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ABSTRACT. A curvature inequality is established for contractive commuting tuples of operators T in the
Cowen-Douglas class Bn(Ω) of rank n defined on some bounded domain Ω in Cm. Properties of the ex-
tremal operators, that is, the operators which achieve equality, are investigated. Specifically, a substantial part
of a well known question due to R. G. Douglas involving these extremal operators, in the case of the unit disc,
is answered.

1. INTRODUCTION

For a fixed n ∈ N, and a bounded domain Ω ⊆ Cm, the important class of operators Bn(Ω∗), Ω∗ = {z̄ :
z ∈ Ω}, defined below, was introduced in the papers [4] and [5] by Cowen and Douglas. An alternative
approach to the study of this class of operators is presented in the paper [7] of Curto and Salinas. For
w = (w1, w2, . . . , wm) in Ω∗, let DT−wI : H → H ⊕ H ⊕ · · · ⊕ H be the operator: DT−wI(h) =
⊕mk=1(Tk − wkI)h, h ∈ H.

Definition 1.1. A m-tuple of commuting bounded operators T = (T1, T2, . . . , Tm) on a complex separable
Hilbert spaceH is said to be in Bn(Ω∗) if

(1) dim
(
∩mk=1 ker(Tk − wkI)

)
= n for each w ∈ Ω∗;

(2) the operator DT−wI , w ∈ Ω∗, has closed range and
(3)

∨
w∈Ω∗

(
∩mk=1 ker(Tk − wkI)

)
= H

For any commuting tuple of operators T in Bn(Ω∗), the existence of a rank n holomorphic Hermitian
vector bundle ET over Ω∗ was established in [5]. Indeed,

ET :=
{

(w, v) ∈ Ω∗ ×H : v ∈ ∩mk=1 ker(Tk − wkI)
}
, π(w, v) = w,

admits a local holomorphic cross-section. In the paper [4], for m = 1, it is shown that two commuting m-
tuple of operators T and S in Bn(Ω∗) are jointly unitarily equivalent if and only if ET and ES are locally
equivalent as holomorphic Hermitian vector bundles. This proof works for the case m > 1 as well.

Suppose K = K (ET , D) is the curvature associated with canonical connection D of the holomorphic
Hermitian vector bundle ET . Then relative to any C∞ cross-section σ of ET , we have

K (σ) =

m∑
i,j=1

Ki,j(σ) dzi ∧ dz̄j ,
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where each Ki,j is a C∞ cross-section of Hom(ET , ET ). Let γ(z) = (γ1(z), . . . , γn(z)) be a local holo-
morphic frame ofET in a neighbourhood Ω∗0 ⊂ Ω∗ of somew ∈ Ω∗. The metric of the bundleET at z ∈ Ω∗0
w.r.t the frame γ has the matrix representation

hγ(z) =
((
〈γj(z), γi(z)〉

))n
i,j=1

.

We write ∂i = ∂
∂zi

and ∂̄i = ∂
∂z̄i
. The co-efficients of the curvature (1, 1)-form K w.r.t the frame γ, are

explicitly determined by the formula:

Ki,j(γ)(z) = −∂̄j
(

(hγ(z))−1
(
∂ihγ(z)

))
, z ∈ Ω∗0.

Set Kγ(z) =
((
Ki,j(γ)(z)

))
.

For a bounded domain Ω in C and for T in Bn(Ω∗), recall that N (k)
w is the restriction of the operator

(T − wI) to the subspace ker(T − wI)k+1. In general, even if m = 1, it is not possible to put the operator
N

(k)
w into any reasonable canonical form, see [4, sec. 2.19]. Here we show how to do this for any m ∈ N,

assuming that k = 1. The canonical form of the operator N (1)
w , we find here, is a crucial ingredient in

obtaining the curvature inequality for a commuting tuple of operator T in Bn(Ω∗), which admit Ω∗, the
closure of Ω∗, as a spectral set.

A commutingm-tuple of operator T inBn(Ω∗),may be realized as them-tupleM∗ = (M∗z1 , . . . ,M
∗
zm),

the adjoint of the multiplication by the m coordinate functions on some Hilbert space of holomorphic func-
tions defined on Ω possessing a reproducing kernel K (cf. [4, 7]). The real analytic function K(z, z) then
serves as a Hermitian metric for the vector bundle ET w.r.t. the holomorphic frame γi(z̄) := K(·, z)ei,
i = 1, . . . , n, z̄ in some open subset Ω∗0 of Ω∗. Here the vectors ei, i = 1, . . . , n, are the standard unit
vectors of Cn. For a point z ∈ Ω, let KT (z̄) be the curvature of the vector bundle ET . It is easy to compute
the co-efficients of the curvature KT (z̄) explicitly using the metric K(z, z) for m = 1, n = 1, namely,

Ki,jT (z̄) = − ∂2

∂wi∂w̄j
logK(w,w)|w=z = −‖Kz‖2 〈∂̄jKz, ∂̄iKz〉 − 〈Kz, ∂̄iKz〉〈∂̄jKz,Kz〉

(K(z, z))2
, z ∈ Ω.

First, consider the case of m = 1. Assume that Ω∗ is a spectral set for an operator T in B1(Ω∗), Ω ⊂ C.
Thus for any rational function r with poles off Ω∗, we have ‖r(T )‖ ≤ ‖r‖Ω∗,∞. For such operators T, the
curvature inequality

KT (w̄) ≤ −4π2(SΩ∗(w̄, w̄))2, w̄ ∈ Ω∗,

where SΩ∗ is the Sz̈ego kernel of the domain Ω∗, was established in [11]. Equivalently, since SΩ(z, w) =
SΩ∗(w̄, z̄), z, w ∈ Ω, the curvature inequality takes the form

∂2

∂w∂w̄
logK(w,w) ≥ 4π2(SΩ(w,w))2, w ∈ Ω.(1.1)

Let us say that a commuting tuple of operators T in Bn(Ω∗), Ω ⊂ Cm, is contractive if Ω∗ is a spectral
set for T , that is, ‖f(T )‖ ≤ ‖f‖Ω∗,∞ for all functions holomorphic in some neighborhood of Ω∗.

In this paper, see Theorem 2.4, we generalize the curvature inequality (1.1) for a contractive tuple of
operators T in Bn(Ω∗), which include the earlier inequalities from [14, 13].

Let U+ be the forward unilateral shift operator on `2(N). The adjoint U∗+ is the backward shift operator
and is in B1(D). Let ds be the arc length measure on the unit circle of the complex plane and (H2(D), ds)
denotes the Hardy space. The unilateral shift U+ is unitarily equivalent to the multiplication operator M on
the Hardy space (H2(D), ds). The reproducing kernel of the Hardy space is the Sz̈ego kernel SD(z, a) of
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the unit disc D. It is given by the formula SD(z, a) = 1
2π(1−zā) , z, a ∈ D. A straightforward computation

gives an explicit formula for the curvature KU∗
+

(w) :

KU∗
+

(w) = − ∂2

∂w∂w̄
logSD(w,w) = −4π2(SD(w,w))2, w ∈ D.

Since the closed unit disc is a spectral set for any contraction T (by von Neumann inequality), it follows,
from equation (1.1), that the curvature of the operator U∗+ dominates the curvature of every other contraction
T in B1(D),

KT (w) ≤ KU∗
+

(w) = −(1− |w|2)−2, w ∈ D.

Thus the operator U∗+ is the extremal operator in the class of contractions in B1(D). The extremal property
of the operator U∗+ prompts the following question due to R. G. Douglas.

Question 1.2 (R. G. Douglas). For a contraction T in B1(D), if KT (w0) = −(1− |w0|2)−2 for some fixed
w0 in D, then does it follow that T must be unitarily equivalent to the operator U∗+?

It is known that the answer is negative, in general, however it has an affirmative answer if, for instance, T
is a homogeneous contraction inB1(D), see [10]. From the simple observation thatKT (ζ̄) = −(1−|ζ|2)−2

for some ζ ∈ D if and only if the two vectors K̃ζ and ∂̄K̃ζ are linearly dependent, where K̃w(z) =
(1−zw̄)Kw(z), it follows that the question of Douglas has an affirmative answer in the class of contractive,
co-hyponormal backward weighted shifts. In this paper, we answer Question 1.2 for all those operators
T in B1(D) possessing two additional properties, namely, T ∗ is 2 hyper-contractive and (φ(T ))∗ has the
wandering subspace property for any bi-holomorphic automorphism φ of D mapping ζ to 0. This is Theorem
3.6 of this paper.

If the domain Ω is not simply connected, it is not known if there exists an extremal operator T in B1(Ω∗),
that is, if

∂2

∂w∂w̄
logK(w,w) = 4π2(SΩ(w,w))2, w ∈ Ω,

for some reproducing kernel K defined on Ω×Ω, associated with a operator T in B1(Ω∗) admitting Ω∗ as a
spectral set . Indeed, from a result of Suita (cf. [18]), it follows that the adjoint of the multiplication operator
on the Hardy space (H2(Ω), ds) is not extremal. It was shown in [11] that for any fixed but arbitraryw0 ∈ Ω,
there exists an operator T in B1(Ω∗) for which equality is achieved, at w = w0, in the inequality (1.1). The
question of the uniqueness of such an operator was partially answered recently by the second named author
in [16]. The precise result is that these “point-wise” extremal operators are determined uniquely within the
class of the adjoint of the bundle shifts introduced in [1]. It was also shown in the same paper that each
of these bundle shifts can be realized as a multiplication operator on a Hilbert space of weighted Hardy
space and conversely. Generalizing these results, in this paper, we prove that the local extremal operators
are uniquely determined in a much larger class of operators, namely, the ones that includes all the weighted
Bergman spaces along with the weighted Hardy spaces defined on Ω. This is Theorem 5.1. The authors have
obtained some preliminary results in the multi-variate case which are not included here.

2. LOCAL OPERATORS AND GENERALIZED CURVATURE INEQUALITY

Let Ω be a bounded domain in Cm and T = (T1, T2, . . . , Tm) be a commuting m-tuple of bounded
operators on some separable complex Hilbert space H. Assume that the tuple of operator T is in Bn(Ω∗).
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For an arbitrary but fixed point w ∈ Ω∗, let

Mw =
m⋂

i,j=1

ker(Ti − wi)(Tj − wj).(2.1)

Clearly, the joint kernel∩mi=1 ker(Ti−wi) is a subspace ofMw. Fix a holomorphic frame γ, defined on some
neighborhood of w, say Ω∗0 ⊆ Ω∗, of the vector bundle ET . Thus γ(z) = (γ1(z), . . . , γn(z)), for z in Ω∗0,
for some choice γi(z), i = 1, 2, . . . , n, of joint eigenvectors, that is, (Tj − zj)γi(z) = 0, j = 1, 2, . . . ,m.
It follows that

(2.2) (Tj − wj)(∂kγi(w)) = γi(w)δj,k, i = 1, 2, . . . , n, and j, k = 1, . . . ,m.

The eigenvectors γ(w) together with their derivatives, that is (∂1γ(w), . . . , ∂mγ(w)) is a basis for the
subspaceMw.

The metric of the bundle ET at z ∈ Ω∗0 w.r.t the frame γ has the matrix representation

hγ(z) =
((
〈γj(z), γi(z)〉

))n
i,j=1

.

Clearly, γ̃(z) = (γ1(z), . . . , γn(z))hγ(w)−1/2 is also a holomorphic frame for ET with the additional
property that γ̃ is orthonormal at w, that is, hγ̃(w) = In. We therefore assume, without loss of generality,
that hγ(w) = In.

In what follows, we always assume that we have made a fixed but arbitrary choice of a local holomorphic
frame γ(z) = (γ1(z), . . . , γn(z)) defined on a small neighborhood of w, say Ω∗0 ⊆ Ω∗, such that hγ(w) =
In.

Recall that the local operator Nw = (N1(w), . . . , Nm(w)) is the commuting m-tuple of nilpotent oper-
ators on the subspaceMw defined by Ni(w) = (Ti − wi) |Mw . As a first step in relating the operator T to
the vector bundle ET , pick a holomorphic frame γ, satisfying hγ(w) = In, for the holomorphic Hermitian
vector bundle ET which also serves as a basis for the joint kernel of T . We extend this basis to a basis of
Mw. In the following proposition, we determine a natural orthonormal basis inMw such that the curvature
of the vector bundle ET appears in the matrix representation (obtained with respect to this orthonormal
basis) ofNw.

Proposition 2.1. There exists an orthonormal basis in the subspaceMw such that the matrix representation
of Nl(w) with respect to this basis is of the form

Nl(w) =

(
0n×n tl(w)

0mn×n 0mn×mn

)
,

(
t1(w)

...
tm(w)

)(
t1(w)

t
, . . . , tm(w)

t
)

= t(w)t(w)
tr

= −(Ktγ(w))−1,

where γ is a frame of ET defined in a neighborhood of w which is orthonormal at the point w and Ktγ(z) =((
Kj,i(γ)(z)

))m
i,j=1

.

Proof. For any k = (p − 1)n + q, 1 ≤ p ≤ m + 1, and 1 ≤ q ≤ n, set vk := ∂p−1(γq(w)) and
vi :=

(
v(i−1)n+1, . . . , v(i−1)n+n

)
. Thus vi is also ∂i−1γ, where γ = (γ1, . . . , γn). Hence the set of vectors

{vk, 1 ≤ k ≤ (m + 1)n} forms a basis of the subspace Mw. Let P be an invertible matrix of size
(m+ 1)n× (m+ 1)n and

(u1, . . . ,um+1) := (v1, . . . ,vm+1)


P1,1 P1,2 . . . P1,m+1

P2,1 P2,2 . . . P2,m+1
...

...
. . .

...
Pm+1,1 Pm+1,2 . . . Pm+1,m+1

 ,
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where each Pi,j is a n × n matrix. Clearly, (u1, . . . ,um+1) is a basis, not necessarily orthonormal, in the
subspace Mw. The set of vectors {u = (u1, . . .um+1)} is an orthonormal basis in Mw if and only if
PP̄ t = G−1, where G is the (m+ 1)n× (m+ 1)n, grammian

((
〈vj , vi〉

))
, that is,

G =


hγ(w) ∂1hγ(w) . . . ∂mhγ(w)
∂̄1hγ(w) ∂̄1∂1hγ(w) . . . ∂̄1∂mhγ(w)

...
...

. . .
...

∂̄mhγ(w) ∂̄m∂1hγ(w) . . . ∂̄m∂mhγ(w)

 .

In particular, we choose and fix P to be the upper triangular matrix corresponding to the Gram-Schmidt
orthogonalization process. Following equation (2.2), the matrix representation of Nl(w) w.r.t. the basis
v = (v1, . . . ,vm+1) is [Nl(w)]v =

((
Nl(w)ij

))
, l = 1, 2, . . . ,m, where

Nl(w)ij =

{
0n×n (i, j) 6= (1, l + 1)

In (i, j) = (1, l + 1)
, 1 ≤ i, j ≤ m+ 1.

Therefore w.r.t the orthonormal basis (u1, . . . ,um+1), the matrix of Nl is of the form

[
Nl(w)

]
u

=


0n×n t1l (w) . . . tml (w)
0n×n 0n×n . . . 0n×n

...
...

. . .
...

0n×n 0n×n . . . 0n×n

 =

(
0n×n tl(w)

0mn×n 0mn×mn

)
,(2.3)

where each til(w) is a square matrix of size n, for l, i = 1, 2, . . . ,m and tl(w) is a n × mn rectangular
matrix. It is now evident that for l, r = 1, 2, . . . ,m, we have[

Nl(w)Nr(w)∗
]
u

= Q
[
Nl(w)

]
v
G−1

[
Nr(w)

]
v
Qt,

where Q = P−1. To continue, we write the matrix G−1 in the form of a block matrix:

G−1 =


∗n×n ∗n×n ∗n×n . . . ∗n×n
∗n×n R1,1 R1,2 . . . R1,m

∗n×n R2,1 R2,2 . . . R2,m
...

...
...

. . .
...

∗n×n Rm,1 Rm,2 . . . Rm,m

 =

(
∗n×n ∗n×mn
∗mn×n R

)
,(2.4)

where each Ri,j is a n× n matrix. Then we have[
Nl(w)Nr(w)∗

]
u

=

(
Q1,1Rl,rQ

t
1,1 0n×mn

0mn×n 0mn×mn

)
.

Since P is upper triangular with P1,1 = In, we have u1 = v1P1,1 = v1, that is,

(u1, u2, . . . , un) = (v1, v2, . . . , vn).

As P1,1 = In, we have Q1,1 = In. Hence w.r.t the orthonormal basis (u1, . . . ,um+1) of the subspace
Mw, the linear transformation Nl(w)Nr(w)∗ has the matrix representation

[Nl(w)Nr(w)∗]u =

(
Rl,r 0n×mn

0mn×n 0mn×mn

)
.(2.5)
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Let t(w) be the mn×mn matrix given by

t(w) =

 t1(w)
t2(w)

...
tm(w)

.
Now combining equation (2.3) and equation (2.5), we then have

t(w)t(w)
tr

= R.(2.6)

To complete the proof, we have to relate the block matrix R to the curvature matrix Kγ(w) w.r.t the frame
γ. Recalling (2.4), we have that

G−1 =

(
∗n×n ∗n×mn
∗mn×n R

)
.

The Grammian G admits a natural decomposition as a 2× 2 block matrix, namely,

G =


hγ(w) ∂1hγ(w) . . . ∂mhγ(w)
∂̄1hγ(w) ∂̄1∂1hγ(w) . . . ∂̄1∂mhγ(w)

...
...

. . .
...

∂̄mhγ(w) ∂̄m∂1hγ(w) . . . ∂̄m∂mhγ(w)

 =

(
hγ(w) Xn×mn
Lmn×n Smn×mn

)
.

Computing the 2× 2 entry of the inverse of this block matrix and equating it to R, we have

R−1 = S − Lhγ(w)−1X

=
((
∂̄i∂jhγ(w)

))m
i,j=1

−
((

(∂̄ihγ(w))hγ(w)−1(∂jhγ(w))
))m
i,j=1

=
((
hγ(w)∂̄i(hγ(w)−1∂jhγ(w))

))
= −

((
hγ(w)Kj,i(γ)(w)

))
where

((
Ki,j(γ)(w)

))m
i,j=1

denote the matrix of the curvature K at w ∈ Ω∗0 w.r.t the frame γ of the bundle
ET on Ω∗0 and Ktγ(w) =

((
Kj,i(γ)(w)

))m
i,j=1

. Also, by our choice of the frame γ we have hγ(w) = In.

Hence it follows that

t(w)t(w)
tr

= R = −
(
Ktγ(w)

)−1
.(2.7)

This completes the proof. �

The matrix representation of the operator Ti|Mw
w.r.t. the orthonormal basis u = (u1, . . . ,um+1) in the

subspaceMw is of the form [
Ti|Mw

]
u

=

(
wiIn ti(w)

0mn×n wiImn

)
, i = 1, . . . ,m.

It is well known that the curvature (1, 1) form determines the local equivalence class of a holomorphic
Hermitian vector bundle. Since the class of such vector bundles and those of commuting m - tuples of
operators in B1(Ω) are in one to one correspondence, one would expect to find a direct proof that the
curvature determines the unitary equivalence class of these m - tuple of operators. Such proofs exist (see
[4] for the case of m = n = 1, [6] for m = 2, n = 1 and finally, [12, Theorem 2.1] for arbitrary m but
still n = 1). It shows that the curvature is indeed obtained from the holomorphic frame and the first order
derivatives using the Gram-Schmidt orthonormalization. However, the relationship between the curvature
invariant and the operator is not very direct if the rank of the vector bundle is not 1, see [4, section 2.19].

6



Never the less, using the description of the local operators Ni(w) :=
[
Ti|Mw

]
u

, 1 ≤ i ≤ n, we obtain the
following theorem.

Theorem 2.2. Suppose that two m-tuples of operators T and T̃ in Bn(Ω) are unitarily equivalent. Let γ
(resp. γ̃) be a holomorphic frame for ET (resp. E

T̃
). Assume, without loss of generality, that the frames γ

and γ̃ are orthonormal at w ∈ Ω. Then the curvature Kγ(w) is unitarily equivalent to Kγ̃(w), w ∈ Ω.

Proof. Let V =
m⋂
i=1

ker(Ti − wi) ⊆ Mw. With respect to the decompositionMw = V ⊕ V ⊥, the local

operator (Ti − wi)|Mw
is of the form:

[(Ti − wiI)|Mw
] =

(
0n×n ti(w)

0mn×n 0mn×mn

)
, i = 1, 2, . . . ,m,

where ti(w) is a n×mn rectangular matrix, see Equation (2.3).
Suppose that T and T̃ are unitarily equivalent via the unitary U . Since V and Ṽ are joint eigenspaces of

T and T̃ respectively, U must maps V onto Ṽ . Thus the matrix representation of U |Mw is of the form

[U |Mw ] =

(
An×n Bn×mn
0mn×n Cmn×mn

)
.

ButMw is a finite dimensional and U |Mw is a unitary. Hence B = 0 and A, C are unitary. Since UTi =

T̃iU , we have Ati(w) = t̃i(w)C, i = 1, 2, . . . ,m. It follows that

Ati(w)tj(w)
tr
Ātr = t̃i(w)̃tj(w)

tr
.

Let X be the block diagonal unitary matrix given by X = A⊗ Im = Diag(A, . . . , A). Finally, we have

Xt(w)t(w)
tr
X

tr
= t̃(w)t̃(w)

tr
.

Thus, using Equation (2.7), we conclude that the curvature Kγ(w) is unitarily equivalent to Kγ̃(w). �

Assume that the joint spectrum of the tuple T is contained in Ω∗. Then it follows that for any function
f ∈ O(Ω∗), we have

f(T )|Mw
= f

(
T |Mw

)
=

(
f(w) 5f(w) · t(w)

0 f(w)

)
= f(Tw),

where Tw is the m tuple of operator T |Mw
and

5f(w) · t(w) = ∂1f(w)t1(w) + · · ·+ ∂mf(w)tm(w)

=
(
(∂1f(w))In, . . . , (∂mf(w))In

)
(t(w))

= (In ⊗5f(w))(t(w)).

From equation (2.7), we also have

t(w)t(w)
tr

= −(Ktγ(w))−1.(2.8)

As an application, it is easy to obtain a curvature inequality for those commuting tuples of operators T in
the Cowen-Douglas class Bn(Ω∗) which admit Ω∗ as a spectral set. This is easily done via the holomorphic
functional calculus.
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If T admits Ω∗ as a spectral set, then the inequality I−f(Tw)∗f(Tw) ≥ 0 is evident for all holomorphic
functions mapping Ω∗ to the unit disc D. As is well-known, we may assume without loss of generality that
f(w) = 0. Consequently, the inequality I − f(Tw)∗f(Tw) ≥ 0 with f(w) = 0 is equivalent to(

In ⊗5f(w)
tr
)

(In ⊗5f(w)) ≤ −(Ktγ(w)).(2.9)

Let V ∈ Cmn be a vector of the form

V =

(
V1·
·
·
Vm

)
, where Vi =

(
Vi(1)
·
·
·

Vi(n)

)
∈ Cn.

Definition 2.3 (Carathéodory norm). The Carathéodory norm of the (matricial) tangent vector V ∈ Cmn at
a point z in Ω, is defined by

(CΩ,z(V ))2 = sup
{
〈
(
In ⊗5f(z)

tr
)

(In ⊗5f(z))V, V 〉 : f ∈ O(Ω), ‖f‖∞ ≤ 1, f(z) = 0
}

= sup
{ m∑
i,j=1

∂if(z)∂jf(z)〈Vj , Vi〉 : f ∈ O(Ω), ‖f‖∞ ≤ 1, f(z) = 0
}

= sup
{
‖

m∑
j=1

∂jf(z)Vj‖2`2 : f ∈ O(Ω), ‖f‖∞ ≤ 1, f(z) = 0
}
.

Now we compute the Carathéodory norm of the tangent vector V ∈ Cmn in the case of Euclidean ball
Bm and of polydisc Dm. For a self map g = (g1, g2, . . . , gm) : Ω→ Ω and

V =

(
V1·
·
·
Vm

)
,

let g∗(z)(V ) be the vector defined by

g∗(z)(V ) =

 ∑
j ∂jg1(z)Vj
·
·
·∑

j ∂jgm(z)Vj

.
From the definition of the Carathéodory norm, it follows that CΩ,g(z)(g∗(z)(V )) ≤ CΩ,z(V ). In particular
we have that CΩ,ϕ(z)(ϕ∗(z)(V )) = CΩ,z(V ) for any biholomorphic map ϕ of Ω. The group of biholo-
morphic automorphisms of both these domains Bm and Dm acts transitively. So, it is enough to compute
CΩ,0(V ), since there is an explicit formula relating CΩ,z(V ) to CΩ,0(V ), Ω = Bm or Dm.

From the Schwarz lemma, it follows that the set
{
Of(0) : f ∈ O(Bm), ‖f‖∞ ≤ 1, f(z) = 0

}
is equal

to the Euclidean unit ball Bm (cf. [13, Lemma 1.1]. Now for a = (a1, a2, . . . , am) ∈ Bm, note that

‖
m∑
j=1

ajVj‖2`2 =

n∑
i=1

|
m∑
j=1

ajVj(i)|2 ≤ ‖a‖2`2
n∑
i=1

m∑
j=1

|Vj(i)|2.

From this it follows that the Carathéodory norm of the tangent vector V ∈ Cmn at the point 0 in the case of
the Euclidean ball Bm is equal to the Hilbert-Schmidt norm of V, that is, ‖V ‖2HS =

∑n
i=1

∑m
j=1 |Vj(i)|2.

Similarly, in case of polydisc Dm, we have
{
Of(0) : f ∈ O(Dm), ‖f‖∞ ≤ 1, f(z) = 0

}
is equal to the `1

8



unit ball of Cm. For a = (a1, a2, . . . , am) : ‖a‖1 < 1, we note that

‖
m∑
j=1

ajVj‖`2 ≤ ‖a‖`1 max
j
‖Vj‖`2 .

Thus we conclude that the Carathéodory norm of the tangent vector V ∈ Cmn at the point 0, in the case
of the polydisc Dm, is equal to max{‖Vj‖`2 : 1 ≤ j ≤ m}. A more detailed discussion on such matricial
tangent vectors V and the question ontractivity, complete contractivity of the homomorphism induced by
them appears in [13].

From the definition of the Carathéodory norm and Equation (2.9), a proof of the theorem below follows.

Theorem 2.4. Let T be a commuting tuple of operator in Bn(Ω) admitting Ω∗ as a spectral set. Then for
an arbitrary but fixed point w ∈ Ω∗, there exist a frame γ of the bundle ET , defined in a neighborhood of
w, which is orthonormal at w, so that following inequality holds

〈Ktγ(w)V, V 〉 ≤ −(CΩ∗,w(V ))2 for every V ∈ Cmn.

Now we derive a curvature inequality specializing to the case of a bounded planar domains Ω∗. Using
techniques from Sz.-Nagy Foias model theory for contractions, Uchiyama [19], was the first one to prove a
curvature inequality for operators inBn(D). To obtain curvature inequalities in the case of finitely connected
planar domains Ω, he considered the contractive operator Fw(T ), where Fw : Ω → D is the Ahlfors map,
Fw(w) = 0, for some fixed but arbitrary w ∈ Ω. The curvature inequality then folllows from the equality
F ′w(w) = SΩ(w,w). However, the inequality we obtain below follows directly from the functional calculus
applied to the local operators. More recently, K. Wang and G. Zhang (cf. [21]) have obtained a series of
very interesting (higher order) curvature inequalities for operators in Bn(Ω).

In the case of bounded finitely connected planar domain with Jordan analytic boundary the carathéodory
norm of the tangent vector V ∈ Cn at a point z in Ω is given by

(CΩ,z(V ))2 = sup
{
|f ′(z)|2〈V, V 〉`2 : f ∈ O(Ω), ‖f‖∞ ≤ 1, f(z) = 0

}
= 4π2SΩ(z, z)2〈V, V 〉`2 ,

(cf. [3, Theorem 13.1]) where SΩ(z, z) denotes the Sz̈ego kernel for the domain Ω which satisfy

2πSΩ(z, z) = sup{|r′(z)| : r ∈ Rat(Ω), ‖r‖∞ ≤ 1, r(z) = 0}.
In consequence, we have the following.

Theorem 2.5. Let T be a operator inBn(Ω∗) admitting Ω∗ as a spectral set. Then for an arbitrary but fixed
pointw ∈ Ω∗, there exist a frame γ of the bundleET , defined on a neighborhood ofw, which is orthonormal
at w, so that the following inequality holds

Kγ(w) ≤ −(SΩ∗(w,w))2In, for every V ∈ Cn.

3. CURVATURE INEQUALITY AND THE CASE OF UNIT DISC

Let T be an operator inB1(D) andHK be an associated reproducing kernel Hilbert space so that operator
T has been realized as M∗ on the Hilbert space HK . Without loss of generality we can assume Kw 6= 0
for every w ∈ D. Let w1, . . . , wn be n arbitrary points in D and c1, . . . , cn be arbitrary complex numbers.
Using the reproducing property of K and the property that M∗(Kwi) = w̄iKwi we will have

‖M∗(
n∑

i,j=1

ciKwi)‖2 =

n∑
i,j=1

wiw̄jK(wi, wj)cj c̄i , ‖
n∑

i,j=1

ciKwi)‖2 = (

n∑
i,j=1

K(wi, wj)cj c̄i.

9



Let K̃(z, w) be the function (1− zw̄)K(z, w), z, w ∈ D. Now it is easy to see that the operator M∗ on the
Hilbert spaceHK is a contraction if and only if K̃ is non-negative definite.

Lemma 3.1. Let T be a contraction in B1(D) and HK be an associated reproducing kernel Hilbert space.
Then for an arbitrary but fixed ζ ∈ D, we have KT (ζ̄) = − 1

(1−|ζ|2)2
if and only if the vectors K̃ζ , ∂̄K̃ζ are

linearly dependent in the Hilbert spaceHK̃ .

Proof. Assume KM∗(ζ̄) = − 1
(1−|ζ|2)2

for some ζ ∈ D. Contractivity of M∗ gives us the function K̃ :

D× D→ C defined by

K̃(z, w) = (1− zw̄)K(z, w) z, w ∈ D,

is a non negative definite kernel function. Consequently there exist a reproducing kernel Hilbert space H̃,
consisting of complex valued function on D such that K̃ becomes the reproducing kernel for H̃. Also note
that K̃(z, z) = (1−|z|2)K(z, z) 6= 0, for z ∈ D which gives us K̃z 6= 0. Let ζ be an arbitrary but fixed point
in D. Now, it is straightforward to verify that KT (ζ̄) = − 1

(1−|ζ|2)2
if and only if ∂2

∂z∂̄z
log K̃(z, z)|z=ζ = 0.

Since we have
∂2

∂z∂̄z
log K̃(z, z)|z=ζ = −‖K̃ζ‖

2‖∂̄K̃ζ‖2−|〈K̃ζ ,∂̄K̃ζ〉|2

(K̃(ζ,ζ))2
,

Using Cauchy-Schwarz inequality, we see that the proof is complete. �

Remark 3.2. Let e(w) = 1√
2
(K̃w ⊗ ∂̄K̃w − ∂̄K̃w ⊗ K̃w) for w ∈ D. A straightforward computation shows

that ‖e(w)‖2H̃⊗H̃ = K̃(w,w)2 ∂2

∂z∂̄z
log K̃(z, z)|z=w. Now if we define

FK(z, w) := 〈e(z), e(w)〉H̃⊗H̃ for z, w ∈ D,
then clearly FK is a non negative definite kernel function on D × D. In view of this, we conclude that
KT (ζ̄) = −(1− |ζ|2)−2 if and only if FK(ζ, ζ) = 0.

Proposition 3.3. Let T be any contractive co-hyponormal unilateral backward weighted shift operator in
B1(D). If KT (w0) = −(1− |w0|2)−2 for some w0 ∈ D, then the operator T is unitarily equivalent to U∗+,
the backward shift operator.

Proof. Let T be a contraction in B1(D) and HK be the associated reproducing kernel Hilbert space so that
T is unitarily equivalent to the operator M∗ on HK . By our hypothesis on T we have that operator M on
HK is a unilateral forward weighted shift. Without loss of generality, we may assume that the reproducing
kernel K is of the form

K(z, w) =

∞∑
n=0

anz
nw̄n, z, w ∈ D; where an > 0 for all n ≥ 0.

By our hypothesis on the operator T,we have that the operatorM onHK is a contraction. So, the function K̃
defined by K̃(z, w) = (1− zw̄)K(z, w) is a non negative definite kernel function. Consequently, following
the Remark 3.2, the function FK(w,w) defined by FK(w,w) = K̃(w,w)2 ∂2

∂z∂̄z
log K̃(z, z)|z=w is also non

negative definite. The kernel K(w,w) is a weighted sum of monomials zkw̄k, k = 0, 1, 2, . . . . Hence both
K̃(w,w) and FK(w,w) are also weighted sums of the same form. So, we have

FK(w,w) =

∞∑
n=0

cn|w|2n,

for some cn ≥ 0. Now assume KT (ζ̄) = − 1
(1−|ζ|2)2

for some ζ in D.
10



Case 1: If ζ 6= 0, then following Remark 3.2, we have

FK(ζ, ζ) =
∞∑
n=0

cn|ζ|2n = 0.

Thus cn = 0 for all n ≥ 0 since cn ≥ 0 and |ζ| 6= 0. It follows that FK is identically zero on D×D, that is,
∂2

∂z∂̄z
log K̃(z, z)|z=w̄ = 0 for all w ∈ D. Hence

∂2

∂z∂̄z
logK(z, z)|z=w̄ =

∂2

∂z∂̄z
logSD(z, z)|z=w̄ for all w ∈ D.

Therefore, KT (w̄) = KU∗
+

(w̄) for all w ∈ D making T ∼= U∗+.

Now let’s discuss the remaining case, that is KT (ζ̄) = − 1
(1−|ζ|2)2

, for ζ = 0 ∈ D.

Case 2: If ζ = 0, then by Lemma 3.1, we have K̃0, ∂̄K̃0 are linearly dependent. Now,

K̃(z, w) := (1− zw̄)K(z, w) =

∞∑
n=0

bnz
nw̄n,

where b0 = a0 and bn = an − an−1 ≥ 0, for all n ≥ 1. Consequently, we have K̃0(z) ≡ b0 and
∂̄K̃0(z) = b1z. Now K̃0, ∂̄K̃0 are linearly dependent if and only if b1 = 0 that is a0 = a1.

Since {√anzn}∞n=0 is an orthonormal basis for the Hilbert space HK , the operator M on HK is an
unilateral forward weighted shift with weight sequence wn =

√
an
an+1

for n ≥ 0. So the curvature of M∗ at

the point zero equal to −1 if and only if w0 =
√

a0
a1

= 1. Now if we further assume M is hyponormal, that

is, M∗M ≥MM∗, then the sequence wn must be increasing. Also contractivity of M implies that wn ≤ 1.
Therefore ifKM∗(0) = −1 for some contractive hyponormal backward weighted shiftM∗ inB1(D), then it
follows that wn = 1 for all n ≥ 1. Thus any such operator is unitarily equivalent to the backward unilateral
shift U∗+ completing the proof of our claim. �

The proof of Case 1 given above, actually proves a little more than what is stated in the proposition,
which we record below as a separate Lemma.

Lemma 3.4. Let T be any contractive unilateral backward weighted shift operator in B1(D). If KT (w0) =
−(1− |w0|2)−2 for some w0 ∈ D, w0 6= 0, then the operator T is unitarily equivalent to U∗+, the backward
shift operator.

Let T be a contraction in B1(D). Let a be a fixed but arbitrary point in D and φa be an automorphism of
the unit disc taking a to 0. So, we have φa(z) = β(z − a)(1− āz)−1 for some unimodular constant β. For
any operator T in B1(D) and w ∈ D, the operator (T − w) is Fredholm and the index of (T − w) is 1 by
definition. Note that:

(1− āw)(1− āT )
(
φa(T )− φa(w)

)
= β

(
(T − a)(1− āw)− (w − a)(1− āT )

)
= β(1− |a|2)(T − w), w ∈ D.

Thus the operator (φa(T )− φa(w)) is the product of the Fredholm operator (T − w) of index 1 and the
invertible operator β(1− |a|2)(1− āw)−1(1− āT )−1, therefore, it is Fredholm with the same index as that
of the operator (T − w).

Also, if v ∈ ker(T − w), then for any polynomial p, p(T )(v) = p(w)v. Consequently, we have that
v ∈ ker(φa(T )− φa(w)). Hence ker(T −w) ⊆ ker(φa(T )− φa(w)). Since φ−1

a ◦ φa(T ) = T, in a similar
11



fashion we will have ker(φa(T )−φa(w)) ⊆ ker(T−w). Thus we get that ker(φa(T )−φa(w)) = ker(T−w).
In consequence,

∨w∈D ker(φa(T )− φa(w)) = ∨w∈D ker(T − w) = H,

which proves that φa(T ) is in B1(D).

Let γ(w) be a frame for the associated bundle ET of T so that T (γ(w)) = wγ(w) for all w ∈ D. Now
it is easy to see that φa(T )(γ(w)) = φa(w)γ(w) or equivalently φa(T )(γ ◦ φ−1

a (w)) = w(γ ◦ φ−1
a (w)).

So, γ ◦ φ−1
a (w) is a frame for the bundle Eφa(T ) associated with φa(T ). Hence the curvature Kφa(T )(w) is

equal to

∂2

∂w∂w̄
log‖γ ◦ φ−1

a (w)‖2 = |φ−1
a
′
(w)|2 ∂2

∂z∂z̄
log‖γ(z)‖2|z=φ−1

a (w)
= |φ−1

a
′
(w)|2KT (φ−1

a (w)).

This leads us to the following transformation rule for the curvature

(3.1) Kφa(T )(φa(z)) = KT (z)|φ′a(z)|−2, z ∈ D.

Since |φ′a(a)| = (1− |a|2)−1, in particular we have that

Kφa(T )(0) = KT (a)(1− |a|2)2.(3.2)

Normalized kernel: Let T be an operator in B1(Ω∗) and T has been realized as M∗ on a reproducing ker-
nel Hilbert SpaceHK with non degenerate kernel functionK. For any fixed but arbitrary ζ ∈ Ω, the function
K(z, ζ) is non-zero in some neighborhood, say U, of ζ. The function ϕζ(z) := K(z, ζ)−1K(ζ, ζ)1/2 is then
holomorphic. The linear space (H,K(ζ)) := {ϕζf : f ∈ HK} then can be equipped with an inner product
making the multiplication operator Mϕζ unitary from HK onto (H,K(ζ)). It then follows that (H,K(ζ)) is
a space of holomorphic functions defined on U ⊆ Ω, it has a reproducing kernel K(ζ) defined by

K(ζ)(z, w) = K(ζ, ζ)K(z, ζ)−1K(z, w)K(w, ζ)−1, z, w ∈ U,

with the property K(ζ)(z, ζ) = 1, z ∈ U and finally the multiplication operator M on HK is unitarily
equivalent to the multiplication operator M on (H,K(ζ)). The kernel K(ζ) is said to be normalized at ζ.

The realization of an operator T in B1(Ω∗) as the adjoint of the multiplication operator on HK is not
canonical. However, the kernel function K is determined upto conjugation by a holomorphic function.
Consequently, one sees that the curvature KK is unambiguously defined. On the other hand, Curto and
Salinas (cf. [7, Remarks 4.7 (b)]) prove that the multiplication operatorsM on two Hilbert spaces (H,K(ζ))

and (Ĥ, K̂(ζ)) are unitarily equivalent if and only if K(ζ) = K̂(ζ) in some small neighbourhood of ζ. Thus
the normalized kernel at ζ, that is, K(ζ) is also unambiguously defined. It follows that the curvature and the
normalized kernel at ζ serve equally well as a complete unitary invariant for the operator T in B1(Ω∗).

To answer Question 1.2, we have to impose two additional conditions on the operator T . These are not too
restrictive. However, we don’t know if the second of these two conditions follows from the other hypothesis.

First, let us recall the definition of 2 hyper-contraction (cf. [2]). An operator A acting on a Hilbert space
H is said to be 2 hyper-contraction if I − A∗A ≥ 0 and A∗2A2 − 2A∗A + I ≥ 0. For example every
contractive subnormal operator is a 2 hyper-contraction (cf. [2, Theorem 3.1]). The following lemma will
be very useful in establishing our next result.

Lemma 3.5. Let A be a 2 hyper-contraction and ϕ be a bi holomorphic automorphism of unit disc D. Then
ϕ(A) is also a 2 hyper-contraction.
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Proof. LetA be a 2 hyper-contraction. Let ϕ be the automorphism of the unit disc D given by ϕ(z) = λ z−a
1−āz

for some unimodular constant λ and a ∈ D. So ϕ(A) = λ(A − a)(1 − āA)−1. Since A is a contraction,
using von-Neuman’s inequality we have ϕ(A) is also a contraction. Thus

ϕ(A)∗2ϕ(A)2 − 2ϕ(A)∗ϕ(A) + I

= (1− aA∗)−2

{
(A∗ − ā)2(A− a)2 − 2(1− aA∗)(A∗ − ā)(A− a)(1− āA)

+(1− aA∗)2(1− āA)2

}
(1− āA)−2

= (1− aA∗)−2

{
(A∗ − ā)2(A− a)2 − (A∗ − ā)(1− aA∗)(1− āA)(A− a)

−(1− aA∗)(A∗ − ā)(A− a)(1− āA) + (1− aA∗)2(1− āA)2

}
(1− āA)−2

= (1− aA∗)−2

{
(A∗ − ā){(A∗ − ā)(A− a)− (1− aA∗)(1− āA)}(A− a)

−(1− aA∗){(A∗ − ā)(A− a)− (1− aA∗)(1− āA)}(1− āA)

}
(1− āA)−2

= (1− aA∗)−2

{
(A∗ − ā)(A∗A− 1)(1− |a|2)(A− a)

−(1− aA∗)(A∗A− 1)(1− |a|2)(1− āA)

}
(1− āA)−2

= (1− aA∗)−2(1− |a|2)

{
(A∗ − ā)(A∗A− 1)(A− a)

−(1− aA∗)(A∗A− 1)(1− āA)

}
(1− āA)−2

= (1− aA∗)−2(1− |a|2)

{
(1− |a|2)(A∗2A2 − 2A∗A+ I)

}
(1− āA)−2

= (1− aA∗)−2(1− |a|2)(A∗2A2 − 2A∗A+ I)(1− |a|2)(1− āA)−2.

Since A is a 2 hyper-contration, it follows that ϕ(A) is also a 2 hyper-contraction. �

Second, recall that an operator A in B(H) is said to have wandering subspace property if the linear span
of {An(kerA∗) : n ∈ Z+} is dense in H (cf. [17].) The following theorem provides a partial answer to
Question 1.2.

Theorem 3.6. Fix an arbitrary point ζ ∈ D. Let T be an operator in B1(D) such that T ∗ is a 2 hyper-
contraction. Suppose that the operator (φζ(T ))∗ has the wandering subspace property for an automorphism
φζ of the unit disc D mapping ζ to 0. If KT (ζ) = −(1− |ζ|2)−2, then T must be unitarily equivalent to U∗+,
the backward shift operator.

Proof. Let T be an operator in B1(D) such that the adjoint T ∗ is a 2 hyper-contraction and (φζ(T ))∗ have
wandering subspace property for an automorphism φζ of the unit disc D mapping ζ into 0. Let P be the
operator φζ(T ). We have seen that P is in B1(D) and from Lemma 3.5, it follows that the adjoint P ∗ is a 2
hyper-contraction. Now assume KT (ζ) = −(1− |ζ|2)−2. Following (3.2), we see that KP (0) = −1.
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Without loss of generality, we assume that P is unitarily equivalent to the operator M∗ acting on the
reproducing kernel Hilbert spaceHK , where the kernel function K is normalized at 0. Since M∗ ∈ B1(D),
we have kerM∗ = {aK(·, 0) : a ∈ C}. As K is normalized at 0, that is, K(z, 0) = 1 for all z in some
neighborhood of 0, we have kerM∗ = C. By our assumption, P ∗ has the wandering subspace property. As
the operatorM onHK is unitarily equivalent to P ∗, the operatorM onHK also has the wandering subspace
property. Thus polynomials are dense inHK .

Now we claim that ∂̄K(·, 0) = z. AsHK consists of holomorphic function, for any f ∈ HK , we have

f(z) =
∞∑
j=1

ajz
j , where, aj =

f (j)(0)

j!
= 〈f, ∂̄

jK(·, 0)

j!
〉.

Let Vj = ∂̄jK(·,0)
j! . To prove V1 = ∂̄K(·, 0) = z, it is sufficient to show that 〈V1, Vj〉 = 0 for all

j ≥ 0, except j = 1. First note that since K(z, 0) = 1 = K(0, z), we have ∂̄K(0, 0) = 0. It follows that
〈V1, V0〉 = 0. Since K is normalized at 0, we also have KP (0) = −∂∂̄K(0, 0) = −‖V1‖2. Hence we find
that ‖V1‖2 = 1. Now to show 〈V1, Vj〉 = 0 for j ≥ 1, we need the following lemma.

Lemma 3.7. Let V and W be two finite dimensional inner product space and A : V → W be a lin-
ear map. Let {v1, v2, . . . , vk} be a basis for V and Gv, (resp. GAv) be the grammian ((〈vj , vi〉V )) (resp.
((〈Avj , Avi〉W ))). The linear map A is a contraction if and only if GAv ≤ Gv.

Proof. Let x = c1v1 + c2v2 + · · · + cnvn be an arbitrary element in V. Then the easy verification that
‖Ax‖2W ≤ ‖x‖2V is equivalent 〈GAvc, c〉 ≤ 〈Gvc, c〉 completes the proof. �

As (M∗ − w̄)K(·, w) = 0, it is easily verified that (M∗ − w̄) ∂̄K
j(·,w))
j! = ∂̄Kj−1(·,w))

(j−1)! for all j ≥ 1. So,
we have M∗(Vj) = Vj−1 for j ≥ 1 and M∗(V0) = 0. We also have ‖M∗‖ ≤ 1. Now applying the lemma
3.7 to the set of vector {V0, V1, . . . , Vn} we get that

〈V0, V0〉 〈V1, V0〉 · · · 〈Vn, V0〉
〈V0, V1〉 〈V1, V1〉 · · · 〈Vn, V1〉

...
...

. . .
...

〈V0, Vn〉 〈V1, Vn〉 · · · 〈Vn, Vn〉

−


0 0 · · · 0
0 〈V0, V0〉 · · · 〈Vn−1, V0〉
...

...
. . .

...
0 〈V0, Vn−1〉 · · · 〈Vn−1, Vn−1〉

 ≥ 0.

Since ‖V0‖2 = K(0, 0) = 1 and ‖V1‖2 = 1, (2, 2) entry of left hand side is 0. As left hand is a pos-
itive semidefinite matrix, this gives that 2nd row and 2nd column must be identically zero ( for posi-
tive semidefinite matrix B, 〈Be2, e2〉 = 0 gives

√
Be2 = 0, and hence Be2 = 0.) Consequently we

get that 〈Vj , V1〉 = 〈Vj−1, V0〉 for all j = 2, . . . , n. But as K(z, 0) = 1 = K(0, z), it follows that
∂̄kK(0, 0) = 〈Vk, V0〉 = 0 for all k ≥ 1. Hence we get that 〈Vj , V1〉 = 0 for all j ≥ 2. Hence
we get that V1 = ∂̄K(·, 0) = z and ‖z‖2 = ‖V1‖2 = 1. We also have V0 = K(·, 0) = 1 with
‖1‖2 = ‖V0‖2 = K(0, 0) = 1.

By our assumption, the operator M onHK is a 2 hyper-contraction. In particular M is also a contraction
and ‖1‖HK = 1. Hence we have ‖zn‖HK ≤ 1, for all n ≥ 1. Since M onHK is a 2 hyper-contraction, that
is, I − 2M∗M +M∗2M2 ≥ 0, equivalently, ‖f‖2HK − 2‖zf‖2HK + ‖z2f‖2HK ≥ 0, for all f ∈ HK . Since
‖1‖ = ‖z‖ = 1, taking f = 1, we have ‖z2‖ ≥ 1. But we also have ‖z2‖ ≤ 1, which gives us ‖z2‖ = 1.
Inductively, by choosing f = zk, we obtain ‖zk+2‖ = 1 for every k ∈ N. Hence we see that ‖zn‖ = 1 for
all n ≥ 0.

We use Lemma 3.7 to show that {zn | n ≥ 0} is an orthonormal set in the Hilbert space HK , Consider
the two subspace V and W of HK , defined by V = ∨{1, z, · · · , zk} and W = ∨{z, z2, · · · , zk+1}. Since
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M is a contraction, applying the lemma we have just proved, it follows that the matrix B defined by

B =
(
〈zj , zi〉

)k
i,j=0

−
(
〈zj+1, zi+1〉

)k
i,j=0

is positive semi-definite. But we have ‖zi‖ = 1, for all i ≥ 0. Consequently, each diagonal entry of B is
zero. Hence tr(B) = 0. Since B is positive semi-definite, it follows that B = 0. Therefore, 〈zj , zi〉 =
〈zj+1, zi+1〉 for all 0 ≤ i, j ≤ k. We have K0(z) ≡ 1. So, M∗1 = M∗(K0) = 0. From this it follows
that for any k ≥ 1, we have 〈zk, 1〉 = 〈zk−1,M∗1〉 = 0. This together with 〈zj , zi〉 = 〈zj+1, zi+1〉 for all
0 ≤ i, j ≤ k, inductively shows that 〈zj , zi〉 = 0 for every i 6= j. Hence {zn | n ≥ 0} forms an orthonormal
set.

Since polynomials are dense in HK , the set of vectors {zn | n ≥ 0} forms an orthonormal basis for
HK . Hence the multiplication operator M on HK is unitarily equivalent to U+, the unilateral forward shift
operator. Consequently, P is unitarily equivalent to U∗+. But U∗+ being a homogeneous operator, we have
U∗+ is unitarily equivalent to φ−1

ζ (U∗+) (cf. [10]). Hence, we infer that T = φ−1
ζ (P ) is unitarily equivalent

to U∗+. �

Corollary 3.8. Let T be an operator in B1(D). Assume that T ∗ is a 2 hyper-contraction and that (φ(T ))∗

has the wandering subspace property for every automorphism φ of the unit disc D. IfKT (ζ) = −(1−|ζ|2)−2

for an arbitrary but fixed point ζ in D, then T must be unitarily equivalent toU∗+, the backward shift operator.

4. BERGMAN BUNDLE SHIFTS

Let Ω be a finitely connected bounded domain in the complex plane C whose boundary consist of n+ 1
analytic Jordan curves. Let dv be the Lebesgue area measure in the complex plane C and ds be the arc
length measure on the boundary ∂Ω of the domain Ω. For a positive continuous function h on Ω which is
integrable w.r.t the area measure dv, the weighted Bergman space (A2(Ω), hdv) consists of all holomorphic
function f on Ω satisfying ‖f‖2h =

∫
Ω |f(z)|2h(z)dv(z) < ∞. In this section we study the operator M of

multiplication by the coordinate function on the weighted Bergman space (A2(Ω), hdv).

Notation 4.1. Let h = {h : h is a positive continuous integrable (w.r.t area measure) function on Ω} and
similarly let ĥ = {ĥ : ĥ is a positive continuous function on ∂Ω}. Finally, letF1,F2 be the class of operator
defined byF1 = {M on (A2(Ω), hdv) : h ∈ h} andF2 = {M on (H2(Ω), ĥds) : ĥ ∈ ĥ}. SetF = F1∪F2.

It was shown in [16] that the class of operators in F2 include the bundle shifts introduced in [1]. We
conclude this section by showing that the class F1 includes all the Bergman bundle shifts of rank 1 intro-
duced in [8]. Let G be the class of operators contained in F defined by G = {M on (A2(Ω), hdv): log h is
harmonic on Ω}. After recalling the definition of of Bergman bundle shift (cf. [8]), we proceed to establish
the existence of a surjective map from G onto the class of Bergman bundle shift of rank 1.

Let π : D → Ω be a holomorphic covering map. Bergman bundle shifts is realized as a multiplication
operator on a certain subspace of the weighted Bergman space (A2(D), |π′(z)|2dv(z)). Let G denote the
group of deck transformation associated to the map π that is G = {A ∈ Aut(D) | π ◦ A = π}. Let α
be a character, that is, α ∈ Hom(G, S1). A holomorphic function f on unit disc D satisfying f ◦ A =
α(A)f, for all A ∈ G, is called a modulus automorphic function of index α. Now consider the following
subspace of the weighted Bergman space (A2(D), |π′(z)|2dv(z)) which consists of modulus automorphic
function of index α, namely

A2(D, α) = {f ∈ (A2(D), |π′(z)|2dv(z)) | f ◦A = α(A)f, for all A ∈ G}

Let Tα be the multiplication operator by the covering map π on the subspace A2(D, α). The operator Tα is
called a Bergman bundle shift of rank 1 associated to the character α.
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Like the Hardy bundle shift ( cf. [1] ) there is another way to realize the Bergman bundle shift as a
multiplication operator M on a Hilbert space of multivalued holomorphic function defined on Ω with the
property that its absolute value is single valued. A multivalued holomorphic function defined on Ω with
the property that its absolute value is single valued is called a multiplicative function. Every modulus
automorphic function f on D induce a multiplicative function on Ω, namely, f ◦ π−1. Converse is also true
(cf. [20, Lemma 3.6]). We define the class A2

α(Ω) consisting of multiplicative function in the following
way:

A2
α(Ω) := {f ◦ π−1 | f ∈ A2(D, α)}

So the linear space A2
α(Ω) consists of those multiple valued function h on Ω for which |h| is single valued,

|h|2 is integrable w.r.t area measure dv on ω and h is locally holomorphic in the sense that each point w ∈ Ω
has a neighborhood Uw and a single valued holomorphic function gw on Uw with the property |gw| = |h| on
Uw (cf. [9, p.101]). It follows that the linear space A2

α(Ω) endowed with the norm

‖f‖2 =

∫
Ω
|f(z)|2dv(z),

is a Hilbert space. We denote it by
(
A2
α(Ω), dv

)
. In fact the map f 7→ f ◦ π−1 is a unitary map from

A2(D, α) onto
(
A2
α(Ω), dv

)
which intertwine the multiplication by π on A2(D, α) and the multiplication by

coordinate function M on
(
A2
α(Ω), dv

)
. Thus the multiplication operator M on

(
A2
α(Ω), dv

)
is also called

Bergman bundle shift of rank 1.
Let h be a positive function on Ω with log h harmonic on Ω. Now we show that the the multiplication

operator M on the weighted Bergman space (A2(Ω), hdv) is unitarily equivalent to a Bergman bundle shift
Tα for some character α. In this realization, it is not hard to see that all the Bergman bundle shift of rank 1
are in the same similarity class. First note that as h is both bounded above and below. So, there exist positive
constants p, q such that 0 < p ≤ h(z) ≤ q for all z ∈ Ω. Consequently, we have

p‖ · ‖1 ≤ ‖ · ‖h ≤ q‖ · ‖1.

Thus the norms on weighted Bergman space (A2(Ω), h dv) is equivalent to the norm on the Bergman space
(A2(Ω), dv). It follows that the identity map is an invertible operator between these two Hilbert spaces and
intertwines the associated multiplication operator. This shows that every operator in the class G is similar to
the multiplication operator M on the Bergman space (A2(Ω), dv).

The following lemma is the essential step in proving the existence of a bijective map from G to the class
of Bergman bundle shift of rank 1.

Lemma 4.2. Let h be a positive function on Ω such that log h is harmonic on Ω, then there exist a function F
in H∞γ (Ω) for some character γ such that |F |2 = h on Ω. In fact F is invertible in the sense that there exist
G in H∞γ−1(Ω) so that FG = 1 on Ω. Furthermore, given any character γ there exists a positive function h
on Ω such that log h is harmonic on Ω and h = |F |2 on Ω for some F in H∞γ (Ω).

Proof. The proof of the first half of the lemma follows using techniques similar to the ones used in the proof
of Lemma 2.4 of [16], therefore, we omit the proof here.

For the proof of the second half of the lemma, recall that there exist functions ωj(z) which is harmonic
in Ω and has the boundary values 1 on ∂Ωj and is 0 on all the other boundary components, for each j =
1, 2, . . . , n. Since the boundary of Ω consists of Jordan analytic curves, we have that the functions ωj(z) is
also harmonic on Ω. Let pi,j be the periods of the harmonic function ωj around the boundary component
∂Ωi, that is,
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pi,j = −
∫
∂Ωi

∂

∂ηz

(
ωj(z)

)
dsz, for i, j = 1, 2, ..., n

The negative sign appears in the equation as it is assumed that ∂Ω is positively oriented, that is, the boundary
components ∂Ωj , j = 1, 2, . . . , n, except the outer one, namely ∂Ωn+1, are oriented in clockwise direction.
So the period of the harmonic function u(z) = a1ω1(z) + a2ω2(z) + · · · + anωn(z) around the boundary
component ∂Ωi, is equal to

∑
j pi,jαj . It is well known that the n × n period matrix ((pi,j)) is positive

definite and hence invertible (cf. [15, Sec.10,Ch 1]). Thus it follows that for any n- tuple of real number, say
(b1, b2, . . . , bn) we have a harmonic function u on Ω such that its period around boundary component ∂Ωi,
is equal to bi. Let g be the positive function on Ω defined by g(z) = exp(2u(z)), z ∈ Ω. Now following the
first part of the lemma, we have that there exists a F in H∞γ (Ω) such that |F |2 = g on Ω. Furthermore the
character γ is determined by

γj = exp(ibj), for j = 1, 2, . . . , n.

As this is true for arbitrary n- tuple of real number (b1, b2, . . . , bn), the result follows. �

As a consequence of the previous lemma we have the following theorem.

Theorem 4.3. There is a bijective correspondence between the multiplication operators on the weighted
Bergman spaces G and the bundle shifts in B.

Proof. Let h be a positive function on Ω such that log h is harmonic on Ω. We see that there is a F in
H∞γ (Ω) with |F |2 = h on Ω and a G in H∞γ−1(Ω) with |G|2 = h−1 on Ω. Now consider the map MF :(
A2(Ω), hdv

)
→
(
A2
γ(Ω), dv

)
, defined by the equation

MF (g) = Fg, g ∈
(
A2(Ω), hdv

)
.

Clearly, MF is a unitary operator and its inverse is the operator MG. The multiplication operator MF

intertwines the corresponding operator of multiplication by the coordinate function on the Hilbert spaces(
A2(Ω), hdv

)
and

(
A2
γ(Ω), dv

)
. The character γ is determined by γj(h) = exp(icj(h)), where cj(h) is

given by

cj(h) = −
∫
∂Ωj

∂

∂ηz

(1

2
log h(z)

)
dsz, for j = 1, 2, ..., n.

Conversely, following second part of the lemma 4.2, for any character γ there exist a positive function h
on Ω such that log h is harmonic on Ω and h = |F |2 on Ω for some function F in H∞γ (Ω). Thus we have
established a surjective map from the class G = {M on (A2(Ω), hdv): log h is harmonic on Ω} onto the
class B of Bergman bundle shifts of rank 1, namely, the multiplication operators M on

(
A2
γ(Ω), dv

)
, where

γ is in Hom(π1(Ω),S1). �

Also, the following corollary is an immediate consequence of [8, Theorem 18].

Corollary 4.4. Let h1, h2 be two positive function on Ω. Suppose that log hi, i = 1, 2, are harmonic on Ω.
Then the operator M on (A2(Ω), h1dv) is unitarily equivalent to the operator M on (A2(Ω), h2dv) if and
only if γj(h1) = γj(h2) for j = 1, 2, . . . , n.
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5. CURVATURE INEQUALITY IN THE CASE OF FINITELY CONNECTED DOMAIN

Let h be a positive continuous function on Ω which is integrable w.r.t the Lebesgue area measure dv on
Ω. Consider the weighted Bergman space (A2(Ω), hdv). For any compact set C ⊂ Ω, the function h being
bounded below on C. It follows that evaluation at any fixed but arbitrary point in Ω is a locally uniformly
bounded linear map on (A2(Ω), hdv). Consequently, (A2(Ω), hdv) is a reproducing kernel Hilbert space.
Let K(z, w) be the kernel function for (A2(Ω), hdv). Clearly, the multiplication operator M by co-ordinate
function on (A2(Ω), hdv) is a subnormal operator and Ω is a spectral set for M . In this section we will
establish the following strict curvature inequality.

∂z∂̄zlogK(z, z)|z=w > 4π2S(w,w)2.

Let w be an arbitrary but fixed point in Ω. LetMw be the closed convex set inH = (A2(Ω), hdv) defined
byMw = {f ∈ H : f(w) = 0, f ′(w) = 1}. Consider the following extremal problem

inf{‖f‖2 : f ∈Mw}.

Let Ew be the subspace ofH defined by

Ew = {f ∈ H : f(w) = 0, f ′(w) = 0}.

Since f + g ∈ Mw, whenever f ∈ Mw and g ∈ Ew, It is evident that the unique function F which solves
the extremal problem must belong to E⊥w . From the reproducing property of K, it follows that

f(w) = 〈f,K(·, w)〉, f ′(w) = 〈f, ∂̄K(·, w)〉.

Consequently, we have E⊥w = ∨{K(·, w), ∂̄K(·, w)}. A solution to the extremal problem mentioned above
can be found in terms of the kernel function as in [11]:

inf {‖f‖2 : f ∈Mw} =

{
K(w,w)

(
∂2

∂z∂z̄
logK(z, z)|z=w

)}−1

.

Now consider the function g inH defined by

g(z) :=
Kw(z)Fw(z)

2πS(w,w)K(w,w)
, z ∈ Ω,

where Fw(z) = Sw(z)
Lw(z) denotes the Ahlfors map for the domain Ω at the point w (cf. [3, Theorem 13.1]).

Note that |Fw(z)| < 1 on Ω and |Fw(z)| ≡ 1 on ∂Ω. As g ∈ H, we have the inequality{
K(w,w)

(
∂2

∂z∂z̄
logK(z, z)|z=w

)}−1

≤ ‖g‖2

=
1

4π2S(w,w)2K(w,w)2

∫
Ω
|Fw(z)|2|K(z, w)|2h(z)dv(z)

<
1

4π2S(w,w)2K(w,w)2

∫
Ω
|K(z, w)|2h(z)dv(z),

=
1

4π2S(w,w)2K(w,w)
,

where the last but one strict inequality follows from the inequality |Fw(z)| < 1 on Ω. Hence we have
∂z∂̄zlogK(z, z)|z=w > 4π2S(w,w)2, which is the strict curvature inequality. We obtain the uniqueness of
the extremal operator within the class F , defined in Section 4, by combining this with Theorem 2.6 of [16].
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Theorem 5.1. Let ζ be an arbitrary but fixed point in Ω and T be an operator in B1(Ω∗). Assume that the
adjoint T ∗ (upto unitary equivalence) is in F . Then KT (ζ̄) ≤ −4π2SΩ(ζ, ζ)2, equality occurs for a unique
operator, upto unitary equivalence.
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