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Abstract. We study submodules of analytic Hilbert modules defined over certain algebraic
varieties in bounded symmetric domains, the so-called Jordan-Kepler varieties V` of arbitrary
rank `. For ` > 1 the singular set of V` is not a complete intersection. Hence the usual monoidal
transformations do not suffice for the resolution of the singularities. Instead, we describe a new
higher rank version of the blow-up process, defined in terms of Jordan algebraic determinants,
and apply this resolution to obtain the rigidity of the submodules vanishing on the singular
set.

0. Introduction

R. G. Douglas introduced the notion of Hilbert module M over a function algebra A and
reformulated several questions of multi-variable operator theory in the language of Hilbert
modules. Having done this, it is possible to use techniques from commutative algebra and
algebraic geometry to answer some of these questions. One of the very interesting examples is
the proof of the Rigidity Theorem for Hilbert modules [19, Section 3], which we discuss below.

A Hilbert module is a complex separable Hilbert space M equipped with a multiplication

m : A → B(M), mp(f) = p · f, f ∈M, p ∈ A,

which is a continuous algebra homomorphism. Here B(M) denotes the algebra of all bounded
linear operators on M. The continuity of the module multiplication means

‖mpf‖ ≤ C ‖f‖, f ∈M, p ∈ A

for some C > 0. Familiar examples are the Hardy and Bergman spaces defined on bounded
domains in Cd. Sometimes, it is convenient to consider the module multiplication over the
polynomial ring C[z] in d variables rather than a function algebra. In this case, we require that

‖mpf‖ ≤ Cp ‖f‖, f ∈M, p ∈ A

for some Cp > 0. We make this “weak” continuity assumption through out the paper.

In what follows, we will consider a natural class of Hilbert modules consisting of holomorphic
functions, taking values in Cn, defined on a bounded domain Ω ⊆ Cd. Thus (i) we assume
M⊆ Hol(Ω,Cn). A second assumption (ii) is to require that the evaluation functional

evz :M→ Cn, evz(f) := f(z),

is continuous and surjective, see [2, Definition 2.5]. Set

K(z, w) := evzev∗w : Ω× Ω→ Cn×n.
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The function K, which is holomorphic in the first variable and anti-holomorphic in the second
variable is called the reproducing kernel of the Hilbert module M. A further assumption
(iii) is that C[z] ⊆ M is dense in M. A Hilbert module with these properties is said to be
an analytic Hilbert module. In this paper, we study a class of Hilbert modules which are
submodules of analytic Hilbert modules.

From the closed graph theorem, it follows that mpf ∈M for any f ∈M and p ∈ C[z]. Also,
the density of the polynomials implies that the eigenspace ker (mp − p(w))∗ is spanned by the
vectors

Kw(·)ζ := K(·, w)ζ

for ζ ∈ Cn, i.e.,

ker (mp − p(w))∗ = Ran Kw,
see [15, Remark, p. 285]. Since the metric K(w,w) is invertible by our assumption, it follows
that the dimension of the kernel {Kw(·)ζ : ζ ∈ Cn} is exactly n for all w ∈ Ω. Clearly, the
map w 7→ Kw(·)ζ, ζ ∈ Cn is a holomorphic map on Ω∗ := {w ∈ Cd : w ∈ Ω}. It serves as a
holomorphic section of the trivial vector bundle

E := {(w, v) : w ∈ Ω∗, v ∈ ker (mp − p(w))∗} ⊆ Ω∗ ×M

with fibre

Ew = ker (mp − p(w))∗ = Ran Kw, w ∈ Ω∗.

A refinement of the argument given in [2] (which, in turn, is an adaptation of ideas from
[12]), then shows that the isomorphism class of the moduleM and the equivalence class of the
holomorphic Hermitian bundle E determine each other. The case d = 1, originally considered
in [12], corresponds to Hilbert modules over the polynomial ring in one variable. The proof in
[12], in this particular case, has a slightly different set of hypotheses. In the paper [12], among
other things, a complete set of invariants for the equivalence class of E is given. If n = 1, as is
well known, this is just the curvature of the holomorphic line bundle E .

There is a natural notion of module isomorphism, namely, the existence of a unitary linear

map U :M→ M̃, which intertwines the module multiplications mp and m̃p, that is,

Ump = m̃pU.

Clearly, a Hilbert module M over the polynomial ring C[z] is determined by the commuting
tuple of multiplication by the coordinate functions on M and vice-versa. Thus the notion of
module isomorphism corresponds to the usual notion of unitary equivalence of two such d-tuples
of multiplication operators by a fixed unitary. If Γ :M1 →M2 is a module map, then it maps
the eigenspace of M1 at w into that of M2 at w. Thus Γ(K1(·, w)ζ) ⊆ {K2(z, w)ξ : ξ ∈ Cn},
where Ki are the reproducing kernels of the Hilbert modules Mi, i= 1, 2, respectively. Hence
we obtain a holomorphic map ΦΓ : Ω→ Cn×n with the property

ΓK1(z, w) = ΦΓ(w)∗K2(z, w)

for any fixed but arbitrary w. Thus any module map between two analytic Hilbert modules
is induced by a holomorphic matrix-valued function Φ : Ω → Cn×n, see [14, Theorem 3.7].
Moreover, if the module map is invertible, then ΦΓ(z) must be invertible. Finally, if the module
map is assumed to be unitary, then

K1(z, w) = ΦΓ(z) K2(z, w) Φ∗Γ(w)

for all z, w ∈ Ω.

Let us describe an instance of the Sz.-Nagy – Foias theory in the language of Hilbert modules
following [17]. Let T be a contraction on some Hilbert space M. The module multiplication
determined by this operator is the map mp(f) = p(T )f , p ∈ C[z], f ∈ M. From the contrac-
tivity of T , it follows that ‖mp‖ ≤ ‖f‖ and in this case, the Hilbert module M is said to be
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contractive. Now, assume that T ∗n → 0 as n → ∞. Then Sz.-Nagy – Foias show that there
exists an isometry R and a co-isometry R′ such that, for the unit disk D, the sequence

0 // H2
E(D)

R // H2
E ′(D)

R′ //M // 0 ,

where E and E ′ are a pair of (not necessarily finite dimensional) Hilbert spaces, is exact. The
map R is essentially the characteristic function of the contraction T and serves to identify
the contractive module M as a quotient module of H2

E ′(D) by the image of H2
E(D) under the

isometric map R.

For any planar domain Ω, a model theory for completely contractive Hilbert modules over
the function algebra Rat(Ω), consisting of rational functions with poles off the closure Ω, has
been developed by Abrahamse and Douglas in the paper [1]. However, the situation is much
more complicated for Hilbert modules over the polynomial ring in d variables, d > 1.

0.1. The normalized kernel. We begin by recalling some notions from complex geometry.
Let L be a holomorphic Hermitian line bundle over a complex manifold Ω. The Hermitian
metric of L is given by some smooth choice of an inner product ‖ · ‖2w on the fibre Lw. There is
a canonical (Chern) connection on L which is compatible with both the Hermitian metric and
the complex structure of L. The curvature κ of the line bundle L on any fixed but arbitrary
coordinate chart, with respect to the canonical connection, is given by the formula

κ(w) := −∂∂ log ‖γ(w)‖2 = −
∑
i,j

∂i∂j log ‖γ(w)‖2dwi ∧ dwj ,

where γ is any non-vanishing holomorphic section of L. Since any two such sections differ by
multiplication by a non-vanishing holomorphic function, it is clear that the definition of the
curvature is independent of the choice of the holomorphic section γ. Indeed, it is well known
that two such line bundles are locally equivalent if and only if their curvatures are equal. For
holomorphic Hermitian vector bundles (rank > 1) the local equivalence involves not only the
curvature but also its covariant derivatives, see [12].

In general, Lemma 2.3 of [31] singles out a frame γ(0) such that the metric has the form:

‖γ(0)(w)‖2 = I +O(|w|2)

and it follows that

κ(0) =
∑
i,j

(
∂i∂j‖γ(0)(w)‖2

)
|w=0

dwi ∧ dwj .

In a slightly different language, a normalized kernel K(0) at w0 is defined in [14, Remark

4.7(b)] by requiring that K(0)(z, w0) ≡ I. Setting γ(0)(w) = K(0)
w , we see that the normalized

kernel K(0) has no linear terms. Fix w0 ∈ Ω. There is a neighborhood, say Ω0, of w0 on which
K(z, w0) doesn’t vanish (for n = 1) or is an invertible n× n-matrix (for n > 1). Set

Φ
(0)
Γ (z) = K(w0, w0)1/2 K(z, w0)−1, z ∈ Ω0.

Then

K(0)(z, w) := Φ
(0)
Γ (z) K(z, w) Φ

(0)
Γ (w)∗

is a normalized kernel on Ω0. Thus starting with an analytic Hilbert module M possessing
a reproducing kernel K, there is a Hilbert module M(0) possessing a normalized reproducing
kernel K(0), isomorphic to M. Now, it is evident that two Hilbert modules are isomorphic if
and only if there is a unitary U such that

K(0)
1 (z, w) = U K(0)

2 (z, w) U∗.
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In other words, the normalized kernel is uniquely determined up to a fixed unitary. In particular,
if n = 1, then the two Hilbert modules are isomorphic if and only if the normalized kernels are
equal. We gather all this information in the following proposition.

Proposition 0.1. The following conditions on any pair of (scalar) analytic Hilbert modules
over the polynomial ring are equivalent.

(1) Two analytic Hilbert modules M1 and M2 are isomorphic.
(2) The holomorphic line bundles L1 and L2 determined by the eigenspaces of the analytic

Hilbert modules M1 and M2, respectively, are locally equivalent as Hermitian holomor-
phic bundles.

(3) The curvature of the two line bundles Li, i = 1, 2, are equal.

(4) The normalized kernels K(0)
i , i = 1, 2, at any fixed but arbitrary point w0 are equal.

1. Invariants for submodules

In the paper [13], Cowen and Douglas pointed out that all submodules of the Hardy module
H2(D) are isomorphic. They used this observation to give a new proof of Beurling’s theorem
describing all invariant subspaces of H2(D). Although all submodules of the Hardy module
H2(D) are isomorphic, the quotient modules are not. Surprisingly enough, this phenomenon
distinguishes the multi-variable situation from the one variable case. Consider for instance the
submodule H2

(0,0)(D
2) of all functions vanishing at (0, 0) in the Hardy space H2(D2) over the

bidisk D2. Then the module tensor product of H2
(0,0)(D

2) over the polynomial ring C[z] in two

variables with the one dimensional module Cw, (p, w) 7→ p(w), is easily seen to be

H2
(0,0)(D

2)⊗C[z] Cw =

{
C⊕C if w = (0, 0)

C if w 6= (0, 0)
(1.1)

while H2(D2)⊗C[z] Cw = C. It follows that the submodule H2
(0,0)(D

2) is not isomorphic to the

module H2(D2), in stark contrast to the case of one variable.

The existence of non-isomorphic submodules of the Hardy module H2(D2) indicates that
inner functions alone may not suffice to characterize submodules in this case. It is therefore
important to determine when two submodules of the Hardy module, and also more general
analytic Hilbert modules, are isomorphic. This question was considered in [10] for the closure
of some ideals I ⊆ C[z] in the Hardy module H2(D2) with the common zero set {(0, 0)}. It
was extended to a much larger class of ideals in the paper [3]. A systematic study in a general
setting culminated in the paper [19] describing a rigidity phenomenon for submodules of
analytic Hilbert modules in more than one variable. A different proof of the Rigidity Theorem
using the sheaf model was given in [9]. A slightly different approach to obtaining invariants by
resolving the singularity at (0, 0) was initiated in [16], and considerably expanded in [9]. We
describe this approach briefly.

A systematic study of Hilbert submodules of analytic Hilbert modules was initiated in the

papers [8, 9]. If I is an ideal in C[z], consider the submodule M̃ = [I] in an analytic Hilbert
module M⊆ Hol(Ω,C) obtained by taking the closure of I. Let

ΩI := {z ∈ Ω : f(z) = 0 ∀ f ∈ I}
denote the algebraic subvariety of Ω determined by I. For the reproducing kernel K(z, w) of

M, the vectors Kw ∈ M will in general not belong to the submodule M̃. However, one has

a truncated kernel K̃(z, w) = K̃w(z) such that K̃w ∈ M̃ for all w ∈ Ω, which induces a

holomorphic Hermitian line bundle L̃ defined on Ω \ ΩI , with fibre

L̃w = Ran K̃w, w ∈ Ω \ ΩI ,
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and positive definite metric K̃(w,w). This line bundle L̃ does not necessarily extend to all of

Ω. In fact, on the singular set ΩI the eigenspace of the submodule M̃ will in general be higher
dimensional. However, in the paper [9], using the monoidal transform, a line bundle L̂ was

constructed on a certain blow-up space Ω̂, with a holomorphic map π : Ω̂→ Ω. (Actually, this
construction holds locally, near any given point w0 ∈ ΩI .) The restriction of this line bundle
to the exceptional set π−1(ΩI) in the blow-up space was shown to be an invariant for the

submodule M̃.

For the submodule M̃ = H2
(0,0)(D

2) ⊆ H2(D2) of the Hardy module, corresponding to

the point singularity (0, 0) ∈ Ω := D2, the above construction can be made very explicit:

The eigenspace of M̃ at w := (w1, w2) 6= (0, 0) is the one dimensional space spanned by the
truncated kernel vector

K̃w(z) :=
1

(1− w1z1)(1− w2z2)
− 1 =

w1z1 + w2z2 − w1z1w2z2

(1− w1z1)(1− w2z2)
. (1.2)

At (0, 0), this vector is the zero vector while the eigenspace of M̃ is two dimensional, spanned

by the vectors z1 and z2. We observe, however, that for j = 1, 2 the limit K̃w(z)
wj

, along lines

through the origin as w → 0, exists and is non-zero. Parametrizing the lines through (0, 0)
in D2 by w2 = ϑ1w1 or w1 = ϑ2w2, we obtain the coordinate charts for the Projective space
P1(C). On these, we have

lim
w2=ϑ1w1, w→0

K̃w(z)

w1
= z1 + ϑ1z2.

Similarly, we have

lim
w1=ϑ2w2, w→0

K̃w(z)

w2
= z2 + ϑ2z1.

Setting s(ϑ1) := z1 + ϑ1z2 and s(ϑ2) = z2 + ϑ2z1 taking values in H2
(0,0)(D

2), we obtain a

holomorphic Hermitian line bundle L̂ over projective space P1(C). The metric of this line
bundle is given by the formula

‖s(ϑj)‖2M̃ = 1 + |ϑj |2

for j = 1, 2. It is shown in [16, Theorem 5.1], see also [9, Theorem 3.4], that for many
submodules of analytic Hilbert modules, the class of this holomorphic Hermitian line bundle
on the projective space is an invariant for the submodule. Since the curvature is a complete
invariant, it follows that in our case the curvature

κ(ϑj) = (1− |ϑj |2)−2dϑj ∧ dϑj

for the coordinate ϑj (j = 1, 2) is an invariant for the submodule H2
(0,0)(D

2).

Often it is possible to determine when two submodules of an analytic Hilbert module are
isomorphic without explicitly computing a set of invariants. A particular case is the class of
submodules in an analytic Hilbert modules which are obtained by taking the closure of an ideal
in the polynomial ring. Here the surprising discovery is that many of these submodules are
isomorphic if and only if the ideals are equal. Of course, one must impose some mild condition
on the nature of the ideal. For instance, principal ideals have to be excluded. Several different
hypotheses that make this ”rigidity phenomenon” possible are discussed in Section 3 of [19].
One of these is the theorem of [19, Theorem 3.6]. A slightly different formulation given below
is Theorem 3.1 of [9].

Let Ω ⊂ Cd be a bounded domain. For k = 1, 2, let [Ik] be the closure in an analytic Hilbert
module M⊆ Hol(Ω) of the ideal Ik ⊆ C[z].
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Theorem 1.1 (Theorem 3.1, [9]). Assume that the dimension of [Ik]/[Ik]w is finite and that
the dimension of the zero set of these modules is at most d−2. Also, assume that every algebraic
component of V (Ik) intersects Ω. Then [I1] and [I2] are isomorphic if and only if I1 = I2.

In this paper we study submodules of (scalar valued) analytic Hilbert modules (n = 1) which
are related to higher-dimensional singularities. Starting with the weighted Bergman spaces
defined on a bounded symmetric domain, the submodules are determined by a vanishing con-
dition on the ”Kepler variety”. The new feature is that the singularity set is not a complete
intersection (in the sense of algebraic geometry) which means that the usual projectivization
involving monoidal transforms (blow-up process) is not sufficient for the resolution of singular-
ities. We will replace it by a higher-rank blow-up process, having as exceptional fibres compact
hermitian symmetric spaces of higher rank instead of projective spaces. The charts and analytic
continuation we use are adapted to the geometry of the Kepler variety. The simplest case of
rank 1 reduces to the usual blow-up process.

In this setting we again obtain a rigidity theorem which is not a special case of Theorem 1.1,
since we do not consider different ideals (i.e. different subvarieties) for the singular modules,
but we consider a fixed subvariety and vary the underlying ”big” Hilbert module, by choosing
an arbitrary coefficient sequence or, as a special case, a K-invariant probability measure. This
situation is most interesting in the symmetric case, where one has a full scale of different Hilbert
modules like the weighted Bergman spaces. Then we show that the ”truncated” kernel of the
submodule can be recovered from the reduction to the blow-up space. This is a kind of rigidity
in the parameter space instead of selecting different ideals.

2. Jordan-Kepler Varieties

Hilbert modules and submodules defined by analytic varieties have been mostly studied for
domains Ω which are strongly pseudoconvex with smooth boundary, or a product of such do-
mains. From an operator-theoretic point of view, this is natural since for strongly pseudoconvex
(bounded) domains, Toeplitz operators with continuous symbols (in particular, with symbols
given by the coordinate functions) are essentially normal, so that the Toeplitz C∗-algebra gen-
erated by such operators is essentially commutative and has a classical Fredholm and index
theory. There are, however, interesting classes of bounded domains which are only weakly
pseudoconvex (and are therefore domains of holomorphy, by the Cartan-Thullen theorem) with
a non-smooth boundary. A prominent class of such domains are the bounded symmetric
domains of arbitrary rank r, which generalize the (strongly pseudoconvex) unit ball, having
rank r = 1. The Hardy space and the weighted Bergman spaces of holomorphic functions on
bounded symmetric domains have been extensively studied from various points of view (see,
e.g., [6, 21, 29]. More recently, irreducible subvarieties of symmetric domains, given by certain
determinant type equations, have been studied in [20] under the name of ’Jordan-Kepler vari-
eties.’ This terminology is used since the rank r = 2 case corresponds to the classical Kepler
variety in the cotangent bundle of spheres [11]

In order to describe bounded symmetric domains and their determinantal subvarieties, we
will use the Jordan theoretic approach to bounded symmetric domains which is best suited
for harmonic and holomorphic analysis on symmetric domains. For background and details
concerning the Jordan theoretic approach, we refer to [22, 25, 29].

Let V be an irreducible hermitian Jordan triple of rank r, with Jordan triple product de-
noted by {u; v;w}. The so-called spectral unit ball Ω ⊂ V is a bounded symmetric domain.
Conversely, every (irreducible) bounded symmetric domain can be realized in this way. An
example is the matrix space V = Cr×s with triple product

{u; v;w} := uv∗w + wv∗u,
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giving rise to the matrix ball

Ω = {z ∈ Cr×s : Ir − zz∗ > 0}.
In particular, for rank r = 1 we obtain the triple product

{u; v;w} := (u|v)w + (w|v)u

on V = Cd, with inner product (u|v), giving rise to the unit ball

Ω = {z ∈ Cd : (z|z) < 1}.
Let G denote the identity component of the full holomorphic automorphism group of Ω. Its
maximal compact subgroup

K := {k ∈ G : k(0) = 0}
consists of linear transformations preserving the Jordan triple product. For z, w ∈ V define the
Bergman operator Bz,w acting on V by

Bz,wv = v − {z;w; v}+
1

4
{z{w; v;w}z}.

We can also write
Bz,w = I −D(z, w) +QzQw, (2.1)

where
D(z, w)v = {z;w; v},

and
Qzw := {z;w; z}

denotes the so-called quadratic representation (conjugate linear in w). For matrices, we have
D(z, w)v = zw∗v + vw∗z, Qzw = zw∗z and hence

Bz,wv = (1r − zw∗)v(1s − w∗z). (2.2)

An element c ∈ V satisfying c = Qcc is called a tripotent. For matrices these are the partial
isometries. Any tripotent c induces a Peirce decomposition

V = V c
2 ⊕ V c

1 ⊕ V c
0 .

We have
d` := dim V̊` = dc2 + dc1,

where

dc2 = dimV c
2 = `(1 +

a

2
(`− 1)),

dc1 = dimV c
1 = `(a(r − `) + b).

Here a, b are the so-called characteristic multiplicities defined in terms of a joint Peirce decom-
position [25]. Moreover,

2dc2 + dc1
`

= 2(1 +
a

2
(`− 1)) + a(r − `) + b = 2 + a(r − 1) + b = p

is the genus. As a fundamental property, there exists a Jordan triple determinant

∆ : V × V → C, (2.3)

which is a (non-homogeneous) sesqui-polynomial satisfying

detBz,w = ∆(z, w)p.

For (r × s)-matrices, we have p = r + s and

∆(z, w) = det(1r − zw∗)
as a consequence of (2.2). In particular, ∆(z, w) = 1 − (z|w) in the rank 1 case V = Cd. A
hermitian Jordan triple U is called unital if it contains a (non-unique) tripotent u such that
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D(u, u) = 2 · I. In this case U becomes a Jordan *-algebra with unit element u under the
multiplication

z ◦ w :=
1

2
z;u;w

and involution

z∗ := Quz =
1

2
{u; z;u}.

This Jordan algebra has a homogeneous determinant polynomial N : U → C defined in
analogy to Cramer’s rule for square matrices. Every Peirce 2-space V c

2 is a unital Jordan triple
with unit c.

Now we introduce certain K-invariant varieties. Every hermitian Jordan triple V has a
natural notion of rank defined via spectral theory. For fixed ` ≤ r let

V̊` = {z ∈ V : rank(z) = `}

denote the Jordan-Kepler manifold studied in [20]. It is a KC-homogeneous manifold whose
closure is the Jordan-Kepler variety

V` = {z ∈ V : rank(z) ≤ `}.

One can show that the smooth part of V` (in the sense of algebraic geometry) is precisely given

by V̊`. Thus the singular points of V` form the closed subvariety V`−1, which has codimension
> 1, unless we have the case ` = r for tube domains (b = 0). This case will be excluded in the

sequel. The center S` ⊂ V̊` consists of all tripotents of rank `.

3. Hilbert modules on Kepler varieties

Combining the Kepler variety and the spectral unit ball, we define the Kepler ball

Ω` := Ω ∩ V`

for any 0 ≤ ` ≤ r. The Kepler ball Ω` has singularities exactly at Ω`−1, so that the smooth part
of Ω` is given by

Ω̊` := V̊` ∩ Ω` = Ω` \ Ω`−1.

Apart from the case ` = r on tube type domains, which we exclude here, the singular set
Ω`−1 ⊂ Ω` has codimension > 1. Combining this with the fact that V` is a normal variety (so
that the second Riemann extension theorem holds) it follows that every holomorphic function on

Ω̊` has a unique holomorphic extension to Ω`. Henceforth we will identify holomorphic functions
on Ω̊` with their unique holomorphic extension to Ω`. For any K-invariant measure ρ on V̊` we
have a polar integration formula∫

V̊`

dρ(z) f(z) =

∫
Λc
2

dρc(t)

∫
K

dk f(k
√
t)

where ρc is a measure on the symmetric cone Λc2 of V c
2 [22] called the radial part of ρ. Here√

t denotes the Jordan algebraic square root in Λc2. As a special case, consider the Riemann

measure λ`(dz) on V̊` which is induced by the normalized inner product on V. Denoting by Φ`

the Koecher-Gindikin Gamma function of Λc2 [22], its polar decomposition is∫
V̊`

λ`(dz)

πd`
f(z) =

Γ`(
a`
2 )

Γ`(
d
r )Γ`(

ar
2 )

∫
Λc
2

dt Nc(t)
dc1/`

∫
K

dk f(k
√
t). (3.1)
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Here Nc is the Jordan algebra determinant on V c
2 normalized by Nc(c) = 1. For ` = r the

Riemann measure on the open dense subset V̊r = V̊ ⊂ V agrees with the Lebesgue measure,
and (3.1) gives the well-known formula∫

V

dz

πd
f(z) =

1

Γ(dr )

∫
Λe
2

dt Ne(t)
b

∫
K

dk f(k
√
t)

for any maximal tripotent e ∈ S = Sr. As a consequence of (3.1) we have for the Kepler ball∫
Ω̊`

λ`(dz)

πd`
∆(z, z)ν−p f(z) =

Γ`(
a`
2 )

Γ`(
d
r )Γ`(

ar
2 )

∫
Λc
2∩(c−Λc

2)

dt Nc(t)
dc1/` Nc(c−t)ν−p

∫
K

dk f(k
√
t) (3.2)

since ∆(k
√
t, k
√
t) = ∆(

√
t,
√
t) = Nc(c− t) for all t ∈ Λc2 ∩ (c− Λc2).

As a fundamental fact [22, 29] of harmonic analysis on Jordan algebras and Jordan triples,

the Fischer-Fock reproducing kernel e(z|w), for the normalized K-invariant inner product (z|w)
on V, has a ”Taylor expansion”

e(z|w) =
∑
m

Em(z, w)

over all integer partitions m = m1 ≥ m2 ≥ . . . ≥ mr ≥ 0, where Em(z, w) = Ew(z) are
sesqui-polynomials which are K-invariant such that the finite-dimensional vector space

Pm(V ) = {Em
w : w ∈ V }

is an irreducible K-module. These K-modules are pairwise inequivalent and span the polyno-
mial algebra P(V ). Let

(ν)m =

r∏
j=1

(ν − a

2
(j − 1))mj

denote the multi-variable Pochhammer symbol. Let Nr
+ denote the set of all partitions of

length ≤ r. Restricted to the Kepler variety we only consider partitions in N`
+ of length ≤ `,

completed by zeroes at the end.

Lemma 3.1. For any partition m ∈ N`
+ of length ≤ ` we have∫

Λc
2∩(c−Λc

2)

dt Nc(t)
dc1/` Nc(c− t)ν−p Nm(t) =

Γ`(
d`
` ) Γ`(ν − d`

` )

Γ`(ν)

(d`/`)m
(ν)m

. (3.3)

Proof. Applying [22, Theorem VII.1.7] to Λc2 yields∫
Λc
2∩(c−Λc

2)

dt Nc(t)
dc1/` Nc(c− t)ν−p Nm(t) =

Γ`(m +
dc1
` +

dc2
` ) Γ`(ν − p+

dc2
` )

Γ`(m + ν − p+
dc1+2dc2

` )

=
Γ`(m + d`

` ) Γ`(ν − d`
` )

Γ`(m + ν)
=

Γ`(
d`
` ) Γ`(ν − d`

` )

Γ`(ν)

(d`/`)m
(ν)m

.

�

Let du be the K-invariant probability measure on S` and put

(f |g)S`
=

∫
S`

du f(u) g(u) =

∫
K

dk f(kc) g(kc). (3.4)
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Definition 3.2. Consider a coefficient sequence (ρm)m∈N`
+

normalized by ρ0 = 1. Define a

Hilbert space M = Mρ of holomorphic functions on Ω` by imposing the K-invariant inner
product

(f |g)ρ :=
∑

m∈N`
+

ρm(fm|gm)S`
. (3.5)

where fm ∈ Pm(V ) denotes the m-th component of f.

The subnormal case arises when the inner product (3.5) has the form

(f |g)ρ =

∫
dρ(z) f(z)g(z),

where ρ is a K-invariant probability measure on the closure of Ω` or a suitable K-invariant
subset which is a set of uniqueness for holomorphic functions. For the case ` = r, this was
studied in detail for the tube type domains in [7] and completed for all bounded symmetric
domains in [5]. By [20, Proposition 4.4] the Hilbert space

M =Mρ := {φ ∈ L2(dρ) : φ holomorphic on Ω`}

has the coefficient sequence

ρm =

∫
Λc
2

dρc(t) Nm(t)

given by the moments of the radial part ρc, which is a probability measure on Λc2 (not nec-
essarily of full support). As a special case the Hardy type inner product (3.4), corresponding
to the K-invariant probability measure du on S`, has the point mass at c as its radial part,
showing that all radial moments ρm = 1.

It is clear that the Hilbert spaces Mρ defined by K-invariant measures are analytic Hilbert

modules as defined above (however, consisting of holomorphic functions on a manifold Ω̊` in-
stead of a domain). For more general coefficient sequences ρm, one could in principle determine
whether multiplication operators by polynomials are bounded (using certain growth conditions
on the coefficient sequence), and whether the other requirements for analytic Hilbert modules
hold. Important examples are listed below where the reproducing kernels are given by hyper-
geometric series. For the classical case ` = r, the well-understood analytic continuation of the
scalar holomorphic discrete series of weighted Bergman spaces on Ω = Ωr [21] shows that the
Hilbert module property extends beyond the subnormal case.

Proposition 3.3. For a given coefficient sequence ρm,M has the reproducing kernel

K(z, w) =
∑

m∈N`
+

(d/r)m
ρm

(ra/2)m
(`a/2)m

Em(z, w). (3.6)

Proof. This follows from [20, Proposition 4.3] and the formula

dm
dcm

=
(d/r)m
(dc2/`)m

(ra/2)m
(`a/2)m

obtained in [20, equation (5.5) in the proof of Theorem 5.1]. �

We will now present some examples, where the reproducing kernel (3.6) can be expressed in
closed form as a multivariate hypergeometric series defined in general by(

α1, . . . , αp
β1, . . . , βq

)
p q

(z, w) =
∑
m

(α1)m · · · (αp)m
(β1)m · · · (βq)m

Em(z, w).
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Applying (3.3) to m = 0 it follows that

ρν(dz) =
Γ`(

d
r )

Γ`(
d`
` )

Γ`(
ra
2 )

Γ`(
`a
2 )

Γ`(ν)

Γ`(ν − d`
` )

λ`(dz)

πd`
∆(z, z)ν−p

is a probability measure on Ω̊`. Moreover, applying (3.3) to any m ∈ N`
+ it follows that the

measure ρν has the coefficient sequence

ρνm =
(d`/`)m

(ν)m
.

Thus the Hilbert space

Mν := {φ ∈ L2(dρν) : φ holomorphic on Ω`}

of holomorphic functions on Ω` has the reproducing kernel

K(z, w) =
∑

m∈N`
+

(d/r)m
(d`/`)m

(ra/2)m
(`a/2)m

(ν)m Em(z, w) =

(
d
r ,

ra
2 , ν

d`
` ,

`a
2

)
3 2

(z, w).

In the classical case ` = r we have the probability measure

dρν(z) =
Γ(ν)

Γ(ν − d
r )

dz

πd
∆(z, z)ν−p

on Ω, whose reproducing kernel is given by

K(z, w) =
∑

m∈Nr
+

(ν)m Em(z, w) =

(
ν
)

1 0

(z, w) = ∆(z, w)−ν

according the Faraut-Korányi formula [21].

4. The Singular Set and its Resolution

The only strongly pseudoconvex symmetric domains are the unit balls of rank r = 1. Here the
singularity Ω0 consists of a single point {0}. The classical procedure to resolve this singularity is
the monoidal transformation (blow-up process) where a point is replaced by a projective space
of appropriate dimension. As the main geometric result in this paper, we obtain a generalization
of the blow-up process for higher dimensional Kepler varieties and domains of arbitrary rank.
The Jordan theoretic approach leads to quite explicit formulas which generalize the equations
of the classical blow-up process of a point.

The general procedure outlined in Section 1 using monoidal transformations works in the
case where the singularity is given by a regular sequence g1, . . . , gm of polynomials generating
the vanishing ideal I. In this case the variety is a smooth complete intersection. If m = d equals
the dimension, this variety reduces to a single point. The usual blow-up process around a point
0 ∈ Cd is the proper holomorphic map

π : Ĉd → Cd

where

Ĉd := {(w,U) : w ∈ Cd, U ∈ Pd−1, w ∈ U}
is the tautological bundle over Pd−1, with ’collapsing map’ π(w,U) := w. The map π is bi-
holomorphic outside the exceptional fibre π−1(0) = Pd−1. For the Kepler varieties studied here
the singular set Ω`−1 has higher dimension and is not a complete intersection (unless ` = 1).
Thus a regular generating sequence of polynomials does not exist. Instead, we use the harmonic
analysis of polynomials provided by the Jordan theoretic approach to study the singular set.
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The main idea is to replace the projective space (a compact hermitian symmetric space of rank
1) by a compact hermitian symmetric space of higher rank, namely the Peirce manifold

M` = {V c
2 : c ∈ S`}

of all Peirce 2-spaces of rank ` in V. This can also be realized as the conformal compactification
of the Peirce 1-space V 1

c , for any rank ` tripotent c. For example, in the full matrix triple

V = Cr×s the Peirce 1-space of c =

(
1` 0
0 0

)
∈ S` is given by

V c
1 =

(
0 C`×(s−`)

C(r−`)×` 0

)
.

Hence, in this case, the Peirce manifold M` is the direct product of two Grassmann manifolds

M` = Grass`(C
r)×Grass`(C

s).

In the simplest case r = 1 we have V = Cd and for the tripotent c = (1, 0d−1) we have

V c
1 = (0,Cd−1). Its conformal compactification is V̂ c

1 = Pd−1, which is the exceptional fibre
of the usual blow-up process for 0 ∈ Cd. More generally, for any non-zero tripotent c we have
V c

2 = C · c and hence V c
1 becomes the orhtogonal complement c⊥ = Cd−1, with conformal

compactification V̂ c
1 = Pd−1.

The standard charts of projective space Pd−1 have the form

τi : Cd−1 → Pd−1, τi(t1, . . . , t̂i, . . . , td) := [t1 : . . . : 1i : . . . : td]

using homogeneous coordinates on Pd−1. Note that for 1 ≤ i ≤ d, the rank 1 tripotent ci :=
(0, . . . , 0, 1, 0, . . . , 0) ∈ Cd has the Peirce 1-space

V ci
1 := {(t1, . . . , ti−1, 0, ti+1, . . . , td) : (t1, . . . , t̂i, . . . , td) ∈ Cd−1}.

In the higher rank setting, the Bergman operators (2.1) serve to define canonical charts for the
Peirce manifolds. For each tripotent c ∈ S` and every t ∈ V c

1 the transformation Bt,−c ∈ KC

preserves the rank. It follows that Bt,−cc ∈ V̊` has a Peirce 2-space denoted by [Bt,−cc]. As
shown in [28] the map

τc : V c
1 →M, τc(t) := [Bt,−cc] (4.1)

is a holomorphic chart of M. The range of the chart τc is

Mc := {U ∈M : NU (c) 6= 0}.
Here NU : U → C denotes a Jordan algebra determinant of the Jordan triple U which, as
a Peirce 2-space, is of tube type. The Jordan determinant is only defined after choosing a
maximal tripotent in U as a unit element, but any two such determinant functions differ by
a non-zero multiple. It is shown in [28] that the local charts τc of M`, for different tripotents
c, c′ ∈ S`, are compatible and hence form a holomorphic atlas on M`.

One can make the passage z 7→ [z] to the Peirce 2-space more explicit by introducing the

so-called (Moore-Penrose) pseudo-inverse. Every element z ∈ V̊` has a pseudo-inverse z̃ ∈ V̊`
determined by the properties

Qz z̃ = z, Qz̃z = z̃, Qz Qz̃ = Qz̃ Qt.

Using the pseudo-inverse, the orthogonal projection onto the Peirce 2-space of V z
2 can be ex-

plicitly written down.

Lemma 4.1. The pseudo-inverse of Bt,−cc is given by

τ̃c(t) = Bt,−cB
−1
t,−tc.

Thus the associated Peirce 2-space is

[τc(t) : τ̃c(t)] ∈ V̂ c
1 ⊂ V̂.
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Combining these remarks, the chart (4.1) can be written down explicitly. It is also instructive

to embed M` into the conformal compactification V̂ of the underlying Jordan triple V (the
compact hermitian symmetric space that is dual to the spectral unit ball Ω). According to [25]

V̂ can elegantly be described using a certain equivalence relation [z : w] for pairs z, w ∈ Z.As

shown in [28], one may identify the Peirce 2-space V z
2 with the equivalence class [z; z̃] ∈ V̂. Thus

the local chart (4.1) associated to a tripotent c ∈ S` can also be expressed via the embedding

τc : V c
1 →M` ⊂ V̂

given by

τc(t) = [z; z̃],

where z := Bt,−cc ∈ V̊` and z̃ is computed via Lemma 4.1. In the sequel these more refined
descriptions of the local charts will not be needed.

Having found the exceptional fibre M` for the higher-rank blow-up process, we now consider
the tautological bundle

V̂` = {(w,U) ∈ V ×M` : w ∈ U} ⊂ V` ×M`

over M`, together with the collapsing map

π : V̂` → V`, π(w,U) := w

whose range is V`. In [20] this map is used to show that V` is a normal variety. This property
implies the so-called second Riemann extension theorem for holomorphic functions, of crucial
importance in the following. For each s ∈ V c

2 the rank ` element

σc(s, t) := Bt,−cs (4.2)

has the same Peirce 2-space τc(t) as Bt,−cc. We define a local chart

ρc : V c
2 × V c

1 → V̂`

by

ρc(s, t) := (σc(s, t), τc(t)) (4.3)

By (4.2) the range of the chart ρc is

V̂ c
` := {(w,U) ∈ V̂` : U ∈ Ran τc} = {(w,U) ∈ V̂` : NU (c) 6= 0}.

One shows that the charts ρc, for c ∈ S`, define a holomorphic atlas on V̂`, such that the
collapsing map π : V̂` → V` is holomorphic and is biholomorphic outside the singular set. We
call V̂`, together with the collapsing map the (higher rank) blow-up of V`.

Proposition 4.2. For rank 1, let c := (1, 0). Then

ρc(s, t) := ((s, st), [1 : t]) = ((s, st),C(1, t)),

where s ∈ C and t ∈ Cd−1. Here [s : t] = [s : t1 : . . . : td−1] denotes the homogeneous coordinates
in Pd−1.

Proof. Clearly, V c
2 = C · c = (C, 0) = [1 :, 0] and V c

1 = (0,Cd−1). Then

σc(s, t) = Bt,−cs =
(

1 + (0, t)

(
1
0

))
(s, 0)

((
1 0
0 1

)
+

(
1
0

)(
0 t

) )
= (s, 0)

(
1 t
0 1

)
= (s, st).

In particular, σc(1, t) = (1, t) has the Peirce 2-space τc(t) = C · (1, t) = [1 : t]. It follows that

ρc(s, t) = (σc(s, t), τc(t)) = ((s, st),C · (1, t)) = ((s, st), [1 : t]).

�
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More generally, taking for c = ei the i-th basis unit vector (1 ≤ i ≤ d) we obtain local charts

ρi(ζ
i, ζ ′) = ((ζi, ζiζ ′),C(1i, ζ ′)) = ((ζi, ζiζ ′), [1i : ζ ′])

where ζ ′ = (ζj)j 6=i. The finitely many charts ρi (1 ≤ i ≤ d) form already a covering of Q.
Using the grid approach to Jordan triples one can similarly choose finitely many charts in the
general case. However, for many arguments using K-invariance it is more convenient to take
the continuous family of charts (σc)c∈S`

.

Since the analytic Hilbert modules considered here are supported on the Kepler ball Ω` =
Ω ∩ V` we restrict the tautological bundle to the open subset

Ω̂` := {(w,U) ∈ V̂` : w ∈ Ω}

and obtain a collapsing map π : Ω̂` → Ω̂` by restriction. The main idea to study singular

submodules M̃ is now to construct a hermitian holomorphic line bundle L̂ over Ω̂`, whose

curvature will be the crucial invariant of M̃.

Proposition 4.3. There exists a holomorphic line bundle L̂ on Ω̂` consisting of all equivalence
classes

[s, t, λ Nc(s)]c =
[
s′, t′, λ Nc′(s′)

]
c′

(4.4)

with λ ∈ C. Here c, c′ ∈ S` are tripotents such that

ρc(s, t) = ρc′(s
′, t′) (4.5)

for (s, t) ∈ V c
2 × V c

1 and (s′, t′) ∈ V c′
2 × V c′

1 .

Proof. The condition (4.5) implies σc(s, t) = σc′(s
′, t′) and [σc(1, t)] = τc(t) = τc′(t

′) = [σc′(1, t
′)].

This implies that Nc(s) and Nc′(s
′) do not vanish. Since the quotient maps

Nc′ (s
′)

Nc(s)
satisfy a

cocycle property, it follows that

[s, t, λ]c =
[
s′, t′, λ

Nc′(s′)

Nc(s)

]
c′

defines an equivalence relation yielding a holomorphic line bundle. �

At this point we do not fix a hermitian metric the line bundle L over D̂`. The metric depends

on the choice of singular submodules M̃ which will be defined below.

5. Singular Hilbert Submodules

Consider the partition

1 := (1, . . . , 1, 0, . . . , 0)

of length `, with 1 repeated ` times. Given the Hilbert module M = Mρ as above, consider
the K-invariant Hilbert submodule

M̃ = {ψ ∈M : ψ|V`−1
= 0}.

The formula (3.6) yields the truncated kernel in the form

K̃(z, w) =
∑

m∈N`
+

(d/r)m+1

ρm+1

(ra/2)m+1

(`a/2)m+1
Em+1(z, w), (5.1)

corresponding to vanishing of order ≥ 1 on V`−1. Using the identity

(ν)m+1 = (ν + 1)m (ν)1

one can also express this using Pochhammer symbols for m instead of m + 1.
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Lemma 5.1. Let V be a unital Jordan triple, with Jordan algebra determinant N. Then we
have

Em+1(z, w) =
(d/r)m

(d/r)m+1
N(z)N(w) Em(z, w).

Proof. For tube type we have

Em(e, e) =
dm

(d/r)m
.

Writing

Em+1(z, w) = cm N(z)N(w) Em(z, w)

it follows that
dm+1

(d/r)m+1
= Em+1(e, e) = cm Em(e, e) = cm

dm
(d/r)m

.

Since dm+1 = dm in the unital case, it follows that

cm =
(d/r)m

(d/r)m+1
.

�

Lemma 5.2. For m ∈ N`
+ we have for s ∈ V c

2 and t ∈ V c
1

Em+1(z,Bt,−cs) =
(dc2/`)m

(dc2/`)m+1
Nc(PcB

∗
t,−cz) Nc(s) E

m(z,Bt,−cs).

Proof. Applying Lemma 5.1 to the tube type Peirce 2-space V c
2 of rank ` implies

Em+1(z,Bt,−cs) = Em+1(B∗t,−cz, s) = Em+1
c (PcB

∗
t,−cz, s)

=
(dc2/`)m

(dc2/`)m+1
Nc(PcB

∗
t,−cz) Nc(s) E

m
c (PcB

∗
t,−cz, s).

Since Em
c (PcB

∗
t,−cz, s) = Em(B∗t,−cz, s) = Em(z,Bt,−cs), the assertion follows. �

Since the truncated kernel K̃ of M̃ vanishes on the singular set V`−1 it cannot be used directly
to define a hermitian line bundle over V`−1. Instead, we first consider the module tensor product
of H2

0 (Ω`) over the polynomial ring P(V ) with the one dimensional module Cw, (p, w) 7→ p(w).
Similar as in (1.1) we have, as a consequence of (5.1)

H2
0 (Ω`)⊗P(V ) Cw =

{
C if w ∈ Ω̊`

P1(V ) if w ∈ Ω`−1
.

Here P1(V ) is the finite-dimensional K-module belonging to the partition 1. The K-module
P1(V ) has dimension > 1 (since we exclude the case ` = r for tube type, where P1(V ) is
spanned by the Jordan algebra polynomial N). The ideal I associated to the variety V`−1 is
generated by P1(V ). For each w ∈ Ω` there is a ’cross-section’ P1(V )→ H2

0 (Ω`) given by

p(z) 7→ p(z) ·Ψw(z)

where

Ψ(z, w) = K̂w(z) =
∑

m∈N`
+

(d/r)m+1

ρm+1

(ra/2)m+1

(`a/2)m+1

(dc2/`)m
(dc2/`)m+1

Em(z, w). (5.2)

Then Ψw(z) ∈M for each w ∈ Ω`. Let Ni, i ∈ I be an orthonormal basis of P1(V ). Then there
is a holomorphic vector subbundle E ⊂ Ω` ×M over the Kepler ball Ω`, whose fibre at w ∈ V`
is the span

Ew := 〈Ni(z) Ψw(z) : i ∈ I〉 = P1(V ) ·Ψw ⊂M.
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The vector bundle E is independent of the choice of orthonormal basis Ni. Consider the pull-back
vector bundle

π∗E

��

E

��
Ω̂` π

// Ω`

over Ω̂`, under the collapsing map π. We note that the ’canonical’ choice of higher rank vector
bundle E over Ω`, with typical fibre P1(V ) associated with the quotient module, is only possible
for irreducible domains. In the reducible case (1.2) of the bidisk there is no natural choice of a
rank 2 vector bundle having the fibre < z1, z2 > at the origin.

Proposition 5.3. For all (s, t) ∈ V c
2 ⊕ V c

1 we have

K̃(z,Bt,−cs) = Nc(PcB
∗
t,−cz) Nc(s) Ψ(z,Bt,−cs).

Proof. This follows from the computation

K̃(z,Bt,−cs) =
∑

m∈N`
+

(d/r)m+1

ρm+1

(ra/2)m+1

(`a/2)m+1
Em+1(z,Bt,−cs)

=
∑

m∈N`
+

(d/r)m+1

ρm+1

(ra/2)m+1

(`a/2)m+1

(dc2/`)m
(dc2/`)m+1

Nc(PcB
∗
t,−cz) Nc(s) E

m(z,Bt,−cs)

= Nc(PcB
∗
t,−cz) Nc(s)

∑
m∈N`

+

(d/r)m+1

ρm+1

(ra/2)m+1

(`a/2)m+1

(dc2/`)m
(dc2/`)m+1

Em(z,Bt,−cs).

�

Now consider the holomorphic line bundle L̂ over the blow-up space Ω̂` defined in Proposition
4.3.

Theorem 5.4. There exists an anti-holomorphic embedding L̂ ⊂ π∗E , defined on each fibre
L̂w,U ⊂ (π∗E)w,U = Ew by

[s, t, 1]c 7→ Nc(B
∗
t,−cz) ΨBt,−cs(z). (5.3)

In short,

[s, t, 1]c 7→ Nc ◦B∗t,−c ΨBt,−cs.

Proof. First we show that the map (5.3) is well-defined via the local charts (4.3). Suppose that
c, c′ ∈ S` satisfy

ρc(s, t) = ρc′(s
′, t′),

where (s, t) ∈ V c
2 × V c

1 and (s′, t′) ∈ V c′
2 × V c′

1 . Then we have

Bt,−cs = σc(s, t) = σc′(s
′, t′) = Bt′,−c′s

′.

It follows that K̃Bt,−cs = K̃Bt′,−c′s
′ and Proposition 5.3 implies

Nc(s) [s, t, 1]c = K̃Bt,−cs = K̃Bt′,−c′s
′ = Nc′(s′) [s′, t′, 1]c′ .

Since Nc(s) and Nc′(s
′) don’t vanish on the overlap Vc ∩ Vc′ it follows that

[s, t, 1]c =
Nc′(s′)

Nc(s)
[s′, t′, 1]c′ =

[
s′, t′,

Nc′(s′)

Nc(s)

]
c′
.
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Thus the map (5.3) respects the equivalence relation (4.4). Moreover, the map (5.3) is anti-
holomorphic in (s, t), with values in M. In order to see that the range belongs to the span of
Ni(z) Ψw(z), where w = Bt,−cs, choose holomorphic functions ci(t) such that

Nc(B
∗
t,−cz) =

∑
i∈I

ci(t) Ni(z)

for all t ∈ V c
1 . It follows that

Nc(B
∗
t,−cz) ΨBt,−cs(z) =

∑
i

Ni(z) ci(t) Ψ(z,Bt,−cs) ∈ EBt,−cs.

�

We are now able to define a hermitian metric on the line bundle L̂ over Ω̂`. A Jordan
theoretic argument yields

Lemma 5.5. For t ∈ V c
1 we have

PcB
∗
t,−cBt,−cc = PcBt,−tc

and hence

Nc(B
∗
t,−cBt,−cc) = ∆(t, t).

Here ∆ denotes the Jordan triple determinant (2.3).

Proposition 5.6. For all (s, t) ∈ V c
2 ⊕ V c

1 we have

K̃(Bt,−cs,Bt,−cs) = ∆(t, t) |Nc(s)|2 Ψ(Bt,−cs,Bt,−cs).

Proof. Since PcBt,−cB
∗
t Pc belongs to the structure group of V 2

c it follows from Lemma 5.5 that

= Nc(B
∗
t,−cBt,−cs) = Nc(B

∗
t,−cBt,−cc) Nc(s) = ∆(t, t) Nc(s).

Now apply Proposition 5.3. �

Proposition 5.7. For each submodule M̃ ⊂ M, with truncated kernel (5.1), there exists a

hermitian metric on the line bundle L̂ over Ω̂`, given by the local representatives

([s, t, 1]c|[s, t, 1]c) := ∆(t, t) Ψ(Bt,−cs,Bt,−cs).

For this metric, the embedding (5.3) is isometric.

Proof. Since Proposition 5.6 implies

‖Nc(B
∗
t,−cz) ΨBt,−cs(z)‖2 = ‖

K̃Bt,−cs

Nc(s)
‖2 =

1

|Nc(s)|2
K̃(Bt,−cs,Bt,−cs) = ∆(t, t) Ψ(Bt,−cs,Bt,−cs)

it follows that the embedding (5.3) is isometric. �

Definition 5.8. The Hilbert module over Ω̂` associated with the hermitian holomorphic line

bundle L̂ will be called the reduction of M̃, and denoted by M̂. Note that this is different from
the pull-back π∗E which is a vector bundle containing L̂ as a subbundle.

The following rigidity theorem for singular submodules on Kepler varieties is our main ana-
lytic result.

Theorem 5.9. Consider two K-invariant Hilbert modules M̃ρ and M̃ρ′ on Ω`, for given co-

efficient sequences ρm and ρ′m, respectively. Suppose that the reduced Hilbert modules M̂ρ and

M̂ρ′ on the blow-up space Ω̂` are equivalent. Then we have equality M̃ρ = M̃ρ′ .
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Proof. The proof is an application of the ’normalized kernel argument’ summarized in Propo-
sition 0.1. Consider the reproducing kernels K̂ρ and K̂ρ′ of the reduced Hilbert modules. It
suffices to consider a local chart V c

2 × V c
1 of Ω̂` for a given tripotent c ∈ S` defined in (4.3). As

a consequence of module equivalence for line bundles, there exists a non-vanishing holomorphic
function φ on the local chart V c

2 × V c
1 of Ω̂` such that

K̂ρ′(x, y) = φ(x) K̂ρ(x, y) φ(y). (5.4)

Putting y = 0 we obtain

1 = K̂ρ′(x, 0) = φ(x) K̂ρ(x, 0) φ(0) = φ(x) φ(0).

Therefore φ is constant. After normalization, we may assume φ = 1. Then (5.4) implies

K̂ρ′(x, y) = K̂ρ(x, y)

for all x, y. In view of (5.2), this implies ρm+1 = ρ′m+1 for all m ∈ N`
+. By (5.1), the singular

submodules M̃ and M̃′ have the same truncated kernel K̃(z, w) = K̃′(z, w). �

6. Outlook and Concluding Remarks

For the Hardy module H2(Dd) it is evident that not all submodules are of the form [I], for
some ideal I of the polynomial ring. (Here [I] is the closure of I in H2(Dd)). Ahern and
Clark [4] show that all submodules (of the Hardy module) of finite codimension are of this

form. In general, if a submodule M̃ ⊆ M is not of the form [I], then it is not covered by the
known Rigidity theorems with only one exception, namely [18, Theorem, pp. 70]. However,
the geometric invariants constructed in [9] and in the current paper, it is hoped, might be
useful in studying a much larger class of submodules. Recall that a submodule of an analytic
Hilbert module M based on the domain Ω defines a coherent analytic sheaf [8, 9]. It possesses
a Hermitian structure away from the zero variety and on this smaller open set, we have a
holomorphic Hermitian vector bundle, which determines the class of the submodule. What we
have shown here is that it has an analytic Hermitian continuation to the blow-up space. This
interesting phenomenon naturally leads to the notion of, what one may call a Hermitian sheaf
and eventually determine the equivalence class of these in terms of the geometric data already
implicit in the definition, as in the examples we have discussed here.

We conclude this paper with several remarks concerning interesting directions for future
research

Remark 6.1. In [27] we consider more general Hilbert modules related to Kepler varieties,
where the integration does not take place on the Kepler ball Ω` but on certain boundary strata,
including the Hardy type inner product (3.4). These Hilbert modules, and their submodules
defined by a vanishing condition on Ω`−1 provide a wider class of natural examples to which
the above treatment is applicable.

Remark 6.2. It is easy to generalize the singular Hilbert modules treated in this paper, defined
by a vanishing condition of order 1 on the singular set, to vanishing conditions of higher order.
In this case the truncated kernel, generalizing (5.1), has the form

K̃(z, w) =
∑

m∈N`
+

(d/r)m+k

ρm+k

(ra/2)m+k

(`a/2)m+k
Em+k(z, w),

corresponding to vanishing of order ≥ k on V`−1. Here k = (k, . . . , k, 0, . . . , 0) with k repeated
` times. In principle, one could also start with an arbitrary partition µ > 0 of length ` and
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consider truncations such as

K̃(z, w) =
∑

n∈N`
+, n≥µ

(d/r)n
ρn

(ra/2)n
(`a/2)n

En(z, w).

In this case one expects to have the finite-dimensional K-module Pµ(V ) occurring as a quotient
module. On the other hand, treating singularities where the rank decreases by more than 1,
for example V`−2 ⊂ V`, or the origin V0 = {0} as a singularity in Ω = Ωr, seems to be more
difficult.

Remark 6.3. In the maximal rank case ` = r the ball Ωr = Ω is invariant under the full non-
linear group G. For tube type domains, the singular set Ωr−1 has codimension 1, defined by
vanishing of the Jordan algebra determinant. This case formally resembles the one-dimensional
situation and is not covered by our approach (it was excluded to begin with). On the other
hand, let V be a hermitian Jordan triple not of tube type. There are three cases

• The rectangular matrices V = Cr×s with s > r.
• The skew-symmetric matrices V = CN×N

asym of odd order N = 2r + 1

• The exceptional Jordan triple V = O1×2
C of rank r = 2 and dimension 16.

For these cases the singular set

Vr−1 = {z ∈ V : rank(z) < r}
has codimension > 1. The intersection

Ωr−1 := Vr−1 ∩ Ω

with the unit ball Ω ⊂ V is an analytic subvariety of Ω. For any automorphism g ∈ G = Aut(Ω)
we obtain another subvariety g(Ωr−1) ⊂ Ω. Since G acts on the weighted Bergman spaces
Mν = H2

ν (Ω) one can consider submodules of Mν defined by vanishing on Ωr−1 and g(Ωr−1),
respectively, where g ∈ G does not belong to K.

A similar situation arises for the so-called Mok embeddings

ιc : B → Ω

of the unit ball B = Bn into a symmetric domain Ω of higher rank, constructed in [30]. Here
c ∈ S1 is any rank 1 tripotent. These embeddings have the property that the respective Bergman
kernels satisfy

KB(x, y) = KΩ(ιc(x), ιc(y))

for all x, y ∈ B. Let Bc := ιc(B) ⊂ Ω be the image variety (whose defining equations are
explicitly known [30]) and consider, for g ∈ G, the subvariety g(Bc) with associated Hilbert

submodule M̃ν ⊆Mν defined by a vanishing condition on g(Bc).

It would be of interest to study the reduced modules and rigidity problems for singular
submodules in such a G-equivariant setting.

Remark 6.4. Beyond the scalar case treated in this paper, analytic Hilbert modules for higher
rank vector bundles (n > 1) have recently attracted much attention [23, 24, 26] and should give
rise to interesting singular submodules as well.
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[24] A. Korányi, G. Misra, A classification of homogeneous operators in the Cowen-Douglas class, Adv. Math.,

226 (2011), 5338-5360.
[25] O. Loos, Bounded Symmetric Domains and Jordan Pairs, Univ. of California, Irvine 1977
[26] G. Misra, H. Upmeier, Homogeneous vector bundles and intertwining operators for symmetric domains, Adv.

Math. 303 (2016), 1077-1121
[27] G. Misra, H. Upmeier, Toeplitz C∗-algebras on boundary orbits of symmetric domains, preprint (2019)
[28] B. Schwarz, Jordan theoretic G-orbits and flag varieties, PhD Thesis, University of Marburg, 2010. Available

from https://archiv.ub.uni-marburg.de/diss/z2010/0625.
[29] H. Upmeier, Multivariable Toeplitz Operators and Index Theory. Birkhäuser, Basel, 1996
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