, ζi〉,

where f =
∑n

i=1 e
∗
w(i)(ζi), w

(i) ∈ Ω, ζi ∈ F . Since ‖f‖2 ≥ 0, it follows that the kernel

K(z,w) = eze
∗
w is non-negative definite as in ( 2.2 ). It is clear that K(z,w)ζ ∈ H for each

w ∈ Ω and ζ ∈ F, and that it has the reproducing property ( 2.3 ).

Remark 2.2. If we assume that the evaluation functional ew is surjective then the adjoint e∗w
is injective and it follows that 〈K(w,w)ζ, ζ〉 > 0 for all non-zero vectors ζ ∈ F.

There is a useful alternative description of the reproducing kernel K in terms of the orthonor-

mal basis {ek : k ≥ 0} of the Hilbert space H. We think of the vector ek(w) ∈ F as a column

vector for a fixed w ∈ Ω and let ek(w)∗ be the row vector (e1k(w), . . . , enk (w)). We see that

〈K(z,w)ζ, η〉 = 〈K(·, w)ζ,K(·, z)η〉

=

∞∑

k=0

〈K(·, w)ζ, ek〉〈ek,K(·, z)η〉

=

∞∑

k=0

〈ek(w), ζ〉〈ek(z), η〉

=

∞∑

k=0

〈ek(z)ek(w)∗ζ, η〉,
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for any pair of vectors ζ, η ∈ F. Therefore, we have the following very useful representation for

the reproducing kernel K:

(2.5) K(z,w) =

∞∑

k=0

ek(z)ek(w)∗,

where {ek : k ≥ 0} is any orthonormal basis in H.

2.2. The Cowen-Douglas class. Let T = (T1, . . . , Tm) be a d-tuple of commuting bounded linear

operators on a separable complex Hilbert space H. Define the operator DT : H → H⊕· · ·⊕H by

DT(x) = (T1x, . . . , Tmx), x ∈ H. Let Ω be a bounded domain in Cm. For w = (w1, . . . , wm) ∈ Ω,

let T −w denote the operator tuple (T1 − w1, . . . , Tm − wm). Let n be a positive integer. The

m-tuple T is said to be in the Cowen-Douglas class Bn(Ω) if

(1) ran DT−w is closed for all w ∈ Ω

(2) span {kerDT−w : w ∈ Ω} is dense in H
(3) dim kerDT−w = n for all w ∈ Ω.

This class was introduced in [10]. The case of a single operator was investigated earlier in the

paper [9]. In this paper, it is pointed out that an operator T in B1(Ω) is unitarily equivalent

to the adjoint of the multiplication operator M on a reproducing kernel Hilbert space, where

(Mf)(z) = zf(z). It is not very hard to see that, more generally, a m-tuple T in Bn(Ω) is

unitarily equivalent to the adjoint of them-tuple of multiplication operators M = (M1, . . . ,Mm)

on a reproducing kernel Hilbert space [9] and [11, Remark 2.6 a) and b)]. Also, Curto and Salinas

[11] show that if certain conditions are imposed on the reproducing kernel then the corresponding

adjoint of the m-tuple of multiplication operators belongs to the class Bn(Ω).

To a m-tuple T in Bn(Ω), on the one hand, one may associate a holomorphic Hermitian vector

bundle ET on Ω (cf. [9]), while on the other hand, one may associate a normalized reproducing

kernel K (cf. [11]) on a suitable sub-domain of Ω∗ = {w ∈ Cm : w̄ ∈ Ω}. It is possible to answer

a number of questions regarding the m-tuple of operators T using either the vector bundle

or the reproducing kernel. For instance, in the two papers [9] and [10], Cowen and Douglas

show that the curvature of the bundle ET along with a certain number of derivatives forms a

complete set of unitary invariants for the operator T while Curto and Salinas [11] establish that

the unitary equivalence class of the normalized kernel K is a complete unitary invariant for the

corresponding m-tuple of multiplication operators. Also, in [9], it is shown that a single operator

in Bn(Ω) is reducible if and only if the associated holomorphic Hermitian vector bundle admits

an orthogonal direct sum decomposition.

We recall the correspondence between a m-tuple of operators in the class Bn(Ω) and the

corresponding m-tuple of multiplication operators on a reproducing kernel Hilbert space on Ω.

Let T be a m-tuple of operators in Bn(Ω). Pick n linearly independent vectors

γ1(w), . . . , γn(w) in kerDT−w, w ∈ Ω. Define a map Γ : Ω → L(F,H) by Γ(w)ζ =
∑n

i=0 ζiγi(w),

where ζ = (ζ1, . . . , ζn) ∈ F, dimF = n. It is shown in [9, Proposition 1.11] and [11, Theorem

2.2] that it is possible to choose γ1(w), . . . , γn(w), w in some domain Ω0 ⊆ Ω, such that Γ is

holomorphic on Ω0. Let A(Ω,F) denote the linear space of all F - valued holomorphic functions

on Ω. Define UΓ : H → A(Ω∗
0,F) by

(2.6) (UΓx)(w) = Γ(w)∗x, x ∈ H, w ∈ Ω0.

Define a sesqui-linear form on HΓ = ran UΓ by 〈UΓf, UΓg〉Γ = 〈f, g〉, f, g ∈ H. The map UΓ is

linear and injective. Hence HΓ is a Hilbert space of F-valued holomorphic functions on Ω∗
0 with

inner product 〈·, ·〉Γ and UΓ is unitary. Then it is easy to verify the following (cf. [11, Remarks

2.6]).
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a) K(z,w) = Γ(z̄)∗Γ(w̄), z,w ∈ Ω∗
0 is the reproducing kernel for the Hilbert space HΓ.

b) M∗
i UΓ = UΓTi, where (Mif)(z) = zif(z), z = (z1, . . . , zm) ∈ Ω.

An nnd kernel K for which K(z,w0) = I for all z ∈ Ω∗
0 and some w0 ∈ Ω is said to be normalized

at w0.

For 1 ≤ i ≤ m, suppose that the operators Mi : H → H are bounded. Then it is easy to

verify that for each fixed w ∈ Ω, and 1 ≤ i ≤ m,

(2.7) M∗
i K(·, w)η = w̄iK(·, w)η for η ∈ F.

Differentiating ( 2.3 ), we also obtain the following extension of the reproducing property:

(2.8) 〈(∂ji f)(w), η〉 = 〈f, ∂̄jiK(·, w)η〉 for 1 ≤ i ≤ m, j ≥ 0, w ∈ Ω, η ∈ F, f ∈ H.

Let M = (M1, . . . ,Mm) be the commuting m - tuple of multiplication operators and let M ∗ be

the m - tuple (M∗
1 , . . . ,M

∗
m). It then follows from ( 2.7 ) that the eigenspace of the m - tuple

M∗ at w ∈ Ω∗ ⊆ Cm contains the n-dimensional subspace ranK(·, w̄) ⊆ H.

One may impose additional conditions on K to ensure that M is in Bn(Ω
∗). Assume that

K(w,w) is invertible for w ∈ Ω. Fix w0 ∈ Ω and note that K(z,w0) is invertible for z in some

neighborhood Ω0 ⊆ Ω of w0. Let Kres be the restriction of K to Ω0 × Ω0. Define a kernel

function K0 on Ω0 by

(2.9) K0(z,w) = ϕ(z)K(z,w)ϕ(w)∗ , z, w ∈ Ω0,

where ϕ(z) = Kres(w0, w0)
1/2Kres(z,w0)

−1. The kernel K0 is said to be normalized at 0 and

is characterized by the property K0(z,w0) = I for all z ∈ Ω0. Let M0 denote the m-tuple

of multiplication operators on the Hilbert space H. It is not hard to establish the unitary

equivalence of the two m - tuples M and M 0 as in (cf. [11, Lemma 3.9 and Remark 3.8]).

First, the restriction map res : f → fres, which restricts a function in H to Ω0 is a unitary

map intertwining the m-tuple M on H with the m-tuple M on Hres = ran res. The Hilbert

space Hres is a reproducing kernel Hilbert space with reproducing kernel Kres. Second, suppose

that the m - tuples M defined on two different reproducing kernel Hilbert spaces H1 and H2 are

in Bn(Ω) and X : H1 → H2 is a bounded operator intertwining these two operator tuples. Then

X must map the joint kernel of one tuple in to the other, that is, XK1(·, w)x = K2(·, w)Φ(w)x,

x ∈ Cn, for some function Φ : Ω → Cn×n. Assuming that the kernel functions K1 and K2

are holomorphic in the first and anti-holomorphic in the second variable, it follows, again as

in [11, pp. 472], that Φ is anti-holomorphic. An easy calculation then shows that X∗ is the

multiplication operator MΦ̄tr . If the two operator tuples are unitarily equivalent then there

exists an unitary operator U intertwining them. Hence U∗ must be of the form MΨ for some

holomorphic function Ψ such that Ψ(w)
tr

maps the joint kernel of (M −w)∗ isometrically onto

the joint kernel of (M − w)∗ for all w ∈ Ω. The unitarity of U is equivalent to the relation

K1(·, w)x = U∗K2(·, w)Ψ(w)
tr
x for all w ∈ Ω and x ∈ Cn. It then follows that

(2.10) K1(z,w) = Ψ(z)K2(z,w)Ψ(w)
tr
,

where Ψ : Ω0 ⊆ Ω → GL(F) is some holomorphic function. Here, GL(F) denotes the group of

all invertible linear transformations on F.

Conversely, if two kernels are related as above then the corresponding tuples of multiplication

operators are unitarily equivalent since

M∗
i K(·, w)ζ = w̄iK(·, w)ζ, w ∈ Ω, ζ ∈ F,

where (Mif)(z) = zif(z), f ∈ H for 1 ≤ i ≤ m.
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Remark 2.3. We observe that if there is a self adjoint operator X commuting with the m-tuple

M on the Hilbert space H then we must have the relation Φ(z)
tr
K(z,w) = K(z,w)Φ(w) for

some anti-holomorphic function Φ : Ω → Cn×n. Hence if the kernel K is normalized then any

projection P commuting with the m-tuple M is induced by a constant function Φ such that Φ(0)

is an ordinary projection on Cn.

In conclusion, what is said above shows that a m-tuple of operators in Bn(Ω
∗) admits a

representation as the adjoint of a m-tuple of multiplication operators on a reproducing kernel

Hilbert space of F-valued holomorphic functions on Ω0, where the reproducing kernel K may be

assumed to be normalized. Conversely, the adjoint of the m-tuple of multiplication operators on

the reproducing kernel Hilbert space associated with a normalized kernel K on Ω belongs to

Bn(Ω
∗) if certain additional conditions are imposed on K (cf. [11]).

Our interest in the class Bn(Ω) lies in the fact that the Cowen-Douglas theorem [9] provides

a complete set of unitary invariants for operators which belong to this class. However, these

invariants are somewhat intractable. Besides, often it is not easy to verify that a given operator

is in the class Bn(Ω). Although, we don’t use the complete set of invariants that [9] provides,

it is useful to ensure that the homogeneous operators that arise from the jet construction are in

this class.

2.3. The jet construction. Let M be a Hilbert module over the algebra A(Ω) for Ω a bounded

domain in Cm. Let Mk be the submodule of functions in M vanishing to order k > 0 on some

analytic hyper-surface Z in Ω – the zero set of a holomorphic function ϕ in A(Ω). A function

f on Ω is said to vanish to order k on Z if it can be written f = ϕkg for some holomorphic

function g. The quotient module Q = M⊖Mk has been characterized in [12]. This was done

by a generalization of the approach in [2] to allow vector-valued kernel Hilbert modules. The

basic result in [12] is that Q can be characterized as such a vector-valued kernel Hilbert space

over the algebra A(Ω)|Z of the restriction of functions in A(Ω) to Z and multiplication by ϕ

acts as a nilpotent operator of order k.

For a fixed integer k > 0, in this realization, M consists of Ck-valued holomorphic functions,

and there is an Ck×k-valued function K(z,w) on Ω × Ω which is holomorphic in z and anti-

holomorphic in w such that

(1) K(·, w)v is in M for w in Ω and v in Ck;

(2) 〈f,K(·, w)v〉M = 〈f(w), v〉Ck for f in M, w in Ω and v in Ck; and

(3) A(Ω)M ⊂ M.

If we assume that M is in the class B1(Ω), then it is possible to describe the quotient module

via a jet construction along the normal direction to the hypersurface Z. The details are in

[12]. In this approach, to every positive definite kernel K : Ω × Ω → C, we associate a kernel

JK =
((
∂i1∂̄1

j
K
))k−1

i,j=0
, where ∂1 denotes differentiation along the normal direction to Z. Then

we may equip

JM =
{
f :=

k−1∑

i=0

∂i1f ⊗ εi ∈ M⊗ Ck : f ∈ M
}
,
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where ε0, . . . , εk−1 are standard unit vectors in Ck, with a Hilbert space structure via the kernel

JK. The module action is defined by f 7→ Jf for f ∈ JM, where J is the array –

J =




1 . . . . . . . . . . . . 0

∂1 1
...

...
. . .

...
...

(
l
j

)
∂
ℓ−j
1 1

...
...

. . . 0

∂k−1
1 . . . . . . . . . . . . 1




with 0 ≤ ℓ, j ≤ k− 1. The module JM|res Z which is the restriction of JM to Z is then shown

to be isomorphic to the quotient module M⊖Mk.

We illustrate these results by means of an example. Let M(α,β) be the Hilbert module which

corresponds to the reproducing kernel

B(α,β)(z,w) =
1

(1 − z1w̄1)α
1

(1 − z2w̄2)β
,

(z1, z2) ∈ D2 and (w1, w2) ∈ D2. Let M
(α,β)
2 be the subspace of all functions in M(α,β) which

vanish to order 2 on the diagonal {(z, z) : z ∈ D} ⊆ D × D. The quotient module Q :=

M(α,β) ⊖ M
(α,β)
2 was described in [14] using an orthonormal basis for the quotient module

Q. This includes the calculation of the compression of the two operators, M1 : f 7→ z1f and

M2 : f 7→ z2f for f ∈ M(α,β), on the quotient module Q (block weighted shift operators) with

respect to this orthonormal basis. These are homogeneous operators in the class B2(D) which

were first discovered by Wilkins [22].

In [14], an orthonormal basis
{
e
(1)
p , e

(2)
p

}∞

p=0
was constructed in the quotient module M ⊖

M
(α,β)
2 . It was shown that the matrix

M (1)
p =




(−(α+β)
p )

1/2

(−(α+β)
p+1 )

1/2 0

(β
α

)1/2 (α+β+1)1/2

(
(α+β+p)(α+β+p+1)

)1/2

(−(α+β+2)
p−1 )

1/2

(−(α+β+2)
p )

1/2




represents the operator M1 which is multiplication by z1 with respect to the orthonormal basis

{e
(1)
p , e

(2)
p }∞p=0. Similarly,

M (2)
p =




(−(α+β)
p )

1/2

(−(α+β)
p+1 )

1/2 0

−
(
α
β

)1/2 (α+β+1)1/2

(
(α+β+p)(α+β+p+1)

)1/2

(−(α+β+2)
p−1 )

1/2

(−(α+β+2)
p )

1/2




represents the operator M2 which is multiplication by z2 with respect to the orthonormal basis

{e
(1)
p , e

(2)
p }∞p=0. Therefore, we see that Q

(p)
1 = 1

2 (M
(p)
1 −M

(p)
2 ) is a nilpotent matrix of index 2

while Q
(p)
2 = 1

2(M
(p)
1 + M

(p)
2 ) is a diagonal matrix in case β = α. These definitions naturally

give a pair of operators Q1 and Q2 on the quotient module Q(α,β). Let f be a function in the

bi-disc algebra A(D2) and

f(u1, u2) = f0(u1) + f1(u1)u2 + f2(u1)u
2
2 + · · ·
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be the Taylor expansion of the function f with respect to the coordinates u1 = z1+z2
2 and

u2 = z1−z2
2 . Now the module action for f ∈ A(D2) in the quotient module Q(α,β) is then given

by

f · h = f(Q1, Q2) · h

= f0(Q1) · h+ f1(Q1)Q2 · h

def
=

(
f0 0

f1 f0

)
·

(
h1

h2

)
,

where h =
(
h1
h2

)
∈ Q(α,β) is the unique decomposition obtained from realizing the quotient

module as the direct sum Q(α,β) =
(
M(α,β) ⊖ M

(α,β)
1

)
⊕
(
M

(α,β)
1 ⊖ M

(α,β)
2

)
, where M

(α,β)
i ,

i = 1, 2, are the submodules in M(α,β) consisting of all functions vanishing on Z to order 1 and

2 respectively.

We now calculate the curvature K(α,β) for the bundle E(α,β) corresponding to the metric

B(α,β)(u,u), where u = (u1, u2) ∈ D2. The curvature K(α,β) is easy to compute:

K(α,β)(u1, u2) = (1 − |u1 + u2|
2)−2

(
α α

α α

)
+ (1 − |u1 − u2|

2)−2

(
β −β
−β β

)
.

The restriction of the curvature to the hyper-surface {u2 = 0} is

K(α,β)(u1, u2)|u2=0 = (1 − |u1|
2)−2

(
α+ β α− β

α− β α+ β

)
,

where u1 ∈ D. Thus we find that if α = β, then the curvature is of the form 2α(1 − |u1|
2)−2I2.

We now describe the unitary map which is basic to the construction of the quotient module,

namely,

h 7→
k−1∑

ℓ=0

∂ℓ1h⊗ εℓ

∣∣∣
res △

for h ∈ M(α,β). For k = 2, it is enough to describe this map just for the orthonormal basis

{e
(1)
p , e

(2)
p : p ≥ 0}. A simple calculation shows that

e(1)p (z1, z2) 7→




(−(α+β)
p

)1/2
z
p
1

β
√

p
α+β

(−(α+β+1)
p−1

)1/2
z
p−1
1




e(2)p (z1, z2) 7→

(
0√

αβ
α+β

(−(α+β+2)
p−1

)1/2
z
p−1
1

)
.(2.11)

This allows us to compute the 2 × 2 matrix-valued kernel function

KQ(z,w) =
∞∑

p=0

e(1)p (z)e(1)p (w)∗ +
∞∑

p=0

e(2)p (z)e(2)p (w)∗, z,w ∈ D2

corresponding to the quotient module. Recall that S(z,w) := (1− zw̄)−1 is the Szegö kernel for

the unit disc D. We set Sr(z) := S(z, z)r = (1− |z|2)−r, r > 0. A straight forward computation
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shows that

KQ(z, z)|res △

=

(
S(z)α+β βzS(z)α+β+1

βz̄S(z)α+β+1 β2

α+β
d

d|z|2
(
|z|2S(z)α+β+1

)
+ βα

α+βS(z)α+β+2

)

=
((
S(z1)

α∂i∂̄jS(z2)
β
|res △

))
i,j=0,1

= (JK)(z, z)|res Z , z ∈ D2,

where △ = {(z, z) ∈ D2 : z ∈ D}. These calculations give an explicit illustration of one of the

main theorems on quotient modules from [12, Theorem 3.4].

3. Multiplier representations

Let G be a locally compact second countable (lcsc) topological group acting transitively on

the domain Ω ⊆ Cm. Let Cn×n denote the set of n × n matrices over the complex field C. We

start with a cocycle J , that is, a holomorphic map Jg : Ω → Cn×n satisfying the cocycle relation

(3.12) Jgh(z) = Jh(z)Jg(h · z), for all g, h ∈ G, z ∈ Ω,

Let Hol(Ω,Cn) be the linear space consisting of all holomorphic functions on Ω taking values in

Cn. We then obtain a natural (left) action U of the group G on Hol(Ω,Cn):

(3.13) (Ug−1f)(z) = Jg(z)f(g · z), f ∈ Hol(Ω,Cn), z ∈ Ω.

Let e be the identity element of the group G. Note that the cocycle condition ( 3.12 ) implies,

among other things, Je(z) = Je(z)
2 for all z ∈ Ω.

Let K ⊆ G be the compact subgroup which is the stabilizer of 0. For h, k in K, we have

Jkh(0) = Jh(0)Jk(0) so that k 7→ Jk(0)
−1 is a representation of K on Cn.

A positive definite kernel K on Ω defines an inner product on some linear subspace of

Hol(Ω,Cn). The completion of this subspace is then a Hilbert space of holomorphic functions

on Ω (cf. [2]). The natural action of the group G described above is seen to be unitary for an

appropriate choice of such a kernel. Therefore, we first discuss these kernels in some detail.

Let H be a functional Hilbert space consisting of holomorphic functions on Ω possessing a

reproducing kernel K. We will always assume that the m - tuple of multiplication operators

M = (M1, . . . ,Mm) on the Hilbert space H is bounded. We also define the action of the group G

on the space of multiplication operators – g ·Mf = Mf◦g for f ∈ A(Ω) and g ∈ G. In particular,

we have g ·M = M g. We will say that the m-tuple M is G-homogeneous if the operator g ·M
is unitarily equivalent to M for all g ∈ G. g 7→ Ug−1 defined in ( 3.13 ) leaves H invariant.

The following theorem says that the reproducing kernel of such a Hilbert space must be quasi

invariant under the G action.

A version of the following Theorem appears in [16] for the unit disc. However, the proof here,

which is taken from [16], is for a more general domain Ω in Cm.

Theorem 3.1. Suppose that H is a Hilbert space which consists of holomorphic functions on

Ω and possesses a reproducing kernel K on which the m - tuple M is irreducible and bounded.

Then the following are equivalent.

(1) The m - tuple M is G-homogeneous.

(2) The reproducing kernel K of the Hilbert space H transforms, for some cocycle Jg : Ω →
Cn×n, according to the rule

K(z,w) = Jg(z)K(g · z, g · w)Jg(w)∗, z, w ∈ Ω.
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(3) The operator Ug−1 : f 7→MJgf ◦ g for f ∈ H is unitary.

Proof. Assuming that K is quasi-invariant, that is, K satisfies the transformation rule, we see

that the linear transformation U defined in ( 3.13 ) is unitary. To prove this, note that

〈Ug−1K(z,w)x, Ug−1K(z,w′)y〉 = 〈Jg(z)K(g · z,w)x, Jg(z)K(g · z,w′)y〉

= 〈K(z, w̃)Jg(w̃)∗−1
x,K(z, w̃′)Jg(w̃

′)∗−1
y〉

= 〈K(w̃′, w̃)Jg(w̃)∗−1
x, Jg(w̃

′)∗−1
y〉

= 〈Jg(w̃
′)−1

K(w̃′, w̃)Jg(w̃)∗−1
x,y〉

= 〈K(g · w̃′, g · w̃)x,y〉,

where w̃ = g−1 · w and w̃′ = g−1 · w′. Hence

〈K(g · w̃′, g · w̃)x,y〉 = 〈K(w′, w)x,y〉.

It follows that the map Ug−1 is isometric. On the other hand, if U of ( 3.13 ) is unitary then

the reproducing kernel K of the Hilbert space H satisfies

(3.14) K(z,w) = Jg(z)K(g · z, g · w)Jg(w)∗.

This follows from the fact that the reproducing kernel has the expansion ( 2.5 ) for some or-

thonormal basis {eℓ : ℓ ≥ 0} in H. The uniqueness of the reproducing kernel implies that

the expansion is independent of the choice of the orthonormal basis. Consequently, we also

have K(z,w) =
∑

ℓ=0(Ug−1eℓ)(z)(Ug−1eℓ)(w)∗ which verifies the equation ( 3.14 ). Thus we

have shown that U is unitary if and only if the reproducing kernel K transforms according to

( 3.14 ).

We now show that the m-tuple M is homogeneous if and only if f 7→ MJgf ◦ g is unitary.

The eigenvector at w for g.M is clearly K(·, g−1 ·w). It is not hard, using the unitary operator

UΓ in ( 2.6 ), to see that that g−1 ·M is unitarily equivalent to M on a Hilbert space Hg whose

reproducing kernel is Kg(z,w) = K(g ·z, g ·w) and the unitary UΓ is given by f 7→ f ◦g for f ∈ H.

However, the homogeneity of the m-tuple M is equivalent to the existence of a unitary operator

intertwining the m-tuple of multiplication on the two Hilbert spaces H and Hg. As we have

pointed out in section 2.2, this unitary operator is induced by a multiplication operator MJg ,

where Jg is a holomorphic function (depends on g) such that Kg(z,w) = Jg(z)K(z,w)Jg(w)
tr
.

The composition of these two unitaries is f 7→MJgf ◦ g and is therefore a unitary. �

The discussion below and the Corollary following it is implicit in [16]. Let gz be an element

of G which maps 0 to z, that is gz · 0 = z. We could then try to define possible kernel functions

K : Ω × Ω → Cn×n satisfying the transformation rule ( 3.14 ) via the requirement

(3.15) K(gz · 0, gz · 0) = (Jgz (0))
−1K(0, 0)(Jgz (0)∗)−1,

choosing any positive operator K(0, 0) on Cn which commutes with Jk(0) for all k ∈ K. Then

the equation ( 3.15 ) determines the function K unambiguously as long as Jk(0) is unitary for

k ∈ K. Pick g ∈ G such that g · 0 = z. Then g = gzk for some k ∈ K. Hence

K(gzk · 0, gzk · 0) = (Jgzk(0))
−1K(0, 0)(Jgzk(0)

∗)−1

=
(
Jk(0)Jgz (k · 0)

)−1
K(0, 0)

(
Jgz(k · 0)

∗Jk(0)
∗)−1

= (Jgz(0))
−1(Jk(0))

−1K(0, 0)(Jk(0)
∗)−1(Jgz(0)

∗)−1

= (Jgz(0))
−1K(0, 0)(Jgz (0)∗)−1

= K(gz · 0, gz · 0)
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Given the definition ( 3.15 ), where the choice of K(0, 0) = A involves as many parameters

as the number of irreducible representations of the form k 7→ Jk(0)
−1 of the compact group K,

one can polarize ( 3.15 ) to get K(z,w). In this approach, one has to find a way of determining

if K is non-negative definite, or for that matter, if K(·, w) is holomorphic on all of Ω for each

fixed but arbitrary w ∈ Ω. However, it is evident from the definition ( 3.15 ) that

K(h · z, h · z) = Jh(gz · 0)
−1Jgz(0)

−1AJgz(0)
∗−1(Jh(gz · 0)

∗)−1

= Jh(z)
−1K(z, z)Jh(z)

∗−1

for all h ∈ G. Polarizing this equality, we obtain

K(h · z, h · w) = Jh(z)
−1K(z,w)Jh(w)∗−1

which is the identity ( 3.14 ). It is also clear that the linear span of the set {K(·, w)ζ : w ∈
Ω, ζ ∈ Cn} is stable under the action ( 3.13 ) of G:

g 7→ Jg(z)K(g · z,w)ζ = K(z, g−1 · w)Jg(g
−1w)∗

−1
ζ,

where Jg(g
−1w)∗−1ζ is a fixed element of Cn.

Corollary 3.2. If J : G×Ω → Cn×n is a cocycle and gz is an element of G which maps 0 to z

then the kernel K : Ω × Ω → Cn×n defined by the requirement

K(gz · 0, gz · 0) = (Jgz(0))
−1K(0, 0)(Jgz (0)∗)−1

is quasi-invariant, that is, it transforms according to ( 3.14 ).

4. Irreducibility

In the section 2.2, we have already pointed out that any Hilbert space H of scalar valued

holomorphic functions on Ω ⊂ Cm with a reproducing kernel K determines a line bundle E
on Ω∗ := {w̄ : w ∈ Ω}. The fibre of E at w̄ ∈ Ω∗ is spanned by K(., w). We can now

construct a rank (n + 1) vector bundle J (n+1)E over Ω∗. A holomorphic frame for this bundle

is {∂̄l2K(., w) : 0 ≤ l ≤ k,w ∈ Ω}, and as usual, this frame determines a metric for the bundle

which we denote by J (n+1)K, where

J (n+1)K(w,w) =
((
〈∂̄j2K(., w), ∂̄i2K(., w)〉

))n
i,j=0

=
((
∂̄
j
2∂

i
2K(w,w)

))n
i,j=0

, w ∈ Ω.

Recall that the kernel function on D2, B(α,β) : D2 × D2 −→ C is defined by

B(α,β)(z,w) = (1 − z1w̄1)
−α(1 − z2w̄2)

−β ,

for z = (z1, z2) ∈ D2 and w = (w1, w2) ∈ D2, α, β > 0. Take Ω = D2,K = B(α,β). Notice

that the Hilbert space M(α,β) corresponding to the kernel function B(α,β) is the tensor product

of the two Hilbert spaces M(α) and M(β). These are determined by the two kernel functions

B(α)(z,w) = (1 − zw̄)−α and B(β)(z,w) = (1 − zw̄)−β, z,w ∈ D, respectively.

It follows from [12] that hn+1(z) = J (n+1)B(α,β)(z, z)|res △ is a metric for the Hermitian anti-

holomorphic vector bundle J (n+1)E|res △ over △ = {(z, z) : z ∈ D} ⊆ D2. However, J (n+1)E|res △
is a Hermitian holomorphic vector bundle over △∗ = {(z̄, z̄) : z ∈ D}, that is, z̄ is the holomorphic

variable in this description. Thus ∂f = 0 if and only if f is holomorphic on △∗. To restore the

usual meaning of ∂ and ∂̄, we interchange the roles of z and z̄ in the metric which amounts to

replacing hn+1 by its transpose.

As shown in [12], this Hermitian anti-holomorphic vector bundle J (n+1)E|res △ defined over the

diagonal subset △ of the bidisc D2 gives rise to a reproducing kernel Hilbert space J (n+1)H. The

reproducing kernel for this Hilbert space is J (n+1)B(α,β)(z,w) which is obtained by polarizing

J (n+1)B(α,β)(z, z) = hn+1(z)
t.
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Lemma 4.1. Let α, β be two positive real numbers and n ≥ 1 be an integer. Let Mn be the

ortho-complement of the subspace of M(α)⊗M(β) (viewed as a Hilbert space of analytic functions

on the bi-disc D × D) consisting of all the functions vanishing to order k on the diagonally

embedded unit disc △ := {(z, z) : z ∈ D}. The compressions to Mn of M (α) ⊗ I and I ⊗M (β)

are homogeneous operators with a common associated representation.

Proof. For each real number α > 0, let M(α) be the Hilbert space completion of the inner

product space spanned by {fk : k ∈ Z+} where the fk’s are mutually orthogonal vectors with

norms given by

‖fk‖
2 =

Γ(1 + k)

Γ(α+ k)
, k ∈ Z+.

(Upto scaling of the norm, this Hilbert space may be identified, via non-tangential boundary

values, with the Hilbert space of analytic functions on D with reproducing kernel (z,w) 7→
(1 − zw̄)−α.) The representation D+

α lives on M(α), and is given (at least on the linear span of

the fk’s) by the formula

D+
α (ϕ−1)f = (ϕ′)α/2f ◦ ϕ, ϕ ∈ Möb.

Clearly the subspace Mn is invariant under the Discrete series representation π := D+
α ⊗D+

β

associated with both the operators M (α) ⊗ I and I ⊗M (β). It is also co-invariant under these

two operators. An application of Proposition 2.4 in [5] completes the proof of the lemma. �

The subspace Mn consists of those functions f ∈ M which vanish on △ along with their first

n derivatives with respect to z2. As it turns out, the compressions to M ⊖ Mn of M (α) ⊗ I

is the multiplication operator on the Hilbert space J (n+1)H|res △ which we denote M (α,β). An

application of [12, Proposition 3.6] shows that the adjoint M∗ of the multiplication operator M

is in Bn+1(D).

Theorem 4.2. The multiplication operator M := M (α,β) is irreducible.

Th proof of this theorem will be facilitated by a series of lemmas which are proved in the sequel.

We set, for now, K(z,w) = J (n+1)B(α,β)(z,w). Let K̃(z,w) = K(0, 0)−1/2K(z,w)K(0, 0)−1/2 , so

that K̃(0, 0) = I. Also, let
˜̃
K(z,w) = K̃(z, 0)−1K̃(z,w)K̃(0, w)−1. This ensures that

˜̃
K(z, 0) =

I for z ∈ D, that is,
˜̃
K is a normalized kernel. Each of the kernels K, K̃ and

˜̃
K admit a

power series expansion, say, K(z,w) =
∑

m, p≥ 0 amp z
mw̄p, K̃(z,w) =

∑
m, p≥ 0 ãmp z

mw̄p, and

˜̃
K(z,w) =

∑
m, p≥ 0

˜̃amp zmw̄p for z, w ∈ D, respectively. Here the coefficients amp and ãmp and
˜̃amp are (n+1)×(n+1) matrices form, p ≥ 0. In particular, ãmp = K(0, 0)−1/2ampK(0, 0)−1/2 =

a
−1/2
00 amp a

−1/2
00 for m, p ≥ 0. Also, let us write K(z,w)−1 =

∑
m, p≥ 0 bmp z

mw̄p and K̃(z,w)−1 =
∑

m,p≥ 0 b̃mp z
mw̄p, z,w ∈ D. Again, the coefficients bmp and b̃mp are (n+ 1) × (n+ 1) matrices

for m, p ≥ 0. However, ˜̃a00 = I and ˜̃am0 = ˜̃a0p = 0 for m, p ≥ 1.

The following lemma is from [11, Theorem 3.7, Remark 3.8 and Lemma 3.9]. The proof was

discussed in section 2.2.

Lemma 4.3. The multiplication operators on Hilbert spaces H1 and H2 with reproducing ker-

nels K1(z,w) and K2(z,w) respectively, are unitarily equivalent if and only if K2(z,w) =

Ψ(z)K1(z,w)Ψ(w)
t
, where Ψ is an invertible matrix-valued holomorphic function.

The proof of the lemma below appears in [16, Lemma 5.2] and is discussed in section 2.2, see

Remark 2.3.
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Lemma 4.4. The multiplication operator M on the Hilbert space H with reproducing kernel K

is irreducible if and only if there is no non-trivial projection P on Cn+1 commuting with all the

coefficients in the power series expansion of the normalized kernel
˜̃
K(z,w).

We will prove irreducibility of M by showing that only operators on Cn+1 which commutes

with all the coefficients of
˜̃
K(z,w) are scalars. It turns out that the coefficients of zkw̄ for

2 ≤ k ≤ n + 1, that is, the coefficients ˜̃ak1 for 2 ≤ k ≤ n + 1 are sufficient to reach the desired

conclusion.

Lemma 4.5. The coefficient of zkw̄ is ˜̃ak1 =
k∑

s=1

b̃s0ãk−s,1 + ãk1 for 1 ≤ k ≤ n+ 1.

Proof. Let us denote the coefficient of zkw̄l in the power series expansion of
˜̃
K(z,w) is ˜̃akl for

k, l ≥ 0. We see that

˜̃akl =

k∑

s=0

l∑

t=0

b̃s0ãk−s,l−tb̃0t

=

k∑

s=1

l∑

t=1

ãs0ãk−s,l−tb̃0t +

k∑

s=1

b̃s0ãk−s,l +
l∑

t=1

ãk,l−tb̃0t + ãkl

as ã00 = b̃00 = I. Also,

˜̃ak1 =

k∑

s=1

b̃s0ãk−s,0b̃01 +

k∑

s=1

b̃s0ãk−s,1 + ãk0b̃01 + ãk1

=
( k∑

s=0

b̃s0ãk−s,0
)
b̃01 +

k∑

s=1

b̃s0ãk−s,1 + ãk1

=
k∑

s=1

b̃s0ãk−s,1 + ãk1

as b̃00 = I and coefficient of zk in K̃(z,w)−1K̃(z,w) =
∑k

s=0 b̃s0ãk−s,0 = 0 for k ≥ 1. �

Now we compute some of the coefficients of K(z,w) which are useful in computing ˜̃ak1. In

what follows, we will compute only the non-zero entries of the matrices involved, that is, all

those entries which are not specified are assumed to be zero.

Lemma 4.6. (a00)kk = k!(β)k for 0 ≤ k ≤ n, (am0)r,r+m = (m+r)!
m! (β)m+r and (am+1,1)r,r+m =

(m+r)!
m! (β)m+r

(
α+ (1 + r

m+1 )(β +m+ r)
)

for 0 ≤ r ≤ n−m, 0 ≤ m ≤ n, where (x)0 = 1, (x)d =

x(x+ 1) . . . (x+ d− 1), for any positive integer d, is the Pochhammer symbol.

Proof. The coefficient of zpw̄q in J (n+1)B(α,β)(z,w) is the same as the coefficient of zpz̄q in

J (n+1)B(α,β)(z, z). So, (a00)kk = constant term in ∂̄k2∂
k
2

(
S(z1)

αS(z2)
β
)
|△. Now,

∂̄k2∂
k
2

(
S(z1)

αS(z2)
β
)
|△ = ∂̄k2∂

k
2

(
S(z1)

αS(z2)
β
)
|△

= S(z1)
α(β)k ∂̄

k
2

(
S(z2)

β+kz̄k2
)
|△

=
(
S(z1)

α(β)k

k∑

l=0

(
k

l

)
∂̄k−l2 (S(z2)

β+k)∂̄l2(z̄2
k)
)
|△

=
(
S(z1)

α(β)k

k∑

l=0

(
k

l

)
(β + k)k−lS(z2)

β+k+(k−l)z2
k−ll!

(
k

l

)
z̄2
k−l)|△,
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that is,
(
a00

)
kk

= k!(β)k for 0 ≤ k ≤ n.

We see that the coefficient of zm in ∂̄m+r
2 ∂r2

(
S(z1)

αS(z2)
β
)
|△ is (am0)r,r+m. Thus

∂̄m+r
2 ∂r2

(
S(z1)

αS(z2)
β
)
|△ = S(z1)

α(β)r∂̄
m+r
2

(
S(z2)

β+rz̄r2
)
|△

=
(
S(z1)

α(β)r

m+r∑

l=0

(m+r
l

)
∂̄m+r−l

2 (S(z2)
β+r)∂̄l2(z̄2

r)
)
|△

=
(
S(z1)

α(β)r

m+r∑

l=0

(m+r
l

)
(β + r)m+r−lS(z2)

β+2r+m−l)z2
m+r−ll!

(
r

l

)
z̄2
r−l)|△.

Therefore, the term containing zm occurs only when l = r in the sum above, that is, (am0)r,r+m =

(β)r
(
m+r
r

)
(β + r)mr! = (m+r)!

m! (β)m+r, for 0 ≤ r ≤ n−m, 0 ≤ m ≤ n.

Coefficient of zm+1z̄ in ∂̄m+r
2 ∂r2

(
S(z1)

αS(z2)
β
)
|△ is (am+1,1)r,r+m. For any real analytic func-

tion f on D, for now, let
(
f(z, z̄)

)
(p,q)

denote the coefficient of zpz̄q in f(z, z̄). We have

(
am+1,1

)
r,r+m

=
(
∂̄m+r

2 ∂r2
(
S(z1)

αS(z2)
β
)
|△
)
(m+1,1)

=
(
(β)r

m+r∑

l=0

(
m+r
l

)
(β + r)m+r−lS(z)α+β+r+(m+r−l)zm+r−ll!

(
r

l

)
z̄r−l

)
(m+1,1)

The terms containing zm+1z̄ occurs in the sum above, only when l = r and l = r − 1, that is,

(
am+1,1

)
r,r+m

=
(
(β)rr!

((m+r
r

)
(β + r)mS(z)α+β+m+rzm

+
(m+r
r−1

)
(β + r)m+1S(z)α+β+m+r+1zm+1z̄

))
(m+1,1)

=
(
(β)rr!

(
(m+ r)!

r!m!
(β + r)m(1 + (α+ β +m+ r)|z|2)zm

+
(m+ r)!r

r!(m+ 1)!
(β + r)m+1S(z)α+β+m+r+1zm+1z̄

))
(m+1,1)

=
(m+ r)!

m!
(β)m+r

(
(α+ β +m+ r) +

r

m+ 1
(β +m+ r)

)

=
(m+ r)!

m!
(β)m+r

(
α+ (1 +

r

m+ 1
)(β +m+ r)

)
,

for 0 ≤ r ≤ n −m, 0 ≤ m ≤ n, where we have followed the convention:
(
p
q

)
= 0 for a negative

integer q. �

Lemma 4.7. Let ck0 denote a
1/2
00 b̃k0a

1/2
00 . For 0 ≤ r ≤ n − k, 0 ≤ k ≤ n, (ck0)r,r+k =

(−1)k(r+k)!
k! (β)r+k.

Proof. We have K̃(z,w)−1 = a
1/2
00 K(z,w)−1a

1/2
00 =

∑
mn≥0

(
a

1/2
00 b̃mna

1/2
00

)
zmw̄n. Hence b̃mn =

a
1/2
00 bmna

1/2
00 for m,n ≥ 0. By invertibility of a00, we see that b̃k0 and ck0 uniquely determine

each other for k ≥ 0. Since (̃bk0)k≥0 are uniquely determined as the coefficients of power

series expansion of K̃(z,w)−1, it is enough to prove that

m∑

l=0

ãm−l,0b̃l0 = 0 for 1 ≤ m ≤ n.

Equivalently, we must show that

m∑

l=0

(a
−1/2
00 am−l,0a

−1/2
00 )(a

−1/2
00 cl0a

−1/2
00 ) = 0 which amounts to
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showing a
−1/2
00

( m∑

l=0

am−l,0a
−1
00 cl0

)
a
−1/2
00 = 0 for 1 ≤ m ≤ n. It follows from Lemma 4.6 that

(am−l,0)r,r+(m−l) = (m−l+r)!
(m−l)! (β)m−l+r and (a00)rr = r!(β)r. Therefore

(am−l,0a
−1
00 )r,r+(m−l) = (am−l,0)r,r+(m−l)(a

−1
00 )r+(m−l),r+(m−l)

=
(m− l + r)!

(m− l)!
(β)m−l+r

(
(m− l + r)!(β)m−l+r

)−1

=
1

(m− l)!
.

We also have

(am−l,0a
−1
00 cl0)r,r+m = (am−l,0a

−1
00 )r,r+(m−l)(cl0)r+(m−l),r+(m−l)+l

=
1

(m− l)!

(−1)l(r +m)!

l!
(β)r+m

=
(−1)l(r +m)!

(m− l)!l!
(β)r+m

for 0 ≤ l ≤ m, 0 ≤ r ≤ n−m, 1 ≤ m ≤ n. Now observe that

(
m∑

l=0

am−l,0a
−1
00 cl0)r,r+m = (r +m)!(β)m+r

m∑

l=0

(−1)l

(m− l)!l!

=
(r +m)!

m!
(β)m+r

m∑

l=0

(−1)l
(
m

l

)

= 0,

which completes the proof of this lemma. �

Lemma 4.8. (˜̃ak1)n−k+1,n is a non-zero real number, for 2 ≤ k ≤ n+1, n ≥ 1. All other entries

of ˜̃ak1 are zero.

Proof. From Lemma 4.5 and Lemma 4.7, we know that

˜̃ak1 =

k∑

s=1

b̃s0ãk−s,1 + ãk1

=

k∑

s=1

(a
−1/2
00 cs0a

−1/2
00 )(a

−1/2
00 ak−s,1a

−1/2
00 ) + a

−1/2
00 ak1a

−1/2
00 .

Consequently, a
1/2
00
˜̃ak1a1/2

00 =

k∑

s=1

cs0a
−1
00 ak−s,1+ak1 for 1 ≤ k ≤ n+1. By Lemma 4.6 and Lemma

4.7, we have

(cs0a
−1
00 )r,r+s = (cs0)r,r+s(a

−1
00 )r+s,r+s

=
(−1)s(r + s)!

s!
(β)r+s

(
(r + s)!(β)r+s

)−1

=
(−1)s

s!
,
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for 0 ≤ r ≤ n− s, 0 ≤ s ≤ k, 1 ≤ k ≤ n+ 1.

(ak−s,1)r,r+(k−s−1) =

(k + r − s− 1)!

(k − s− 1)!
(β)r+k−s−1

(
α+ (1 +

r

k − s
)(β + r + k − s− 1)

)
,

for k − s− 1 ≥ 0, 2 ≤ k ≤ n+ 1. Now,

(cs0a
−1
00 ak−s,1)r+s,r+s+(k−s−1)

= (cs0a
−1
00 )r,r+s(ak−s,1)r+s,r+s+(k−s−1)

=
(−1)s

s!

(r + k − 1)!

(k − s− 1)!
(β)r+k−1

(
α+ (1 +

r + s

k − s
)(β + r + k − 1)

)
,

for 1 ≤ s ≤ k − 1, 0 ≤ r ≤ n− k + 1, 1 ≤ k ≤ n+ 1. Hence

(cs0a
−1
00 ak−s,1)r+s,r+k−1 =

(−1)s

s!

(r + k − 1)!

(k − s− 1)!
(β)r+k−1

(
α+

k + r

k − s
(β + r + k − 1)

)
.

Since K(z,w)
t

= K(w, z), it follows that amn = anm
t for m,n ≥ 0. Thus, by Lemma 4.6,

(a01)r+1,r = (r + 1)!(β)r+1, for 0 ≤ r ≤ n− 1, (ck0a
−1
00 )r,r+k = (−1)k

k! , for 0 ≤ r ≤ n− k, 1 ≤ k ≤
n+ 1 and

(ck0a
−1
00 a01)r,r+k−1 = (ck0a

−1
00 )r,r+k(a01)r+k,r+k−1 =

(−1)k

k!
(r + k)!(β)r+k,

0 ≤ r ≤ n− k, 1 ≤ k ≤ n+ 1. Now, for 0 ≤ r ≤ n− k, 2 ≤ k ≤ n+ 1. Since c00 = a00, we clearly

have

(a
1/2
00
˜̃ak1a1/2

00 )r,r+k−1 =

( k∑

s=1

cs0a
−1
00 ak−s,1 + ak1

)

r,r+k−1

=

( k−1∑

s=0

cs0a
−1
00 ak−s,1 + ck0a

−1
00 a01

)

r,r+k−1

=

k−1∑

s=0

(−1)s(k+r−1)!
s!(k−s−1)! (β)r+k−1

(
α+ k+r

k−s(β + r + k − 1)
)

+
(−1)k(r + k)!

k!
(β)r+k

= α(β)r+k−1
(k+r−1)!
(k−1)!

k−1∑

s=0

(−1)s
(k−1
s

)
+ (β)k+r

( k−1∑

s=0

(−1)s(k+r)!
s!(k−s)! + (−1)k(k+r)!

k!

)

= (k+r)!
k! (S(z2)

β+k+(k−l)β)k+r

k∑

s=0

(−1)s
(
k

s

)
.
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Therefore (a
1/2
00
˜̃ak1a1/2

00 )r,r+k−1 = 0. Now, c00 = a00 and (ck0a
−1
00 a01)n−k+1,n = 0 for 2 ≤ k ≤ n+1.

Hence

(a
1/2
00
˜̃ak1a1/2

00 )n−k+1,n =

( k∑

s=1

cs0a
−1
00 ak−s,1 + ak1

)

n−k+1,n

=

( k−1∑

s=0

cs0a
−1
00 ak−s,1

)

n−k+1,n

=

k−1∑

s=0

(−1)s(k+(n−k+1)−1)!
s!(k−s−1)! (β)n

(
α+ k+(n−k+1)

k−s (β + n)

)

= n!(β)n

(
α

k−1∑

s=0

(−1)s

s!(k−1−s)! + (n+ 1)(β + n)
k−1∑

s=0

(−1)s

s!(k−s)!

)

= n!(β)n

(
α

(k−1)!

k−1∑

s=0

(−1)s
(k−1
s

)
+ (n+1)(β+n)

k!

k∑

s=0

(−1)s
(k
s

)
− (−1)k(n+1)(β+n)

k!

)

= 0 + 0 − n!(β)n
(−1)k(n+1)(β+n)

k!

= (−1)k+1(n+1)!(β)n+1

k! , for 2 ≤ k ≤ n+ 1.

Since a00 is a diagonal matrix with positive diagonal entries, ˜̃ak1 has the form as stated in the

lemma, for 2 ≤ k ≤ n+ 1, n ≥ 1. �

Here is a simple lemma from matrix theory which will be useful for us in the sequel.

Lemma 4.9. Let {Ak}
n−1
k=0 are (n + 1) × (n + 1) matrices such that (Ak)kn = λk 6= 0 for

0 ≤ k ≤ n − 1, n ≥ 1. If AAk = AkA for some (n + 1) × (n + 1) matrix A =
((
aij
))n
i,j=0

for

0 ≤ k ≤ n− 1, then A is upper triangular with equal diagonal entries.

Proof. (AAk)in = aik(Ak)kn = aikλk and (AkA)kj = (Ak)knanj = λkanj for 0 ≤ i, j ≤ n, 0 ≤
k ≤ n − 1. Putting i = k and j = n, we have (AAk)kn = akkλk and (AkA)kn = λkann. By

hypothesis we have akkλk = λkann. As λk 6= 0, this implies that akk = ann for 0 ≤ k ≤ n − 1,

which is same as saying that A has equal diagonal entries. Now observe that (AkA)ij = 0 if

i 6= k for 0 ≤ j ≤ n, which implies that (AkA)in = 0 if i 6= k. By hypothesis this is same as

(AAk)in = aikλk = 0 if i 6= k. This implies aik = 0 if i 6= k, 0 ≤ i ≤ n, 0 ≤ k ≤ n− 1, which is a

stronger statement than saying A is upper triangular. �

Lemma 4.10. If an (n+1)×(n+1) matrix A commutes with ˜̃ak1 and ˜̃a1k for 2 ≤ k ≤ n+1, n ≥ 1,

then A is a scalar.

Proof. It follows from Lemma 4.8 and Lemma 4.9 that if A commutes with ˜̃ak1 for 2 ≤ k ≤ n+1,

then A is upper triangular with equal diagonal entries. As the entries of ˜̃ak1 are real, (˜̃a1k) =

(˜̃ak1)t. If A commutes with ˜̃a1k for 2 ≤ k ≤ n + 1, then by a similar proof as in Lemma 4.9,

it follows that A is lower triangular with equal diagonal entries. So A is both upper triangular

and lower triangular with equal diagonal entries, hence A is a scalar. �

This sequence of Lemmas put together constitutes a proof of Theorem 1.

For homogeneous operators in the class B1(D), we have a proof of reducibility that avoids the

normalization of the kernel. This proof makes use of the fact that if such an operator is reducible

then each of the direct summands must belong to the class B1(D). We give a precise formulation

of this phenomenon along with a proof below. Let K be a positive definite kernel on D2 and H be
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the corresponding Hilbert space. Assume that the pair (M1,M2) on H is in B1(D
2). The operator

M∗ is the adjoint of the multiplication operator on Hilbert space J (2)H|res △ which consists of

C2 - valued holomorphic function on D and possesses the reproducing kernel J (2)K(z,w). The

operator M∗ is in B2(D) (cf. [12, Proposition 3.6]).

Proposition 4.11. The operator M∗ on Hilbert space J (2)H|res △ is irreducible.

Proof. If possible, let M∗ be reducible, that is, M∗ = T1 ⊕ T2 for some T1, T2 ∈ B1(D) by [9,

Proposition 1.18], which is same as saying by [9, Proposition 1.18] that the associated bundle

EM∗ is reducible. A metric on the associated bundle EM∗ is given by h(z) = J (2)K(z, z)t. So,

there exists a holomorphic change of frame ψ : D −→ GL(2,C) such that ψ(z)
t
h(z)ψ(z) =(

h1(z) 0

0 h2(z)

)
for z ∈ D, where h1 and h2 are metrics on the associated line bundles ET1

and ET2 respectively. So ψ(z)−1Kh(z)ψ(z) =

(
Kh1(z) 0

0 Kh2(z)

)
, where Kh(z) = ∂̄(h−1∂h)(z)

is the curvature of the bundle EM∗ with respect to the metric h and Khi
(z) are the curvatures

of the bundles ETi for i = 1, 2 as in [9, pp. 211]. A direct computation shows that Kh(z) =(
α −2β(β + 1)(1 − |z|2)−1z̄

0 α+ 2β + 2

)
(1−|z|2)−2. Thus the matrix ψ(z) diagonalizes Kh(z) for z ∈ D.

It follows that ψ(z) is determined, that is, the columns of ψ(z) are eigenvectors of Kh(z) for z ∈ D.

These are uniquely determined upto multiplication by non-vanishing scalar valued functions f1

and f2 on D. Now one set of eigenvectors of Kh(z) is given by {

(
1

0

)
,

(
−βz̄

1 − |z|2

)
} and it

is clear that there does not exist any non-vanishing scalar valued function f2 on D such that

f2(z)

(
−βz̄

1 − |z|2

)
is an eigenvector for Kh(z) whose entries are holomorphic functions on D.

Hence there does not exist any holomorphic change of frame ψ : D −→ GL(2,C) such that

gthg =

(
h1 0

0 h2

)
on D. Hence M∗ is irreducible. �

Theorem 4.12. The operators T = M (α,β) and T̃ := M (eα,eβ) are unitarily equivalent if and only

if α = α̃ and β = β̃.

One of the implications is trivial. To prove the other implication, recall that [12, Proposition

3.6] T, T̃ ∈ Bn+1(D). It follows from [9] that if T, T̃ ∈ Bn+1(D) are unitarily equivalent then the

curvatures KT ,KeT
of the associated bundles ET and E eT

respectively, are unitarily equivalent as

matrix-valued real-analytic functions on D. In particular, this implies that KT (0) and KeT
(0) are

unitarily equivalent. Therefore, we compute KT (0) and KeT
(0). Let KT (h) denote the curvature

of the bundle ET with respect to the metric h(z) :=
˜̃
K(z, z)t.

Lemma 4.13. The curvature KT (h)(0) at 0 of the bundle ET equals the coefficient of zz̄ in the

normalized kernel
˜̃
K, that is, KT (h)(0) = ˜̃at11.

Proof. The curvature of the bundle ET with respect to the metric h(z) :=
˜̃
K(z, z)t is KT (h) =

∂̄(h−1∂h). If h(z) =
∑

m,n≥0 hmnz
mz̄n, then hmn = ˜̃atmn for m,n ≥ 0. So, h00 = I and

hm0 = h0n = 0 for m,n ≥ 1. Hence KT (h)(0) = ∂̄h−1(0)∂h(0)+h−1(0)∂̄∂h(0) = (∂̄h−1(0))h10 +

h−1
00 h11 = h11 = ˜̃at11. �

Lemma 4.14.
(
KT (0)

)
ii

= α, for i = 0, . . . , n − 1 and
(
KT (0)

)
nn

= α + (n + 1)(β + n) for

n ≥ 1.
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Proof. From Lemma 4.13 and Lemma 4.5 we know that KT (0) = ˜̃at11 =
(
ã11 + b̃10ã01

)t
. Thus

KT (0) is the transpose of a
−1/2
00 (a11 + c10a

−1
00 a01)a

−1/2
00 by Lemma 4.7. Now, by Lemma 4.6

and Lemma 4.7,
(
c10
)
r,r+1

= −(r + 1)!(β)r+1 for 0 ≤ r ≤ n − 1,
(
a00

)
rr

= r!(β)r,
(
a11

)
rr

=

r!(β)r
(
α + (r + 1)(β + r)

)
for 0 ≤ r ≤ n and

(
a01

)
r+1,r

= (r + 1)!(β)r+1 for 0 ≤ r ≤ n − 1.

Therefore,
(
c10a

−1
00 a01

)
rr

= −(r + 1)!(β)r+1 for 0 ≤ r ≤ n − 1. Also,
(
a11 + c10a

−1
00 a01

)
rr

=

αr!(β)r+1 for 0 ≤ r ≤ n − 1, and
(
a11 + c10a

−1
00 a01

)
nn

= n!(β)n(α + (n + 1)(β + n)). Finally,

KT (h)(0) = ˜̃at11 = ˜̃a11, as ˜̃a11 is a diagonal matrix with real entries. In fact,
(
KT (0)

)
ii

= α, for

i = 0, . . . , n− 1 and
(
KT (0)

)
nn

= α+ (n+ 1)(β + n). �

We now see that M and M̃ are unitarily equivalent implies that α = α̃ and α+(n+1)(β+n) =

α̃+ (n+ 1)(β̃ + n), that is, α = α̃ and β = β̃.

5. Homogeneity of the operator M (α,β)

Theorem 5.1. The multiplication operator M := M (α,β) on J (n+1)H is homogeneous.

This theorem is a particular case of the Lemma 4.1. A proof first appeared in [6, Theorem

5.2.]. We give an alternative proof of this Theorem by showing that that the kernel is quasi-

invariant, that is,

K(z,w) = Jϕ−1(z)K
(
ϕ−1(z), ϕ−1(w)

)
Jϕ−1(w)

t

for some cocycle

J : Möb × D −→ C(n+1)×(n+1), ϕ ∈ Möb, z, w ∈ D.

First we prove that K(z, z) = Jϕ−1(z)K
(
ϕ−1(z), ϕ−1(z)

)
Jϕ−1(z)

t
and then polarize to obtain

the final result. We begin with a series of lemmas.

Lemma 5.2. Suppose that J : Möb × D −→ C(n+1)×(n+1) is a cocycle. Then the following are

equivalent

(1) K(z, z) = Jϕ−1(z)K
(
ϕ−1(z), ϕ−1(z)

)
Jϕ−1(z)

t
for all ϕ ∈ Möb and z ∈ D;

(2) K(0, 0) = Jϕ−1(0)K
(
ϕ−1(0), ϕ−1(0)

)
Jϕ−1(0)

t
for all ϕ ∈ Möb.

Proof. One of the implications is trivial. To prove the other implication, note that

Jϕ−1
1

(0)K
(
ϕ−1

1 (0), ϕ−1
1 (0)

)
Jϕ−1

1
(0)

t
= K(0, 0)

= Jϕ−1
2

(0)K
(
ϕ−1

2 (0), ϕ−1
2 (0)

)
Jϕ−1

2
(0)

t

for any ϕ1, ϕ2 ∈Möb and z ∈ D. Now pick ψ ∈Möb such that ψ−1(0) = z and taking ϕ1 =

ψ,ϕ2 = ψϕ in the previous identity we see that

Jψ−1(0)K
(
ψ−1(0), ψ−1(0)

)
Jψ−1(0)

t

= Jϕ−1ψ−1(0)K
(
ϕ−1ψ−1(0), ϕ−1ψ−1(0)

)
Jϕ−1ψ−1(0)

t

= Jψ−1(0)Jϕ−1(ψ−1(0))K
(
ϕ−1(z), ϕ−1(z)

)
Jϕ−1(ψ−1(0))

t
Jψ−1(0)

t

for ϕ ∈ Möb, z ∈ D. Since Jψ−1(0) is invertible, it follows from the equality of first and third

quantities that

K
(
ψ−1(0), ψ−1(0)

)
= Jϕ−1(ψ−1(0))K

(
ϕ−1ψ−1(0), ϕ−1ψ−1(0)

)
Jϕ−1(ψ−1(0))

t
.

This is the same as K(z, z) = Jϕ−1(z)K
(
ϕ−1(z), ϕ−1(z)

)
Jϕ−1(z)

t
by the choice of ψ. The proof

of this lemma is therefore complete. �
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Let Jϕ−1(z) = (Jϕ−1(z)t)−1, ϕ ∈Möb, z ∈ D, where Xt denotes the transpose of the matrix

X. Clearly, (Jϕ−1(z)t)−1 satisfies the cocycle property if and only if Jϕ−1(z) does and they

uniquely determine each other. It is easy to see that the condition

K(0, 0) = Jϕ−1(0)K
(
ϕ−1(0), ϕ−1(0)

)
Jϕ−1(0)

t

is equivalent to

(5.16) h
(
ϕ−1(0)

)
= Jϕ−1(0)

t
h(0)Jϕ−1(0),

where h(z) is the transpose of K(z, z) as before. It will be useful to define the two functions

(i) c : Möb×D −→ C, c(ϕ−1, z) = (ϕ−1)′(z);
(ii) p : Möb×D −→ C, p(ϕ−1, z) = ta

1+taz

for ϕt,a ∈ Möb, t ∈ T, a ∈ D. We point out that the function c is the well-known cocycle for the

group Möb.

Lemma 5.3. With notation as above, we have

(a) ϕ−1
t,a = ϕt̄,−ta

(b) ϕs,bϕt,a = ϕ s(t+āb)

1+tab̄
, a+t̄b
1+tab

(c) c(ϕ−1, ψ−1(z))c(ψ−1(z)) = c(ϕ−1ψ−1, z) for ϕ,ψ ∈Möb, z ∈ D

(d) p(ϕ−1, ψ−1(z))c(ψ−1, z) + p(ψ−1, z) = p(ϕ−1ψ−1, z) for ϕ,ψ ∈Möb, z ∈ D.

Proof. The proof of (a) is a mere verification. We note that

ϕs,b(ϕt,a(z)) = s
t z−a1−āz − b

1 − b̄t z−a1−āz
= s

tz − ta− b+ ābz

1 − āz − tb̄z + tab̄
=
s(t+ āb)

1 + tab̄

z − ta+b
t+āb

1 − ā+tb̄
1+tab̄

z
,

which is (b). The chain rule gives (c). To prove (d), we first note that for ϕ = ϕt,a and ψ = ϕs,b,

if ψ−1ϕ−1 = ϕt′,a′ for some (t′, a′) ∈ T × D then

t′a′ =
s̄(t̄+ ab̄)

1 + tab

ā+ tb̄

1 + tab̄
=
s̄(b̄+ ta)

1 + tab
.

It is now easy to verify that

p(ϕ−1, ψ−1(z))c(ψ−1, z) + p(ψ−1, z) =
ta

1 + taψ−1
s,b (z)

s̄(1 − |b|2)

(1 + sbz)2
+

sb

1 + sbz

=
s̄(b̄+ ta)

1 + tab+ s̄(b̄+ ta)z

=
s̄ b̄+ta

1+tab

1 + s̄(b̄+ta)
1+tab

z

= p(ϕ−1ψ−1, z).

�

Let

(5.17)
(
Jϕ−1(z)

)
ij

= c(ϕ−1, z)−
α+β

2
−n (β)j

(β)i

(
j

i

)
c(ϕ−1, z)n−jp(ϕ−1, z)j−i

for 0 ≤ i ≤ j ≤ n.

Lemma 5.4. Jϕ−1(z) defines a cocycle for the group Möb.
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Proof. To say that Jϕ−1(z) satisfies the cocycle property is the same as saying Jϕ−1(z) sat-

isfies the cocycle property, which is what we will verify. Thus we want to show that(
Jψ−1(z)Jϕ−1(ψ−1(z))

)
ij

=
(
Jϕ−1ψ−1(z)

)
ij

for 0 ≤ i, j ≤ n. We note that Jϕ−1(z) is upper

triangular, as the product of two upper triangular matrices is again upper triangular, it suffices

to prove this equality for 0 ≤ i ≤ j ≤ n. Clearly, we have

(
Jψ−1(z)Jϕ−1(ψ−1(z))

)
ij

=

j∑

k=i

(
Jψ−1(z)

)
ik

(
Jϕ−1(ψ−1(z))

)
kj

= c(ψ−1, z)−
α+β

2
−nc(ϕ−1, ψ−1(z))−

α+β
2

−n
j∑

k=i

((β)k
(β)i

(
k

i

)
c(ψ−1, z)n−k

p(ψ−1, z)k−i
(β)j
(β)k

(
j

k

)
c(ϕ−1, ψ−1(z))n−jp(ϕ−1, ψ−1(z))j−k

)

= c(ϕ−1ψ−1, z)−
α+β

2
−n (β)j

(β)i
c(ψ−1, z)n−jc(ϕ−1, ψ−1(z))n−j

j∑

k=i

j!

i!(k − i)!(j − k)!
c(ψ−1, z)j−kp(ϕ−1, ψ−1(z))j−kp(ψ−1, z)k−i

= c(ϕ−1ψ−1, z)−
α+β

2
−n (β)j

(β)i

(
j

i

)
c(ϕ−1ψ−1, z)n−j

j∑

k=i

(
j − i

k − i

)
c(ψ−1, z)j−kp(ϕ−1, ψ−1(z))j−kp(ψ−1, z)k−i

= c(ϕ−1ψ−1, z)−
α+β

2
−n (β)j

(β)i

(
j

i

)
c(ϕ−1ψ−1, z)n−j

j−i∑

k=0

(
j − i

k

)
c(ψ−1, z)(j−i)−kp(ϕ−1, ψ−1(z))(j−i)−kp(ψ−1, z)k

= c(ϕ−1ψ−1, z)−
α+β

2
−n (β)j

(β)i

(
j

i

)
c(ϕ−1ψ−1, z)n−j

(
c(ψ−1, z)p(ϕ−1, ψ−1(z)) + p(ψ−1, z)

)j−i

= c(ϕ−1ψ−1, z)−
α+β

2
−n (β)j

(β)i

(
j

i

)
c(ϕ−1ψ−1, z)n−jp(ϕ−1ψ−1, z)j−i

=
(
Jϕ−1ψ−1(z)

)
ij
,

for 0 ≤ i ≤ j ≤ n. The penultimate equality follows from Lemma 5.3. �

We need the following beautiful identity to prove ( 5.16 ). We provide two proofs, the first

one is due to C. Verughese and the second is due to B. Bagchi.

Lemma 5.5. For nonnegative integers j ≥ i and 0 ≤ k ≤ i, we have

i−k∑

l=0

(−1)l(l + k)!

(
i

l + k

)(
j

l + k

)(
l + k

l

)
(a + j)i−l−k = k!

(
i

k

)(
j

k

)
(a + k)i−k,

for all a ∈ C.
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Proof. Here is the first proof due to C. Verughese: For any integer i ≥ 1 and a ∈ C \Z, we have

i−k∑

l=0

(−1)l(l + k)!

(
i

l + k

)(
j

l + k

)(
l + k

l

)
(a+ j)i−l−k

=
i!j!

k!Γ(a+ j)

i−k∑

l=0

(−1)l

l!(i− k − l)!

Γ(a+ j + i− l − k)

Γ(j − l − k + 1)

=
i!j!

k!(i− k)!Γ(a+ j)Γ(1 − a− i)

i−k∑

l=0

(−1)l
(i−k
l

)
B(a+ j + i− k − l, 1 − a− i)

=
i!j!

k!(i− k)!Γ(a+ j)Γ(1 − a− i)

i−k∑

l=0

(−1)l
(
i−k
l

) ∫ 1

0
ta+j+i−k−l−1(1 − t)−a−idt

=
i!j!

k!(i− k)!Γ(a+ j)Γ(1 − a− i)

∫ 1

0

i−k∑

l=0

(−1)l
(i−k
l

)
ta+j+i−k−l−1(1 − t)−a−idt

=
i!j!

k!(i− k)!Γ(a+ j)Γ(1 − a− i)

∫ 1

0
(1 − t)−a−ita+j−1

( i−k∑

l=0

(−1)l
(
i−k
l

)
ti−k−l

)
dt

=
i!j!

k!(i− k)!Γ(a+ j)Γ(1 − a− i)

∫ 1

0
(1 − t)−a−ita+j−1(t− 1)i−kdt

=
(−1)i−ki!j!

k!(i− k)!Γ(a+ j)Γ(1 − a− i)

∫ 1

0
(1 − t)−a−ita+j−1(1 − t)i−kdt

=
(−1)i−ki!j!

k!(i− k)!Γ(a+ j)Γ(1 − a− i)
B(a+ j, 1 − a− k)

=
(−1)i−ki!j!

k!(i− k)!Γ(a+ j)Γ(1 − a− i)

Γ(a+ j)Γ(1 − a− k)

Γ(1 + j − k)

=
(−1)i−ki!j!

k!(i− k)!Γ(1 − a− i)

Γ(1 − a− k)

(j − k)!

= k!

(
i

k

)(
j

k

)
Γ(1 − a)

(−1)iΓ(1 − a− i)

(−1)kΓ(1 − a− k)

Γ(1 − a)

= k!

(
i

k

)(
j

k

)
Γ(1 − a)

cos iπΓ(1 − a− i)

cos kπΓ(1 − a− k)

Γ(1 − a)

= k!

(
i

k

)(
j

k

)
Γ(1 − a)Γ(a+ i)

cos iπΓ(1 − a− i)Γ(a+ i)

cos kπΓ(1 − a− k)Γ(a+ k)

Γ(a+ k)Γ(1 − a)

= k!

(
i

k

)(
j

k

)
Γ(1 − a)Γ(a+ i) sin(a+ i)π

π cos(iπ)

π cos kπ

sin(a+ k)πΓ(a+ k)Γ(1 − a)

= k!

(
i

k

)(
j

k

)
Γ(a+ i)

Γ(a+ k)
.

Since we have an equality involving a polynomial of degree i− k for all a in C \ Z, it follows

that the equality holds for all a ∈ C.
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Here is another proof due to B. Bagchi: Since
(−x
n

)
= −x(−x−1)···(−x−n+1)

n! = (−1)n
(x+n−1

n

)

and (x)n = x(x+ 1) · · · (x+ n− 1) = n!
(
x+n−1

n

)
, it follows that

i−k∑

l=0

(−1)l(l + k)!

(
i

l + k

)(
j

l + k

)(
l + k

l

)
(a+ j)i−l−k

=
i!j!

k!

i−k∑

l=0

(−1)l

l!(i− k − l)!(j − k − l)!
(i− k − l)!

(
a+ j + i− k − l − 1

i− k − l

)

=
i!j!

k!(j − k)!

i−k∑

l=0

(−1)l(j − k)!

l!(j − k − l)!
(−1)i−k−l

(
−a− j

i− k − l

)

= i!

(
j

k

)
(−1)i−k

i−k∑

l=0

(
j − k

l

)(
−a− j

i− k − l

)

= i!

(
j

k

)
(−1)i−k

(
−a− k

i− k

)

= i!

(
j

k

)
(−1)i−k(−1)i−k

(
a+ i− 1

i− k

)

= k!

(
i

k

)(
j

k

)
(a+ k)i−k,

where the equality after the last summation symbol follows from Vandermonde’s identity. �

Lemma 5.6. For ϕ ∈Möb and Jϕ−1(z) as in ( 5.17 ),

h
(
ϕ−1(0)

)
= Jϕ−1(0)

t
h(0)Jϕ−1(0).

Proof. It is enough to show that

h
(
ϕ−1(0)

)
ij

=
(
Jϕ−1(0)

t
h(0)Jϕ−1(0)

)
ij
, for 0 ≤ i ≤ j ≤ n.

Let ϕ = ϕt,z , t ∈ T, and z ∈ D. Since
(
h
(
ϕ−1(0)

))
ij

=
(
h(z)

)
ij

, it follows that

(
h
(
ϕ−1(0)

))
ij

= ∂̄i2∂
j
2

(
S(z1)

αS(z2)
β
)
|△

= (β)jS(z1)
α∂̄i2
(
S(z2)

β+j z̄
j
2

)
|△

= (β)jS(z1)
α

i∑

r=0

(
i

r

)
∂̄

(i−r)
2

(
S(z2)

β+j
)
∂̄r2(z̄j2)|△

= (β)jS(z1)
α

i∑

r=0

(
i

r

)
(β + j)i−rS(z2)

β+j+(i−r)zi−r2 r!

(
j

r

)
z̄
j−r
2 |△

= (β)jS(z)α+β+i+j z̄j−i
i∑

r=0

r!

(
i

r

)(
j

r

)
(β + j)i−rS(z)−r|z|2(i−r),
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for i ≤ j. Clearly,
(
Jϕ−1(0)

)
ij

= c(ϕ−1, 0)−
α+β

2
−n (β)j

(β)i

(j
i

)
c(ϕ−1, 0)n−jp(ϕ−1, 0)j−i and h(0)ii =

i!(β)i, 0 ≤ i ≤ j ≤ n. We have

(
Jϕ−1(0)

t
h(0)Jϕ−1(0)

)
ij

=

j∑

k=0

(
Jϕ−1(0)

t
h(0)

)
ik

(
Jϕ−1(0)

)
kj

=

i∑

k=0

j∑

k=0

(
Jϕ−1(0)

t)
ik

(
h(0)

)
kk

(
Jϕ−1(0)

)
kj

=

min(i,j)∑

k=0

(
Jϕ−1(0)

t)
ik

(
h(0)

)
kk

(
Jϕ−1(0)

)
kj
.

Now, for 0 ≤ i ≤ j ≤ n,

min(i,j)∑

k=0

(
Jϕ−1(0)

t)
ik

(
h(0)

)
kk

(
Jϕ−1(0)

)
kj

= |c(ϕ−1, 0)|−α−β−2n

i∑

k=0

( (β)i
(β)k

(
i

k

)
c(ϕ−1, 0)

n−i
p(ϕ−1, 0)

i−k
k!(β)k

(β)j
(β)k

(
j

k

)
c(ϕ−1, 0)

n−j
p(ϕ−1, 0)

j−k)

= S(z)α+β+2n
i∑

k=0

k!(β)i(β)j
(β)k

(
i

k

)(
j

k

)

(
tS(z)

)−n+i
(tz)i−k

(
tS(z)

)−n+j
(tz)j−k

= (β)jS(z)α+β+i+j
i∑

k=0

k!

(
i

k

)(
j

k

)
(β)i
(β)k

zi−kz̄j−k

= (β)jS(z)α+β+i+j z̄j−i
i∑

k=0

k!

(
i

k

)(
j

k

)
(β)i
(β)k

|z|2(i−k).

Clearly, to prove the desired equality we have to show that

i∑

r=0

r!

(
i

r

)(
j

r

)
(β + j)i−rS(z)−r|z|2(i−r) =

i∑

k=0

k!

(
i

k

)(
j

k

)
(β)i
(β)k

|z|2(i−k)(5.18)

for 0 ≤ i ≤ j ≤ n. But

i∑

r=0

r!

(
i

r

)(
j

r

)
(β + j)i−r(1 − |z|2)r|z|2(i−r)

=
i∑

r=o

r!

(
i

r

)(
j

r

)
(β + j)i−r

r∑

l=0

(−1)l
(
r

l

)
|z|2l|z|2(i−r)

=

i∑

l=0

i∑

r=l

(−1)lr!

(
i

r

)(
j

r

)(
r

l

)
(β + j)i−r|z|

2(i−(r−l))

=

i∑

l=0

i−l∑

r=0

(−1)l(r + l)!

(
i

r + l

)(
j

r + l

)(
r + l

l

)
(β + j)i−r−l|z|

2(i−r).



26 MISRA AND SHYAM ROY

For 0 ≤ k ≤ i− l, the coefficient of |z|2(i−k) in the left hand side of ( 5.18 ) is

i∑

l=0

(−1)l(k + l)!

(
i

k + l

)(
j

k + l

)(
k + l

l

)
(β + j)i−k−l,

which is the same as

i−k∑

l=0

(−1)l(k + l)!

(
i

k + l

)(
j

k + l

)(
k + l

l

)
(β + j)i−k−l,

for 0 ≤ l ≤ i− k ≤ i. So, to complete the proof we have to show that

i−k∑

l=0

(−1)l(k + l)!

(
i

k + l

)(
j

k + l

)(
k + l

l

)
(β + j)i−k−l = k!

(
i

k

)(
j

k

)
(β)i
(β)k

,

for 0 ≤ k ≤ i, i ≤ j. But this follows from Lemma 5.5. �

6. The case of the tri-disc D3

We discuss the jet construction for D3. Let K : D3 × D3 −→ C be a reproducing kernel.

Following the jet construction of [12], we define

J (1,1)K(z,w) =




K(z,w) ∂2K(z,w) ∂3K(z,w)

∂̄2K(z,w) ∂2∂̄2K(z,w) ∂̄2∂3K(z,w)

∂̄3K(z,w) ∂2∂̄3K(z,w) ∂̄3∂3K(z,w)


 , z, w ∈ D3.

As before, to retain the usual meaning of ∂ and ∂̄ we replace J (1,1)K(z,w) by its transpose. For

simplicity of notation, we let G(z,w) := J (1,1)K(z,w)t. In this notation, choosing the kernel

function K on D3 to be

K(z,w) = (1 − z1w̄1)
−α(1 − z2w̄2)

−β(1 − z3w̄3)
−γ ,

we have

G(z,w) =




(1 − zw̄)2 βz(1 − zw̄) γz(1 − zw̄)

βw̄(1 − zw̄) β(1 + βzw̄) βγzw̄

γw̄(1 − zw̄) βγzw̄ γ(1 + γzw̄)


 (1 − zw̄)−α−β−γ−2,

for z,w ∈ D, α, β, γ > 0.

Theorem 6.1. The adjoint of the multiplication operator M∗ on the Hilbert space of C3 valued

holomorphic functions on D3 with reproducing kernel G is in B3(D). It is homogeneous and

reducible. Moreover, M∗ is unitarily equivalent to M∗
1 ⊕M

∗
2 for a pair of irreducible homogeneous

operators M∗
1 and M∗

2 from B1(D).

Proof. Although homogeneity of M∗ follows from [6, Theorem 5.2.], we give an independent

proof using the ideas we have developed in this note. Let

˜̃
G(z,w) = G(0, 0)1/2G(z, 0)−1G(z,w)G(0, w)−1G(0, 0)1/2 .

Evidently,
˜̃
G(z, 0) = I, that is,

˜̃
G is a normalized kernel. The form of

˜̃
G(z,w) for z,w ∈ D is

(1 − zw̄)−α−β−γ−2 times



(1−zw̄)2−(β+γ)(1−zw̄)zw̄

+(β+γ)(1+β+γ)z2w̄2 −
√
β(1+β+γ)z2w̄ −√

γ(1+β+γ)z2w̄

−
√
β(1+β+γ)zw̄2 1+βzw̄

√
βγzw̄

−√
γ(1+β+γ)zw̄2

√
βγzw̄ 1+γzw̄


 .
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Let U = 1√
β+γ

(
1 0 0
0

√
β

√
γ

0 −√
γ
√
β

)
which is unitary on C3. By a direct computation, we see that the

equivalent normalized kernel U
˜̃
G(z,w)U

t
is equal to the direct sum G1(z,w) ⊕G2(z,w), where

G2(z,w) = (1 − zw̄)−α−β−γ−2 and

G1(z,w) =

(
(1−zw̄)2−(β+γ)(1−zw̄)zw̄

+(β+γ)(1+β+γ)z2w̄2 −
√
β+γ(1+β+γ)z2w̄

−
√
β+γ(1+β+γ)zw̄2 1+(β+γ)zw̄

)
(1 − zw̄)−α−β−γ−2.

It follows that M∗ is unitarily equivalent to a reducible operator by an application of Lemma

4.3, that is, M∗ is reducible. If we replace β by β + γ in Theorem 4.2 take n = 1, then

K(z,w) =

(
(1 − zw̄)2 (β + γ)z(1 − zw̄)

(β + γ)w̄(1 − zw̄) (β + γ)(1 + (β + γ)zw̄)

)
(1 − zw̄)−α−β−γ−2,

for z,w ∈ D. We observe that

G1(z,w) = K(0, 0)1/2K(z, 0)−1K(z,w)K(0, w)−1K(0, 0)1/2

and G1(z, 0) = I, as is to be expected. The multiplication operator corresponding to G1, which

we denote by M1, is unitarily equivalent to M (α,β+γ) by Lemma 4.3. Hence it is in B2(D) by

[12, Proposition 3.6]. Since both homogeneity and irreducibility are invariant under unitary

equivalence it follows, by an easy application of Lemma 4.3, Theorem 4.2 and Theorem 5.1

that M∗
1 is a irreducible homogeneous operator in B2(D). Irreducibility of M∗

1 also follows from

Proposition 4.11. Let M2 be the multiplication operator on the Hilbert space of scalar valued

holomorphic functions with reproducing kernel G2. Again, M∗
2 is in B1(D). The operator M2 is

irreducible by [9, corollary 1.19]. Homogeneity of M∗
2 was first established in [17], see also [22].

An alternative proof is obtained when we observe that Γ : Möb × D −→ C, where Γϕ−1(z) =
(
(ϕ−1)′(z)

)α+β+γ
2

+1
is a cocycle such that G2(z,w) = Γϕ−1(z)G2

(
ϕ−1(z), ϕ−1(w)

)
Γϕ−1(z) for

z,w ∈ D, ϕ ∈Möb. Now we conclude that M∗ is homogeneous as it is unitarily equivalent to

the direct sum of two homogeneous operators. Also M∗ is in B3(D) being the direct sum of two

operators from the Cowen-Douglas class. �
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Indian Acad. Sci. Math. Sci 111 (2001), no. 4, 415 – 437.

[7] , The homogeneous shifts, J. Funct. Anal. 204 (2003), 293 – 319.

[8] I. Biswas and G. Misra, ˜SL(2, R)-homogeneous vector bundles, preprint, 2006.

[9] M. J. Cowen and R. G. Douglas, Complex geometry and Operator theory, Acta Math. 141 (1978), 187 – 261.

[10] , On operators possessing an open set of eigenvalues, Memorial Conf. for Féjer-Riesz, Colloq. Math.
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