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Abstract. Fix a bounded domain Ω ⊆ C
n and a positive definite kernel K on Ω, both invariant under

Sn, the permutation group on n symbols. Let H ⊆ Hol(Ω) be the Hilbert module determined by K. We

show that H splits into orthogonal direct sum of subspaces PpH indexed by the partitions p of n. We

prove that each sub-module PpH is a locally free Hilbert module of rank equal to square of the dimension

χp(1) of the irreducible representation corresponding to p. Given two partitions p and q, we show that

if χp(1) 6= χq(1), then the sub-modules PpH and PqH are not unitarily equivalent. We prove that the

Taylor joint spectrum of the n-tuple of multiplication operators by elementary symmetric polynomials on

PpH is clos
(

s(Ω)
)

, where s : Cn → C
n is the symmetrization map. It is then shown that this commuting

tuple of operators defines a contractive homomorphism of the ring of symmetric polynomials C[z]Sn

in n variables, equipped with the sup norm on clos
(

s(Ω)
)

. We construct a large class of examples of

Sn-invariant kernels. Moreover, restricting to the case of weighted Bergman modules A(λ)(Dn), we prove

that the sub-modules P(n)

(

A
(λ)(Dn)

)

and P(1,...,1)

(

A
(λ)(Dn)

)

corresponding to the trivial and the sign

representations, are not unitarily equivalent. This shows that for n = 2, 3, the sub-modules of weighted

Bergman module in this decomposition are not unitarily equivalent.

1. Introduction

Let Ω ⊆ C
n, be a bounded domain, K be a positive definite kernel on Ω, holomorphic in the first

variable and anti-holomorphic in the second. It determines a Hilbert space H of holomorphic functions

defined on Ω. The natural action of the permutation group Sn on C
n is given by the formula:

(σ,z) 7→ σ · z := (zσ−1(1), . . . , zσ−1(n)), (σ,z) ∈ Sn × C
n.

Throughout this paper the domain Ω is assumed to be invariant under Sn. We say a positive definite

kernel K on an Sn-invariant domain Ω is Sn-invariant if K(σ · z, σ · w) = K(z,w) for σ ∈ Sn and

z,w ∈ Ω. We assume that the kernel K is Sn-invariant as well. Let H ⊆ Hol(Ω) be a Hilbert module

over the polynomial ring C[z], determined by K. The module action is defined by the map

mp(h) = p · h, p ∈ C[z], h ∈ H,

where p · h is the point-wise multiplication.
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Let Ŝn denote the equivalence classes of all irreducible representations of Sn. It is well known that

these are finite dimensional and they are in one-to-one correspondence with partitions p of n [14,

Theorem 4.3]. Recall that a partition p of n is a decreasing finite sequence p = (p1, . . . , pk) of non-

negative integers such that
∑k

i=1 pi = n. A partition p of n is denoted by p ⊢ n. Let πp be a unitary

representation of Sn in the equivalence class of p ⊢ n, that is, πp(σ) =
((
π
ij
p (σ)

))m
i,j=1

∈ C
m×m, σ ∈ Sn,

where m = χp(1) and χp(σ) = trace
(
πp(σ)

)
, σ ∈ Sn, is the character of the representation πp. These

finite dimensional representations of the group Sn define linear operators Pp and P
ij
p on the Hilbert

space H :

Ppf =
χp(1)

n!

∑

σ∈Sn

χp(σ
−1)(f ◦ σ−1), f ∈ H;

P
ij
p f =

χp(1)

n!

∑

σ∈Sn

πji
p (σ

−1)(f ◦ σ−1), f ∈ H.

We show that Pp and P
ii
p are non-trivial orthogonal projections for p ⊢ n, 1 ≤ i ≤ χp(1). The Hilbert

module H, when considered as a module over the ring of symmetric polynomials C[z]Sn , admits the

orthogonal decomposition:

H =
⊕

p⊢n

PpH =
⊕

p⊢n

χp(1)⊕

i=1

P
ii
pH.

In this paper, we discuss the following questions.

(1) If the sub-modules PpH and PqH over C[z]Sn are inequivalent for distinct partitions p and q of

n?

(2) If the reducing sub-modules Pii
pH and P

jj
q H over C[z]Sn are inequivalent whenever (p, i) 6= (q, j),

where p, q are partitions of n, 1 ≤ i ≤ χp(1) and 1 ≤ j ≤ χq(1)?

(3) If the reducing sub-modules Pii
pH, p partition of n and 1 ≤ i ≤ χp(1), are minimal?

Let s : Cn → C
n be the symmetrization map s = (s1, . . . , sn), where sk(z) =

∑
1≤i1,...,ik≤n zi1 · · · zik ,

1 ≤ k ≤ n. Let Z be the set of critical points of the proper map s. For any partition p of n, we

have shown, see Corollary 3.12, that the Hilbert modules PpH are locally free of rank χp(1)
2 on an

open subset of s(Ω) \ s(Z). Furthermore, using similar arguments, we show that the sub-modules Pii
pH,

1 ≤ i ≤ χp(1), are locally free of rank χp(1). Therefore, if χp(1) 6= χq(1), then the sub-modules P
ii
pH

and P
jj
q H are not equivalent, see Theorem 3.14.

Since the Hilbert module PpH, as well as the sub-modules Pii
pH, 1 ≤ i ≤ χp(1), are locally free on the

open set of (Ω)\s(Z), it follows that these are in one to one correspondence with holomorphic hermitian

vector bundles defined on some open subset of Ω. The rank of this vector bundle is an invariant, albeit

a very weak one. However, it is the rank which is used to distinguish the sub-modules P
ii
pH in this

paper. We give an explicit realization of a spanning holomorphic cross-section for the sub-modules

P
ii
pH. The existence of spanning holomorphic cross section for holomorphic hermitian vector bundles

was established in [13], [29]. However, it is not clear how to construct these even in the simplest of

examples of vector bundles of rank > 1, for instance, when the vector bundle is the direct sum of two

line bundles. For all the sub-modules of the Hilbert module H, we study in this paper, an algorithm
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for constructing the spanning sections is given. Also, this provides an invariant that we believe will be

useful in our future work.

For any partition p of n, following arguments similar to the ones given in [4], we further show that the

commuting n-tuple of multiplications M
(p)
s = (Ms1 , . . . ,Msn) by the elementary symmetric functions

s defined on the Hilbert space PpH, admit clos(s(Ω)) as a spectral set. Here, we assume that Ω is

polynomially convex and ‖mp‖ ≤ ‖p‖∞,clos(Ω), that is, the compact set clos(Ω) is a spectral set for the

commuting tuple (Mz1 , . . . ,Mzn) of multiplication by the coordinate functions on H. Since PpH admits

a further decomposition into a direct sum of the sub-modules Pii
pH, 1 ≤ i ≤ χp(1), it follows that the

n-tuple M
(p)
s acting on these reducing subspaces has the same property, which is Theorem 3.22 of this

paper. What is more, we have shown that the Taylor joint spectrum of each of these n-tuples is clos(s(Ω)

and thus, in these examples, the spectrum is a spectral set.

In section 3 (see Example 3.4), we exhibit a large class of Sn-invariant kernel. As a particular case,

we note that the action of Sn on Ω is bi-holomorphic, and hence it follows that the Bergman kernel

B of Ω is automatically Sn-invariant whenever the domain Ω is Sn-invariant. Furthermore if λ > 0

is chosen such that the kernel Bλ, defined by polarizing B(w,w)λ, is positive definite, then Bλ is also

Sn-invariant. Thus, all these spaces have similar decompositions in to reducing submodules. In the

last section of this paper, we discuss the important special case (motivated from appendix A) of the

weighted Bergman modules A(λ)(Dn), λ > 1, of square integrable holomorphic functions defined on the

polydisc D
n with respect to the measure

( n∏

i=1

(1− |zi|2)λ−2
)
dV (z), z ∈ D

n.

(In the sequel, we also consider the case of λ > 0.)

Although we haven’t been able to decide if the sub-modules PpH and PqH are inequivalent when

χp(1) = χq(1), in general, we have obtained the answer in the case of the Bergman module A
(λ)(Dn)

for the partitions p of n with χp(1) = 1. For n ≥ 2, there are only two such partitions: p = (n) or

(1, . . . , 1). We show that the two sub-modules P(n)

(
A
(λ)(Dn)

)
and P(1,...,1)

(
A
(λ)(Dn)

)
are inequivalent

(there is no intertwining module map between them that is unitary) over C[z]Sn , see Theorem 4.4. Also

these summands are locally free of rank 1, therefore they are irreducible and hence minimal. In fact,

the reducing submodules PpH are minimal whenever χp(1) = 1 and in case χp(1) > 1, existence of

non-trivial projections P
ii
p shows that the submodules are not minimal reducing. Therefore, for n = 2,

in the decomposition A
(λ)(D2) = P(2)

(
A
(λ)(D2)

)
⊕P(1,1)

(
A
(λ)(D2)

)
, the two summands are minimal and

inequivalent and consequently, we have answered the questions (1) - (3). Furthermore, for n = 3, it

follows that all the submodules in the decomposition ⊕p⊢ 3Pp

(
A
(λ)(D3)

)
are inequivalent, see Corollary

4.17. Along the way, we give an explicit formula, see Theorem 4.10, for the weighted Bergman kernel

of the symmetrized polydisc Gn in the co-ordinates of Gn rather than that of the polydisc D
n. In an

earlier paper [21], the case of n = 2 was worked out.
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2. Locally free Hilbert modules

First, we recall several useful definitions following [12], [7] and [6].

Definition 2.1. A Hilbert space H is said to be a Hilbert module over the polynomial ring C[z] in n

variables if the map (p, h) → p · h, p ∈ C[z], h ∈ H, defines a homomorphism p 7→ Tp, where Tp is

bounded operator defined by Tph = p · h.
Two Hilbert modules H and H̃ are said to be (unitarily) equivalent if there exists a unitary module

map U : H → H̃, that is, UTp = T̃pU, p ∈ C[z].

A Hilbert module H over C[z] equipped with the sup norm on some compact set X ⊂ C
n, is said to

be bounded if

‖Tp‖ ≤ C‖p‖∞,X := C sup{|p(z)| : z ∈ X}
for some positive constant C independent of p and it is said to be contractive if C can be chosen to be 1.

In this paper, we study those analytic Hilbert modules, where the domain Ω and the kernel K are

Sn-invariant.

Definition 2.2. A Hilbert module H is said to be analytic over C[z] if

(1) H consists of holomorphic functions on some bounded domain Ω ⊆ C
n,

(2) the module action Tp is given by pointwise multiplication, that is, (mp(h))(z) = p(z)h(z), z ∈ Ω,

(3) H possesses a reproducing kernel on Ω, that is, there exists a function K : Ω×Ω → C satisfying

the reproducing property with respect to H: f(w) = 〈f,K(·,w)〉, f ∈ H, w ∈ Ω,

(4) C[z] ⊆ H is dense in H.

An analytic Hilbert module H ⊆ Hol(Ω) is said to be contractive if ‖mp‖ ≤ ‖p‖∞,clos(Ω). If Ω is assumed

to be polynomially convex, contractivity of the module is equivalent to saying that the compact set clos(Ω)

is a spectral set for the commuting tuple of multiplication operators (Mz1 , . . . ,Mzn).

Let Cw be the one dimensional module over the polynomial ring C[z] defined by the evaluation, that

is, (p, c) → p(w)c, c ∈ C, p ∈ C[z]. Following [12], we define the module tensor product of two Hilbert

modules H and Cw over C[z] to be the quotient of the Hilbert space tensor product H ⊗ C by the

subspace

N := {p · f ⊗ 1w − f ⊗ p(w) : p ∈ C[z], f ∈ H}
= {

(
p− p(w)

)
f : p ∈ C[z], f ∈ H}.

Thus

H⊗C[z] Cw := (H⊗ C)/N ,

where the module action is defined by the compression of the operator mp⊗1w, p ∈ C[z], to the subspace

(H⊗C)/N . We recall the notion of local freeness of a Hilbert module in accordance with [6, Definition

1.4].

Definition 2.3 (Definition 1.4, [6]). Let H be a Hilbert module over C[z]. Let Ω be a bounded open

connected subset of Cn. We say H is locally free of rank k at w0 in Ω∗ := {z ∈ C
n : z̄ ∈ Ω} if there

exists a neighbourhood Ω∗
0 of w0 and holomorphic functions γ1, γ2, . . . , γk : Ω∗

0 → H such that the linear
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span of the set of k vectors {γ1(w), . . . , γk(w)} is the module tensor product H⊗C[z] Cw. Following the

terminology of [6], we say that a module H is locally free on Ω of rank k if it is locally free of rank k at

every w in Ω∗.

Recall that the permutation group Sn acts on C
n : σ in Sn, (σ,z) 7→ σ · z := (zσ−1(1), . . . , zσ−1(n)).

For convenience of notation, we sometimes let zσ denote σ · z. Let Ω ⊂ C
n be a bounded domain

invariant under the action of Sn. Let H be an analytic Hilbert module on Ω with reproducing kernel

K. Let s : Cn → C
n be the symmetrization map s = (s1, . . . , sn), where sk(z) =

∑
1≤i1,...,ik≤n zi1 · · · zik ,

1 ≤ k ≤ n. Let (M1, . . . ,Mn) denote the n-tuple of multiplication operators by the coordinate functions

zi, 1 ≤ i ≤ n on H. Clearly, (Ms1 , . . . ,Msn) defines a commuting tuple of bounded linear operators on

H. Define ∆(z) =
∏

i<j(zi − zj), for z ∈ C
n. Note that ∆(z) = Js(z), the complex jacobian of the

symmetrization map s. Thus

Z = {z ∈ C
n | ∆(z) = 0} = {z ∈ C

n | zi = zj for some i 6= j, 1 ≤ i, j ≤ n}.

For every u ∈ s(Ω)\s(Z), we note that the set s−1({u}) has exactly n! elements. IfMφ is a multiplication

operator on H by a holomorphic function φ, then M∗
φKw = φ(w)Kw for w ∈ Ω. Therefore we have the

following lemma.

Lemma 2.4. Let H be an analytic Hilbert module on an Sn-invariant domain Ω over C[z] with repro-

ducing kernel K. For σ ∈ Sn, i = 1, . . . , n, M∗
i Kwσ = w̄σ−1(i)Kwσ and M∗

siKwσ = si(w)Kwσ .

Let C[z]Sn be the ring of invariants under the action of Sn on C[z], that is,

C[z]Sn = {f ∈ C[z] : f(σ · z) = f(z), σ ∈ Sn}.

Furthermore, C[z]Sn = C[s1, . . . , sn], see [23, p. 39]. We now state the main Theorem of this Section.

Theorem 2.5. If H is an analytic Hilbert module on an Sn-invariant domain Ω over C[z], then H is

a locally free analytic Hilbert module over C[z]Sn of rank n! on s(Ω) \ s(Z).

The proof is facilitated by breaking it up into several pieces. Some of these pieces make essential use

of the fact that C[z] is a finitely generated free module over C[z]Sn of rank n! [5, Theorem 1, p. 110].

The motivation for the following lemma and some of the subsequent comments come from [8].

Lemma 2.6. For any basis {pσ}σ∈Sn
of C[z] over C[z]Sn , we have

det
((
pσ(wτ )

))
σ,τ∈Sn

6≡ 0.

Proof. Let L = C(z) denote the field of rational functions and K = C(z)Sn be the field of symmetric

rational function. From [23, Example 2.22], it is known that L over K is a finite Galois extension

with Galois group Gal(L/K) = Sn. Let f ∈ L, that is, f = p
q for some polynomials p and q. Pick

q̃ =
∏

σ∈Sn
q(zσ) and p̃ = p

∏
σ∈Sn,σ 6=1 q(zσ). Now, f = p̃

q̃ , where q̃ is symmetric. Again, since {pσ}σ∈Sn

is a basis for C[z] over the ring C[z]Sn , we have p =
∑

σ∈Sn
pσhσ where hσ’s are symmetric polynomial

which in turn shows that f =
∑

σ∈Sn
pσ

hσ

q̃ . Thus {pσ}σ∈Sn
forms a basis of L over K. Now we make

use of the following basic result from Galois theory [9, Lemma 3.4]:

If N/F is a finite Galois extension with Gal(N/F ) = {g1, . . . , gm} and {e1, . . . , em} is a F -basis of

N , then
(
g1(ej), . . . , gm(ej)

)m
j=1

forms a basis of Fm/F .
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Consequently,
(
(pσ ◦ τ−1)σ∈Sn

)
τ∈Sn

is a basis of Ln!/L. Hence we have the desired result.

Recall that the length of permutation σ ∈ Sn is the number of inversions in σ [17, p. 4]. Here, by

an inversion in σ, we mean a pair (i, j) with 1 ≤ i < j ≤ n such that σ(i) > σ(j). This is the smallest

number of transpositions of the form (i, i+ 1) required to write σ as a product of these transpositions.

Lemma 2.7. Pick a basis for C[z] over C[z]Sn consisting of homogeneous polynomials pσ, σ ∈ Sn,

deg pσ = ℓ(σ). Then

(i) the determinant det
((
pσ(wτ )

))
σ,τ∈Sn

is a homogeneous polynomial of degree n!
2

(n
2

)
,

(ii) det
((
pσ(wτ )

))
σ,τ∈Sn

is a non-zero constant multiple of ∆(w)
n!
2 .

Proof. Clearly,

det
((
pσ(wτ )

))
σ,τ∈Sn

=
∑

ν∈Sn!

∏

σ∈Sn

pσ(wνσ).

We note that

deg
∏

σ∈Sn

pσ(wνσ) =
∑

σ∈Sn

deg pσ(w) =
∑

σ∈Sn

deg pσ =
∑

σ∈Sn

ℓ(σ).

Let In(k) denote the number of k-inversions in Sn [20, p. 1]. Alternatively, In(k) = card{σ ∈ Sn |
ℓ(σ) = k}. Note that

∑

σ∈Sn

ℓ(σ) =

(n2)∑

k=1

∑

ℓ(σ)=k

ℓ(σ) =

(n2)∑

k=1

kIn(k).

The generating function formula for In(k) is given by [20, Theorem 1]

(n2)∑

k=1

In(k)z
k =

n−1∏

i=1

i∑

j=0

zj.

Differentiating with respect to z, we obtain

(n2)∑

k=1

kIn(k)z
k−1 =

n−1∑

i=1

(1 + . . .+ izi−1)

r−1∏

j=1,j 6=i

(1 + . . .+ zj).

Putting z = 1, we have

(n2)∑

k=1

kIn(k) =

n−1∑

i=1

i(i+ 1)

2

n−1∏

j=1,j 6=i

(j + 1) =
n!

2

n−1∑

i=1

i =
n!

2

(
n

2

)
.

This proves part (i). For part (ii), let us choose i, j with 1 ≤ i < j ≤ n. Consider the automorphism of

Sn given by τ 7→ τ(i, j), where (i, j) is the transposition. This automorphism maps an even permutation

to an odd permutation and vice versa. For any polynomial p, clearly, p(zτ ) =
∑

m,n amn(z
′)zmi znj ∈ C[z],

where each amn(z
′) is a polynomial in the variables z1, . . . , zi−1, zi+1, . . . , zj−1, zj+1, . . . , zn. Thus

p(wτ ) − p(wτ(i,j)) =
∑

m,n amn(w
′)(wm

i wn
j − wm

j wn
i ) is divisible by wi − wj. Thus for each even per-

mutation τ , if we subtract the τ(i, j)-th column
(
pσ(wτ(i,j))

)
σ∈Sn

from τ -th column (pσ(wτ ))σ∈Sn
, the

determinant does not change. Consequently, we see that wi − wj is a factor of the determinant. Since

we have exactly n!
2 even permutations in Sn, it follows that (wi − wj)

n!
2 must divide the determinant.
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This is true for every pair of i < j and C[z] is a unique factorization domain. Hence ∆(w)
n!
2 divides the

determinant. From part (i) and Lemma 2.6, we see that the degree of the polynomial ∆(w)
n!
2 is equal

to n!
2

(
n
2

)
completing the proof of part (ii).

Remark 2.8. The degree of the polynomials in a basis consisting of the Descent polynomials [1, p. 6]

or the Schubert polynomials [17, Theorem 2.16], meet the hypothesis made in Lemma 2.7.

Lemma 2.9. Let H be an analytic Hilbert module on an Sn-invariant domain Ω over C[z] with repro-

ducing kernel K. If v is in ∩n
i=1 ker

(
Msi − si(w)

)∗
,w ∈ Ω \ Z, then there exists unique tuple (cσ)σ∈Sn

,

such that v =
∑

cσK(·,wσ).

Proof. Clearly, M∗
siK(·,wσ) = si(wσ)K(·,wσ) = si(w)K(·,wσ). To complete the proof, given a joint

eigenvector v, it is enough to ensure the existence of a unique tuple (cσ)σ∈Sn
of complex numbers such

that

〈v, p〉 = 〈
∑

σ∈Sn

cσK(·,wσ), p〉 =
∑

σ∈Sn

cσp(wσ),

for all polynomials p since C[z] is dense in the Hilbert module H. In particular, if there exists a

unique solution for some choice of a basis, say {pτ}τ∈Sn
, of C[z] over the ring C[z]Sn , then for any

p =
∑

τ∈Sn
pτhτ ∈ C[z], we have

〈v, p〉 = 〈v,
∑

τ∈Sn

pτhτ 〉 =
∑

τ∈Sn

〈M∗
hτ
v, pτ 〉 =

∑

τ∈Sn

hτ (w)〈v, pτ 〉

=
∑

τ∈Sn

hτ (w)
∑

σ∈Sn

cσpτ (wσ) =
∑

σ∈Sn

cσ
∑

τ∈Sn

hτ (wσ)pτ (wσ)

=
∑

σ∈Sn

cσp(wσ).

Thus choosing {pτ}τ∈Sn
as in the hypothesis of Lemma 2.7 and using part (ii) of that Lemma, we have

a unique solution (cσ)σ∈Sn
for the system of equations

〈v, pτ 〉 =
∑

σ∈Sn

cσpτ (wσ)

as long as w is from Ω \ Z.

As a consequence of the Lemma we have just proved, we see that the set of vectors {Kwσ | σ ∈ Sn}
is both linearly independent and spanning for the joint kernel ∩n

i=1 ker
(
Msi − si(w)

)∗
,w ∈ Ω \ Z.

Therefore, we have the following Corollary.

Corollary 2.10. Let H be an analytic Hilbert module on an Sn-invariant domain Ω over C[z] with

reproducing kernel K. Then dim∩n
i=1 ker

(
Msi − si(w)

)∗
= n!.

To complete the proof of Theorem 2.5, we need to relate the joint kernel ∩n
i=1 ker

(
Msi−si(w)

)∗
to the

module tensor product H ⊗C[z]Sn Cw. The following Lemma gives an isomorphism between these two.

A special case of [12, Lemma 5.11], included in the Lemma below, is used in proving a generalization of

Theorem 2.5 to submodules of Hilbert modules over C[z]Sn .

Recall that f1, . . . , fk ∈ H is said to generate the Hilbert moduleH if {r1f1+· · ·+rkfk : r1, . . . , rk ∈ R}
is dense in H. The rank of a Hilbert module H over a ring R is inf |F|, where F ⊆ H is any subset
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with the property {r1f1 + · · · + rkfk : f1, . . . , fk ∈ F ; r1, . . . , rk ∈ R} is dense in H and |F| denotes the
cardinality of F (cf. [7, Section 2.3]).

Lemma 2.11. If H is a Hilbert module over C[z] consisting of holomorphic functions defined on some

bounded domain Ω ⊆ C
n, then we have

(1) H⊗C[z] Cw
∼= ∩p∈C[z] kerM

∗
p−p(w);

(2) H⊗C[z]Sn Cw
∼= ∩n

i=1 ker
(
Msi − si(w)

)∗
;

(3) For any set of generators p1, . . . , pt of H over C[z]Sn , the vectors

p1 ⊗C[z]Sn 1w, . . . , pt ⊗C[z]Sn 1w

span H⊗C[z]Sn Cw.

Proof. We have to show that H ⊗C[z] Cw = ∩p∈C[z] kerM
∗
p−p(w). Recall that H ⊗C[z] Cw is the ortho-

complement of the subspace N = {
(
p− p(w)

)
f : p ∈ C[z], f ∈ H} in H⊗ C. Therefore, we have

g ∈ N⊥ ⇐⇒ 〈g,
(
p− p(w)

)
f〉 = 0 for all p ∈ C[z], f ∈ H ⇐⇒ M∗(

p−p(w)
)g = 0, p ∈ C[z].

Similarly, ∩p∈C[z]Sn kerM∗
p−p(w) ⊆ ∩n

i=1 ker
(
Msi − si(w)

)∗
. Also, if f ∈ ∩n

i=1 ker
(
Msi − si(w)

)∗
, then

M∗
sif = si(w)f, 1 ≤ i ≤ n. Since p − p(w) is a symmetric polynomial, the existence of a polynomial q

such that p− p(w) = q ◦ s follows. Thus

M∗
q◦sf = q(Ms1 , . . . ,Msn)

∗f = q
(
s(w)

)
f = 0.

To prove the last statement, consider the map Q : H → H⊗C[z]Sn Cw defined by Qf = f ⊗C[z]Sn 1w.

Note that Q is the composition of a unitary map from H to H⊗C followed by the quotient map, hence

it is onto and ‖Q‖ ≤ 1. Since p1C[z]
Sn + · · ·+ptC[z]

Sn is dense in H, it follows that Q(p1C[z]
Sn + · · ·+

ptC[z]
Sn) is dense in H⊗C[z]Sn Cw. Now for any

∑t
i=1 pifi ∈ H, where fi’s are in C[z]Sn , we have

Q
( t∑

i=1

pifi
)
=
( t∑

i=1

pifi
)
⊗C[z]Sn 1w =

t∑

i=1

pi ⊗C[z]Sn fi · 1w =

t∑

i=1

fi(w)pi ⊗C[z]Sn 1w.

Therefore, Q(p1C[z]
Sn+· · ·+ptC[z]

Sn) is finite dimensional and henceH⊗C[z]SnCw is finite dimensional

and is spanned by p1 ⊗C[z]Sn 1w, . . . , pt ⊗C[z]Sn 1w.

(Proof of Theorem 2.5). Using Corollary 2.10 and Proposition 2.11, we show that the map t : u 7→
span{Kw | w ∈ s−1(u)} taking values in the Grassmannian Gr

(
n!,H

)
of the Hilbert space H of rank

n! is anti-holomorphic. Given any u0, fixed but arbitrary, in s(Ω) \ s(Z), there exists a neighborhood

of u0, say U, on which s admits n! local inverses. Enumerate them as ϕ1, . . . , ϕn!. Then the linearly

independent set {
γi : γi(u) = K

(
·, ϕi(u)

)
,u ∈ U

}n!
i=1

of anti-holomorphic H-valued functions spans the joint kernel ∩n
i=1 ker

(
Msi − si(w)

)∗
.

Remark 2.12. An alternative proof of the Corollary 2.10 is possible using Lemma 2.11. For this proof,

which is indicated below, it is essential to use a non-trivial result from [10] rather than the direct proof

that we have presented earlier. From Lemma 2.11, it follows that dim ∩n
i=1 ker

(
Msi − si(w)

)∗ ≤ n!. To

prove the reverse inequality, we show that for w ∈ Ω \Z, the set of vectors {Kwσ | σ ∈ Sn} are linearly
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independent. Since the polynomial ring is dense in H, the reproducing kernel K is non-degenerate. From

[10, Lemma 3.6], it follows that K is strictly positive, that is, for all k ≥ 1 the k × k-operator matrix((
K(zi,zj)

))
1≤i,j≤k

is injective for every collection {z1, . . . ,zk} of distinct points in Ω \Z. Since the set

{wσ | σ ∈ Sn} contains exactly n! distinct points for every w ∈ Ω\Z, the matrix
((
〈Kwσ ,Kwτ 〉

))
σ,τ∈Sn

is

injective and hence the nonsingularity of the grammian of {Kwσ | σ ∈ Sn} gives the linear independence.

3. Analytic Hilbert module with Sn-invariant kernel

Let H be the Hilbert space and U : Sn → B(H) be a unitary representation. Consider a function

χ : Sn → C satisfying χ(σ−1) = χ(σ). Define an operator on H by

Tχ =
∑

σ∈Sn

χ(σ)U(σ).

Since U(σ)∗ = U(σ−1), it follows that

(Tχ)∗ =
∑

σ∈Sn

χ(σ)U(σ)∗ =
∑

σ∈Sn

χ(σ−1)U(σ−1) =
∑

τ∈Sn

χ(τ)U(τ) = Tχ.

Thus the following Lemma has been proved.

Lemma 3.1. Tχ is self adjoint on H.

As before, let πp be a unitary representation of Sn in the equivalence class of p ⊢ n, that is,

πp(σ) =
((
π
ij
p (σ)

))m
i,j=1

∈ C
m×m, σ ∈ Sn, wherem = χp(1) and χp is the character of the representation

πp. The following orthogonality relations [19, Proposition 2.9] play a central role in this section.

∑

σ∈Sn

πij
p (σ

−1)πlm
q (σ) =

n!

χp(1)
δpqδimδjl, (3.1)

where δ is the Kronecker symbol. For any partition p of N and 1 ≤ i, j ≤ χp(1), define the operators

P
ij
p ,Pp : H → H by the formula

P
ij
p =

χp(1)

n!

∑

σ∈Sn

πji
p (σ

−1)U(σ)

and

Pp =
χp(1)

n!

∑

σ∈Sn

χp(σ
−1)U(σ).

Clearly,

χp(1)∑

i=1

P
ii
p = Pp. (3.2)

The following lemma and some of the subsequent discussions are adapted from the properties of projec-

tion operators given in [19, p. 162]. We include this for sake of completeness.

Proposition 3.2. For 1 ≤ i, j ≤ χp(1) and 1 ≤ l,m ≤ χq(1), P
ij
p P

lm
q = δpqδjlP

im
p .
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Proof. Since P
ij
p =

χp(1)
n!

∑
σ∈Sn

π
ji
p (σ−1)U(σ), we have that

P
ij
p P

lm
q =

χq(1)

n!

∑

σ∈Sn

πml
q (σ−1)Pij

pU(σ)

=
χp(1)χq(1)

(n!)2

∑

σ∈Sn

πml
q (σ−1){

∑

τ∈Sn

πji
p (τ

−1)U(τ)}U(σ)

=
χp(1)χq(1)

(n!)2

∑

σ∈Sn

∑

τ∈Sn

πml
q (σ−1)πji

p (τ
−1)U(τ)U(σ).

Let η = τσ. Then τ−1 = ση−1 and

πji
p (ση

−1) = (πp(ση
−1))ji = (πp(σ)πp(η

−1))ji =

χp(1)∑

k=1

πjk
p (σ)πki

p (η−1).

Thus, we also have

P
ij
p P

lm
q =

χp(1)χq(1)

(n!)2

∑

σ∈Sn

∑

η∈Sn

πml
q (σ−1)πji

p (ση
−1)U(η)

=
χp(1)χq(1)

(n!)2

∑

σ∈Sn

∑

η∈Sn

πml
q (σ−1)

χp(1)∑

k=1

πjk
p (σ)πki

p (η−1)U(η)

=
χp(1)χq(1)

(n!)2

∑

η∈Sn

χp(1)∑

k=1

{
∑

σ∈Sn

πml
q (σ−1)πjk

p (σ)}πki
p (η−1)U(η)

=
χp(1)χq(1)

(n!)2

∑

η∈Sn

χp(1)∑

k=1

{δpqδljδmk
n!

χq(1)
}πki

p (η−1)U(η), (from Equation (3.1 ))

= δpqδjl
χp(1)

n!

∑

η∈Sn

χp(1)∑

k=1

δmkπ
ki
p (η−1)U(η)

= δpqδjl
χp(1)

n!

∑

η∈Sn

πmi
p (η−1)U(η)

= δpqδjlP
im
p .

Corollary 3.3. For each partition p of n and 1 ≤ i ≤ χp(1), P
ii
p is an orthogonal projection and

∑
p⊢n

∑χp(1)
i=1 P

ii
p = id.

Proof. Since πp is a unitary representation, it follows that πii
p(σ

−1) = πii
p(σ). Thus from Lemma 3.1,

we find that Pii
p is self adjoint. From the Proposition 3.2, it follows that (Pii

p)
2 = P

ii
p . Then we see that

∑

p⊢n

χp(1)∑

i=1

P
p
ii =

∑

p ⊢n

Pp =
∑

p ⊢n

χp(1)

n!

∑

σ∈Sn

χp(σ)U(σ) =
1

n!

∑

σ∈Sn

( ∑

p ⊢n

χp(1)χp(σ)
)
U(σ) = id,

where the last equality follows from the orthogonality relations [19, Proposition 3.8]. This completes

the proof.
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Let Ω ⊆ C
n be a bounded domain invariant under the action of Sn. Let K be a Sn-invariant

reproducing kernel on Ω, that is,

K(σ · z, σ ·w) = K(z,w) for all σ ∈ Sn.

Example 3.4. Suppose that Ω ⊆ C
n is a Sn-invariant domain and K : Ω×Ω → C given by K(z,w) =∑

I,J∈Zn
+
aIJz

Iw̄J is a reproducing kernel of some Hilbert space of analytic functions on Ω satisfying

aIσJσ = aIJ for I, J ∈ Z
n
+ and σ ∈ Sn. Then K is an Sn-invariant kernel. Recall that a reproducing

kernel K on Ω as above is called a diagonal kernel if aIJ = 0 for I 6= J. If K is a diagonal reproducing

kernel, we write aI := aII , I ∈ Z
n
+. Any diagonal reproducing kernel on an Sn-invariant domain Ω

is Sn-invariant if and only if aIσ = aI for I ∈ Z
n
+ and σ ∈ Sn. Note that if K1 and K2 are two

Sn-invariant kernels, then K1 +K2 and K1K2 are also Sn-invariant.

The standard inner product 〈·, ·〉 on C
n is Sn-invariant, that is, 〈σ ·z, σ ·w〉 = 〈z,w〉 for σ ∈ Sn. Let

B
n be the unit ball with respect to the ℓ2-norm induced by 〈·, ·〉. Suppose that K : Bn × Bn → C is given

by K(z,w) =
∑∞

k=0 ak〈z,w〉k with ak ≥ 0 for k ≥ 0. Then K is clearly a positive definite diagonal

kernel on Bn and K is Sn-invariant. This family includes the important subfamily of kernels on Bn

given by Kλ(z,w) = (1− 〈z,w〉)−λ for λ > 0.

Let Dn = {z : |z1|, . . . , |zn| < 1}, the unit ball with respect to ℓ∞-norm, be the polydisc in C
n. Suppose

that K : Dn×D
n → C is given by K(z,w) =

∏n
j=1B(zj, wj), where B is a reproducing kernel on D. Then

K is clearly a positive definite diagonal kernel on D
n and K is Sn-invariant. This family of Sn-invariant

kernels need not be diagonal, unless B is a diagonal kernel on D. Suppose that K(z,w) =
∑

I∈Zn
+
aIz

Iw̄I

with aI ≥ 0 for I ∈ Z
n
+. Then K is clearly a positive definite diagonal kernel on D

n and K is Sn-invariant

if and only if aIσ = aI for I ∈ Z
n
+ and σ ∈ Sn. Both of these families of Sn-invariant kernels on D

n

include the weighted Bergman kernels K(λ)(z,w) =
∏n

j=1(1−zjwj)
−λ, λ > 0, the reproducing kernels of

the weighted Bergman modules A
(λ)(Dn). The holomorphic discrete series representations of Aut(Dn),

the automorphism group of Dn, are realized on this family of Hilbert spaces.

In fact, due to transformation rule of the Bergman kernel under biholomorphic maps, the Bergman

kernel B of an Sn-invariant domain is Sn-invariant. In particular, the Bergman kernels of the open unit

balls in C
n with respect to the ℓp-norm, for 1 ≤ p ≤ ∞, are Sn-invariant. For λ in the Berezin-Wallach

set of the Sn-invariant domain Ω, Bλ is an Sn-invariant kernel.

Let H be an analytic Hilbert module with Sn-invariant kernel K. We claim that the function f ◦σ−1,

σ ∈ Sn, is in H, whenever f is in H. To see this, recall that f is in H if and only if there exists a positive

real number c such that Kf (z,w) :=
(
c2K(z,w)− f(z)f(w)

)
is positive definite, see [2, p. 194]. Since

Kf◦σ−1(z,w) = c2K(z,w)− f ◦ σ−1(z)f ◦ σ−1(w)

= c2K(σ · u, σ · v)− f(u)f(v)

= c2K(u,v)− f(u)f(v)

= Kf (u,v),

where σ ·u = z and σ ·v = w, it follows that Kf◦σ−1 is positive definite. Thus the operator Rσ : H → H,

Rσ(f) = f ◦ σ−1, is well defined.

Lemma 3.5. The map R : σ 7→ Rσ is a unitary representation of Sn on H.
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Proof. Note that Rστf(z) = f
(
(στ)−1 · z)

)
= f(τ−1σ−1 · z) = (Rτf)(σ

−1 · z) = Rσ(Rτf)(z). Thus

Rστ = RσRτ . Since the set {Kw | w ∈ Ω} is total in H, it is enough to check Rσ is unitary on

{Kw | w ∈ Ω}. Also,

RσKw(z) = Kw(σ
−1 · z) = K(σ−1 · z,w) = K(z, σ ·w) = Kσ·w(z),

that is, RσKw = Kσ·w. Thus

〈RσKw, RσKw′〉 = 〈Kσ·w,Kσ·w′〉 = K(σ ·w′, σ ·w) = K(w′,w) = 〈Kw,Kw′〉.

This completes the proof.

In the remaining portion of this section, we will specialize to the representation R. Now, the formulae

for Pij
p and Pp simplify to

P
ij
p f(z) =

χp(1)

n!

∑

σ∈Sn

πji
p (σ

−1)(Rσf)(z) =
χp(1)

n!

∑

σ∈Sn

πji
p (σ

−1)f(σ−1 · z) (3.3)

and

Ppf(z) =
χp(1)

n!

∑

σ∈Sn

χp(σ)Rσf(z) =
χp(1)

n!

∑

σ∈Sn

χp(σ)f(σ
−1 · z). (3.4)

In view of Corollary 3.3, we obtain that any analytic Hilbert module H with Sn-invariant kernel K can

be decomposed as follows:

H =
⊕

p⊢n

PpH =
⊕

p⊢n

χp(1)⊕

i=1

P
ii
pH. (3.5)

It is natural to ask whether each of the projections Pp and P
ii
p is nontrivial. To see Pp is non-trivial, we

are going to use the following well known result which is analogous to the fact that the polynomial ring

C[z] is a finitely generated free module over C[z]Sn of rank n!.

Theorem 3.6. The module PpC[z] is a finitely generated free module over C[z]Sn of rank χp(1)
2.

We are unable to locate a proof of this Theorem and therefore indicate a proof using results from

[25].

Proof. Set C[z]p := PpC[z]. There exist homogeneous polynomials in C[z]p, whose images in the quotient

module Sp = C[z]p/{s1C[z]p+ · · ·+snC[z]p} forms a C-basis for Sp, see [25, Theorem 1.3]). Also, from

[25, Theorem 3.10], it follows that p1, . . . , pµ is a basis for the free module C[z]p over C[z]Sn . Now to

see that µ = χp(1)
2, we make use of [25, Theorem 4.9] and its proof along with [25, Corollary 4.9]. It

says that the action of Sn on the quotient ring C[z]/{s1C[z] + · · · + snC[z]} ∼= ⊕p⊢nSp is isomorphic

to the regular representation of Sn, where the action on Sp is isomorphic to the representation πp

corresponding to p ⊢ n with multiplicity χp(1).

The proof of the following Corollary is immediate from Theorem 3.6 and Lemma 2.11.

Corollary 3.7. If H is an analytic Hilbert module with an Sn-invariant kernel, then the Hilbert module

PpH over C[z]Sn is non-trivial and is of rank at most χp(1)
2.
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We record the non-triviality of the projections Pii
p as a separate Lemma. The main ingredient of the

proof is borrowed from [19, p. - 166].

Lemma 3.8. For each p ⊢ n and 1 ≤ i ≤ χp(1), P
ii
p 6= 0.

Proof. From Proposition 3.2, we have

P
ij
p P

jj
p = P

ij
p = P

ii
pP

ij
p ,

and it then follows that Pij
p P

jj
p H ⊆ P

ii
pH. Also for f ∈ H,

P
ii
pf = P

ij
p P

ji
p f = P

ij
p P

jj
p P

ji
p f

and thus Pii
pH ⊆ P

ij
p P

jj
p H. Consequently, Pij

p is a surjective map from P
jj
p H onto P

ii
pH. Now P

ij
p P

jj
p f = 0

implies that Pji
p P

ij
p P

jj
p f = 0 and hence Pjj

p f = (Pjj
p )2f = 0. This shows that Pij

p is injective on P
jj
p H. The

operator Pij
p , being a finite linear combination of unitaries, is bounded and hence an invertible map (by

the open mapping theorem) from P
jj
p H onto P

ii
pH. Since each Pp is non-trivial, from Equation (3.2 ), it

follows that each P
ii
p is non-trivial.

Proposition 3.9. For each p ⊢ n, 1 ≤ i, j ≤ χp(1) and k = 1, . . . , n, MskP
ij
p = P

ij
pMsk .

Proof. For f ∈ H, from the Equation (3.3 ) we have

(
MskP

ij
p f
)
(z) =

χp(1)

n!

∑

σ∈Sn

πji
p (σ

−1)Mskf(σ
−1 · z)

=
χp(1)

n!

∑

σ∈Sn

πji
p (σ

−1)sk(σ
−1 · z)f(σ−1 · z)

=
χp(1)

n!

∑

σ∈Sn

πji
p (σ

−1)(skf)(σ
−1 · z)

=
(
P
ij
pMskf

)
(z).

This completes the proof.

In particular for each p ⊢ n and i, 1 ≤ i ≤ χp(1), the projections P
ii
p commute with Msk for each

k, 1 ≤ k ≤ n and we have the following corollary.

Corollary 3.10. Let H be an analytic Hilbert module with an Sn-invariant kernel. Then P
ii
pH is a

joint reducing subspace for Msk , k = 1, . . . , n, for every partition p of n and for each i, 1 ≤ i ≤ χp(1).

3.1. Inequivalence. Having obtained the decomposition (3.5 ) and having shown that each PpH and

P
ii
pH is a reducing sub-module (Corollary 3.10 and Equation 3.2 ) over the ring of symmetric polynomials

C[z]Sn of the Hilbert module H, it is natural to ask whether these sub-modules are inequivalent for

distinct pairs p or (p, i) of a partition p of n and i, 1 ≤ i ≤ χp(1). We first prove few results which will

be relevant for this discussion.

Set M
(p)
sk = Msk |PpH. Since each PpH is a reducing subspace of Msk for each k, 1 ≤ k ≤ n. Therefore,

M∗
sk

= ⊕p⊢n

(
M

(p)
sk

)∗
and we have

∩n
k=1 kerM

∗
sk−sk(w) = ⊕p⊢n ∩n

k=1 ker
(
M

(p)
sk−sk(w)

)∗
.
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Proposition 3.11. Let H be an analytic Hilbert module with an Sn-invariant kernel.

dim ∩n
k=1 ker

(
M

(p)
sk−sk(w)

)∗
= χp(1)

2, w ∈ Ω \ Z.

Proof. From Corollary 3.7 and Lemma 2.11, it follows that dim ∩n
k=1 ker

(
M

(p)
sk−sk(w)

)∗ ≤ χp(1)
2. How-

ever, if it is strictly less for some p ⊢ n we have the following contradiction:

n! = dim∩n
k=1 kerM

∗
sk−sk(w) =

∑

p⊢n

dim ∩n
k=1 ker

(
M

(p)
sk−sk(w)

)∗
<
∑

p⊢n

χp(1)
2 = n!.

For the last equality, see [19, Theorem 3.4].

From the Proposition given above and the proof of Theorem 2.5, the following generalization to PpH
is evident.

Corollary 3.12. Let H be an analytic Hilbert module with an Sn-invariant kernel. The Hilbert module

PpH over C[z]Sn is locally free of rank χp(1)
2 on s(Ω) \ s(Z).

Remark 3.13. Since PpH is assumed to be locally free at w ∈ s(Ω) \ s(Z), it follows that Ep =

{(u, x) ∈ U × PpH | x ∈ ∩n
k=1 ker

(
M

(p)
sk−uk

)∗} and π(u, x) = u defines a rank χp(1)
2 hermitian anti-

holomorphic vector bundle on some open neighbourhood W of w. The equivalence class of this vector

bundle Ep determines the isomorphism class of the module PpH and conversely. The vector bundle E

corresponding to the module H is therefore the direct sum ⊕p⊢nEp.

We now state the main theorem of this subsection.

Theorem 3.14. Let H be an analytic Hilbert module with an Sn-invariant kernel. If p and q are two

partitions of n such that χp(1) 6= χq(1), then

(a) the sub-modules P
ii
pH and P

jj
q H are not unitarily equivalent for any i, j, 1 ≤ i ≤ χp(1) and

1 ≤ j ≤ χq(1).

(b) the sub-modules PpH and PqH are not unitarily equivalent.

Proof. Set M
(p,i)
sk := Msk |Pii

pH, 1 ≤ k ≤ n, 1 ≤ i ≤ χp(1). From Corollary 3.10, it follows that

n⋂

k=1

ker
(
M (p)

sk
− sk(w)

)∗
=

χp(1)⊕

i=1

n⋂

k=1

ker
(
M (p,i)

sk
− sk(w)

)∗
.

Arguments similar to the ones given in the proof of Lemma 3.8 applied to the sub-modules Pii
pH show

that ∩n
k=1 ker

(
M

(p,i)
sk − sk(w)

)∗
are isomorphic for all i, 1 ≤ i ≤ χp(1). Thus from Proposition 3.11, it

follows that dim∩n
k=1 ker

(
M

(p,i)
sk − sk(w)

)∗
= χp(1) for all i. From the proof of Theorem 2.5, it follows

that each of the sub-modules P
ii
pH is locally free of rank χp(1) on s(Ω) \ s(Z). The rank being an

invariant for locally free Hilbert modules, the proof of (a) is complete. The proof of (b) follows from

Corollary 3.12.

The theorem above leaves open the question of equivalence when χp(1) = χq(1). While we are not

able to settle this question in its entirety, we answer this question in the important example of weighted

Bergman module in the next section for χp(1) = 1 = χq(1), or equivalently, p = (n) and q = (1, . . . , 1)

since one dimensional representations of Sn are the trivial and the sign representations.
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In cases where χp(1) > 1, we believe, the work of [29] and [13], may be useful in answering the

question of mutual equivalence of the sub-modules P
ii
pH. We intend to explore this possibility in our

future work.

Let H be a locally free Hilbert module over Ω ⊆ C
n. Following [29] and [13], we define a holomorphic

section γ : Ω → H to be a spanning holomorphic cross-section for H if
∨

{γ(z) : z ∈ Ω} = H.

Building on the work in [29], the existence of a spanning holomorphic cross-section for a large class of

Hilbert modules over an admissible set was proved in [13]. However, in the case of the sub-modules Pii
pH,

the existence of a spanning holomorphic cross-section is easily established by exhibiting such a section.

Indeed, we give an explicit realization of the spanning holomorphic cross-section for these sub-modules.

Since P
ii
pK(·,w) is the reproducing kernel for Pii

pH, it can vanish only on a set F ⊆ Ω such that the

real dimension of F is at most 2n− 2. Also note from Lemma 2.4 and Proposition 3.9 that

M (p,i)
sk

P
ii
pK(·,w) = sk(w)Pii

pK(·,w). (3.6)

Let U be an open neighbourhood of u0 in
(
s(Ω) \ s(Z)

)
∩ s
(
Ω \ F

)
. The function s admits n! local

inverses on the open set U. Fix one such, say φ. Define γ(u) = P
ii
pK
(
·, φ(ū)

)
, u ∈ U∗. From Equation

(3.6 ), it follows that γ is a spanning holomorphic cross-section for Pii
pH on U∗. Let

E
(i)
p = {(u, x) ∈ U∗ × P

ii
pH | x = cγ(u) for some c ∈ C}

denote the corresponding holomorphic hermitian line bundle and

K
(i)
p (u) = −

n∑

j,k=1

∂j ∂̄k log ‖γ(u)‖2duj ∧ dūk,

be the curvature of E
(i)
p . Now, we restate Theorem 5.2 of [13] using the spanning cross-sections we have

found here.

Theorem 3.15. Let H be an analytic Hilbert module with an Sn-invariant kernel. Let p and q be

any two partitions of n. The sub-modules P
ii
pH and P

jj
q H are equivalent if and only if K

(i)
p = K

(j)
q ,

1 ≤ i ≤ χp(1), 1 ≤ j ≤ χq(1).

3.2. Spectrum and spectral set. Recall M
(p,i)
sk := Msk |Pii

pH, 1 ≤ i ≤ χp(1). To find the spectrum of

the commuting n-tuple (M
(p,i)
s1 , . . . ,M

(p,i)
sn ), we first establish, following [27, Lemma 1.2], the spectral

inclusion for the direct sum of two commuting n-tuples.

Proposition 3.16. Let S1 and S2 be two commuting n-tuples of bounded linear operators acting on the

Hilbert spaces H1 and H2, respectively. Then the Taylor joint spectrum σ(S1) and σ(S2) are contained

in the Taylor joint spectrum σ(S1 ⊕ S2).

Proof. Let ι : H1 ⊕ {0} → H1 ⊕H2 be the inclusion map, (f, 0) 7→ (f, 0) and P : H1 ⊕H2 → {0} ⊕ H2

be the projection, (f, g) 7→ (0, g). Apply Lemma 1.2 of [27] to the short exact sequence

0 → H1 ⊕ {0} ι→ H1 ⊕H2
P→ {0} ⊕ H2 → 0

and the direct sum S1 ⊕ S2 to complete the proof.
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Theorem 3.17. If H be a contractive analytic Hilbert module on an Sn-invariant domain Ω over

C[z] with an Sn-invariant kernel, then the Taylor joint spectrum of the n-tuple (M
(p,i)
s1 , . . . ,M

(p,i)
sn ) is

clos
(
s(Ω)

)
.

Proof. From Proposition 3.16, it follows that σ
(
M

(p,i)
s1 , . . . ,M

(p,i)
sn

)
⊆ σ(Ms1 , . . . ,Msn). The Taylor func-

tional calculus shows that σ
(
Ms1 , . . . ,Msn

)
= s

(
σ(M1, . . . ,Mn)

)
= s

(
clos(Ω)

)
. Thus, from Equation

(3.6 ), we have

s(Ω) \ s(F ) ⊆ s(Ω \ F ) ⊆ σ
(
M (p,i)

s1 , . . . ,M (p,i)
sn

)
⊆ clos

(
s(Ω)

)
.

Since clos
(
s(Ω) \ s(F )

)
= clos

(
s(Ω)

)
and the spectrum is compact, the proof is complete.

Following the usual convention, set Gn = s(Dn),Γn = clos(Gn) and note that Γn = s
(
clos(Dn)

)
.

Specializing to Ω = D
n, the following corollary is immediate.

Corollary 3.18. If H be a contractive analytic Hilbert module on Dn over C[z] with an Sn-invariant

kernel, then the Taylor joint spectrum of the n-tuple
(
M

(p,i)
s1 , . . . ,M

(p,i)
sn

)
is Γn.

The computation of the Taylor joint spectrum has some immediate applications. Commuting n-tuples

of joint weighted shifts are discussed in [16]. It is shown (see [16, Corollary 3]), among other things,

that the spectrum of a joint weighted shift must be Reinhardt (invariant under the action of the torus

group). It is easy to see that Γn is not Reinhardt. Indeed, (1, 12 , . . . , 0) is in Γn while (1,−1
2 , 0, . . . , 0) is

not in Γn. This follows from the observation that (µ1, . . . , µk, 0, . . . , 0) is in Γn if and only if (µ1, . . . , µk)

is in Γk. Therefore we have proved the following corollary.

Corollary 3.19. The n-tuple
(
M

(p,i)
s1 , . . . ,M

(p,i)
sn

)
is not unitarily equivalent to any joint weighted shift.

Let X ⊆ C
n be a polynomially convex set. A commuting n-tuple T of operators is said to admit X

as a spectral set if ‖p(T )‖ ≤ ‖p‖∞,X . If Ω is a bounded domain in C
n such that clos(Ω) is polynomially

convex, then since the symmetrization map s is a proper holomorphic map and clos(Ω) = s−1
(
s(clos(Ω)

)
.

Therefore, s
(
clos(Ω)

)
is polynomially convex by [26, Theorem 1.6.24]. Since s is a proper map, it is

closed [24, p. 301] and therefore s
(
clos(Ω)

)
= clos

(
s(Ω)

)
. In the particular case of X = clos(Ω) with an

Sn-invariant domain Ω, the following theorem is immediate, generalizing [4, Theorem 3.12].

Theorem 3.20. If H be a contractive analytic Hilbert module on an Sn-invariant domain Ω over C[z]

with an Sn-invariant kernel, then commuting n-tuple (Ms1 , . . . ,Msn) acting on the Hilbert space P
ii
pH

admits clos
(
s(Ω)

)
as a spectral set for every partition p of n, 1 ≤ i ≤ χp(1) and all λ ≥ 1.

Remark 3.21. Using the polynomial convexity of clos
(
s(Ω)

)
, it is easy to see that the Taylor joint

spectrum of the commuting n-tuple
(
M

(p,i)
s1 , . . . ,M

(p,i)
sn

)
on a contractive analytic Hilbert module H on

an Sn-invariant domain Ω over C[z] with an Sn-invariant kernel is contained in clos
(
s(Ω)

)
. Here we

emphasize that the Taylor joint spectrum clos
(
s(Ω)

)
of the n-tuple

(
M

(p,i)
s1 , . . . ,M

(p,i)
sn

)
is a spectral set.

In the particular case of X = Γn, such a commuting n-tuple T is said to be a Γn-contraction. Since

the restriction of a Γn-contraction to a reducing subspace is again a Γn-contraction, the proof of the

following theorem is evident from [4, Proposition 2.13 and Corollary 3.11].
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Theorem 3.22. If H be a contractive analytic Hilbert module on D
n over C[z] with an Sn-invariant

kernel, then the commuting n-tuple (Ms1 , . . . ,Msn) acting on the Hilbert space P
ii
pH is a Γn-contraction

for every partition p of n, 1 ≤ i ≤ χp(1) and all λ ≥ 1.

Consider the diagonal kernel K(z,w) =
∑

I∈Zn
+
aIz

Iw̄I on D
n where aIσ = aI > 0, for I ∈ Z

n
+

and σ ∈ Sn. As mentioned in Example 3.4, these kernels are Sn-invariant kernel. If Mi denotes the

multiplication operator by the co-ordinate function zi and Mi is a contraction for i = 1, . . . , n, then it

follows from [15] that the corresponding Hilbert module is a contractive analytic Hilbert module on D
n.

This leads to a large class of examples where the results of this section applies.

4. Weighted Bergman modules A
(λ)(Dn)

Recall that the weighted Bergman module A
(λ)(Dn), consisting of holomorphic functions on D

n, is

determined by the reproducing kernel K(λ) : Dn × D
n → C given by the formula

K(λ)(z,w) =

n∏

j=1

(1− zjw̄j)
−λ, z,w ∈ D

n.

For λ > 1, this coincides with the usual notion of the weighted Bergman spaces A
(λ)(Dn) defined

as the Hilbert space of square integrable holomorphic functions on D
n with respect to the measure

dV (λ) =
(
λ−1
π

)n(∏n
i=1(1 − r2i )

λ−2ridridθi

)
. The limiting case of λ = 1 is the Hardy space H2(Dn).

Throughout the rest of this paper, we will assume that λ > 0. In this section, we show that the two sub-

modules P(n)

(
A
(λ)(Dn)

)
and P(1,...,1)

(
A
(λ)(Dn)

)
are inequivalent over C[z]Sn . Along the way, we realize

each of these submodules as analytic Hilbert module on Gn and consequently, they become locally free

on all of Gn. As a by product, we obtain an explicit formula in Theorem 4.10, for the weighted Bergman

kernel of the symmetrized polydisc Gn in the co-ordinates of Gn.

We begin by setting up some notation which will be useful in the discussion to follow. The length

ℓ(p) of a partition p of n is the number of positive summands of p. For a positive integer n, we define

the following two subsets of Zn
+ := {(m1, . . . ,mn) ∈ Z

n : m1, . . . ,mn ≥ 0}:

[n] = {m ∈ Z
n
+ : mi ≥ mj for i < j} and [[n]] = {m ∈ Z

n
+ : mi > mj for i < j}.

If p ∈ [[n]], then we can write p = m+ δ, where m ∈ [n] and δ = (n− 1, n − 2, . . . , 1, 0). So,

[[n]] = {m+ δ : m ∈ [n]}.

Recall from equation (3.4 ) that for a partition p of n, the linear map Pp : A(λ)(Dn) → A
(λ)(Dn) by

Ppf =
χp(1)

n!

∑

σ∈Sn

χp(σ)f ◦ σ−1, (4.1)

where χp is the character of the representation corresponding to the partition p of n. Choosing the

partition p of n to be (n) := (n, 0, . . . , 0) in Equation (4.1 ), it is easy to see that

P(n)

(
A
(λ)(Dn)

)
= {f ∈ A

(λ)(Dn) : f ◦ σ−1 = f for σ ∈ Sn},

that is, P(n)

(
A
(λ)(Dn)

)
consists of symmetric functions in A

(λ)(Dn). Thus A
(λ)
sym(Dn) = P(n)

(
A
(λ)(Dn)

)
.

In view of [4, Equation (3.1)], the following proposition is a particular case of [4, Proposition 3.6] for

p = (n).
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Proposition 4.1. The reproducing kernel K
(λ)
sym of A

(λ)
sym(Dn) is given explicitly by the formula:

K(λ)
sym(z,w) =

1

n!
per
(((

(1− zjw̄k)
−λ
))n
j,k=1

)
, z,w ∈ D

n,

where per
(((

aij
))n
i,j=1

)
=
∑

σ∈Sn

∏n
k=1 akσ(k).

The Hilbert space A
(λ)
sym(Dn) can be thought of as a space of functions defined on the symmetrized

polydisc Gn as follows. Recall that s is the symmetrization map and note that

A
(λ)
sym(D

n) = {f ∈ A
(λ)(Dn) : f = g ◦ s for some g : Gn −→ C holomorphic }.

Let

H(λ)(Gn) := {g : Gn −→ C is holomorphic : g ◦ s ∈ A
(λ)(Dn)}.

The inner product on H(λ)(Gn) is given by 〈f1, f2〉H(λ)(Gn)
:= 〈f1 ◦ s, f2 ◦ s〉A(λ)(Dn). Now, the following

corollary is immediate from Proposition 4.1.

Corollary 4.2. The reproducing kernel K
(λ)
Gn

of H(λ)(Gn) is given explicitly by the formula:

K
(λ)
Gn

(
s(z), s(w)

)
=

1

n!
per
(((

(1− zjw̄k)
−λ
))n
j,k=1

)
, z,w ∈ D

n.

Choosing the partition p of n to be (1n) := (1, . . . , 1) ∈ [n], we see that

P(1n)

(
A
(µ)(Dn)

)
= {f ∈ A

(µ)(Dn) : f ◦ σ−1 = sgn(σ)f for σ ∈ Sn}.

Since P(1n)

(
A
(µ)(Dn)

)
consists of anti-symmetric functions, therefore

A
(µ)
anti(D

n) = P(1n)

(
A
(µ)(Dn)

)
.

Appealing to [4, Proposition 3.8] for p = (n) and p = (1n), we have a particular case of [4, Proposition

3.8], which we record below for future reference.

Lemma 4.3. The Hilbert spaces A
(λ)
sym(Dn) and A

(µ)
anti(D

n) are Hilbert modules over C[z]Sn , under its

natural action for λ, µ > 0 and n ≥ 2.

The theorem below provides an affirmative answer to the question we raised in the beginning of this

section.

Theorem 4.4. The Hilbert modules A
(λ)
sym(Dn) and A

(λ)
anti(D

n) over C[z]Sn are not equivalent for any

λ > 0 and n ≥ 2.

We recall that C[z]Sn = C[s1, . . . , sn]. In view of this fact H(λ)(Gn) is a Hilbert module over C[z]Sn ,

under the natural action of C[z]Sn . Consider the map from H(λ)(Gn) to A
(λ)
sym(Dn) defined by f 7→ f ◦ s

and note that it is a unitary map which intertwines the n-tuple (Ms1 ,Ms2 , . . . ,Msn) of multiplication

operators by the coordinate functions s1, . . . , sn and the tuple (Ms1(z),Ms2(z), . . . ,Msn(z)), where si(z) is

the i-th elementary symmetric function in z1, . . . , zn for i = 1, . . . , n. Therefore, there is a unitary module

map between the Hilbert modules H(λ)(Gn) and A
(λ)
sym(Dn) over C[z]Sn . We record this observation in

the form of a lemma.
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Lemma 4.5. For λ > 0, the Hilbert modules H(λ)(Gn) and A
(λ)
sym(Dn) are equivalent as modules over

C[z]Sn .

Now we describe the weighted Bergman space on the symmetrized polydisc Gn as a module over

C[z]Sn . For µ > 1, let dV (µ) be the probability measure
(µ−1

π

)n(∏n
i=1(1 − r2i )

µ−2ridridθi

)
on the

polydisc D
n. Let dV

(µ)
s be the measure on the symmetrized polydisc Gn obtained by the change of

variables formula [3, p. 106]:
∫

Gn

fdV
(µ)
s =

1

n!

∫

Dn

(f ◦ s)|Js|2dV (µ), µ > 1, (4.2)

where Js(z) = ∆(z) is the complex jacobian of the symmetrization map s. The weighted Bergman

space A
(µ)(Gn), µ > 1, on the symmetrized polydisc Gn is the subspace of L2(Gn, dV

(µ)
s ) consisting of

holomorphic functions. For µ > 1, consider the map Γ : A(µ)(Gn) → A
(µ)(Dn) defined by

Γf =
1√
n!
Js(f ◦ s), f ∈ A

(µ)(Gn). (4.3)

It follows from Equation (4.2 ) that Γ is an isometry onto A
(µ)
anti(D

n) [21, p. 2363]. One can easily check

that ‖zm‖2
A(µ)(Dn)

=
∥∥zm1

1 . . . zmn
n

∥∥2
A(µ)(Dn)

= m1!...mn!
(µ)m1 ...(µ)mn

. For a partition m = (m1, . . . ,mn) ∈ [[n]], put

am(z) = ap+δ(z) = det
(
((z

mj

i ))ni,j=1

)
, where p ∈ [n] and m = p + δ. The norm of am in A

(µ)(Dn) is

easily calculated using orthogonality of distinct monomials in A
(µ)(Dn) :

‖am‖2
A(µ)(Dn)

=
∥∥∥
∑

σ∈Sn

sgn(σ)
n∏

k=1

z
mσ(k)

k

∥∥∥
2

A(µ)(Dn)
=
∑

σ∈Sn

∥∥
n∏

k=1

z
mσ(k)

k

∥∥2
A(µ)(Dn)

=
n!m!

(µ)m
,

where m! =
∏n

j=1mj! and (µ)m =
∏n

j=1(µ)mj
. Here (µ)mj

is the Pochhammer symbol (µ)mj
= µ(µ +

1) . . . (µ+mj − 1). Putting cm =

√
(µ)m
n!m! , it follows from [21, p. 2364] that

{em = cmam : m ∈ [[n]]}

is an orthonormal basis of A
(µ)
anti(D

n).

The determinant function ap+δ is a polynomial and is divisible by each of the differences zi − zj, 1 ≤
i < j ≤ n and hence by the product

n∏

1≤i<j≤n

(zi − zj) = det
(
((zn−j

i ))ni,j=1

)
= aδ(z) = ∆(z).

For p ∈ [n], the quotient Sp :=
ap+δ

aδ
, is therefore well-defined and is called the Schur polynomial [14,

p. 454]. For p ∈ [n] and m = p+ δ, recall that cm = cp+δ =
√

(µ)p+δ

n!(p+δ)! , now it follows from Equation

(4.3 ) that

Γ

(√
(µ)p+δ

(p + δ)!
Sp

)
= Γ

(√
n!cp+δSp

)
= cp+δap+δ = cmam, m ∈ [[n]].

Since the map Γ : A(µ)(Gn) → A
(µ)
anti(D

n) defined by Equation (4.3 ) is a unitary [21, p. 2363], the set

{γpSp : p ∈ [n]}, where γp =

√
(µ)p+δ

(p+ δ)!
,
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is an orthonormal basis for A(µ)(Gn). Hence we have the following proposition,

Proposition 4.6. The reproducing kernel B
(µ)
Gn

for A
(µ)(Gn) is given by

B
(µ)
Gn

(
s(z), s(w)

)
=
∑

p∈[n]

γ2pSp(z)Sp(w), z,w ∈ D
n, µ > 1. (4.4)

From [21, p. 2363], it follows that A
(µ)
anti(D

n) and the weighted Bergman module A(µ)(Gn) are unitarily

equivalent as modules over C[z]Sn for µ > 1. The limiting case µ = 1, is discussed in [21, p. 2367].

It is not difficult to show that the function B
(µ)
Gn

: Gn × Gn → C, defined by the Equation (4.4 ), is

positive definite for µ > 0. For 0 < µ < 1, let A
(µ)(Gn) be the Hilbert space of holomorphic functions

having B
(µ)
Gn

as its reproducing kernel. If we assume that the set {Sp}p∈[n] is orthogonal in A
(µ)(Gn) and

‖Sp‖2 = (p+δ)!
(µ)p+δ

, then it is easy to verify that the injective linear map Γ : A(µ)(Gn) → A
(µ)(Dn) defined

in Equation (4.3 ) is an isometry. By similar arguments as in the case µ > 1, we reach the desired

conclusion for 0 < µ < 1 as well. This observation is recorded in the following Lemma.

Lemma 4.7. For µ > 0, the Hilbert modules A
(µ)(Gn) and A

(µ)
anti(D

n) are equivalent, as modules over

C[z]Sn .

In view of Lemma 4.5 and Lemma 4.7, proving Theorem 4.4 amounts to proving the following theorem.

Theorem 4.8. The Hilbert modules A
(λ)(Gn) and H(λ)(Gn) over C[z]Sn are not equivalent for any

λ > 0 and n ≥ 2.

To prove this theorem, we recall the notion of a normalized kernel from [10]. Let Ω ⊆ C
n be domain.

A kernel function K : Ω×Ω → C is said to be normalized at w0 ∈ Ω if K(z,w0) = 1 for z ∈ Ω0, where

Ω0 ⊆ Ω, is a neighborhood of w0. We note that Sp is a homogeneous symmetric polynomial of degree

|p| :=∑n
i=1 pi, so S0 ≡ 1 and Sp(0) = 0 for p 6= 0, where 0 ∈ [n] with all components equal to 0. From

Equation (4.4 ) and the discussion following Proposition 4.6, we see that B
(µ)
Gn

(
s(z),0

)
= γ2

0
= (µ)δ

δ! for

z ∈ D
n and µ > 0. We record the following obvious corollary of Proposition 4.6 for future reference.

Corollary 4.9. The normalized reproducing kernel B̃
(µ)
Gn

for A
(µ)(Gn) is given by

B̃
(µ)
Gn

(
s(z), s(w)

)
=

δ!

(µ)δ

∑

p∈[n]

γ2pSp(z)Sp(w), z,w ∈ D
n, µ > 0. (4.5)

It is of independent interest to express the reproducing kernel B
(µ)
Gn

in terms of coordinates of Gn,

that is, in terms of elementary symmetric polynomials. In order to do that, we need to introduce some

terminologies. To a partition p = (p1, . . . , pn) ∈ [n] is associated a Young diagram [14, Section 4.1] with

pi boxes in the i-th row, the rows of boxes lined up on the left. The conjugate partition p′ = (p′1, . . . , p
′
r)

to the partition p is defined by interchanging rows and columns in the Young diagram, that is, reflecting

the diagram in the 45◦ line. For example, the conjugate partition to the partition (3, 3, 2, 1, 1) is (5, 3, 2).

For the conjugate partition p′ = (p′1, . . . , p
′
r) to p, let us require that p′r > 0 and call r the length of

p′. Let us agree to call sk the k-th elementary symmetric polynomial in n variables for k = 0, 1, . . . ,

with the convention that sk ≡ 0 if k > n. We are now ready to state the second of Giambelli’s formulas
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expressing the Schur polynomials as functions of elementary symmetric polynomials. Here is Giambelli’s

second formula [14, p. 455]:

Sp = det
(
((sp′

i
+j−i))

r
i,j=1

)
, p ∈ [n], (4.6)

where p′ = (p′1, . . . , p
′
r) is the conjugate partition to p.

Combining Corollary 4.9 with the Equation (4.6 ), we obtain the following theorem.

Theorem 4.10. The normalized reproducing kernel B̃
(µ)
Gn

for A
(µ)(Gn) is given by

B̃
(µ)
Gn

(s, t) =
δ!

(µ)δ

∑

p∈[n]

γ2p det
(
((sp′i+j−i))

r
i,j=1

)
det
(
((tp′i+j−i))

r
i,j=1

)
,

for s = (s1, . . . , sn), t = (t1, . . . , tn) ∈ Gn, µ > 0 and p′ = (p′1, . . . , p
′
r) is the conjugate partition to

p ∈ [n].

The following lemma will be useful in proving Theorem 4.8.

Lemma 4.11. Let B̃
(µ)
Gn

be the normalized reproducing kernel for A
(µ)(Gn). Then

(i) the coefficient of s1(z)s1(w) in B̃
(µ)
Gn

(
s(z), s(w)

)
is µ+n−1

n ,

(ii) the coefficient of s1(z)
2s1(w)2 in B̃

(µ)
Gn

(
s(z), s(w)

)
is (µ+n−1)(µ+n)

n(n+1) .

Proof. Since the Schur polynomial Sp is a homogeneous symmetric polynomial of degree |p| :=∑n
i=1 pi,

therefore, it is a polynomial in the elementary symmetric polynomials si(z) for i = 1, . . . , n. For a

fixed k, q ∈ Z+, the term sk(z)
qsk(w)q in B̃

(µ)
Gn

(
s(z), s(w)

)
comes only from the terms which involve

Sp(z)Sp(w) in the series for B̃
(µ)
Gn

(
s(z), s(w)

)
in Equation (4.5 ), where p = (p1, . . . , pn) ∈ [n] such that∑n

i=1 pi = kq.

To get the coefficient of s1(z)s1(w) in B̃
(µ)
Gn

(
s(z), s(w)

)
, take p = (1, 0, ..., 0). From Equation (4.5 ),

the coefficient of s1(z)s1(w) in B̃
(µ)
Gn

(
s(z), s(w)

)
is

δ!

(µ)δ
γ2p =

δ!

(µ)δ
· (µ)p+δ

(p+ δ)!
=

µ+ n− 1

n
,

where p = (1, 0, . . . , 0). This proves (i).

Similarly, to obtain the coefficient of s1(z)
2s1(w)2 in B̃

(µ)
Gn

(
s(z), s(w)

)
, we need to consider terms

corresponding to p = (2, 0, . . . , 0) and p = (1, 1, 0, . . . , 0). From the Giambelli’s formula (4.6 ), we get

S(2,0,...,0,0)(z) = (s1
2 − s2)(z) and S(1,1,...,0,0)(z) = s2(z).

Since s21 appears only in S(2,0,...,0), from Equation (4.5 ), it follows that the coefficient of s1(z)
2s1(w)2

in B̃
(µ)
Gn

(
s(z), s(w)

)
is

δ!

(µ)δ
γ2p =

δ!

(µ)δ
· (µ)p+δ

(p+ δ)!
=

(µ+ n− 1)(µ + n)

n(n+ 1)
,

where p = (2, 0, . . . , 0). This proves (ii).

Consider the restriction of the action of Sn to Z
n
+. Let Snm denote the orbit of m ∈ Z

n
+. If m ∈ [n]

has k(≤ n) distinct components, that is, there are k distinct non-negative integers m1 > . . . > mk such

that

m = (m1, . . . ,m1,m2, . . . ,m2, . . . ,mk, . . . ,mk),
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where each mi is repeated αi times, for i = 1, . . . , k, then α = (α1, . . . , αk) is said to be the multiplicity

of m ∈ [n]. For any m ∈ Z
n
+ the components of m can be arranged in the decreasing order to obtain,

say, m̃ ∈ [n]. We say that m ∈ Z
n
+ is of multiplicity α = (α1, . . . , αk) if m̃ has multiplicity α. In

particular, the elements of [[n]] are of multiplicity (1n), that is, 1 occurs n-times.

We recall that the number of distinct n-letter words with k distinct letters is n!
α! =

n!
α1!...αk!

, where

the k distinct letters a1, . . . , ak are repeated α1, . . . , αk times, respectively (α1 + . . .+αk = n). In other

words, for a fixed m ∈ Z
n
+, we have |Snm| = n!

α! , where |X| denotes the cardinality of a set X. Let

Z
n
+/Sn denote the set of all orbits of Zn

+ under the action of Sn. We record the following as a lemma

for later use.

Lemma 4.12. The set Zn
+/Sn is in one-one correspondence with the set [n].

Proof. First, we prove that each Sn orbit of Zn
+ has exactly one n-tuple in decreasing order. To see

this, observe that each orbit contains an n-tuple in decreasing order, and hence enough to prove it is

unique. Suppose there are two n-tuples in decreasing order, say m,m′, in the same orbit. Since a

permutation only changes the position of a component, it follows that all n-tuples in an orbit have the

same multiplicity. Therefore the multiplicity of m and m′ is the same and hence m = m′. Note that

each element in [n] is in some orbit and hence the proof is complete.

Consider the monomial symmetric polynomials [14, p. 454]

Mm(z) =
∑

β

zβ,

where the sum is over all distinct permutations β = (β1, β2, ..., βn) of m ∈ [n] and zβ = zβ1
1 zβ2

2 ...zβn
n .

This definition of Mm makes sense for m ∈ Z
n
+ as well and we use it in the sequel. Observe that Snm

is the set of all distinct permutations of m, so,

Mm(z) =
∑

β∈Snm

zβ = Mm′(z) for m,m′ ∈ Snm. (4.7)

The following lemma that gives us an expression for the reproducing kernel K
(λ)
Gn

for H(λ)(Gn) will play

a significant role in the sequel.

Lemma 4.13. The reproducing kernel K
(λ)
Gn

for H(λ)(Gn) is given by the formula:

K
(λ)
Gn

(
s(z), s(w)

)
=

1

n!

∑

m∈[n]

α!(λ)m
m!

Mm(z)Mm(w), z,w ∈ D
n,

where m is of multiplicity α.

Proof. If m ∈ [n] is of multiplicity α, then Mm(z) is the sum of |Snm| = n!
α! distinct monomials. We

then observe that

per
(
((z

mj

i ))ni,j=1

)
=
∑

σ∈Sn

n∏

i=1

z
mσ(i)

i =
∑

σ∈Sn

n∏

i=1

z
m

σ−1(i)

i =
∑

σ∈Sn

zσ·m, (4.8)

is the sum of n! monomials, from which exactly |Snm| = n!
α! are distinct (since there can be only n!

α!

distinct permutations of a m ∈ [n] with multiplicity α). So, each distinct term must be repeated α!

times. Thus, from equation (4.7 ) we conclude that
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per
(
((z

mj

i ))ni,j=1

)
= α!Mm′(z), for any m′ ∈ Snm. (4.9)

Since Z
n
+ is the disjoint union of its Sn-orbits, from Lemma 4.12 we have

Z
n
+ = ∪m∈[n]Snm. (4.10)

Therefore, from Corollary 4.2, we have

K
(λ)
Gn

(
s(z), s(w)

)
=

1

n!
per
(((

(1− zjw̄k)
−λ
))n

j,k=1

)

=
1

n!

∑

σ∈Sn

n∏

i=1

(1− ziw̄σ(i))
−λ

=
1

n!

∑

σ∈Sn

∑

m∈Zn
+

(λ)m
m!

n∏

i=1

zmi

i

n∏

i=1

w̄mi

σ(i)

=
1

n!

∑

m∈Zn
+

(λ)m
m!

n∏

i=1

zmi

i

∑

σ∈Sn

n∏

i=1

w̄mi

σ(i)

=
1

n!

∑

m∈Zn
+

(λ)m
m!

n∏

i=1

zmi

i per
(
((w̄

mj

i ))ni,j=1

)

=
1

n!

∑

m∈[n]

∑

m′∈Snm

(λ)m′

m′!

n∏

i=1

z
m′

i

i per
(
((w̄

m′

j

i ))ni,j=1

)
(using (4.10 ))

=
1

n!

∑

m∈[n]

(λ)m
m!

per
(
((w̄

mj

i ))ni,j=1

) ∑

m′∈Snm

n∏

i=1

z
m′

i

i

=
1

n!

∑

m∈[n]

(λ)m
m!

α!Mm(w)
∑

m′∈Snm

zm′

(using (4.9 ))

=
1

n!

∑

m∈[n]

α!(λ)m
m!

Mm(z)Mm(w),

where the last equality follows from Equation (4.7 ).

Remark 4.14. One could also write the reproducing kernel in terms of permanent using the equations

(4.9 ) and (4.10 ) and the equality |Snm| = n!
α! , as follows:

K
(λ)
Gn

(
s(z), s(w)

)
=

1

n!

∑

m∈[n]

∑

m′∈Snm

( n!
α!

)−1α!(λ)m′

m′!

1

α!
per
(
((z

m′

j

i ))ni,j=1

) 1

α!
per
(
((w̄

m′

j

i ))ni,j=1

)

=
1

(n!)2

∑

m∈Zn
+

(λ)m
m!

per
(
((z

mj

i ))ni,j=1

)
per
(
((w̄

mj

i ))ni,j=1

)
,

for z,w ∈ D
n.

We note that the kernels B
(λ)
Gn

and K
(λ)
Gn

are defined on all of Gn. Hence the Hilbert modules

P(n)

(
A
(λ)(Dn)

)
and P(1,...,1)

(
A
(λ)(Dn)

)
are locally free on all of Gn strengthening our earlier assertion

(Corollary 3.12) that they are locally free only on Gn\s(Z). Thus we have proved the following corollary.
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Corollary 4.15. The Hilbert modules P(n)

(
A
(λ)(Dn)

)
and P(1,...,1)

(
A
(λ)(Dn)

)
are locally free of rank 1

on Gn.

Like Lemma 4.11, the following lemma will be useful in proving Theorem 4.8.

Lemma 4.16. Let K
(λ)
Gn

be the normalized reproducing kernel for H(λ)(Gn). Then

(i) the coefficient of s1(z)s1(w) in K
(λ)
Gn

(
s(z), s(w)

)
is λ

n ,

(ii) the coefficient of s1(z)
2s1(w)2 in K

(λ)
Gn

(
s(z), s(w)

)
is λ(λ+1)

2n .

Proof. Since the monomial symmetric polynomialMm is a homogeneous symmetric polynomial of degree

|m| := ∑n
i=1mi, therefore, it is a polynomial in the elementary symmetric polynomials si(z) for i =

1, . . . , n. For a fixed k, q ∈ Z+, the term sk(z)
qsk(w)q in K

(λ)
Gn

(
s(z), s(w)

)
comes only from the terms

involving Mm(z)Mm(w) in the series for K
(λ)
Gn

(
s(z), s(w)

)
in Lemma 4.13, where m = (m1, . . . ,mn) ∈

[n] such that
∑n

i=1 mi = kq.

To obtain the coefficient of s1(z)s1(w) in K
(λ)
Gn

(
s(z), s(w)

)
, we only need to consider the term

Mm(z)Mm(w), for m = (1, 0, ..., 0). Note that Mm(z) = s1(z). Since m = (1, 0, . . . , 0) has multi-

plicity α = (1, (n − 1)), it follows that the coefficient of s1(z)s1(w) in K
(λ)
Gn

(
s(z), s(w)

)
is

1

n!
· α!(λ)m

m!
=

(n− 1)!1!(λ)1
1!n!

=
λ

n
.

This proves (i).

Analogously, to find the coefficient of s1(z)
2s1(w)2 inK

(λ)
Gn

(
s(z), s(w)

)
, we need to consider terms cor-

responding to m = (2, 0, ..., 0) and m = (1, 1, 0, ..., 0). Note that Mm(z) = s2(z) for m = (1, 1, 0, . . . , 0),

so the coefficient of the term Mm(z)Mm(w) for m = (1, 1, 0, . . . , 0), will not contribute here. Now

Mm(z) = s1(z)
2 − 2s2(z) for m = (2, 0, . . . , 0). Since m = (2, 0, . . . , 0) has multiplicity α = (1, n − 1),

it follows that the coefficient of s1(z)
2s1(w)2 in K

(λ)
Gn

(
s(z), s(w)

)
is

1

n!
· α!(λ)m

m!
=

(n− 1)!(λ)2
2!n!

=
λ(λ+ 1)

2n
.

This proves (ii).

Proof of Theorem 4.8. If possible, let these two modules be unitarily equivalent. Recall that the repro-

ducing kernels B̃
(λ)
Gn

and K
(λ)
Gn

have the property that

B̃
(λ)
Gn

(
s(z), 0

)
= K

(λ)
Gn

(
s(z), 0

)
= 1 for s(z) ∈ Gn,

that is, these are the normalized reproducing kernels at 0 of the respective Hilbert spaces. Since by

construction, the polynomial ring C[s1, . . . , sn] = C[z]Sn in n variables is dense in both H(λ)(Gn) and

A
(λ)(Gn), it follows (cf. [11, Remark, p. 285]) that the dimension of the joint kernel is 1 on Gn.

Therefore, by [10, Lemma 4.8(c)], we infer that

B̃
(λ)
Gn

(
s(z), s(w)

)
= K

(λ)
Gn

(
s(z), s(w)

)
for s(z), s(w) ∈ Gn.

Equating the coefficients of s1(z)s1(z) from Lemma 4.11 we see that λ = λ + n − 1. Thus we must

have n = 1 completing the proof of the Theorem.
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Corollary 4.17. In the decomposition of the Hilbert module A
(λ)(D3) :

A
(λ)(D3) = P(3)

(
A
(λ)(D3)

)
⊕ P(2,1)

(
A
(λ)(D3)

)
⊕ P(1,1,1)

(
A
(λ)(D3)

)
,

all the sub-modules on the right hand side of the equality are inequivalent.

Proof. We have just proved that P(3)

(
A
(λ)(D3)

)
cannot be equivalent to P(1,1,1)

(
A
(λ)(D3)

)
, in general.

Since the rank of the sub-module P(2,1)

(
A
(λ)(D3)

)
is χ(2,1)(1)

2 = 4, [14, Example 2.6], it cannot be

equivalent to either of these.

Remark 4.18. The proof of Theorem 4.4 shows that we have proved a little more than what is claimed

in the Theorem, namely: The Hilbert modules A
(λ)
sym(Dn) and A

(µ)
anti(D

n) over C[z]Sn are not equivalent

for any λ, µ > 0 and n ≥ 2. To prove this more general claim, we merely note, as before, that equating

the coefficients of s1(z)s1(z) and s1(z)
2s1(z)2 from Lemma 4.11 and Lemma 4.16, we obtain

λ = µ+ n− 1 and
λ(λ+ 1)

2n
=

(µ + n− 1)(µ + n)

n(n+ 1)
.

Combining these equations, we have that n = 1, which proves our claim. Indeed, the two modules

P
ii
p

(
A
(λ)(Dn)

)
and P

jj
q

(
A
(µ)(Dn)

)
are not equivalent either for any 1 ≤ i ≤ χp(1) and 1 ≤ j ≤ χq(1) for

which χp(1) 6= χq(1).

Appendix A. The bi-holomorphic automorphism group of D
n

and the weigeted Bergman modules

The bi-holomorphic automorphism group Aut(Dn) is the semi-direct product Aut(D)n ⋊ Sn, where

Aut(D) is the bi-holomorphic automorphism group of D. For Φ ∈ Aut(Dn), define U : Aut(Dn) →
L
(
A
(λ)(Dn)

)
by the formula:

U(Φ−1)h =
(
det(DΦ)

)λ/2
h ◦ Φ, h ∈ A

(λ)(Dn).

Since the map (Φ,z) 7→
(
det(DΦ)

)λ/2
(z) from Aut(Dn)×D

n to C is a (projective) cocycle, it follows

that the map U defines a (projective) unitary representation. The Hilbert space A
(λ)(Dn) is also a

module over the polynomial ring C[z], namely,

mp(h) = p · h, p ∈ C[z], h ∈ A
(λ)(Dn),

where p · h is the point-wise multiplication. Setting (Φ · f)(z) = f
(
Φ−1(z)

)
, we have the relationship

mΦ·p = U(Φ)∗ mp U(Φ), Φ ∈ Aut(Dn), p ∈ C[z], which is analogous to the imprimitivity introduced

by Mackey (cf. [28, Chapter 6]). The imprimitivities of Mackey have been studied extensively and

are related to induced representations, representations of the semi-direct product and homogeneous

vector bundles, see Theorems 6.12, 6.20 and 6.24 in [28], respectively. However, the situation we

have described is different in that the module action is defined over the ring of analytic polynomials

rather than the algebra of continuous functions. This, we believe, merits a detailed investigation and

the outcome, see [18], [22], so far is very encouraging. Also, the restriction of the representation U

to the subgroup △ := {(ϕ, . . . , ϕ) : ϕ ∈ Aut(D)} of Aut(Dn) has a decomposition into irreducible

components known as the Clebsch-Gordan decomposition. On the other hand, the symmetric group acts

on A
(λ)(Dn) via the unitary map Rσ−1 : h → h◦σ, σ ∈ Sn. The Hilbert space A

(λ)(Dn) is also a module
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over the ring of the symmetric polynomials C[z]Sn , where the module map is given by the formula:

mp(h) = p · h, p ∈ C[z]Sn . In this paper, we have studied the imprimitivity
(
A
(λ)(Dn),mp, Rσ

)
and

an orthogonal decomposition into sub-modules like in the more familiar Clebsch-Gordan decomposition

mentioned above. The question of finding a decomposition where each component is minimal and any

two of them are inequivalent remains open in general.
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