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ABSTRACT. Fix a bounded domain 2 C C™ and a positive definite kernel K on €2, both invariant under
&, the permutation group on n symbols. Let H C Hol(2) be the Hilbert module determined by K. We
show that #H splits into orthogonal direct sum of subspaces PpH indexed by the partitions p of n. We
prove that each sub-module P,H is a locally free Hilbert module of rank equal to square of the dimension
Xp(1) of the irreducible representation corresponding to p. Given two partitions p and g, we show that
if xp(1) # xq(1), then the sub-modules P,H and PqH are not unitarily equivalent. We prove that the
Taylor joint spectrum of the n-tuple of multiplication operators by elementary symmetric polynomials on
PpH is clos (s(€2)), where s : C* — C" is the symmetrization map. It is then shown that this commuting
tuple of operators defines a contractive homomorphism of the ring of symmetric polynomials (C[z]e"
in n variables, equipped with the sup norm on clos (S(Q)) We construct a large class of examples of
&,-invariant kernels. Moreover, restricting to the case of weighted Bergman modules A™) (D™), we prove
that the sub-modules P, (A(A)(D")) and Py 1y (A(A)(D")) corresponding to the trivial and the sign
representations, are not unitarily equivalent. This shows that for n = 2,3, the sub-modules of weighted

Bergman module in this decomposition are not unitarily equivalent.

1. INTRODUCTION

Let Q C C", be a bounded domain, K be a positive definite kernel on {2, holomorphic in the first
variable and anti-holomorphic in the second. It determines a Hilbert space H of holomorphic functions

defined on 2. The natural action of the permutation group &,, on C" is given by the formula:
(0,2) =0z = (25-101),- -+, 2%6-1(n)), (0,2) € &, x C™.

Throughout this paper the domain 2 is assumed to be invariant under &,. We say a positive definite
kernel K on an &,-invariant domain € is &,,-invariant if K (o - z,0 - w) = K(z,w) for 0 € &,, and
z,w € ). We assume that the kernel K is &,-invariant as well. Let % C Hol({2) be a Hilbert module
over the polynomial ring C|z], determined by K. The module action is defined by the map

my,(h) =p-h, peClz], he H,
where p - h is the point-wise multiplication.
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Let é\n denote the equivalence classes of all irreducible representations of &,,. It is well known that
these are finite dimensional and they are in one-to-one correspondence with partitions p of n [14,
Theorem 4.3]. Recall that a partition p of n is a decreasing finite sequence p = (p1,...,px) of non-
negative integers such that Zle pi = n. A partition p of n is denoted by p - n. Let m, be a unitary
representation of &,, in the equivalence class of p F n, that is, wy(0) = ((ﬂ'g(a))):.'z.:l eCm*M g e &,
where m = xp(1) and xp(c) = trace(mp(0)), o € Sy, is the character of the representation mp. These
finite dimensional representations of the group &,, define linear operators P, and ]P’g on the Hilbert

space H :

ot = 2D S~ (oot fen

n!

O'EGn

y 1 o B

pyr = 20 S o) (o0, fen
UEG'!L

We show that P, and ]P’if are non-trivial orthogonal projections for p - n, 1 <14 < xp(1). The Hilbert
module #, when considered as a module over the ring of symmetric polynomials C[z]®", admits the

orthogonal decomposition:

xp(1)
H=EPr,H = P rPin.

pkn pkn =1
In this paper, we discuss the following questions.

(1) If the sub-modules P,H and PyH over C[z]®" are inequivalent for distinct partitions p and g of
n?

(2) If the reducing sub-modules P4 and IP’{Ij H over C[z]®" are inequivalent whenever (p, i) # (q, 7),
where p, g are partitions of n, 1 <7 < xp(1) and 1 < j < x4(1)7?

(3) If the reducing sub-modules IP’g’H, p partition of n and 1 < i < xp(1), are minimal?

Let s : C" — C" be the symmetrization map s = (s1,...,8,), Where sg(2) = > 1o < %in " Zigs
1 < k < n. Let Z be the set of critical points of the proper map s. For any partition p of n, we
have shown, see Corollary 3.12, that the Hilbert modules P,H are locally free of rank x,(1)* on an
open subset of s(€2) \ s(Z). Furthermore, using similar arguments, we show that the sub-modules PiH,
1 <i < xp(1), are locally free of rank xp(1). Therefore, if xp(1) # xq(1), then the sub-modules PiH
and PZ/H are not equivalent, see Theorem 3.14.

Since the Hilbert module P,H, as well as the sub-modules Pg?—[, 1 <i < xp(1), are locally free on the
open set of (2)\s(Z), it follows that these are in one to one correspondence with holomorphic hermitian
vector bundles defined on some open subset of 2. The rank of this vector bundle is an invariant, albeit
a very weak one. However, it is the rank which is used to distinguish the sub-modules ]P’;f?-[ in this
paper. We give an explicit realization of a spanning holomorphic cross-section for the sub-modules
]P’;f’H. The existence of spanning holomorphic cross section for holomorphic hermitian vector bundles
was established in [13], [29]. However, it is not clear how to construct these even in the simplest of
examples of vector bundles of rank > 1, for instance, when the vector bundle is the direct sum of two

line bundles. For all the sub-modules of the Hilbert module H, we study in this paper, an algorithm
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for constructing the spanning sections is given. Also, this provides an invariant that we believe will be
useful in our future work.

For any partition p of n, following arguments similar to the ones given in [4], we further show that the
commuting n-tuple of multiplications Ms(p ) = (Ms,,...,Ms, ) by the elementary symmetric functions
s defined on the Hilbert space PpH, admit clos(s(2)) as a spectral set. Here, we assume that 2 is
polynomially convex and |[my|| < [[p||s,clos(q2), that is, the compact set clos(€2) is a spectral set for the
commuting tuple (M, ,..., M, ) of multiplication by the coordinate functions on H. Since P,H admits
a further decomposition into a direct sum of the sub-modules ]P’g’H, 1 <1 < xp(1), it follows that the
n-tuple M, ép ) acting on these reducing subspaces has the same property, which is Theorem 3.22 of this
paper. What is more, we have shown that the Taylor joint spectrum of each of these n-tuples is clos(s(€2)
and thus, in these examples, the spectrum is a spectral set.

In section 3 (see Example 3.4), we exhibit a large class of &, -invariant kernel. As a particular case,
we note that the action of &,, on  is bi-holomorphic, and hence it follows that the Bergman kernel
B of € is automatically &,-invariant whenever the domain €2 is &,-invariant. Furthermore if A > 0
is chosen such that the kernel B*, defined by polarizing B(w,w)", is positive definite, then B?* is also
G,,-invariant. Thus, all these spaces have similar decompositions in to reducing submodules. In the
last section of this paper, we discuss the important special case (motivated from appendix A) of the
weighted Bergman modules AW (D™), A > 1, of square integrable holomorphic functions defined on the

polydisc D™ with respect to the measure

n

([T = 1z)*2)dv(z), z e D™

i=1
(In the sequel, we also consider the case of A > 0.)

Although we haven’t been able to decide if the sub-modules Pp,H and PyH are inequivalent when
Xp(1) = x4(1), in general, we have obtained the answer in the case of the Bergman module A (D7)
for the partitions p of n with xp(1) = 1. For n > 2, there are only two such partitions: p = (n) or
(1,...,1). We show that the two sub-modules P, (A(’\) (]D)")) and IP’(17...71)(A(>‘)(D")) are inequivalent
(there is no intertwining module map between them that is unitary) over C[z]®", see Theorem 4.4. Also
these summands are locally free of rank 1, therefore they are irreducible and hence minimal. In fact,
the reducing submodules PpH are minimal whenever xp,(1) = 1 and in case xp(1) > 1, existence of
non-trivial projections IP’? shows that the submodules are not minimal reducing. Therefore, for n = 2,
in the decomposition AN (D?) = P o) (A(A) (D?)) & Py (A()‘) (D?)), the two summands are minimal and
inequivalent and consequently, we have answered the questions (1) - (3). Furthermore, for n = 3, it
follows that all the submodules in the decomposition ©pp 3Py (A()‘) (D3)) are inequivalent, see Corollary
4.17. Along the way, we give an explicit formula, see Theorem 4.10, for the weighted Bergman kernel
of the symmetrized polydisc G,, in the co-ordinates of G,, rather than that of the polydisc D”. In an

earlier paper [21], the case of n = 2 was worked out.
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2. LOCALLY FREE HILBERT MODULES

First, we recall several useful definitions following [12], [7] and [6].

Definition 2.1. A Hilbert space H is said to be a Hilbert module over the polynomial ring Clz] in n
variables if the map (p,h) — p-h, p € Clz],h € H, defines a homomorphism p — T,, where T, is
bounded operator defined by T,h =p - h.

Two Hilbert modules H and H are said to be (unitarily) equivalent if there exists a unitary module
map U : H — H, that is, UT, = TPU, p € Clz].

A Hilbert module H over C[z] equipped with the sup norm on some compact set X C C", is said to
be bounded if

IT,]| < Cllplloc,x = Csup{|p(2)| : z € X}

for some positive constant C' independent of p and it is said to be contractive if C' can be chosen to be 1.

In this paper, we study those analytic Hilbert modules, where the domain {2 and the kernel K are

&,,-invariant.

Definition 2.2. A Hilbert module H is said to be analytic over C[z] if

(1) H consists of holomorphic functions on some bounded domain Q C C",
(2) the module action T}, is given by pointwise multiplication, that is, (my(h))(2) = p(z)h(z), z € Q,
(3) H possesses a reproducing kernel on §, that is, there exists a function K : Q x Q — C satisfying
the reproducing property with respect to H: f(w) = (f, K(-,w)), f € H, w € Q,
(4) C[z] € H is dense in H.
An analytic Hilbert module H C Hol((2) is said to be contractive if ||mp|| < ||p[loc clos()- If 2 is assumed
to be polynomially convex, contractivity of the module is equivalent to saying that the compact set clos(§2)

is a spectral set for the commuting tuple of multiplication operators (M, ,..., M., ).

Let Cy, be the one dimensional module over the polynomial ring C[z] defined by the evaluation, that
is, (p,c) = p(w)e, ¢ € C,p € C[z]. Following [12], we define the module tensor product of two Hilbert
modules H and C,, over C[z]| to be the quotient of the Hilbert space tensor product H @ C by the

subspace
N = {p foly— fopw):peCllfeH}
= {(p—p(w))f:peClz],feH}
Thus
H®(C[z} Cowi=H® C)/N,

where the module action is defined by the compression of the operator m,®1,,, p € C[z], to the subspace
(H® C)/N. We recall the notion of local freeness of a Hilbert module in accordance with [6, Definition
1.4].

Definition 2.3 (Definition 1.4, [6]). Let H be a Hilbert module over Clz|. Let Q2 be a bounded open
connected subset of C". We say H is locally free of rank k at wg in Q* := {z € C" : z € Q} if there
exists a neighbourhood €0 of wo and holomorphic functions yi,72, ...,V : Q5 — H such that the linear
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span of the set of k vectors {y1(w),..., v (w)} is the module tensor product H @c(z) Cy. Following the
terminology of [6], we say that a module H is locally free on Q0 of rank k if it is locally free of rank k at

every w in QF.

Recall that the permutation group &, acts on C" : 0 in G, (0,2) = 0 2 := (2,-1(1)5- -+, Zo-1(n))-
For convenience of notation, we sometimes let z, denote o - z. Let 2 C C" be a bounded domain
invariant under the action of &,,. Let H be an analytic Hilbert module on 2 with reproducing kernel
K. Let s: C" — C" be the symmetrization map s = (s1,...,8n), Where si(2) = > o <, %in " Zigs
1 <k <n.Let (My,...,M,) denote the n-tuple of multiplication operators by the coordinate functions
zi, 1 <1 <mnon H. Clearly, (Ms,,...,Ms, ) defines a commuting tuple of bounded linear operators on
H. Define A(z) = [[,;(zi — 25), for z € C". Note that A(z) = Js(2), the complex jacobian of the

symmetrization map s. Thus
Z={2zeC"|A(z) =0} ={z € C"| z; = z; for some i # j,1 <i,j < n}.

For every u € 5(2)\s(Z), we note that the set s7!({u}) has exactly n! elements. If My is a multiplication

operator on H by a holomorphic function ¢, then M} K., = d(w) Ky, for w € Q. Therefore we have the

following lemma.

Lemma 2.4. Let H be an analytic Hilbert module on an &y -invariant domain @ over C[z] with repro-
ducing kernel K. For 0 € &,,i=1,...,n, MKy, = Wy-1(3 Kw, and M Ky, = si(w)Ky,.

Let C[2]®" be the ring of invariants under the action of &,, on C[z], that is,
Cle® ={f €Cl2]: f(o- 2) = [(2),0 € &n}.
Furthermore, C[2]%" = Clsy, ..., s,], see [23, p. 39]. We now state the main Theorem of this Section.

Theorem 2.5. If H is an analytic Hilbert module on an &, -invariant domain 2 over C|z|, then H is
a locally free analytic Hilbert module over C[z]®" of rank n! on s(Q2) \ s(Z).

The proof is facilitated by breaking it up into several pieces. Some of these pieces make essential use
of the fact that C[z] is a finitely generated free module over C[2]®" of rank n! [5, Theorem 1, p. 110].

The motivation for the following lemma and some of the subsequent comments come from [8].

Lemma 2.6. For any basis {p,}oes, of Clz] over C[z]®", we have

det ((pff(wT)))a,766n # 0.

Proof. Let L = C(z) denote the field of rational functions and K = C(2)®" be the field of symmetric
rational function. From [23, Example 2.22|, it is known that L over K is a finite Galois extension
with Galois group Gal(L/K) = &,,. Let f € L, that is, f = g for some polynomials p and ¢. Pick

qg= HJEGn q(zy) and p = pHaeen,a;&l q(zo). Now, f = %, where ¢ is symmetric. Again, since {p, }ses,

is a basis for C[z] over the ring C[z]®", we have p =" & poho where h,’s are symmetric polynomial
which in turn shows that f = ZUEGn po%". Thus {ps}sece, forms a basis of L over K. Now we make
use of the following basic result from Galois theory [9, Lemma 3.4]:

If N/F s a finite Galois extension with Gal(N/F) = {g1,...,9m} and {e1,...,en} is a F-basis of

N, then (gl(ej), . ,gm(ej));.n:l forms a basis of F™/F.
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Consequently, ((pa o T_l)oegn)T ce, 18 a basis of L™ /L. Hence we have the desired result. [

Recall that the length of permutation o € &,, is the number of inversions in o [17, p. 4]. Here, by
an inversion in o, we mean a pair (i,j) with 1 < i < j < n such that o(i) > o(j). This is the smallest

number of transpositions of the form (i,7 + 1) required to write o as a product of these transpositions.

Lemma 2.7. Pick a basis for C[z] over C[z]®" consisting of homogeneous polynomials py, o € &y,
degp, = £(0). Then

(i) the determinant det (ps(w;)) is a homogeneous polynomial of degree %'(g),

o, 7€EG,
(ii) det ((pg(wT)))UTEG is a non-zero constant multiple of A(w)=

Proof. Clearly,

det ((pg(wT)))cr,TEGn = Z H pcr(wuo)-
veS,, €6,
We note that
deg H po(wucr Z degpo Z deg p, = Z E(a)
o6y, ocGy [ SCH oeGy
Let I,(k) denote the number of k-inversions in &,, [20, p. 1]. Alternatively, I,(k) = card{oc € &,, |
¢(o) = k}. Note that
(3) (3)
> o) = Uo) = kl,(k)
k=1

The generating function formula for I,,(k) is given by [20, Theorem 1]

(2) n—1 1
Zln(k‘)zk = H sz.
k=1

i=1 j=0

Differentiating with respect to z, we obtain

(3) n—1 r—1
S kLR =D+ 4id ) [ G+ ).
k=1 i=1 =1

Putting z = 1, we have

i 1 n—1 lnl
Zkln(k;):z(—;) IT « g+1=522 <>

k=1 i=1 j=1,j#i =1

This proves part (i). For part (ii), let us choose 7, j with 1 < i < j < n. Consider the automorphism of
S, given by 7 — (i, j), where (i, ) is the transposition. This automorphism maps an even permutation
to an odd permutation and vice versa. For any polynomial p, clearly, p(z;) = =, amn(2')2]"2} € C[z],
where each apy,(2') is a polynomial in the variables zi,...,21,%i41,--.,2j—1,%j41,---,2n. Thus
p(wr) = p(Wr(i ) = D0 @mn (W) (W'} — wl'w}) is divisible by w; — w;. Thus for each even per-

mutation 7, if we subtract the (i, j)-th column (py(w from 7-th column (p,(w-,))ses, , the

r(i.3)) o,
determinant does not change. Consequently, we see that w; — wj; is a factor of the determinant. Since

we have exactly %' even permutations in &, it follows that (w; — wj)%! must divide the determinant.
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This is true for every pair of i < j and C|z] is a unique factorization domain. Hence A(w)%! divides the
determinant. From part (i) and Lemma 2.6, we see that the degree of the polynomial A(w)? is equal

n!

to & (g‘) completing the proof of part (ii). [ |

Remark 2.8. The degree of the polynomials in a basis consisting of the Descent polynomials [1, p. 6]
or the Schubert polynomials [17, Theorem 2.16], meet the hypothesis made in Lemma 2.7.

Lemma 2.9. Let H be an analytic Hilbert module on an &,,-invariant domain Q@ over C[z] with repro-
ducing kernel K. If v is in N, ker (M, — s,-('w))*, w € O\ Z, then there exists unique tuple (¢y)ges, ,
such that v ="> ¢, K(-,w,).

Proof. Clearly, M; K(-,wy) = si(wy)K(-,ws) = s;(w)K (-, w,). To complete the proof, given a joint
eigenvector v, it is enough to ensure the existence of a unique tuple (¢;)seq, of complex numbers such
that

(0,p) = (> K (we),p) = > coplws),
ceGy, oe6,
for all polynomials p since C[z] is dense in the Hilbert module . In particular, if there exists a

unique solution for some choice of a basis, say {p;}rces,, of C[z] over the ring C[2]®", then for any

P=> ,ce, Prhr € C[z], we have

wp) = 0.3 phy= S (M vp) = 3 Tn(w)(v,p,)

T€G, T7€G6, TG,
= Z hT(w) Z CopT(wcr) = Z Co Z hT(wU)pT(wO’)
TES, oceG, oeG, TEG,
= Z cop(wy).
ceSy,

Thus choosing {p; }ree, as in the hypothesis of Lemma 2.7 and using part (ii) of that Lemma, we have

a unique solution (¢, )ge@, for the system of equations

(v,pr) = Z copr(ws)

as long as w is from Q\ Z. n

As a consequence of the Lemma we have just proved, we see that the set of vectors {Ky, | 0 € &, }
is both linearly independent and spanning for the joint kernel N}, ker (MSZ. — s,-('w))*,w e Q\ Z.

Therefore, we have the following Corollary.

Corollary 2.10. Let H be an analytic Hilbert module on an &,-invariant domain 2 over C[z] with

reproducing kernel K. Then dim N}, ker (Msi — si(w))* =nl

To complete the proof of Theorem 2.5, we need to relate the joint kernel N'_; ker (M 5 si(w)) * to the
module tensor product H @c|;jen Co. The following Lemma gives an isomorphism between these two.
A special case of [12, Lemma 5.11], included in the Lemma below, is used in proving a generalization of
Theorem 2.5 to submodules of Hilbert modules over C[z]®".

Recall that fi,..., fr € H issaid to generate the Hilbert module H if {ry f1+- - +rifr : r1,...,7x € R}

is dense in H. The rank of a Hilbert module H over a ring R is inf |F|, where F C H is any subset
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with the property {rif1 + -+ rcfx: f1,..- s fx € Fyr1,...,7x € R} is dense in ‘H and |F| denotes the
cardinality of F (cf. [7, Section 2.3]).

Lemma 2.11. If H is a Hilbert module over C[z] consisting of holomorphic functions defined on some
bounded domain €@ C C", then we have
(1) H ¢z Cow = Npecp) ker M;_p(w); )
(2) H ®(C[z]e’" (Cw = ﬂ?:1 ker (MSz - SZ(’UJ)) N
(3) For any set of generators p1,...,p; of H over C[z]®", the vectors
P1 @cpzlen Lws -+ Pt Oclzien lw

span H c(zjen Cuw-

Proof. We have to show that H ®c[z] Cw = Npecfz) ker M;- () Recall that H ®c[) Cy is the ortho-

complement of the subspace N = —p(w))f:peClz], f € H} in H® C. Therefore, we have
p P p—pr
geENT = (9,(p—pw))f)y=0forallpe Clz], f € H < MZ‘

p—p(w))
Similarly, Nyecpzen ker My, S O * ker (Mg, — si(w )) Also, if f € NIy ker (M, — s;(w ))*, then

M f = si(w)f, 1 < i < n. Since p — p(w) is a Symmetrlc polynomial, the existence of a polynomial ¢

g=0,peClz].

such that p — p(w) = g o s follows. Thus

osf—Q( 817~'~7M5n)*fZQ(S(’w))f:O.

To prove the last statement, consider the map @ : H — H ®c[zjen Cop defined by Qf = f Q¢[zjen Lw-
Note that @ is the composition of a unitary map from H to H ® C followed by the quotient map, hence
it is onto and ||@|| < 1. Since p1C[2]%" + - + p;C[2]®" is dense in H, it follows that Q(p1C[2]®" +-- -+
pC[2]®") is dense in H ®c[z)en Cw. Now for any S pifi € H, where f;’s are in C[2]®", we have

t
Q(szfz): Zplfl ®<C[z67l w_zpz(@(c[z]@n fi- w—Zfz p2®(c [2]6n 1.
i=1

Therefore, Q(p1C[2]®" +- - -+p;C[2]®") is finite dimensional and hence H®c¢|zjen Cop is finite dimensional
and is spanned by p1 @c[zjen lw, - Pt Oc[zjen lw- n

(Proof of Theorem 2.5). Using Corollary 2.10 and Proposition 2.11, we show that the map ¢ : u +—
span{Ky, | w € s7'(u)} taking values in the Grassmannian Gr(n!,H) of the Hilbert space H of rank
n! is anti-holomorphic. Given any wuy, fixed but arbitrary, in s(2) \ s(Z), there exists a neighborhood
of ug, say U, on which s admits n! local inverses. Enumerate them as ¢1,...,¢y,. Then the linearly
independent set

(i 7i(w) = K (- pi(w),u e U},

of anti-holomorphic H-valued functions spans the joint kernel NI"_ ker (M, — si('w))*. [

Remark 2.12. An alternative proof of the Corollary 2.10 is possible using Lemma 2.11. For this proof,
which is indicated below, it is essential to use a non-trivial result from [10] rather than the direct proof
that we have presented earlier. From Lemma 2.11, it follows that dim N}'_; ker (MSZ. - s,-('w))* <nl. To

prove the reverse inequality, we show that for w € Q\ Z, the set of vectors { Ky, | 0 € &,} are linearly
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independent. Since the polynomial ring is dense in H, the reproducing kernel K is non-degenerate. From
[10, Lemma 3.6], it follows that K is strictly positive, that is, for all k > 1 the k X k-operator matriz
((K(zi, Zj)))lgi,jgk is injective for every collection {z1,..., 2z} of distinct points in Q\ Z. Since the set
UJEGnZS
injective and hence the nonsingularity of the grammian of { Ky, | 0 € &,,} gives the linear independence.

{w, | 0 € 6} contains exactly n! distinct points for every w € Q\Z, the matriz ((Kw,, Kw,))

3. ANALYTIC HILBERT MODULE WITH &G,,-INVARIANT KERNEL

Let H be the Hilbert space and U : &,, — B(H) be a unitary representation. Consider a function

X : &, — C satisfying x(¢7!) = x(o). Define an operator on H by

Tx = Z x(@)U(0).

oe6y,
Since U(o)* = U(o™1), it follows that
(T =Y x(@)U(0) = Y x(eHU(e™) = Y x(nU(r) =T*.
oeS, ceG, TEG,

Thus the following Lemma has been proved.
Lemma 3.1. TX is self adjoint on H.

As before, let 7, be a unitary representation of &, in the equivalence class of p - n, that is,
(o) = (g (0)))?’;:1 e C™™ o € &, where m = xp(1) and xy, is the character of the representation

7p. The following orthogonality relations [19, Proposition 2.9] play a central role in this section.

o n!
Z 7l (o) ml (o) = —15pq5z'm5jl, (3.1)
UEGn XP( )
where ¢ is the Kronecker symbol. For any partition p of N and 1 < 4,5 < xp(1), define the operators

Pg,]P’p : H — H by the formula

n!
0'6671
and
xp(1) -
By =220 S (o U (0)
’ ogeG,
Clearly,
Xp(l) N
]P’;,Z =P, (3.2)

The following lemma and some of the subsequent discussions are adapted from the properties of projec-

tion operators given in [19, p. 162]. We include this for sake of completeness.

Proposition 3.2. For 1 <1i,j < xp(1l) and 1 <1,m < xq(1), IP’?]P’Z” = Opg 0Py
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Proof. Since P = xp(1) ZUEGn ﬂ'p( YU (o), we have that

n!

PyPIm = o PFU(0)
€6,
_ Xp(l)Xq(l) o1 i —1
I Z {Z 7l 7)}U (o)
UGGn TGGTL
Xp(1)xq(1 il s i
= 7”((72!)3( LS S e (e U (U o).
ceG, TEG,
Let n = 70. Then 77! = on~! and
m(on™") = (mp(on ™)) = (mp(@)mp(n™))ji = Y wff(@)mp(n™").
k=1
Thus, we also have
pypn = X2WXaW) S~ S ity i)
UGGnWGGn
xp(1) ) )
= Z > gl o™) Y wo)my (U ()
JEGnUEGn k=1

= el 5 Z (3wl o )il (o) kiU ()

neG, k=1 oce6,

= Z Z {0pq010mi all )}ﬂ'l‘”( n~HU(n), (from Equation (3.1 ))

neG, k=1
Xp(l
= 5pq5ﬂ Z > S (U ()
! neG, k=1
X 1 mi(, —
- %«m% > wp U
’ neSy,

= OpgdilPy.
|

Corollary 3.3. For each partition p of n and 1 < i < xp(1), IP’? 18 an orthogonal projection and
D i -
S L0 Pl = id

Proof. Since mp, is a unitary representation, it follows that ﬂﬁ(a‘l) = mi(0). Thus from Lemma 3.1,
we find that IP’? is self adjoint. From the Proposition 3.2, it follows that (IP’Z)2 = IPZ. Then we see that

Xp(l)
Y=Y E=Y U S o) = 5 Y (X @) ve) =i

pkn =1 pn p Fn o€, 0€6n phn

where the last equality follows from the orthogonality relations [19, Proposition 3.8]. This completes
the proof. n
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Let Q C C™ be a bounded domain invariant under the action of &,,. Let K be a &,-invariant
reproducing kernel on 2, that is,
K(o-z,0-w)=K(z,w) for all 0 € &,
Example 3.4. Suppose that Q@ C C" is a S, -invariant domain and K : Q x Q — C given by K(z,w) =

ZI,JEZ’}F aryz'w’
ar,j, = ary for I,J € 2} and 0 € &,. Then K is an &y-invariant kernel. Recall that a reproducing

18 a reproducing kernel of some Hilbert space of analytic functions on 0 satisfying

kernel K on € as above is called a diagonal kernel if ayy =0 for I # J. If K is a diagonal reproducing
kernel, we write ar := arr,I € Z%. Any diagonal reproducing kernel on an &,-invariant domain €
is Sp-invariant if and only if a;, = ay for I € Z't and 0 € &,. Note that if K1 and Ks are two
&, -itnvariant kernels, then K1 + Ko and K1 Ko are also &,,-invariant.

The standard inner product (-,-) on C" is &, -invariant, that is, (o-z,0-w) = (z,w) foro € &,,. Let
B" be the unit ball with respect to the £>-norm induced by (-,-). Suppose that K : B, x B, — C is given
by K(z,w) = > 5%, ar{z,w)* with ar, > 0 for k > 0. Then K is clearly a positive definite diagonal
kernel on B,, and K is &, -invariant. This family includes the important subfamily of kernels on B,
given by Ky(z,w) = (1 — (z,w))™* for A > 0.

LetD" ={z: |z1|,...,|zn| < 1}, the unit ball with respect to >°-norm, be the polydisc in C". Suppose
that K : D" xD" — C is given by K (z, w) = [[j_, B(2j,w;), where B is a reproducing kernel on D. Then
K is clearly a positive definite diagonal kernel on D™ and K is &,,-invariant. This family of &, -invariant
kernels need not be diagonal, unless B is a diagonal kernel on D. Suppose that K (z,w) = ZIEZ;L arz'w!
with ar > 0 for I € 2. Then K is clearly a positive definite diagonal kernel on D" and K is &, -invariant
if and only if aj, = ay for I € Z} and o € &,. Both of these families of &,-invariant kernels on D"
include the weighted Bergman kernels K™ (z,w) = H;’Zl(l —zjw;j) ™, A > 0, the reproducing kernels of
the weighted Bergman modules AN (D). The holomorphic discrete series representations of Aut(D™),
the automorphism group of D™, are realized on this family of Hilbert spaces.

In fact, due to transformation rule of the Bergman kernel under biholomorphic maps, the Bergman
kernel B of an &,,-invariant domain is &y -invariant. In particular, the Bergman kernels of the open unit
balls in C™ with respect to the fP-norm, for 1 < p < oo, are &, -invariant. For X in the Berezin- Wallach

set of the &, -invariant domain €, B is an &, -invariant kernel.

Let H be an analytic Hilbert module with &, -invariant kernel K. We claim that the function foo™!,
o € 6,,isin H, whenever f isin H. To see this, recall that f is in H if and only if there exists a positive
real number ¢ such that Ky(z,w) := (2K (z,w) — f(z)f(w)) is positive definite, see [2, p. 194]. Since
Kfocr*1 (sz) = CzK(Z,’LU) - f © U_I(Z)f © J_l(w)

= PK(o-u,0-v) — f(u)f(v)

= K(u,v) — f(u)f(v)

= Kf(uv ’l)),
where 0-u = z and 0-v = w, it follows that K,,-1 is positive definite. Thus the operator R, : H — H,
Ry (f) = foo1, is well defined.

Lemma 3.5. The map R : 0 — R, is a unitary representation of &, on H.
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Proof. Note that R, f(z) = f((o7)™! - 2)) = f(r7'o™' - z) = (R.f)(c™! - 2) = R;(R,f)(2). Thus
R, = R,R;. Since the set {K,, | w € Q} is total in H, it is enough to check R, is unitary on
{Ky | w € Q}. Also,

RoKuw(2) = Ky(o ! 2) = K(o™' - z,w) = K(2,0 - w) = Ky0(2),
that is, Ry Ky = Kg.p. Thus
(Ro Ky Ro Kuy) = (Kpapy Kgw') = K(o-w' 0 - w) = K(w',w) = (Ky, Kuy).
This completes the proof. ]

In the remaining portion of this section, we will specialize to the representation R. Now, the formulae

for IP? and P, simplify to

By () = 20 S e (B )2 = 20 S e p(07 ) (3.3
ceGy, oe6,
and
Bpf(z) = 20 S TR (2 = 2D S e ) (3.4
ce6y, oe6y,

In view of Corollary 3.3, we obtain that any analytic Hilbert module H with &,-invariant kernel K can

be decomposed as follows:

xp(1)
n=Pr.H=E6 é} PiH. (3.5)
pkn pkn =1

It is natural to ask whether each of the projections P, and ]P’;f is nontrivial. To see P, is non-trivial, we
are going to use the following well known result which is analogous to the fact that the polynomial ring

Clz] is a finitely generated free module over C[z]®" of rank n!.

Theorem 3.6. The module P,C[z] is a finitely generated free module over C[z]®" of rank xp(1)2.

We are unable to locate a proof of this Theorem and therefore indicate a proof using results from
[25].

Proof. Set C|z|p := PpC|z]. There exist homogeneous polynomials in C[z],, whose images in the quotient
module S, = C[z],/{s51C[z]p+ - -+ 5,C[z]p} forms a C-basis for Sp, see [25, Theorem 1.3]). Also, from
[25, Theorem 3.10], it follows that pi,...,p, is a basis for the free module C[z], over C[z]®». Now to
see that 1 = xp(1)%, we make use of [25, Theorem 4.9] and its proof along with [25, Corollary 4.9]. It
says that the action of &,, on the quotient ring C[z]/{s1C[z] + --- + 5,C[2]} = ®pi-,,Sp is isomorphic
to the regular representation of &,, where the action on S, is isomorphic to the representation m,

corresponding to p - n with multiplicity xp(1). n
The proof of the following Corollary is immediate from Theorem 3.6 and Lemma 2.11.

Corollary 3.7. If H is an analytic Hilbert module with an &, -invariant kernel, then the Hilbert module

P,H over C[z]®" is non-trivial and is of rank at most x,(1)%.
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We record the non-triviality of the projections ]P’;f as a separate Lemma. The main ingredient of the

proof is borrowed from [19, p. - 166].
Lemma 3.8. For each pFn and 1 <1i < xp(1), ]P’;f #0.

Proof. From Proposition 3.2, we have
PplPy =Py =PpPyp,
and it then follows that PyPyH C PU3. Also for f € H,
Pif = BUR [ = BURYE

and thus Pg?—['; IP’?IP%] H. Consequently,_ Pg is a 'S_urjective map from P%,j H onto IP’g’H. Now PgP%j f=0
implies that Py Py Py f = 0 and hence Py f = (P)?f = 0. This shows that P} is injective on Pj/H. The
operator IP’?, being a finite linear combination of unitaries, is bounded and hence an invertible map (by
the open mapping theorem) from ]P’;,j ‘H onto ]P’g’H. Since each Py, is non-trivial, from Equation (3.2 ), it

follows that each IP’% is non-trivial. ]
Proposition 3.9. For each pt-n,1<i,5 < xp(l) andk=1,...,n, Msk]P’g = Pngk.

Proof. For f € H, from the Equation (3.3 ) we have

(Mskpg )(z) _ Xp(l) Z F%i(U_I)Mskf(O'_l'Z)

n!
UEG'!L

= 2N mie se T 2) (0t 2)

O'EGn

= LN o)) )

ceG,
= (PYM,, f)(2).

This completes the proof. [ |

In particular for each p F n and 4,1 < i < xp(1), the projections ]P’if commute with M, for each

k,1 <k <n and we have the following corollary.

Corollary 3.10. Let H be an analytic Hilbert module with an &, -invariant kernel. Then ]P’if’H s a
joint reducing subspace for M,k =1,...,n, for every partition p of n and for each i, 1 <1i < xp(1).

3.1. Inequivalence. Having obtained the decomposition (3.5 ) and having shown that each PpH and
]P’g’H is a reducing sub-module (Corollary 3.10 and Equation 3.2 ) over the ring of symmetric polynomials
C[z]®" of the Hilbert module H, it is natural to ask whether these sub-modules are inequivalent for
distinct pairs p or (p, i) of a partition p of n and 7, 1 <7 < xp(1). We first prove few results which will
be relevant for this discussion.

Set M. s(kp )= M s |Pp3- Since each PpH is a reducing subspace of M, for each k,1 <k < n. Therefore,
M;, = ®pin (Méf))* and we have

= @Optn Np—y ker (M(p)

sk—sk('w)) :

MNp—q ker M

k= sk (w)
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Proposition 3.11. Let H be an analytic Hilbert module with an &, -invariant kernel.

dim Ny ker (M(p)

Sk Sk('w

) =xp(1)? w e Q) 2.

Proof. From Corollary 3.7 and Lemma 2.11, it follows that dim N}}_, ker (Ms(kp)_sk(w))* < xp(1)%. How-

ever, if it is strictly less for some p - n we have the following contradiction:

= dim Mg ker Mg _ o () = Zdlmﬁk 1ker( Sk Sk(w <pr =
pkn pkn

For the last equality, see [19, Theorem 3.4]. n

From the Proposition given above and the proof of Theorem 2.5, the following generalization to P,H

is evident.

Corollary 3.12. Let H be an analytic Hilbert module with an &y, -invariant kernel. The Hilbert module
P,H over C[z]®" is locally free of rank xp(1)? on s(Q) \ s(2).

Remark 3.13. Since PpyH is assumed to be locally free at w € s(Q) \ s(Z), it follows that E.

{(u,2) € U xPpH | x € N}_, ker (Mikp) w )} and w(w,x) = u defines a rank xp(1)* hermitian anti-
holomorphic vector bundle on some open neighbourhood W of w. The equivalence class of this vector
bundle Eyp, determines the isomorphism class of the module Pp,H and conversely. The vector bundle E

corresponding to the module H is therefore the direct sum @p-pEp.
We now state the main theorem of this subsection.

Theorem 3.14. Let ‘H be an analytic Hilbert module with an S, -invariant kernel. If p and q are two
partitions of n such that xp(1) # xq(1), then

(a) the sub-modules Pﬁ?—[ and ]P’éjH are not unitarily equivalent for any i,7, 1 < i < xp(1) and

1<5< Xq(l)-
(b) the sub-modules PpH and PgH are not unitarily equivalent.

Proof. Set Méf’i) = Msk’P%’H, 1 <k<n,1<i<xp(1l). From Corollary 3.10, it follows that

xp(1) n
ﬂ ker M(p) — sp(w EB ﬂ M(p’ — sp(w))".

k=1
Arguments similar to the ones given in the proof of Lemma 3.8 applied to the sub-modules ]P’if’H show
that N7_, ker ( (p’ ) Sk(’w))* are isomorphic for all 4, 1 <1 < xp(1). Thus from Proposition 3.11, it
follows that dim ﬂZ:1 ker (M§,§”“ - Sk(w))* = Xp(1) for all . From the proof of Theorem 2.5, it follows
that each of the sub-modules P is locally free of rank x;(1) on s(Q2) \ s(Z). The rank being an
invariant for locally free Hilbert modules, the proof of (a) is complete. The proof of (b) follows from
Corollary 3.12. ]

The theorem above leaves open the question of equivalence when xp(1) = x4(1). While we are not
able to settle this question in its entirety, we answer this question in the important example of weighted
Bergman module in the next section for x,(1) = 1 = x4(1), or equivalently, p = (n) and ¢ = (1,...,1)

since one dimensional representations of &,, are the trivial and the sign representations.
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In cases where xp(1) > 1, we believe, the work of [29] and [13], may be useful in answering the
question of mutual equivalence of the sub-modules IP’?’H. We intend to explore this possibility in our
future work.

Let H be a locally free Hilbert module over €2 C C™. Following [29] and [13], we define a holomorphic

section v :  — H to be a spanning holomorphic cross-section for H if

\/{’y(z) 1z €Q}=H.

Building on the work in [29], the existence of a spanning holomorphic cross-section for a large class of
Hilbert modules over an admissible set was proved in [13]. However, in the case of the sub-modules IP’Z’H,
the existence of a spanning holomorphic cross-section is easily established by exhibiting such a section.
Indeed, we give an explicit realization of the spanning holomorphic cross-section for these sub-modules.

Since ]P’ﬁK (-,w) is the reproducing kernel for ]P’;f?-[, it can vanish only on a set F' C ) such that the

real dimension of F' is at most 2n — 2. Also note from Lemma 2.4 and Proposition 3.9 that
MPIPLK (-, w) = s, (w) P K (-, w). (3.6)

Let U be an open neighbourhood of ug in (s(Q2) \ s(£)) N's(Q\ F). The function s admits n! local
inverses on the open set U. Fix one such, say ¢. Define y(u) = IP’gK(-, QS(TL)), u € U*. From Equation

(3.6 ), it follows that v is a spanning holomorphic cross-section for ]P’if?—[ on U*. Let
Ez(,i) = {(u,z) € U* x IP’Z"H | x = cy(u) for some ¢ € C}
denote the corresponding holomorphic hermitian line bundle and
Ay (w) = = > 904 log |y(w) |[2du; A dai,
jk=1

be the curvature of EI(,i ), Now, we restate Theorem 5.2 of [13] using the spanning cross-sections we have

found here.

Theorem 3.15. Let ‘H be an analytic Hilbert module with an &, -invariant kernel. Let p and q be
any two partitions of n. The sub-modules IP’Z’H and IP’Z;’H are equivalent if and only if jifp(l) = %(]),

1<i<xp(1), 1 <5 < xq(1).

3.2. Spectrum and spectral set. Recall Ms(f’i) = Msk’P%H, 1 <i < xp(1). To find the spectrum of

the commuting n-tuple (Ms(f’i), e ,Ms(f’i)), we first establish, following [27, Lemma 1.2], the spectral

inclusion for the direct sum of two commuting n-tuples.

Proposition 3.16. Let S1 and So be two commuting n-tuples of bounded linear operators acting on the
Hilbert spaces Hy and Ha, respectively. Then the Taylor joint spectrum o(S1) and o(S3) are contained
in the Taylor joint spectrum o(S1 @ S5).

Proof. Let v : H1 & {0} — H1 & Ho be the inclusion map, (f,0) — (f,0) and P : Hy & Ho — {0} & Ho
be the projection, (f,g) — (0,g). Apply Lemma 1.2 of [27] to the short exact sequence

0= Hi {0} 5 H1LOHs D {0} @Ho — 0

and the direct sum S & Sy to complete the proof. ]
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Theorem 3.17. If H be a contractive analytic Hilbert module on an &,-invariant domain €2 over

Clz] with an &, -invariant kernel, then the Taylor joint spectrum of the n-tuple (Mg”i), . ,Ms(f’i)) is
clos(s(€)).

Proof. From Proposition 3.16, it follows that o (M (P ), . Méf ! ) € o(M,, ..., M,,). The Taylor func-
tional calculus shows that o (Mj,,..., My, ) = s(o(My,...,M,)) = s(clos(Q)) Thus, from Equation

(3.6 ), we have
s(Q)\ s(F) Cs(Q\F) Co(MPD, ... MPD) C clos(s()).

Since clos(s(Q2) \ s(F)) = clos(s(Q2)) and the spectrum is compact, the proof is complete. N

Following the usual convention, set G,, = s(D"),T';, = clos(G,) and note that I', = s(clos(D")).

Specializing to 2 = D", the following corollary is immediate.

Corollary 3.18. If H be a contractive analytic Hilbert module on D™ over Clz| with an &, -invariant
kernel, then the Taylor joint spectrum of the n-tuple (Ms(f’l), e ,Ms(p’l)) is I'y.

n

The computation of the Taylor joint spectrum has some immediate applications. Commuting n-tuples
of joint weighted shifts are discussed in [16]. It is shown (see [16, Corollary 3]), among other things,
that the spectrum of a joint weighted shift must be Reinhardt (invariant under the action of the torus
,%,...,0)is in I';, while (1,—%,0,...,0) is
not in I',,. This follows from the observation that (u1, ..., g, 0,...,0) is in T';, if and only if (p1, ..., ug)

group). It is easy to see that I';, is not Reinhardt. Indeed, (1

is in I'y. Therefore we have proved the following corollary.
Corollary 3.19. The n-tuple (M(p Z), e ,Méf’i)) is not unitarily equivalent to any joint weighted shift.

Let X C C" be a polynomially convex set. A commuting n-tuple T of operators is said to admit X
as a spectral set if ||[p(T')|| < ||p|loo,x- If Q is a bounded domain in C" such that clos(€2) is polynomially
convex, then since the symmetrization map s is a proper holomorphic map and clos(2) = s~* (s(clos(Q)).
Therefore, s(clos(Q)) is polynomially convex by [26, Theorem 1.6.24]. Since s is a proper map, it is
closed [24, p. 301] and therefore s(clos(Q2)) = clos(s(£2)). In the particular case of X = clos(2) with an

S, -invariant domain €2, the following theorem is immediate, generalizing [4, Theorem 3.12].

Theorem 3.20. If H be a contractive analytic Hilbert module on an S, -invariant domain Q over C|z]
with an &, -invariant kernel, then commuting n-tuple (Ms,, ..., Ms,) acting on the Hilbert space ]P’;',iH

admits CIOS(S(Q)) as a spectral set for every partition p of n, 1 <i < xp(1) and all A > 1.

Remark 3.21. Using the polynomial convexity of clos(s(Q)), it is easy to see that the Taylor joint

(psi) B

spectrum of the commuting n-tuple (]\451 .,Méf’i)) on a contractive analytic Hilbert module H on

an &, -invariant domain Q0 over Clz] with an &y, -invariant kernel is contained in clos(s(Q2)). Here we

emphasize that the Taylor joint spectrum clos( (Q )) of the n-tuple ( 3(1 ), e ,Mgf’i)) is a spectral set.

In the particular case of X =I',,, such a commuting n-tuple T is said to be a [',,-contraction. Since
the restriction of a I',-contraction to a reducing subspace is again a I',-contraction, the proof of the

following theorem is evident from [4, Proposition 2.13 and Corollary 3.11].
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Theorem 3.22. If H be a contractive analytic Hilbert module on D™ over C[z] with an &, -invariant
kernel, then the commuting n-tuple (Ms,, ..., Ms, ) acting on the Hilbert space IP’?’H 1s a I'y-contraction

for every partition p of n, 1 <1i < xp(1) and all X > 1.

Consider the diagonal kernel K(z,w) = EIEZi arz!w! on D" where a;, = a; > 0, for I € 7y
and 0 € G,,. As mentioned in Example 3.4, these kernels are &,,-invariant kernel. If M; denotes the
multiplication operator by the co-ordinate function z; and M; is a contraction for ¢ = 1,...,n, then it
follows from [15] that the corresponding Hilbert module is a contractive analytic Hilbert module on D™.

This leads to a large class of examples where the results of this section applies.

4. WEIGHTED BERGMAN MODULES A (D7)

Recall that the weighted Bergman module AW (D™), consisting of holomorphic functions on D", is
determined by the reproducing kernel K® : D" x D" — C given by the formula

n
KWN(z,w) = H(l — zjw;) N, z,w € D"
j=1

For A > 1, this coincides with the usual notion of the weighted Bergman spaces A (D") defined
as the Hilbert space of square integrable holomorphic functions on D™ with respect to the measure
dv ) = (%)n(nyzl(l - r?)’\_zridridei>. The limiting case of A = 1 is the Hardy space H?(D").
Throughout the rest of this paper, we will assume that A > 0. In this section, we show that the two sub-
modules P, (A(’\)(]D)”)) and Py 1y (A(A) (D™)) are inequivalent over C[z]%". Along the way, we realize
each of these submodules as analytic Hilbert module on G, and consequently, they become locally free
on all of G,. As a by product, we obtain an explicit formula in Theorem 4.10, for the weighted Bergman
kernel of the symmetrized polydisc G,, in the co-ordinates of G,,.

We begin by setting up some notation which will be useful in the discussion to follow. The length
{(p) of a partition p of n is the number of positive summands of p. For a positive integer n, we define

the following two subsets of Z% := {(m1,...,my,) € Z" : my,...,m, > 0}:
n] ={m € Z} :m; > m; for i < j} and [n] = {m € Z : m; > m; for i < j}.
If p € [n], then we can write p =m + &, where m € [n] and d = (n — 1,n —2,...,1,0). So,
[n] ={m+6é:m e [n]}.

Recall from equation (3.4 ) that for a partition p of n, the linear map P, : AM(D") — AN(D") by

Ppf = Xp—('l) Z Xp(o)foo™, (4.1)

n!
0'6671
where Y, is the character of the representation corresponding to the partition p of n. Choosing the

partition p of n to be (n) := (n,0,...,0) in Equation (4.1 ), it is easy to see that

Py (AMD™) = {f € AVD") : foo ! = [ for 0 € &,},
that is, P, (AM(D™)) consists of symmetric functions in AM(D"). Thus Aé??n(]m") =P, (AN (D")).
In view of [4, Equation (3.1)], the following proposition is a particular case of [4, Proposition 3.6] for

p=(n).
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Proposition 4.1. The reproducing kernel KS(}’,\%l of Ag?r)n(]l)") is given explicitly by the formula:
Ks(ﬁrll(z,w) = %per((((l — ijk)_)\))?,kzl)’ z,we D",

where per(((aij))zj:1> =Y e, [im1 o(k)-

The Hilbert space Ag?r)n(]])") can be thought of as a space of functions defined on the symmetrized

polydisc G,, as follows. Recall that s is the symmetrization map and note that

AD) ") = {f e AMD") : f = gos for some g : G,, — C holomorphic }.

sym

Let
HN(G,) :={g : G, — C is holomorphic : gos e AN (D™}

The inner product on M (G,,) is given by (f, f2)un G, = (f10s, fa0 $) a0 (pny- Now, the following

corollary is immediate from Proposition 4.1.

Corollary 4.2. The reproducing kernel KG of HA ( n) 18 given explicitly by the formula:

K (s(2), 5(w)) = %per((((l - ijk)_)\))zk:1>, z,we D"
Choosing the partition p of n to be (1) := (1,...,1) € [n], we see that
P(ln)(A(“) D") ={fe AWDY) : foo ' =sgn(o)f for o € &,}.
Since P(qn) (A(“) (]D)")) consists of anti-symmetric functions, therefore

AW

(D) = Pny (AW (D).
Appealing to [4, Proposition 3.8] for p = (n) and p = (1™), we have a particular case of [4, Proposition

3.8], which we record below for future reference.

Lemma 4.3. The Hilbert spaces Aé%(ﬂ)") and AW (D") are Hilbert modules over C[z]®", under its

anti

natural action for A\, u > 0 and n > 2.

The theorem below provides an affirmative answer to the question we raised in the beginning of this

section.

Theorem 4.4. The Hilbert modules Ag?r)n(]l)") and AN

2(D") over C[z]%" are not equivalent for any
A>0 andn > 2.

We recall that C[z]®" = C[sy, ..., s,]. In view of this fact #M(G,,) is a Hilbert module over C[z]®"
under the natural action of C[z]%" Cons1der the map from HM(G,,) to Ag?m(D”) defined by f — fos
and note that it is a unitary map which intertwines the n-tuple (Ms,, Ms,, ..., M, ) of multiplication

operators by the coordinate functions si, .. ., s, and the tuple (M, (»), My, (2 - - -, My, (2)), Wwhere s;(2) is
the i-th elementary symmetric function in z1,..., 2z, for ¢ = 1,...,n. Therefore, there is a unitary module
map between the Hilbert modules HM(G,,) and Aé?,?n(]D)”) over C[z]%". We record this observation in

the form of a lemma.
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Lemma 4.5. For X\ > 0, the Hilbert modules HM(G,,) and Ag?r)n(]l)") are equivalent as modules over
Clz]®n.

Now we describe the weighted Bergman space on the symmetrized polydisc G, as a module over
C[z]®". For u > 1, let dV " be the probability measure ("T—l)n<]—[?:1(1 - r?)“_27‘idrid0i) on the

polydisc D". Let st(” ) be the measure on the symmetrized polydisc G,, obtained by the change of
variables formula [3, p. 106]:
1
s = [ (Fooafav, s (42)
Gn, n. Jpn

where Jg(z) = A(z) is the complex jacobian of the symmetrization map s. The weighted Bergman
space A(“)(Gn), @ > 1, on the symmetrized polydisc G, is the subspace of L?(G,, st(” )) consisting of
holomorphic functions. For p > 1, consider the map I' : AW(G,,) — A" (D") defined by

%Js(f os), feAW(G,). (4.3)

It follows from Equation (4.2 ) that I' is an isometry onto AW (D™) [21, p. 2363]. One can easily check

anti
2 _ _ L.y,
that Hzm”A(u)(Dn) - Hzinl 2y HA(H)(]D)”) - m

am(2) = apys(z) = det (((zzmj ))Zj:1>, where p € [n] and m = p + 8. The norm of a,, in AW (D) is

Tf=

For a partition m = (my,...,my,) € [n], put

easily calculated using orthogonality of distinct monomials in A (D") :
n

Mg My nlm!
Ham”‘i(”(m’” H Z sen(o H v AW DR Z HH “k (k)HA(“)(D" ) (W

ceG, k=1 €6, k=1

where m! = H;L:1 m;! and ()m = Hj_l(,u) .. Here (p1)m; is the Pochhammer symbol (1), = pu(p +

J

1)...(u+mj —1). Putting ¢y, = Wdm 5t follows from [21, p. 2364] that

n'm!?
{em = cmam : m € [n]}

is an orthonormal basis of Ag;)u (D™).
The determinant function ap,,s is a polynomial and is divisible by each of the differences z; — z;,1 <

1 < j <n and hence by the product
[T Gi—z)=det (7)) = as(z) = Al).
1<i<j<n

For p € [n], the quotient S, := 22 is therefore well-defined and is called the Schur polynomial [14,

as

(Wp+s
RICEEIE

p. 454]. For p € [n] and m = p + 9, recall that ¢, = cpi5 = now it follows from Equation

(4.3 ) that

F( ((leﬂg; ) (\/—cp+55 > = Cpt5lpts = Cmlm, M € [n].

Since the map I' : AW(G,,) — AW

anti

(D™) defined by Equation (4.3 ) is a unitary [21, p. 2363], the set

(N)p+5
(p+ )’

{7pSp : P € [n]}, where v, =



20 BISWAS, GHOSH, MISRA, AND SHYAM ROY

is an orthonormal basis for A(“)(Gn). Hence we have the following proposition,
Proposition 4.6. The reproducing kernel B for AW(G,,) is given by

B (s(z = 3 125p(2)Sp(w), z,we D", 1> 1. (4.4)
pE[n]

From [21, p. 2363], it follows that Agnll(]D)") and the weighted Bergman module A (G,,) are unitarily
equivalent as modules over C[z]®" for 1 > 1. The limiting case u = 1, is discussed in [21, p. 2367].
It is not difficult to show that the function B&? : G, x G, — C, defined by the Equation (4.4 ), is
positive definite for © > 0. For 0 < p < 1, let A® (G;,) be the Hilbert space of holomorphic functions
having B(“ ) as its reproducing kernel. If we assume that the set {Sp}pe[n) is orthogonal in AM(G,) and
1SplI? = (p :5) then it is easy to verify that the injective linear map I' : AW (G,,) — AW (D") defined

in Equatlon (4.3 ) is an isometry. By similar arguments as in the case p > 1, we reach the desired

conclusion for 0 < p < 1 as well. This observation is recorded in the following Lemma.

Lemma 4.7. For p > 0, the Hilbert modules AW (G,,) and Agn)tl(]D)”) are equivalent, as modules over
Clz]®n.

In view of Lemma 4.5 and Lemma 4.7, proving Theorem 4.4 amounts to proving the following theorem.

Theorem 4.8. The Hilbert modules AM(G,,) and HN(G,,) over C[z]®" are not equivalent for any
A>0 andn > 2.

To prove this theorem, we recall the notion of a normalized kernel from [10]. Let 2 C C" be domain.
A kernel function K : Q x Q — C is said to be normalized at wy € Q if K(z,wy) =1 for z € g, where
Qo C €, is a neighborhood of wy. We note that S, is a homogeneous symmetric polynomial of degree
|p| :=>"1" pi, so So = 1 and Sp(0) = 0 for p # 0, where 0 € [n] with all components equal to 0. From
Equation (4.4 ) and the discussion following Proposition 4.6, we see that Bg’g (s(2),0) =13 = (“)5 for

z € DD"™ and p > 0. We record the following obvious corollary of Proposition 4.6 for future reference.

Corollary 4.9. The normalized reproducing kernel B for Aln (Gn) is given by

~ 5]
Bé;f;’ (s(2), s(w)) = Z Y559 (2)Sp(w), z,w € D", 1> 0. (4.5)
pE [n]

(w)

It is of independent interest to express the reproducing kernel B’ in terms of coordinates of Gy,
that is, in terms of elementary symmetric polynomials. In order to do that, we need to introduce some
terminologies. To a partition p = (p1,...,p,) € [n] is associated a Young diagram [14, Section 4.1] with
pi boxes in the i-th row, the rows of boxes lined up on the left. The conjugate partition p' = (p},...,p.)
to the partition p is defined by interchanging rows and columns in the Young diagram, that is, reflecting
the diagram in the 45° line. For example, the conjugate partition to the partition (3,3,2,1,1) is (5, 3,2).
For the conjugate partition p’ = (p,...,p)) to p, let us require that p,. > 0 and call r the length of
p’. Let us agree to call s, the k-th elementary symmetric polynomial in n variables for & = 0,1,...,

with the convention that s, = 0 if £ > n. We are now ready to state the second of Giambelli’s formulas
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expressing the Schur polynomials as functions of elementary symmetric polynomials. Here is Giambelli’s
second formula [14, p. 455]:

Sp = det (((syy-1)ijmr ), P € 0], (4.6)
where p’ = (p,...,p)) is the conjugate partition to p.
Combining Corollary 4.9 with the Equation (4.6 ), we obtain the following theorem.

Theorem 4.10. The normalized reproducing kernel B f0r AW (Gy,) is given by

B(u) Z V5 det ( ;+j—i));,j=1>det («tl’éﬂ—i»;j:l)’

for s = (s1,...,8,),t = (tl,...,tn) € Gp,pp > 0 and p' = (py,...,pL) is the conjugate partition to
p € [n].

The following lemma will be useful in proving Theorem 4.8.

Lemma 4.11. Let ﬁ&? be the normalized reproducing kernel for AW (Gy). Then
(i) the coefficient of s1(z)s1(w) in ﬁgﬁ (s(2), s(w)) is “+Z_1,
(ii) the coefficient of s1(z)%si(w)? in ﬁ&? (s(2), s(w)) is (ptn=D)(ptn)

n(n+1)
Proof. Since the Schur polynomial Sp, is a homogeneous symmetric polynomial of degree |p| := > pi,
therefore, it is a polynomial in the elementary symmetric polynomials s;(z) for ¢ = 1,...,n. For a

fixed k,q € Z4, the term sp(z)%si(w)? in ﬁgﬁ (s(2), s(w)) comes only from the terms which involve
Sp(z)Sp(w) in the series for ﬁ&? (s(z), s(w)) in Equation (4.5 ), where p = (p1,...,pn) € [n] such that
2im1pi = ka.
To get the coefficient of s;(z)s;(w) in B )( (z), s(w)), take p = (1,0,...,0). From Equation (4.5 ),
the coefficient of s1(2)s1(w) in B(”)( (z),s(w)) is
6! o, 0 (Wpis _ptn—1
(s ™® (s (p+9) n
where p = (1,0,...,0). This proves (i).

9

Similarly, to obtain the coefficient of s;(2)?s;(w)? in ﬁgi (s(2), s(w)), we need to consider terms
corresponding to p = (2,0,...,0) and p = (1,1,0,...,0). From the Giambelli’s formula (4.6 ), we get
S2,0,..,00)(2) = (51° = 52)(2) and S(11,...0,0)(2) = s2(2).

Since s% appears only in Sy, . o), from Equation (4.5 ), it follows that the coefficient of s1(z)?s1(w)?
in ]:3;&3 (s(z), s(w)) is

8 o 8 (Wpss _ (utn-D(utn)

(n)s (p+9)! n(n +1)

where p = (2,0,...,0). This proves (ii). ]

9

Consider the restriction of the action of &,, to Z. Let &, m denote the orbit of m € Z%}. If m € [n]
has k(< n) distinct components, that is, there are k distinct non-negative integers my > ... > my such
that

M= (Mmq,..., M1, M2y ..., Moy, My ..., M),
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where each m; is repeated «; times, for i = 1,... k, then & = (a1, ..., ) is said to be the multiplicity
of m € [n]. For any m € Z! the components of m can be arranged in the decreasing order to obtain,
say, m € [n]. We say that m € Z7 is of multiplicity o = (a1, ..., qy) if m has multiplicity a. In
particular, the elements of [n] are of multiplicity (1"), that is, 1 occurs n-times.

We recall that the number of distinct n-letter words with k distinct letters is Z—', = #'ak" where
the k distinct letters ay, ..., ay are repeated aq,...,qy times, respectively (a; + ...+ ap = n). In other
where | X| denotes the cardinality of a set X. Let

7" /&, denote the set of all orbits of Z"} under the action of &,,. We record the following as a lemma

.
words, for a fixed m € Z}, we have |G, m| = 73,

for later use.

Lemma 4.12. The set Z'} /&, is in one-one correspondence with the set [n].

Proof. First, we prove that each &,, orbit of Z"! has exactly one n-tuple in decreasing order. To see
this, observe that each orbit contains an n-tuple in decreasing order, and hence enough to prove it is
unique. Suppose there are two n-tuples in decreasing order, say m,m’, in the same orbit. Since a
permutation only changes the position of a component, it follows that all n-tuples in an orbit have the
same multiplicity. Therefore the multiplicity of m and m/ is the same and hence m = m/. Note that

each element in [n] is in some orbit and hence the proof is complete. [

Consider the monomial symmetric polynomials [14, p. 454]
My (2z) = Z 2P,
B

where the sum is over all distinct permutations 8 = (84, Ba, ..., Bn) of m € [n] and 2P = zlﬁl z§2...zﬁn.
This definition of M, makes sense for m € Z'l as well and we use it in the sequel. Observe that &, m
is the set of all distinct permutations of m, so,
Mm(z) = Y 2P =My (2) for m,m’ € &,m. (4.7)
BeES,Mm
The following lemma that gives us an expression for the reproducing kernel K&) for HW (Gy,) will play

a significant role in the sequel.

Lemma 4.13. The reproducing kernel K&) for HW) (Gy,) is given by the formula:

1 al(N)m — N
K(é‘,);) (8(2), s(w)) = ] Z 'En') My (2) My, (w), z,w € D",
" me(n) ’

where m is of multiplicity .

Proof. If m € [n] is of multiplicity c, then M,y (2) is the sum of |&,m| = 2 distinct monomials. We

then observe that

per((=" )5 ) = D [T = Y TIa 0 = > =, (4.8)

ceG, i=1 ceB, i=1 oceB,

n!

is the sum of n! monomials, from which exactly |&,m| = %‘, are distinct (since there can be only 25

distinct permutations of a m € [n] with multiplicity ). So, each distinct term must be repeated !

times. Thus, from equation (4.7 ) we conclude that
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per<((zimj ))ijl) = a!M,, (z), for any m’ € &,m. (4.9)
Since Z" is the disjoint union of its &,,-orbits, from Lemma 4.12 we have

Therefore, from Corollary 4.2, we have

KE (ot sw) = Jper(((1 = 20 7)]c)

1 Nm T m; 1T —m;
= 2 2 (n)f =" 115

me(n] m/'eS,m

where the last equality follows from Equation (4.7 ). [

Remark 4.14. One could also write the reproducing kernel in terms of permanent using the equations
(4.9 ) and (4.10 ) and the equality |&,m| = 2, as follows:

KO (ssw) = o 5 5 (2D Sper () agper(@)2-)

m'l ol
men] m'eG&,m

3 e (e Joer ()2 ).

nl)? m)!
( ) meZi

or z,w € D",
for z,

We note that the kernels B&) and K(g: are defined on all of G,,. Hence the Hilbert modules
P (A()‘) (]D)”)) and Py (A(’\) (]D")) are locally free on all of G,, strengthening our earlier assertion
(Corollary 3.12) that they are locally free only on G,,\ s(Z). Thus we have proved the following corollary.
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Corollary 4.15. The Hilbert modules P, (A()‘) (]D)”)) and ]P’(lv___,l)(A(A) (]D")) are locally free of rank 1

on Gy,.
Like Lemma 4.11, the following lemma will be useful in proving Theorem 4.8.

Lemma 4.16. Let K(gg be the normalized reproducing kernel for H(A)(Gn). Then
(i) the coefficient of s1(z)s1(w) in Kg;) (s(2),s(w)) is A

n’

(ii) the coefficient of s1(z)?si(w)? in K&L) (s(z), s(w)) is )‘(;:1).

Proof. Since the monomial symmetric polynomial M, is a homogeneous symmetric polynomial of degree

|m| := Y, m,;, therefore, it is a polynomial in the elementary symmetric polynomials s;(z) for i =
1,...,n. For a fixed k,q € Z,, the term si(z)?sx(w)? in K&) (s(2), s(w)) comes only from the terms
involving M, (z)M, (w) in the series for K(g: (s(2), s(w)) in Lemma 4.13, where m = (my,...,my) €

[n] such that Y " | m; = kq.

To obtain the coefficient of s1(2)s;(w) in Kg:j (s(z),s(w)), we only need to consider the term
M, (2)M,, (w), for m = (1,0,...,0). Note that M,,(z) = si(z). Since m = (1,0,...,0) has multi-
plicity a = (1, (n — 1)), it follows that the coefficient of s1(2z)s;(w) in Kg:j (s(2), s(w)) is

1 adWm (= DI A

n! m! 1n!
This proves (i).

Analogously, to find the coefficient of s;(z)2s; (w)?2 in K(gg (s(2), s(w)), we need to consider terms cor-
responding to m = (2,0, ...,0) and m = (1, 1,0, ...,0). Note that My, (z) = s2(2z) for m = (1,1,0,...,0),
so the coefficient of the term M, (2)M,,(w) for m = (1,1,0,...,0), will not contribute here. Now
M, (2) = 51(2)% — 2s2(2) for m = (2,0,...,0). Since m = (2,0,...,0) has multiplicity a = (1,n — 1),
it follows that the coefficient of s1(z)%s;(w)2 in Kg:j (s(z), s(w)) is

1 alMNm  (a=DIN):  AA+1D)

n! m! 2In! N 2n

This proves (ii). ]

Proof of Theorem 4.8. If possible, let these two modules be unitarily equivalent. Recall that the repro-
ducing kernels ]~3(g2 and K(g:? have the property that

]NBg‘z (s(2),0) = K&) (s(2),0) =1 for s(z) € Gy,

that is, these are the normalized reproducing kernels at 0 of the respective Hilbert spaces. Since by
construction, the polynomial ring Cl[sq,...,s,] = C[z]®" in n variables is dense in both M (G,,) and
AW(G,,), it follows (cf. [11, Remark, p. 285]) that the dimension of the joint kernel is 1 on G,.
Therefore, by [10, Lemma 4.8(c)], we infer that

B&?(S(Z)v s(w)) = K(g:? (s(z),s(w)) for s(z),s(w) € Gy,.

Equating the coefficients of s1(z)s1(z) from Lemma 4.11 we see that A = A +n — 1. Thus we must
have n = 1 completing the proof of the Theorem. n
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Corollary 4.17. In the decomposition of the Hilbert module AW (D) :
AN(D?) = P(s) (AN (D) @ Po.1) (AN (D?) @ Py 1,1 (AN (D)),
all the sub-modules on the right hand side of the equality are inequivalent.

Proof. We have just proved that P(3) (A(’\) (]Dg)) cannot be equivalent to P(l,l,l)(A(A) (D3)), in general.
Since the rank of the sub-module P ) (A()‘) (D?)) is x(2,1)(1)* = 4, [14, Example 2.6], it cannot be

equivalent to either of these. m

Remark 4.18. The proof of Theorem 4.4 shows that we have proved a little more than what is claimed

in the Theorem, namely: The Hilbert modules Ag?r)n(]l)") and Ag’rﬂi(ﬂ)”) over C[z]®" are not equivalent

for any \,u > 0 and n > 2. To prove this more general claim, we merely note, as before, that equating

251(2)2 from Lemma 4.11 and Lemma 4.16, we obtain

B AA+1)  (p+n—1)(p+n)
A=p+n—1 and o nln+1) .

the coefficients of s1(z)s1(z) and s1(2)

Combining these equations, we have that n = 1, which proves our claim. Indeed, the two modules
P% (AM(D")) and P (AW(D™)) are not equivalent either for any 1 <i < xp(1) and 1 < j < x4(1) for
which xp(1) # xq(1).

APPENDIX A. THE BI-HOLOMORPHIC AUTOMORPHISM GROUP OF D"
AND THE WEIGETED BERGMAN MODULES

The bi-holomorphic automorphism group Aut(D") is the semi-direct product Aut(D)" x &,,, where
Aut(D) is the bi-holomorphic automorphism group of D. For & € Aut(D"), define U : Aut(D") —
ﬁ(Ao‘) (D™)) by the formula:

A/2

U@ "Yh = (det(D®))" hod, he AMD).

Since the map (®, z) — (det(D(I))))‘/2(z) from Aut(D") x D™ to C is a (projective) cocycle, it follows
that the map U defines a (projective) unitary representation. The Hilbert space AN (D") is also a

module over the polynomial ring C[z], namely,
my(h) =p-h, p € Clz], he AV(D"),

where p - h is the point-wise multiplication. Setting (® - f)(z) = f(®!(2)), we have the relationship
Mg, = U(®)" m, U(P®), & € Aut(D"),p € C[z], which is analogous to the imprimitivity introduced
by Mackey (cf. [28, Chapter 6]). The imprimitivities of Mackey have been studied extensively and
are related to induced representations, representations of the semi-direct product and homogeneous
vector bundles, see Theorems 6.12, 6.20 and 6.24 in [28], respectively. However, the situation we
have described is different in that the module action is defined over the ring of analytic polynomials
rather than the algebra of continuous functions. This, we believe, merits a detailed investigation and
the outcome, see [18], [22], so far is very encouraging. Also, the restriction of the representation U
to the subgroup A := {(¢,...,¢) : ¢ € Aut(D)} of Aut(D") has a decomposition into irreducible
components known as the Clebsch-Gordan decomposition. On the other hand, the symmetric group acts
on AM(D") via the unitary map R,—1 : h — hoo, 0 € &,,. The Hilbert space AX)(D") is also a module
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over the ring of the symmetric polynomials C[z]®", where the module map is given by the formula:
m,(h) = p-h, p € C[z]®". In this paper, we have studied the imprimitivity (A(’\) (]D"),mp,Ro) and

an orthogonal decomposition into sub-modules like in the more familiar Clebsch-Gordan decomposition

mentioned above. The question of finding a decomposition where each component is minimal and any

two of them are inequivalent remains open in general.
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