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0 Introduction

To a completely non unitary (cnu) contraction T on a separable Hilbert space H, Nagy and Foias
(cf. [8]) associate a contraction valued holomorphic function ΘT on the open unit disk ID such that
ΘT (0) is a pure contraction. This is called the characterstic function of the operator T . Conversely,
given any such holomorphic function Θ on ID, there is a completely nonunitary contraction TΘ whose
characterstic function coincides with Θ. The Nagy-Foias theory provides an explicit construction
of the model operator TΘ for any given characteristic function Θ. More-over, as is well known ([8,
theorem 3.4, p.257]), two of these operators S and T are unitarily equivalent if and only if the two
functions ΘS and ΘT coincide. However, it is not easy to determine when two functions Θ and
Ψ coincide. This limits the use of Θ as a complete unitary invariant. Besides, the model TΘ is not
necessarily the best possible description of a cnu contraction with characteristic function Θ. In fact, in
a recent paper [1], the models associated with the constant characteristic functions Θ were described
following the Nagy–Foias construction. Even in this simple situation the model obscures the nature
of the associated operators.

In the first part of this note we shall describe upto unitary equivalence all the cnu contractions
which possess a constant characteristic function. In case one of the two defect indices is finite, we
show that the characteristic function is constant if and only if the operator admits a direct sum
decomposition such that each summand is one of the bilateral weighted shifts with weight sequence
{. . . , 1, λ, 1, . . .}, 0 < λ < 1, or the unilateral shift or the adjoint of the unilateral shift. In the
general case, we appeal to direct integral theory and obtain a similar result. One consequence of
this general result is that the characteristic function of an irreducible contraction is constant if and
only if it is one of the shift operators described above. It was shown in [1] that these operators are
examples of homogeneous contractions. In the second part we extend this class of examples to produce
homogeneous operators which are not necessarily contractions. We also show that a cnu contraction
with either one of the defect indices finite is homogeneous if and only if the characteristic function
is constant. More generally, it turns out that the restriction of a homogeneous contraction to its
defect space is in the Hilbert-Schmidt class if and only if its characteristic function is a constant. One
striking consequence is that, except for the weighted shifts mentioned above, any other irreducible
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homogeneous contraction has the bilateral shift of infinite multiplicity as its minimal unitary dilation.
Along the way, we put the notion of a homogeneous operator on a rigorous footing and obtain a

usable criterion for testing the homogeneity of an operator which does not require prior knowledge
about the spectrum of the operator. As an application, we give an abstract nonsense construction
of homogeneous operators which covers all the hitherto known examples of irreducible homogeneous
operators. We also show that, if the conditions are right, one can get an entire continuum of homo-
geneous operators starting with a single operator in this class. Last, but not the least, we explicitly
record a characterisation of homogeneity of cnu contractions in terms of their characteristic functions.
This result was implicit in the proof of Theorem 2.1 in [1]

1 Constant characteristic functions

All Hilbert spaces in this paper are separable and all operators are bounded linear operators between
Hilbert spaces. For a Hilbert space H, U(H) will denote the group of unitary operators on H. Recall
that DT = (I − T ∗T )1/2 and DT ∗ = (I − TT ∗)1/2 are the defect operators associated with a cnu
contraction T . The range closures DT and DT ∗ of DT and DT ∗ , respectively, are called the defect
spaces. The dimension of these subspaces are said to be the defect indices. A contraction C is said
to be pure if ‖Cx‖ < ‖x‖ for all non–zero vectors x. We will say that two operators Ci : Li → Ki,
i = 1, 2, coincide if there exist unitary operators τ : L2 → L1 and τ∗ : K1 → K2 such that τ∗C1τ = C2.
The opeartor valued functions Θi(z) : Li → Ki, i = 1, 2, are said to coincide if there exist unitary
operators τ : L2 → L1 and τ∗ : K1 → K2 such that τ∗Θ1(z)τ = Θ2(z) for all z. Note that this
is stronger than merely requiring that Θ1(z) and Θ2(z) coincide for each z. An operator is quasi
invertible if it has trivial kernel and dense range. ID and T will denote the open unit disc and the
unit circle, respectively.

Lemma 1.1 Let C be a contraction between two Hilbert spaces. Then the following are equivalent.

1. C is a pure contraction.

2. C∗ is a pure contraction.

3. (I − C∗C)1/2 is quasi invertible.

4. (I − CC∗)1/2 is quasi invertible.

Proof: To show that 1 and 2 are equivalent, first note that the contraction C is pure if and
only if the kernel of the operator (I −C∗C)1/2 is trivial. However, if C is quasi invertible then polar
decomposition shows that (I −CC∗)1/2 and (I −C∗C)1/2 are unitarily equivalent, which implies the
stated equivalence in this case. For the general case, write C = C̃ ⊕ 0 with C̃ quasi invertible, and
note that C is pure if and only if C̃ is pure.

Clearly, if C is a pure contraction then the kernel of the self adjoint operator (I − C∗C)1/2 is
trivial and hence this operator has dense range. Thus (I − C∗C)1/2 is quasi invertible.

The equivalence of 1 and 2 shows that the the operator (I − CC∗)1/2 is quasi invertible as well.
Finally, if (I − C∗C)1/2 is quasi invertible then it is obvious that C is pure. 2
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Notation 1.2 Let C : L → K be a bounded operator from the Hilbert space L into the Hilbert space
K. Put

Hn =
{L if n ≤ 0
K if n > 0.

Let H = ⊕n∈ZZHn. Define an operator TC : H → H as follows :

TC

∣∣∣Hn

=
{

I : Hn → Hn+1, n 6= 0
C n = 0.

( Clearly, ‖TC‖ = max{‖C‖, 1}. ) In particular, for scalars λ ≥ 0, Tλ will denote the bilateral shift
with weight sequence {. . . , 1, λ, 1, . . .}.

Theorem 1.3 For each pure contraction C, the operator TC is a cnu contraction with constant
characteristic function. Conversely, each cnu contraction with constant characteristic function is
unitarily equivalent to TC for some pure contraction C.

Proof: Let H̃ be a reducing subspace for T = TC . If T were unitary on H̃ then for any x ∈ H̃, we
would have ‖Tnx‖ = ‖x‖ = ‖T ∗n‖, n = 1, 2, . . .. From the definiton of the operator TC and the fact
that C is pure it follows that x = 0. This shows that H̃ is the trivial subspace. Therefore, TC has no
unitary part and hence is a cnu contraction.

It is easy to verify that the adjoint T ∗ = T ∗C : H → H is given by

T ∗
∣∣∣Hn

=
{

I : Hn → Hn−1 n 6= 1
C∗ n = 1.

Consequently,

(I − T ∗T )1/2
∣∣∣Hn

=
{

0 : Hn → Hn n 6= 0
(I − C∗C)1/2 n = 0.

Similarly,

(I − TT ∗)1/2
∣∣∣Hn

=
{

0 : Hn → Hn n 6= 1
(I − CC∗)1/2 n = 1.

Since C is a pure contraction, by Lemma 1.1 both the operators (I −C∗C)1/2 and (I −CC∗)1/2 have
dense range. It follows that

DT = {x ∈ H : xn = 0 for n 6= 0}
and

DT ∗ = {x ∈ H : xn = 0 for n 6= 1}.
It is now evident that DT ∗(T ∗)n−1DT

∣∣DT
= 0 for n ≥ 1. Thus the characteristic function ofTC is

given by

ΘTC
(z) def=

[
−T +

∞∑

n=1

znDT ∗(T ∗)n−1DT

]∣∣∣∣∣
DT

= − TC

∣∣∣DT

,

for all z ∈ ID. The fact that − T |DT
coincides with the operator −C : L → K completes the first

half of the proof.
Conversely, let T be a cnu contraction with constant characteristic functon ΘT (z) = −C : L → K

for all z ∈ D. Then C = −ΘT (0) is a pure contraction. Furthermore, by the direct part of this
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theorem, the characteristic function of the operator TC coincides with ΘT . Therefore, TC is unitarily
equivalent to T . This completes the proof of the theorem. 2

We shall show that the cnu contraction TC is a direct integral of ordinary weighted shift operators.
Let L0 (resp. K0) be the kernel (resp. range closure) of C and let L1 (resp. K1) be its ortho-

complement in L (resp. in K). The operator C admits a 2× 2 matrix representation with respect to
this decomposition. Indeed, C = C̃ ⊕ 0. It is clear that the operator TC is unitarily equivalent to the
direct sum TC̃ ⊕ T0. Let Vi be the unilateral shift or its adjoint according as i > 0 or i < 0. It is not
hard to verify that the operator T0 is unitarily equivalent to ⊕n

i=−mVi, i 6= 0, where m = dimL0 and
n = dimK0.

Thus it is enough to obtain a simple representation for the cnu contraction TC with the assumption
that C : L → K is quasi invertible. In this case, let U : K → L be any unitary operator. Since
CU : K → K has dense range, it follows that the operator W in the polar decomposition CU = WP
is unitary. Hence the operator C coincides with the positive operator P : K → K. The characteristic
functions of the operators TC and TP are the constant functions −C and −P respectively, which
coincide. Hence the cnu contraction TC is unitarily equivalent to TP by [8, Theorem 3.4, p.257].

If either the dimension of L or that of K is finite then both L and K are of the same finite
dimension k. In this case, the positive operator P is unitarily equivalent to a diagonal operator
Λ. Another appeal to [8, theorem 3.4, p.257] shows that the operators TP and TΛ are unitarily
equivalent. However, it is easy to construct a unitary operator intertwining TP and TΛ explicitly
using the unitary implimenting the equivalence of P and Λ. Let {λ1, · · · , λk} be the eigenvalues of Λ
arranged in decreasing order. Again, it is straightforward to verify that TΛ and ⊕k

`=1Tλ`
are unitarily

equivalent. We point out that the operator Tλ`
is the weighted bilateral shift with weight sequence

{. . . , 1, λ`, 1 . . .}. Further, the characteristic function of the operator ⊕k
`=1Tλ`

is constant.
Before we discuss the case where both the defect indices are possibly infinite, it is good to record

our observations so far as

Corollary 1.4 Let T be any cnu contraction with at least one finite defect index. The operator T
has constant characteristic function if and only if it is unitarily equivalent to

(
⊕n

i=−m

i6=0
Vi

)
⊕

(
⊕k

`=1 Tλ`

)

for uniquely determined integers m,n, k ≥ 0, and uniquely determined positive scalars 0 < λ1 ≤ · · · ≤
λk < 1.

Now we allow the possibility that both the defect indices for the operator TC may be infinite.
If C is quasi invertible then the discussion preceeding Corollary 1.4 shows that the operator TC is
unitarily equivalent to TP for some positive operator P . In the present situation P need not be a finite
dimensional operator. However, the spectral theorem guarantees a direct integral decomposition for
P . This will allow us to obtain an analogue of Corollary 1.4 in case both defect indices are infinite.
First, we recall some relevant facts from the theory of direct integrals.

Let (Λ,m) be a measure space and for λ ∈ Λ, let Hλ be a non–zero separable Hilbert space. A
section is a map s : Λ → ∪λ∈ΛHλ such that s(λ) ∈ Hλ. We will denote the linear space of all sections
by S. We adopt the following definition from [2].

Definition 1.5 The pair (Hλ : λ ∈ Λ, Γ) is said to be a measurable field of Hilbert spaces if Γ is a
linear subspace of S such that
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1. for each h ∈ Γ, the function λ → ‖s(λ)‖ is measurable,

2. if s0 is in S and for every s ∈ Γ, the function λ → 〈s0(λ), s(λ)〉 is measurable then s0 is in Γ,

3. there exists a sequence sn ∈ Γ such that {sn(λ)} spans Hλ for each λ ∈ Λ.

Mackey [5, p. 91] calls such a sequence {sn} a pervasive sequence. It can be shown that the existence
of a pervasive sequence is equivalent to the measurability of the extended integer valued function d
on Λ defined by d(λ) = dimHλ. The direct integral

∫
Λ⊕Hλ dm is the obvious Hilbert space on the

set of sections s in Γ such that
∫
Λ ‖s(λ)‖2 dm is finite (two such sections being identified if they are

almost everywhere (m) equal). We refer the reader to [2] for further details.
Suppose for each λ ∈ Λ, we have an operator T (λ) on Hλ such that

1. The function λ → 〈T (λ)s1, s2〉 is measurable for each pair of sections s1, s2 ∈
∫
Λ⊕Hλdm,

2. ess sup ‖T (λ)‖ < ∞.

We then define
∫
Λ⊕T (λ), the direct integral of {T (λ)} by the formula

( ∫

Λ
⊕T (λ)(s)

)
(µ) = T (µ)s(µ), s ∈

∫

Λ
⊕Hλdm; λ, µ ∈ Λ. ( 1.1 )

Define the multiplication operator (Ms)(λ) = λs(λ), s ∈ ∫
Λ⊕Hλ dm. It is convenient to use

the suggestive notation
∫
Λ⊕λ dm for the operator M . The spectral theorem says that every normal

operator is unitarily equivalent to a multiplication operator for a suitable choice of a measure m on
it’s spectrum. (m is the so called scalar spectral measure of the given operator.) Thus we may write
our positive contraction P as such a multiplication operator, that is, P =

∫
Λ⊕λ dm, where Λ ⊆ [0, 1]

is the spectrum of P . It is easily seen that P is a pure contraction if and only if m{1} = 0. One may
verify directly that the operators TP and TM are unitarily equivalent.

Let Gλ denote the direct sum of infinitely many copies of Hλ. Let Γ be the linear space of sections
implicit in the direct integral representation of M . Define Γ̃ to be the linear space of all sections
s : Λ ⇒ ∪λ∈ΛGλ such that λ 7→ si(λ) is in Γ for all i. (Here si(λ) is the projection of s(λ) into the
i-th component of Gλ The pair (Gλ : λ ∈ Λ, Γ̃) is easily seen to be a measurable field of Hilbert spaces.
Let

∫
Λ⊕Gλ dm be the associated direct integral. Define the map η : ⊕∞−∞

∫
Λ⊕Hλ dm → ∫

Λ⊕Gλ dm
by

η( ⊕∞i=−∞ (λ → si(λ)) ) = ( λ → (⊕∞i=−∞ si(λ)) ).

It is easily seen that η is unitary. A simple calculation shows that ηTMη∗ : ⊕∞−∞
∫
Λ⊕Hλ dm →∫

Λ⊕Gλ dm is the operator
∫
Λ⊕Tλ·I dm. Let d(λ) = dim Hλ and let d(λ) · Tλ = ⊕d(λ)

1 Tλ. For each
fixed λ, the operator Tλ·I : Gλ → Gλ is unitarily equivalent to d(λ) · Tλ. This unitary equivalence in
turn effects an unitary equivalence of the operators

∫
Λ⊕Tλ·I dm and

∫
Λ⊕d(λ) · Tλ dm.

Before we continue, let us record all the different unitary equivalences we have used so far. Let
V = ⊕n

i=−mVi, i 6= 0, where Vi be the unilateral shift or its adjoint according as i > 0 or i < 0. We
have

TC
∼= TC̃⊕0

∼= TP ⊕ V ∼= TM ⊕ V ∼=
∫

Λ
⊕Tλ·I dm⊕ V ∼=

∫

Λ
⊕d(λ) · Tλ dm⊕ V . ( 1.2 )

Note that if (Λ ⊆ [0, 1],m) is a measure space and d : Λ → IN is any measurable function then∫
Λ⊕d(λ)·Tλ dm⊕V is a cnu contraction with constant characteristic function. Thus we have proved :
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Theorem 1.6 The operator T is a cnu contraction with constant characteristic function if and only
if

T =
(
⊕i∈I Vi

)
⊕

∫

Λ
d(λ) · Tλ dm

where m is a Borel measure with support Λ ⊂ [0, 1], m({1}) = 0, I is a countable indexing set and
each Vi (i ∈ I) is the unilateral shift or it’s adjoint, d is a (Borel) extended integer–valued dimension
function on Λ, and d(λ) · Tλ denotes the direct sum of d(λ) copies of Tλ.

Corollary 1.7 The only irreducible contractions with constant characteristic function are the for-
ward shift, the backward shift and the operators Tλ, 0 < λ < 1.

Proof: If Λ is not a singleton then the operator
∫
Λ d(λ) ·Tλ dm is reducible since any partition of Λ

into two Borel sets of positive measure induces a direct sum decomposition of the direct integral into
two parts. On the other hand, if Λ = {λ}, this operator is a d(λ) – fold direct sum of the operator
Tλ. So the operator

∫
Λ d(λ) · Tλ dm is irreducible only if Λ = {λ} and d(λ) = 1. To complete the

proof it suffices to note that the operator T0 is not irreducible (it is the direct sum of the forward and
backward shifts). 2

2 Homogeneous operators

Let Möb(ID) be the group of biholomorphic automorphisms of the unit disk ID. Möb(ID) consists of
the functions ϕ of the form ϕ = ϕθ,a, where

ϕθ,a(z) = eiθ z − a

1− āz
, |a| < 1 and θ ∈ [0, 2π).

Definition 2.1 A bounded operator T is homogeneous if its spectrum is contained in the closed
unit disc and T is unitarily equivalent to ϕ(T ) for each ϕ in Möb(ID).

Lemma 2.2 Let T be a bounded operator. Suppose that ϕ(T ) is unitarily equivalent to T for each ϕ
in some neighbourhood of the identity in Möb(ID). Then T is homogeneous and the spectrum σ(T ) is
either the unit circle or the closed unit disk – according as T is invertible or not.

(Note that however large the spectrum of a bounded operator T may be, each ϕ in a sufficiently
small neighbourhood of identity has analytic continuation to a neighbourhood of the spectrum – so
that ϕ(T ) is defined for such ϕ.)

Proof: We first show that σ(T ) is contained in the closed unit disc. Suppose not. Let K be the
union of the spectrum with the closed unit disk. Then K is a compact set properly containing the
closed unit disk. Get hold of a neighbourhood U of the identity in Möb(ID) such that each element of
U extends analytically to some neighbourhood of K. Then ϕ(T ) is well–defined for ϕ ∈ U . Replacing
U by a smaller neighbourhood if necessary, we may assume that ϕ(T ) is unitarily equivalent to T
for ϕ ∈ U . By the spectral mapping theorem, each ϕ ∈ U maps σ(T ) into σ(ϕ(T )), but the latter
is nothing but σ(T ). Thus each ϕ ∈ U maps maps σ(T ) into itself and of course, it maps the closed
unit disk into itself. Hence each ϕ ∈ U maps K into itself and is analytic in some neighbourhood
of K. It follows that the same is true of the subgroup generated by U . Connectedness of the group
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Möb(D) implies that this subgroup is the whole of Möb(ID). However, there is no compact set K
properly containing the closed unit disk such that each ϕ in Möb(ID) maps K into itself. This shows
that σ(T ) is contained in the closed unit disk. Thus ϕ(T ) is well–defined for all ϕ in Möb(ID) and it
is unitarily equivalent to T for all ϕ ∈ U . But for any operator T with the spectrum σ(T ) contained
in the closed unit disc, the set of all ϕ for which ϕ(T ) is unitarily equivalent to T is a subgroup of
G. Since this subgroup contains a neighbourhood of identity, it must be the whole of Möb(ID) by
connectedness. So, T is homogeneous. The second half of the lemma is immediate since the above
argument shows that the closed set σ(T ) ⊆ ĪD is invariant under Möb(ID), while ĪD and ∂ID are clearly
the only invariant closed subsets of ĪD. 2

Recall that a projective representation of a standard Borel group G on a Hilbert space 〈 is a
mapping π of G into the group U(H) of unitary operators on H, such that

1. π(e) = 1, where e is the identity of G,

2. π(g)π(h) = m(g, h)π(gh) for all g, h ∈ G, where m(g, h) is in the unit circle T,

3. g → 〈π(g)ζ, η〉, is a Borel function for each ζ, η ∈ H.

The function m is the multiplier associated with π and is uniquely determined by π. It has the
following properties

a m : G×G → T is Borel,

b m(g, e) = 1 = m(e, g), where e is the identity of the group G, g ∈ G.

c m(k, gh)m(g, h) = m(k, g)m(kg, h), g, h, and k in G.

The set of all multipliers M on the group G is itself a group under point–wise multiplication, called
the multiplier group. If there is a Borel function f : G → T such that

m(g, h) = f(g)f(h)f(gh)−1,

then the multiplier m is said to be trivial. Note that in this case, if we set

σ(g) = f(g)−1π(g),

then g → σ(g) is a linear representation of the group G, that is a strongly continuous homomorphism
([9], Lemma 5.28, p. 181).

It was shown in [7] that if T is an irreducible homogeneous operator then there exists a projective
representation π : Möb(ID) → U(H) such that π(ϕ)∗Tπ(ϕ) = ϕ(T ). We shall say that π(g) is a
representation associated with the homogeneous operator T whenever this holds – whether or not T
is irreducible.

Let Ω be a standard Borel G space (cf. [9, p. 158]), G being a fixed locally compact second
countable group. Let V be a normed linear space and let GL(V ) be the group of invertible bounded
linear operators on V . A Borel map c : G× Ω → GL(V ) is said to be a (G,Ω, GL(V )) cocycle [9, p.
174] if the following two properties are satisfied :

1. c(e, z) = 1 for all z ∈ Ω,
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2. c(g1g2, z) = m(g1, g2)c(g1, g2z)c(g2, z) for all (g1, g2, z) ∈ G×G× Ω where m : G×G → T is a
multiplier on the group G.

Note that the above conditions are slightly different from those in [9].
Let H be Hilbert space of functions on Ω with values in V . For each g in G, let (π(g)f)(z) =

c(g−1, z) · f(g−1(z)), f ∈ H, for a (G,Ω, GL(V )) cocycle c(g, z). If π(g) is unitary for each g ∈ G
then the fact that c : G × Ω → GL(V ) satisfies the cocycle identities implies that π is a projective
representation of the group G on H. It is called the multiplier representation with cocycle c.

Proposition 2.3 Let Ω denote either the unit disk or the unit circle. If π is any multiplier rep-
resentation of Möb(ID) on a Hilbert space H of functions defined on Ω with values in V then the
multiplication operator M defined by (Mf)(z) = zf(z) on H is homogeneous with associated repre-
sentation π – provided M is bounded.

Proof: The proof merely consists of the verification :

(Mπ(ϕ−1)f)(z) = (π(ϕ−1)ϕ(M)f)(z),

whenever ϕ ∈ Möb(ID) is such that ϕ(M) is defined (so that ϕ(M) is multiplication by ϕ). (In view
of Lemma 2.2 and the parenthetical remark following its statement, this is sufficient for homogeneity.)
But the left hand side of this equality evaluates to z · c(ϕ−1, z) · f(ϕ−1(z)), whereas the right hand
side is c(ϕ−1, z)(ϕ · f)(ϕ−1(z)). 2

In [1], it was shown that any cnu contraction with a constant characteristic function is homoge-
neous (This is also immediate from Theorem 2.9 below). In view of Theorem 1.3 above, this means
that the operator TC is homogeneous for any pure contraction C We show next that, even if C is
just a bounded operator, TC is homogeneous. We will verify the homogeneity of TC in two steps.
First, we will assume that dimK = 1 = dimL. In this case, TC is one of the bilateral weighted shift
operators Tλ, λ > 0. Next, we will appeal to direct integral theory to settle the general case.

The fact that Tλ is homogeneous follows from the following general proposition which may be of
some independent interest.

Proposition 2.4 Let T be a homogeneous operator on a Hilbert space H and suppose that π is a
representation of the group Möb(ID) on H which is associated with T . Let M be a reducing subspace

for π and assume that T (M) ⊆M. Finally, let T =
(

T1 0
S T2

)
be the matrix of T and π = π1 ⊕ π2

with respect to the decomposition H = M⊥ ⊕ M. Then T1, T2 are homogeneous with associated

representations π1, π2 respectively. Also, for any scalar α ≥ 0,
(

T1 0
αS T2

)
is homogeneous with

associated representation π.

Proof: This is immediate from the following lemma and the observation that if S satisfies the
condition of the Lemma then so does αS.

Lemma 2.5 With notation as above, T is homogeneous with associated representation π if and only if
both T1 and T2 are homogeneous with associated representation π1 and π2, and S satisfies the identity

eiθ(1− |a|2)(1− āT2)−1S(1− āT1)−1 = π∗1(ϕ)Sπ2(ϕ),

for all ϕ = ϕθ,a in some neighbourhood of the identity in Möb(ID).
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Proof: If ϕ is in a sufficiently small neighbourhood of the identity so that ϕ(T ) is defined, then

ϕ(T ) =
(

ϕ(T1) 0
eiθ(1− |a|2)(1− āT1)−1S(1− āT2)−1 ϕ(T2)

)

(This is verified by multiplying the right hand side by I − āT =
(

I − āT1 0
−āS I − āT2

)
.) and

π(ϕ)∗Tπ(ϕ) =
(

π1(ϕ)∗T1π1(ϕ) 0
π1(ϕ)∗Sπ2(ϕ) π2(ϕ)∗T2π2(ϕ)

)
.

Now the Lemma follow from Lemma 2.2 by equating the matrix entries on the right hand side of
these equations. 2

Corollary 2.6 All the operators Tλ, λ > 0 are homogeneous. They are irreducible for λ 6= 1.

Proof: For λ 6= 1, Tλ is a bilateral weighted shift with an aperiodic weight sequence, so that
it is irreducible [4, Problem 129]. Note that the unitary representation π of the group Möb(ID) on
L2(T) defined by (π(ϕ))(f) = ((ϕ−1)′)1/2f ◦ϕ−1 has the Hardy space as an invariant subspace. Also,
Proposition 2.3 shows that π(ϕ)∗Mzπ(ϕ) = ϕ(Mz) for all ϕ in Möb(ID). If we write the operator

Mz as
(

T1 0
S T2

)
then by Proposition 2.4, the operators

(
T1 0
λS T2

)
, λ > 0 are homogeneous. The

multiplication operator Mz is unitarily equivalent to the bilateral shift. Consequently, the operators(
T1 0
λS T2

)
are unitarily equivalent to the bilateral weighted shifts Tλ. 2

To show that TC is homogeneous, first assume that C : L → K is quasi invertible. We emphasize
that C is not necessarily a pure contrction but merely bounded. In this case, let C = WP be the
polar decomposition, where W : L → K is unitary and P : L → L is positive [4, problem 105]. Let
W = ⊕∞i=−∞Wi, where Wi is W : L → K or I : L → L according as i ≥ 0 or i < 0. It is easily verified
that W conjugates TC to TP .

Recalling the sequence of unitary equivalences in the display ( 1.2 ), we note that all of them
except for the second one remain valid even if C is merely bounded. The second equivalence was
produced via the Sz.-Nagy – Foias theory for contractions. However, as the preceeding paragraph
shows, even in this case we don’t require C to be a pure contraction.

Theorem 2.7 For any bounded operator C, the operator TC is homogeneous.

Proof: The discussion preceeding the theorem shows that TC is unitarily equivalent to V ⊕∫
Λ⊕d(λ) · Tλ dm. The operator V , being the direct sum of copies of the unilateral shift and its

adjoint, is homogeneous. This follows from homogeneity of the the unilateral shift and the obvious
fact that homogeneity is preserved by taking adjoints and direct sums. The fact that the unilateral
shift is homogeneous was first noted in [6]. This fact also follows from Lemma 2.3 by restricting the
natural representation of the group Möb(ID) on L2(T) to the Hardy space H2(T). We need to verify
that

∫
Λ⊕d(λ) · Tλ dm is homogeneous. There is a representation π such that π(ϕ) intertwines the

two operators Tλ and ϕ(Tλ). It is then easy to verify that the representation ϕ 7→ ∫
Λ⊕d(λ) ·π(ϕ) dm

intertwines the operators
∫
Λ⊕d(λ) · Tλ dm and ϕ(

∫
Λ⊕d(λ) · Tλ dm). 2

Corollary 2.8 For any bounded operator C, the spectrum of TC is the unit circle or the unit disc
according as C is invertible or not.
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Proof: It is clear from the definition of TC that it is invertible if and only if C is invertible.
Therefore this is immediate from Lemma 2.2 and Theorem 2.7. 2

Remark: It was pointed out in [8, p. 262] that if the characteristic function of a cnu contraction
T is the constant function A where 0 ≤ A ≤ I and 0 and 1 are not eigen values of A then the
spectrum of T is either the unit circle or the closed unit disk according as A is invertible or not. Since
the operators {TC : C bounded} include all cnu contractions with constant characteristic function,
Corollary 2.8 is a significant extension of this result of Nagy and Foias.

The following characterisation of homogeneity is implicit in the proof of Theorem 2.1 in [1] :

Theorem 2.9 Let T be a cnu contraction with characteristic function Θ. Then T is homogeneous if
and oly if Θ ◦ ϕ−1 coincides with Θ for each ϕ ∈ Möb(ID).

Proof: By [8, p. 240], Θ ◦ϕ−1 coincides with the characteristic function of ϕ(T ) for ϕ in Möb(ID),
for any cnu contraction T .Further, T is homogeneous iff the characteristic function of ϕ(T ) coincides
with ΘT , i.e., iff ΘT coincides with ΘT ◦ ϕ−1 for any ϕ in Möb(ID). 2

Theorem 2.10 Let T be a homogeneous cnu contraction. Then T | DT is in the Hilbert – Schmidt
class if and only if T is unitarily equivalent to TC for some pure contraction C in the Hilbert – Schmidt
class.

Proof: By the previous theorem ΘT ◦ϕ−1 coincides with ΘT for each ϕ ∈ Möb(ID). Since Möb(ID)
is transitive on ID this implies that ΘT (z) coincides with ΘT (0) for all z ∈ ID. Also our assumption on
T means that ΘT (0) is in the Hilbert – Schmidt class. This implies that the Hilbert-Schmidt norm of
Θ(z) is constant. That is, viewed as a map into the Hilbert space of Hilbert – Schmidt operators, ΘT

is a Hilbert space valued analytic function of constant norm. Now, an appeal to the strong maximum
modulus principle ( see [3, Corollary III.1.5, p.270] ) yields that ΘT is a constant, so that Theorem
1.3 completes the direct part of the proof.

The converse is immediate from the fact (proved in the course of the proof of Theorem 1.1) that
for T = TC , ΘT (0) coincides with −C. 2

Corollary 2.11 The only irreducible homogeneous contractions with at least one defect index finite
are the operators Tλ, 0 < λ < 1, and the unweighted forward and backward shifts.

If one of the defect indices of a cnu contraction is infinite then the minimal unitary dilation is a
bilateral shift of infinite multiplicity [8, Chapter II, Theorem 7.4 (a)]. Thus we have :

Corollary 2.12 Except for the operators in the previous Corollary, the minimal unitary dilation of
any irreducible homogeneous contraction is the direct sum of infinitely many copies of the bilateral
shift.

Remark: Let {en : n ∈ Z} be the standard orthonormal basis in the Hilbert space `2(Z). Fix
λ, 0 < λ < 1, and put ρ +

√
1− λ2. Let K be the closed subspace, in `2(Z)⊕ `2(Z), spanned by the

vectors λen ⊕ %en, n < 0 and en ⊕ 0, n ≥ 0. Let U be the bilateral shift acting on `2(Z) ⊕ `2(Z).
An easy verification shows that the compression of the operator U ⊕ U to K is the bilateral shift
with weight sequence {. . . , 1, 1, λ, 1, 1, . . .}, which is the homogeneous operator Tλ. Thus U ⊕U is an
unitary dilation for the operator Tλ. It is not hard to verify that U ⊕ U is minimal. We conclude
that the minimal unitary dilation of the operator Tλ is a bilateral shift of multiplicity 2. Thus the
exceptions made in the statement of Corollary 2.12 are truly exceptional.
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