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Abstract. In this note, we show that a quasi-free Hilbert module R defined over the polydisk
algebra with kernel function k(z,w) admits a unique minimal dilation (actually an isometric
co-extension) to the Hardy module over the polydisk if and only if S−1(z,w)k(z,w) is a positive
kernel function, where S(z,w) is the Szego kernel for the polydisk. Moreover, we establish the
equivalence of such a factorization of the kernel functions and a positivity condition, defined using
the hereditary functional calculus, which was introduced earlier by Athavale [8] and Ambrozie,
Englis and Muller [3]. An explicit realization of the dilation space is given along with the isometric
embedding of the module R in it. The proof works for a wider class of Hilbert modules in which
the Hardy module is replaced by more general quasi-free Hilbert modules such as the classical
spaces on the polydisk or the unit ball in Cm. Some consequences of this more general result are
then explored in the case of several natural function algebras.

Introduction

One of the most far-reaching results in operator theory is the fact that all contraction operators
have an essentially unique minimal unitary dilation and a closely related isometric co-extension
on which the model theory of Sz.-Nagy and Foias [21] is based. This model provides not only
a theoretical understanding of the structure of contractions but provides a useful and effective
method for calculation.

A key reason this model theory is so incisive is the relatively simple structure of isometries
due to von Neumann [22] . In particular, every isometry is the direct sum of a unitary and a
unilateral shift operator defined on a vector-valued Hardy space. And, if one makes a modest
assumption about the behavior of the powers of the adjoint of the contraction, then the unitary
is absent and the isometry involved in the model is the vector-valued unilateral shift defined on
a vector-valued Hardy space on the unit disk.

One can express this module as a short exact sequence. Let N be a contractive Hilbert module
over the disk algebra A(D) such that M∗nz → 0 in the strong operator topology, where Mz is
module multiplication by z. One knows from the model theory, developed by Sz.-Nagy and Foias
[21], that N may be realized as the quotient of the Hardy module H2

E∗(D) by the submodule
θH2
E(D) determined by an inner function θ : D→ L(E , E∗). That is, in this case one has the short

exact sequence
0 −→ H2

E(D) X−→ H2
E∗(D) −→ N −→ 0,

whereX is the multiplication operatorMθ. Also, if the inner function θ, which is the characteristic
operator function, is pure or, equivalently, if the co-extension is minimal, then it determines the
quotient module N up to unitary equivalence (cf. [21]).
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If one attempts to extend this theory to commuting m-tuples of contractions on a Hilbert space,
then one quickly runs into trouble. This is particularly true if m > 2 in which case the example
of Parrott [23] shows that a unitary dilation and hence an isometric co-extension need not exist.
For the m = 2 case, Ando’s Theorem [4] seems to hold out hope for a model theory since a pair of
commuting contractions is known to have a unitary dilation and hence an isometric co-extension.
However, such dilations are not necessarily unique and, more critically, the structure of the pair
of commuting isometries is not simple and, in particular, the dilation space need not be related
to the Hardy space on the bi-disk (see [9]).

In this note, we study the question of which commuting pairs (and m-tuples) of contractions
have an isometric co-extension to the forward shift operators on the Hardy space for the bi-disk
(or polydisk). However, we don’t take up this question at that level of generality. Rather we
assume that the commuting contractions are on a reproducing kernel Hilbert space and defined
by multiplication by the coordinate functions.

We approach the issue in greater generality - namely, in the context of Hilbert modules over
the algebra of polynomials C[z] in m variables. Our main tool is to establish a close relationship
between the kernel functions for the Hilbert modules in an exact sequence using localization.
In particular, using this relation we seek to determine which quasi-free Hilbert modules can be
obtained as a quotient module of a fixed Hilbert module of the form R⊗ E for a ”model” quasi-
free Hilbert module R of multiplicity one and coefficient Hilbert space E . Our results for R
the Hardy module hold not just for the case m = 2 but for all m. Of course, the conditions
we impose are more restrictive than simply the assumption that the coordinate multipliers are
contractive. Our characterization involves the relationship between the two kernel functions and
provides an explicit construction of the dilation space using a factorization of the kernel function
and a ”reduced” tensor product as the main tools.

Our main result relates the existence of an R ⊗ E isometric co-extension to the positivity of
the kernel function into which the coordinate operators are substituted as well as a factorization
criteria for the kernel function itself. The equivalence of the first two conditions was established
earlier by Athavale [4] (see also [5]). However, our proof is quite different from his. A key step in
our approach involves the hereditary functional calculus of Agler [1] which has been an effective
tool in constructing analytic models (cf. [3]).

We begin by recalling the notion of a quasi-free Hilbert module which is a contractive reproduc-
ing kernel Hilbert space. Our main result for the Hardy module is Theorem 5 which determines
when a large class of contractive quasi-free Hilbert modules over the polydisk algebra A(Dm)
admits a dilation to the Hardy module H2(Dm) for any m ≥ 1. We provide an example showing
that a contractive quasi-free Hilbert module over the bi-disk algebra A(D2) need not admit an
isometric co-extension to the Hardy module H2(D2). We also consider corollaries which provide
analogous results for a class of Hilbert modules which includes the Bergman module over the unit
ball or polydisk. In the next section, we consider the existence of spherical Drury-Arveson shift
co-extensions for a class of row contractive Hilbert modules over the ball algebra. Finally, we
obtain a curvature inequality for quotient modules, generalizing an earlier result for contractive
Hilbert modules over the disk algebra.

The authors thank Scott McCollough for his comments and suggestions on an earlier draft of
this paper.

1. Preliminaries

Let Ω ⊆ Cm be a bounded, connected open set. Fix an inner product on the algebra A(Ω),
the completion in the supremum norm on Ω of the functions holomorphic on a neighborhood
of the closure of Ω. The completion of A(Ω) with respect to this inner product is a Hilbert



CONTRACTIVE HILBERT MODULES AND THEIR DILATIONS 3

space which we call M. It is natural to assume that the module action A(Ω) × A(Ω) → A(Ω)
extends continuously to A(Ω)×M→M. Thus a Hilbert moduleM over A(Ω) is a Hilbert space
with a multiplication A(Ω)×M→M makingM into a unital module over A(Ω) and such that
multiplication is continuous. Every cyclic or singly-generated bounded Hilbert module over A(Ω)
is obtained as a Hilbert space completion of A(Ω). Using the closed graph theorem one can show
the existence of a constant α such that

‖fh‖M ≤ α‖f‖A(Ω)‖h‖M, f ∈ A(Ω), h ∈M.

One says that M is a contractive Hilbert module if α = 1.
We assume that the module M is quasi-free (cf. [14]). In particular, the point evaluation

z → h(z), h ∈ M and z ∈ Ω is locally uniformly bounded. As pointed out in [14], using the
identification of M with the completion of A(Ω), M can be realized as a space of holomorphic
functions on Ω which forms a kernel Hilbert space. In other words, M admits a reproducing
kernel K : Ω × Ω → C which is holomorphic in the first variable and anti-holomorphic in the
second one. It also has the reproducing property:

〈h,K(·,w)〉 = h(w), h ∈M, w ∈ Ω.

In some instances, such as the Drury-Arveson space, this definition does not apply. In such
cases we defineM as the completion of the polynomial algebra C[z] relative to an inner product
on it assuming that each p(z) in C[z] defines a bounded operator on M but there is no uniform
bound. Hence, in this case M is a Hilbert module over C[z].

Classical examples of contractive quasi-free Hilbert modules are:

(i) the Hardy module H2(Dm) (over the polydisk algebra A(Dm)) which is the closure of the
polynomials, C[z], in L2(∂Dm) and

(ii) the Bergman module, L2
a(Ω) (over the algebra A(Ω)) which is the closure of A(Ω) in

L2(Ω) with volume measure on Ω.

Let L(l2n) be the C∗-algebra of all bounded linear transformations on the Hilbert space l2n of
dimension n for some n ∈ N. We want to recall the notion of an L(l2n)-valued kernel function.
Let Ω ⊂ Cm be a bounded, connected open set. A function K : Ω× Ω → L(l2n), holomorphic in
the first variable and anti-holomorphic in the second one, satisfying

(1.1)
p∑

i,j=1

〈
K(w(i),w(j))ζj , ζi

〉
l2n
≥ 0, for w(1), . . . ,w(p) ∈ Ω, ζ1, . . . , ζp ∈ l2n and p ∈ N,

is said to be a non negative definite (n.n.d.) kernel on Ω. Given such an n.n.d. kernel K on Ω,
it is easy to construct a Hilbert space H of functions on Ω taking values in l2n with the property
that

(1.2)
〈
f(w), ζ

〉
l2n

=
〈
f,K(·,w)ζ

〉
, for w ∈ Ω, ζ ∈ l2n, and f ∈ H.

The Hilbert space H is simply the completion of the linear span H0 of all functions of the form
K(·,w)ζ, w ∈ Ω, ζ ∈ l2n. The inner product of two of the functions in H0 is defined by first
setting

(1.3)
〈
K(·,w)ζ,K(·,w′)η

〉
=
〈
K(w′,w)ζ, η

〉
, for ζ, η ∈ l2n, and w,w′ ∈ Ω,

and then extending to the linear span H0. This ensures the reproducing property (1.2) of K on
H0.

Remark 1. We point out that although the kernel K is required merely to be n.n.d., equation
(1.3) defines a positive definite sesqui-linear form. To see this, simply note that |

〈
f(w), ζ

〉
| =
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|
〈
f,K(·,w)ζ

〉
| which is at most ‖f‖

〈
K(w,w)ζ, ζ

〉1/2 by the Cauchy - Schwarz inequality. It
follows that if ‖f‖ = 0 then f(w) = 0 for w ∈ Ω.

Conversely, let H be any Hilbert space of holomorphic functions on Ω taking values in l2n. Let
ew : H → l2n be the evaluation functional defined by ew(f) = f(w), w ∈ Ω, f ∈ H. If ew is
bounded for w ∈ Ω, then it admits a bounded adjoint e∗w : l2n → H such that

〈
ewf, ζ

〉
=
〈
f, e∗wζ

〉
for all f ∈ H and ζ ∈ l2n. A function f inH is then orthogonal to e∗w(H) for all w ∈ Ω if and only if
f = 0. Thus the functions f =

∑p
i=1 e

∗
w(i)(ζi) with w(1), . . . ,w(p) ∈ Ω, ζ1, . . . , ζp ∈ l2n, and p ∈ N,

form a dense linear subset in H. Therefore, we have

‖f‖2 =
p∑

i,j=1

〈
ew(i)e∗w(j)ζj , ζi

〉
,

where f =
∑n

i=1 e
∗
w(i)(ζi), w(i) ∈ Ω, ζi ∈ l2n. Since ‖f‖2 > 0, it follows that the kernel K(z,w) =

eze∗w is non-negative definite as in (1.1). It is clear that K(·,w)ζ ∈ H for each w ∈ Ω and ζ ∈ l2n,
and that it has the reproducing property (1.2).

Remark 2. If we assume that the evaluation functional ew is surjective, then the adjoint e∗w is
injective and it follows that

〈
K(w,w)ζ, ζ

〉
= ‖e∗wζ‖2 > 0 for all non-zero vectors ζ ∈ l2n.

For 1 ≤ i ≤ m, suppose that the operators Mi : H → H defined by Mif(w) = wif(w) for
f ∈ H and w ∈ Ω, are bounded. Then it is easy to verify that for each fixed w ∈ Ω, and
1 ≤ i ≤ m,

(1.4) M∗i K(·,w)η = w̄iK(·,w)η for η ∈ l2n.

Remark 3. As a consequence of (1.4) we see that the vectors {K(·,w(i))ηi}pi=1 for w(1), . . . ,w(p) ∈
Ω and ηi ∈ l2n, p > 0, are linearly independent if the w(i) are distinct or if each subset of ηi cor-
responding to equal w(i) are linearly independent.

One may impose conditions on a kernel function K : Ω×Ω→ L(l2n) to ensure the boundedness
of each of the multiplication operators M1, . . . ,Mm on the associated reproducing kernel Hilbert
space. Let {ε1, . . . , εn} be an orthonormal basis for l2n. Let H0 be the linear span of the vectors
{K(·,w)ε1, . . . ,K(·,w)εn : w = (w1, . . . , wm) ∈ Ω} assuming K satisfies the condition in Remark
3. Clearly, the linear subspace H◦ ⊆ H is dense in the Hilbert space H. Define a map T`, 1 ≤
` ≤ m, by the formula T`K(·,w)εj = w̄`K(·,w)εj for 1 ≤ j ≤ n, and w ∈ Ω which is well defined
by the assumption above in Remark 3. The following well known lemma gives a criterion for the
boundedness of the adjoint of the coordinate operators T`, 1 ≤ ` ≤ m. We include a proof for
completeness.

Lemma 1. The densely defined maps T` : H0 → H0 ⊆ H, 1 ≤ ` ≤ m, is bounded if and only if
for some positive constants cl and for all k ∈ N

k∑
i,j=1

〈
(c2
l −w(j)

` w̄(i)
` )K(w(j),w(i))xi, xj

〉
≥ 0.

for x1, . . . , xk ∈ l2n and w(1), . . . ,w(k) ∈ Ω. If the map T` is bounded, then it is the adjoint of
the multiplication operator M` : H → H, 1 ≤ ` ≤ m and ‖Tl‖ is the smallest cl for which the
positivity condition holds.

Proof. The proof in the forward direction amounts to a verification of the positivity condition in
the statement of the Lemma. To verify this, fix `, 1 ≤ ` ≤ m, and note that if T` is bounded on
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H0, then we must have

‖T`(
k∑
i=1

K(·,w(i))xi)‖2 = ‖w̄(i)
`

k∑
i=1

K(·,w(i))xi‖2

=
〈
w̄

(i)
`

k∑
i=1

K(·,w(i))xi, w̄
(j)
`

k∑
j=1

K(·,w(j))xj
〉

=
k∑

i,j=1

w̄
(i)
` w

(j)
`

〈
K(w(j),w(i))xi, xj

〉
≤ ‖Tl‖2

〈 k∑
i=1

K(·,w(i))xi,
k∑
i=1

K(·,w(i))xi
〉

= ‖Tl‖2
k∑
i=1

〈
K(w(j),w(i))xi, xj

〉
,

for all possible vectors x1, . . . , xk ∈ l2n, w1, . . . ,wk ∈ Ω. However, combining the last two lines,
we obtain the positivity condition of the Lemma. On the other hand, if the positivity condition is
satisfied for some positive constant cl, then the preceding calculation shows that T`, 1 ≤ ` ≤ m,
is bounded on H0 ⊆ H. Therefore, it defines a bounded linear operator on all of H with ‖T`‖ ≤ c,
1 ≤ ` ≤ m.

Recall that if the operator M`, defined to be multiplication by the co-ordinate function z`, is
bounded, then K(·,w)x is an eigenvector with eigenvalue w̄l for the adjoint M∗` onH. This proves
the last statement of the Lemma with the relation between cl and ‖Tl‖ being straightforward.

We abbreviate the positive definiteness condition of Lemma 1, namely,
k∑

i,j=1

〈
(c2
l − w

(j)
` w̄

(i)
` )K(w(j),w(i))xi, xj

〉
≥ 0, for x1, . . . , xk ∈ l2n and w(1), . . . ,w(k) ∈ Ω

to saying that (c2
l − z`ω̄`)K(z,w) is positive definite for each `, 1 ≤ ` ≤ m.

Remark 4. A module action by C[z] on the reproducing kernel Hilbert space H with kernel
function k(z,w) is said to be compatible if M∗zi

k(·,w) = w̄ik(·,w) for w ∈ Ω and 1 ≤ i ≤ m.
(Note that compatibility for K implies the conclusion of Remark 3). A kernel Hilbert space need
not posses a compatible module structure but if it does, it is unique. Consider the following
example. If f : D → C\ {0} is a holomorphic function, then k(z, w) = f(z)f(w) is non-negative
definite. However, the Hilbert space H of functions {k(·, w) : w ∈ D} consists of scalar multiples
of f and hence H is one dimensional. If Mz is defined on H, then M∗z k(·, w) = w̄k(·, w) for w ∈ D
and hence k(·, w) is an eigenvector for the eigenvalue w̄. Thus for distinct w,w′ ∈ D, the vectors
k(·, w) and k(·, w′) are linearly independent which contradicts the fact that H is one dimensional.
Thus no compatible module action can be defined on H.

2. Co-extensions and kernel functions

Let R ⊆ Hol(Ω,C) be a reproducing kernel Hilbert space with the scalar kernel function
k : Ω × Ω → C. (Note that the containment of R in Hol(Ω,C) determines the kernel function
k(z,w) and vice versa.) Let E be a separable Hilbert space so that the Hilbert space tensor
product R ⊗ E ⊆ Hol(Ω, E) is a reproducing kernel Hilbert space with the kernel function (k ⊗
IE)(z,w) = k(z,w)IE ∈ L(E).
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Let M be a quasi-free Hilbert module of multiplicity n (1 ≤ n <∞) over A(Ω) for which the
evaluation operator ew is surjective for w ∈ Ω. We recall, as shown in the previous section, that
the kernel function KM of M is given by

KM(z,w) = eze
∗
w : Ω× Ω→ L(l2n).

Now, letM be a Hilbert module isomorphic to (R⊗E)/S for some submodule S of R⊗E , or
equivalently, M has an isometric co-extension to R⊗ E . Consequently, we have the short exact
sequence of Hilbert modules

0→ S i→ R⊗ E π→M→ 0,
where the second map is the inclusion i and the third map is the quotient map π which is a
co-isometry. For each w in Ω, define the ideal Iw = {ϕ ∈ A(Ω) : ϕ(w) = 0} (or {p(z) ∈ C[z] :
p(w) = 0}). Also recall that M/Mz

∼=M⊗A(Ω) Cz ∼= Cz ⊗ l2n ∼= l2n, where Mz is the closure of
IzM in M.

Theorem 1. Let R ⊆ Hol(Ω,C) be a reproducing kernel Hilbert module over A(Ω) (or over C[z])
with the scalar kernel function k and M be a quasi-free Hilbert module over A(Ω) (or over C[z])
of multiplicity n. Then M has an isometric co-extension to R⊗E for the Hilbert space E, if and
only if there is a holomorphic map πz ∈ O(Ω,L(E , l2n)) such that

KM(z,w) = k(z,w)πzπ∗w, z,w ∈ Ω.

Proof. To prove the necessary part, we localize the exact sequence of Hilbert modules

0→ S → R⊗ E →M→ 0,

at z, and obtain the following diagram

S/IzS (R⊗ E)/Iz(R⊗ E) M/IzM 0
iz πz

Nz Pz Qz

0 S R⊗ E M 0
i π-

-

- -

- -

-

? ? ?

which is commutative with exact rows for all w in Ω (see [16]). Here N,P,Q are the natural
co-isometric or quotient module maps. If we identify M/IzM with l2n and (R ⊗ E)/Iz(R ⊗ E)
with E , then the kernel functions of M and R⊗ E are given by QzQ

∗
w and PzP

∗
w, respectively.

Moreover, since Qwπ = πwPw for all w ∈ Ω, we have that Qzππ∗Qw = πzPzP
∗
wπ
∗
w. Using the

fact that ππ∗ = IM and PzP
∗
w = k(z,w)⊗ IE , we infer that

QzQ
∗
w = k(z,w)πzπ∗w, z,w ∈ Ω.

Conversely, assume that for a given quasi-free Hilbert module M, the kernel function of M
has the factorization

KM(z,w) = k(z,w)πzπ∗w, z,w ∈ Ω,
for some function π : Ω→ L(E , l2n). Note that if the function π satisfies the above equality then
it is holomorphic on Ω. Now, we define a linear map X :M→R⊗ E so that

XQ∗zη = P ∗zπ
∗
zη, η ∈ l2n.

It then follows that
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〈X(Q∗wη), X(Q∗zζ)〉 =〈P ∗wπ∗wη, P ∗zπ∗zζ〉 = 〈πzPzP ∗wπ∗wη, ζ〉 = 〈QzQ∗wη, ζ〉
= 〈Q∗wη,Q∗zζ〉,

for all η, ζ ∈ l2n. Therefore, since {Q∗zη : z ∈ Ω, η ∈ l2n} is a total set of M, then X extends to
a bounded isometric operator. Moreover, by the reproducing property of the kernel function, it
follows that

M∗ϕX(Q∗zη) = M∗ϕP
∗
z (π∗zη) = ϕ(z)P ∗zπ

∗
zη = ϕ(z)X(Q∗zη) = XQ∗z(ϕ(z)η) = XM∗ϕ(Q∗zη),

for all ϕ ∈ A(Ω) and η ∈ l2n. Hence, X∗ ∈ L(R⊗ E ,M) is a module map.
As an application of the above theorem, we have the main result of this section

Theorem 2. LetM be a quasi-free Hilbert module over A(Ω) (or over C[z]) of multiplicity n ∈ N
and R be a reproducing kernel Hilbert module over the same algebra. Let k be the kernel function
of R and KM be that of M. Then M has an isometric co-extension to R⊗ E for some Hilbert
space E if and only if

KM(z,w) = k(z,w)K̃(z,w),

for some positive definite kernel K̃ over Ω. Moreover, if k−1 is defined, then the above conclusion
is true if and only if k−1KM is a positive definite kernel.

Proof. Observe that, the equality in the statement tells us that the kernel function K̃ is L(l2n)-
valued, where n is the multiplicity of M. Since the necessary part follows from the previous
theorem, all that remains to be shown is that the factorization given in the statement yields an
isometric co-extension. If K̃ is given to be a positive definite kernel, then we let H(K̃) be the
corresponding reproducing kernel Hilbert space (which is not necessarily a module over A(Ω) or
even over C[z]). Then we set E = H(K̃) and let πz = ez ∈ L(E , l2n) be the evaluation operator for
the reproducing kernel Hilbert space H(K̃). Then the fact that R⊗E is an isometric co-extension
of M follows immediately from the previous theorem since K̃(z,w) = πzπ∗w.

Remark 5. If the kernel function K̃ defines a Hilbert space of holomorphic functions on Ω
invariant under C[z], then one can identifyM canonically with the Hilbert module tensor product,
R ⊗C[z] H(K̃), which yields an explicit representation of the co-isometry from the co-extension
space R⊗H(K̃) to M.

If H(K̃) is not invariant under the action of C[z], we can still describe the co-extension space
explicitly using a construction of Aronszajn. Let M1 and M2 be Hilbert spaces of holomorphic
functions on Ω so that they possess reproducing kernels K1 and K2 respectively. Assume that
the natural action of C[z] on the Hilbert space M1 is continuous; that is, the map (p, h) → ph
defines a bounded operator onM1 for p ∈ C[z]. (We make no such assumption about the Hilbert
spaceM2.) Now, C[z] acts naturally on the Hilbert space tensor productM1⊗M2 via the map

(p, (h⊗ k)) 7→ p · h⊗ k, p ∈ C[z], h ∈M1, k ∈M2.

The map h⊗k 7→ hk identifies the Hilbert spaceM1⊗M2 as a reproducing kernel Hilbert space
of holomorphic functions on Ω × Ω [6]. The module action is then the pointwise multiplication
(p, hk)→ (ph)k, where ((ph)k)(z1, z2) = p(z1)h(z1)k(z2), z1, z2 ∈ Ω.

We denote by H the Hilbert module obtained by the Hilbert space M1 ⊗M2 with the above
module action over C[z]. Let 4 ⊆ Ω×Ω be the diagonal subset {(z, z) : z ∈ Ω} of Ω×Ω. Let S
be the maximal submodule S of M1 ⊗M2 functions in M1 ⊗M2 which vanish on 4. Thus

0 −→ S X−→M1 ⊗M2
Y−→ Q −→ 0,
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is a short exact sequence, where Q = (M1 ⊗ M2)/S, X is the inclusion map and Y is the
natural quotient map. (Note that S = {0} is possible in which case Q = M1 ⊗M2.) One can
appeal to an extension of an earlier result of Aronszajn [6] to analyze the quotient module Q
when the given module is a reproducing kernel Hilbert space. The reproducing kernel of H is
then the point-wise product K1(z,w)K2(u,v) for z,w,u, v ∈ Ω. Set Hres = {f|4 : f ∈ H} and
‖f|4‖res = inf{‖g‖H : g ∈ H, g|4 ≡ f|4}.

Proposition 1 (Aronszajn). The module Hres is a kernel Hilbert module consisting of holomor-
phic functions on 4. Its kernel function, Kres4, is the restriction to 4 in both sets of variables
of the original kernel function K for the Hilbert module H. Moreover, the quotient module Q
corresponding to the submodule in H of functions vanishing on 4 is isometrically isomorphic to
Hres.

We now reformulate this result to apply to the context of Theorem 2.

Proposition 2. Let M be a Hilbert module over the polynomial algebra C[z] and KM be its
reproducing kernel defined on the domain Ω ⊆ Cm. Suppose KM is the point-wise product of
two positive definite kernels K1 and K2 on Ω×Ω and M1 and M2 are the corresponding kernel
Hilbert spaces of holomorphic functions on Ω. Assume that the polynomial algebra C[z] acts on
M1 continuously. Then the compression of the natural action of C[z] on M1 ⊗M2 given by the
operators Mp ⊗ IM2, p ∈ C[z], to Q ⊆M1 ⊗M2, coincides with the action of A(Ω) on M; that
is, M1 ⊗M2 is an isometric co-extension of M.

Thus the dilation space in Theorem 2 can be realized as a “reduced” Hilbert module tensor
product which coincides with the module tensor product when the coefficient space is also a
module over C[z].

In [13] this result was used to analyze to the quotient H2(D2)/[z1−z2]. Since the kernel function
for H2(D2) is 1

(1−z1w̄1)
1

(1−z2w̄2) , restricting the kernel function to 4 = {(w, z) : w − z = 0} and
using the (u, v) coordinates; that is, (u = z1+z2

2 , w = z1−z2
2 ), we obtain that KQ(u, u′) = 1

(1−uū′)2

for u, u′ in {(w, z) : w − z = 0}. Since this is the kernel function for the Bergman space L2
a(D),

the quotient module in this case is isometrically isomorphic to the Bergman module. Thus we
obtain an isometric co-extension of the Bergman shift. (Note that this extension agrees with the
one obtained in the Sz.-Nagy - Foias model.) Thus the extension of Aronszajn’s result enables
one to obtain the kernel function for the quotient module and from it, one can construct the
Hilbert space itself.

We end this section with the following remarks.

Remark 6. Applying the same argument, as used for the necessary part of Theorem 1, to the
left hand square of the diagram yields the following relation between the kernel functions for S
and R⊗ E :

NzN
∗
w = izPzPSP

∗
wiw,

where PS is the projection onto S ⊆ R ⊗ E . Thus the kernel function for S is related to that
of the Hardy module but because PS does not ”commute” with these terms, the relationship is
more complicated.

Remark 7. Using the relation NzN
∗
w = izPzPSP

∗
wiz, we can compare formulas for the kernel

functions, where S consists of functions vanishing on a hypersurface (cf. [15]). We hope to return
to such applications at a later time.
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3. Co-extensions and Hereditary functional calculus

Let p be a polynomial in the 2m variables z,w, where the z -variables all commute and the
w-variables all commute but we assume nothing about the relation of the z and w variables. For
any commuting m - tuple of operators T = (T1, . . . , Tm), following Agler (see [1]) we define the
value of p at T using the hereditary functional calculus:

p(T,T∗) =
∑
I,J

aI,JTIT∗J ,

where p(z,w) =
∑

I,J aI,Jz
IwJ and I = (i1, . . . , im), J = (j1, . . . , jm) are multi-indices of length

m. Here, in the “non-commutative polynomial” p(z,w), the “z’s” are all placed on the left, while
the “w’s” are placed on the right.

Let M = (M1, . . . ,Mm) be the m - tuple of multiplication operators on a reproducing kernel
Hilbert space H defined on the polydisk Dm. Let K be the reproducing kernel for H. Let
S−1

Dm(z,w) =
∏m
`=1

(
1 − z`w̄`

)
=
∑

0≤|I|=|J |≤m zIw̄J , for z,w ∈ Dm; that is, SDm is the Sz̈ego
kernel for the polydisk Dm. Observe that K(z,w) is in L(l2n) and hence a calculation shows(

S−1
Dm(M,M∗)

)
K(z,w) =

(( ∑
0≤|I|=|J |≤m

zIw̄J
)
(M,M∗)

)
K(z,w)

=
( ∑

0≤|I|=|J |≤m

MIMJ∗
)
K(z,w)

=
( ∑

0≤|I|=|J |≤m

zIw̄J
)
K(z,w)

= S−1
Dm(z,w)K(z,w).

Hence, S−1
Dm(M,M∗) ≥ 0 if and only if S−1

Dm(z,w)K(z,w) is a non-negative definite kernel, which
implies the following.

Theorem 3. The positivity of the operator S−1
Dm(M,M∗), defined via the hereditary functional

calculus, on the Hilbert space H possessing the reproducing kernel K, is equivalent to the factor-
ization

K(z,w) = SDm(z,w)Q(z,w), z,w ∈ Dm,

where Q is some positive definite kernel on the polydisk Dm.

As an application of Theorem 2 and Theorem 3, we obtain half of our main result for the
Hardy module H2(Dm)⊗Q.

Theorem 4. Let H be a Hilbert module over the polydisk algebra A(Dm) with reproducing kernel
K(z,w). Assume that the operator S−1

Dm(M,M∗), defined via the hereditary functional calculus, is
positive. Then H can be realized as a quotient module of the Hardy module H2(Dm)⊗Q over the
algebra A(Dm) for some Hilbert space Q, and conversely. Hence H has an isometric co-extension
to H2(Dm)⊗Q in this case.

A closely related result was obtained by Athavale (Theorem 2.6 in [4]) but with a different
proof.

Notice that any m - tuple of doubly commuting contractions on a functional Hilbert space over
A(Dm) satisfies the hypothesis of Theorem 4. Thus, we recover the result of Sz.-Nagy and Foias
(cf. [21]) in this situation. But the class covered by the theorem is much larger.

In particular,Mm =M⊗A(Dm) · · ·⊗A(Dm)M always possesses a dilation to the Hardy module
H2(Dm), if M is contractive. Let M denote the m - tuple of commuting contractions on the
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Hilbert moduleM possessing the reproducing kernel K. The contractivity condition implies that
K(z,w) = (1− z`w̄`)−1Q`(z,w) for some positive definite kernel Q` and for each ` = 1, 2, . . . ,m.
Thus

Km(z,w) = SDm(z,w)Q(z,w), z,w ∈ Dm,

where Q =
∏m
`=1Q`. Thus the Hilbert module Mm = M⊗A(Dm) · · · ⊗A(Dm)M corresponding

to the positive definite kernel Km is contractive and admits the kernel SDm as a factor, as shown
above. This shows thatMm has an isometric co-extension toH2

Q(Dm), whereQ is the reproducing
kernel Hilbert space for the kernel Q.

We now state our main result for the Hardy module over the polydisk algebra and investigate
the uniqueness of an isometric co-extension X : R⊗E →M which is minimal. Recall this means
that the smallest reducing submodule of R ⊗ E containing X∗M is R ⊗ E itself. Although we
believe such an uniqueness result holds for a more general class of quasi-free Hilbert modules R,
we prove it only in the cases when R = H2

m and R = H2(Dm) for m ≥ 1. When R = H2
m, the

result follows from the uniqueness of the minimal isometric dilation by Arveson (see [2]). We
prove the case when R = H2(Dm). This result was proved in [12] for the case of multiplicity one.
The proof is based on operator theory exploiting the fact that the co-ordinate multipliers define
doubly commuting isometries.

Theorem 5. If H is a contractive reproducing kernel Hilbert space over A(Dm), then H has an
isometric H2(Dm) ⊗ V co-extension for some Hilbert space V if and only if S−1

Dm(M,M∗) ≥ 0
or, equivalently, if and only if S−1

DmK ≥ 0, where K is the kernel function for H. Note that this
means there exists a co-isometric module map Y : H2(Dm)⊗V → H. Moreover, if an H2(Dm)⊗V
isometric co-extension exists, then the minimal one is unique.

Proof. Using Theorem 4, every thing is proved except the uniqueness part. Suppose Xi :
H2(Dm) ⊗ Ei → H are co-isometric module maps for i = 1, 2 so that the co-extensions are
minimal. We must exhibit a unitary module map

V : H2(Dm)⊗ E1 → H2(Dm)⊗ E2

so that X1 = X2V . Such a map V must have the form IH2(Dm) ⊗ V0 for some unitary operator
V0 : E1 → E2, which will conclude the proof of uniqueness.
Let α = (α1, . . . , αm) be a multi-index with αi ∈ Z+, i = 1, . . . ,m, and |α| = α1 + · · ·+ αm. For
N ∈ N, let {fα}|α|≤N be vectors in H. We want to show that the map

V (
∑
|α|≤N

MzαX∗1fα) =
∑
|α|≤N

MzαX∗2fα,

extends to a unitary module map from H2(Dm)⊗ E1 to H2(Dm)⊗ E2. The first step is to show
that this V preserves the inner products, for which it is enough to show

〈MzαX∗1fα,MzβX∗1fβ〉 = 〈MzαX∗2fα,MzβX∗2fβ〉,

for all α and β. We define multi-indices γ and µ so that

γi =
{
αi − βi forαi − βi ≥ 0

0 forαi − βi < 0 and µi =
{
βi − αi forβi − αi ≥ 0

0 forβi − αi < 0

Note that αi − βi = γi − µi, γi ≥ 0 and µi ≥ 0 and hence

M∗zβMzα = M∗zµMzγ = MzγM∗zµ .

Therefore,

〈MzαX∗i fα,MzβX∗i fβ〉 = 〈M∗zβMzαX∗i fα, X
∗
i fβ〉 = 〈M∗zµX∗i fα,M

∗
zγX∗i fβ〉,
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and, since
M∗zµX∗i fα = X∗iM

∗
zαfα,

for all α, we have that

〈MzαX∗i fα,MzβX∗i fβ〉 = 〈X∗iM∗zµfα, X
∗
iM

∗
zγfβ〉 = 〈M∗zµfα,M

∗
zγfβ〉.

Hence V is well-defined and isometric. Moreover, since the span of vectors of the form∑
|α|≤N

MzαX∗i fα

is dense in H2(Dm)⊗Ei for i = 1, 2, by minimality, V is a unitary module map from H2(Dm)⊗E1

onto H2(Dm)⊗ E2, which concludes the proof.
The above proof will only work if the algebra is generated by functions for which module

multiplication defines doubly commuting isometric operators which happens for the Hardy module
on the polydisk. For a more general quasi-free Hilbert module R, the maps X∗i identify anti-
holomorphic sub-bundles of the bundle ER ⊗ Ei, where ER is the Hermitian holomorphic line
bundle defined by R. To establish uniqueness, some how one must extend this identification to
the full bundles. Equivalently, one has to identify the holomorphic quotient bundles of ER ⊗ E1,
and ER ⊗ E2 and must some how lift it to the full bundles. At this point it is not even obvious
that the dimensions of E1 and E2 or the ranks of the bundles are equal. This seems to be an
interesting question. Using results on exact sequences of bundles (cf. [18]), one can establish
uniqueness if dim E = rankEH + 1.

Another method of defining the isometry Y : H → H2(Dm)⊗V, which yields the co-isometric
extension of H, is to set

Y K(·,w)γ = SDm(·,w)Vwγ, for w ∈ Ω, γ ∈ l2n.

That Y is well defined and isometric follows from the relation of the kernel functions for H and
H2(Dm) ⊗ V. By uniqueness, then these two constructions of the isometric co-extension must
coincide.

4. An example

We construct an example of a concrete quasi-free module over the algebraA(D2) that illustrates
some of the subtlety in dilating to the Hardy module H2(D2). Consider the submodule S :=
{f(z, w)⊕ f(z, z) : f ∈ H2(D2)} of H2(D2)⊕H2(D) over the bi-disk algebra A(D2). The module
multiplication on S is given by the natural action of the algebra A(D2) as follows:

(ϕ · f)(z, w) = ϕ(z, w)f(z, w)⊕ ϕ(z, z)f(z, z), ϕ ∈ A(D2), f ∈ H2(D2).

The vector 1⊕ 1 generates S and the submodule S is quasi-free of rank 1.
Let T be a joint (M∗z1 ,M

∗
z2)-invariant subspace of the Hardy module H2(D2). The module

action is induced by the two operators (PTMz1 |T , PTMz2 |T ). Suppose S is unitarily equivalent
to the module T . With respect to the orthogonal decomposition, H2(D2) = T ⊕ T ⊥, we have
that

Mz1 =
[
T1 0
A1 N1

]
and Mz2 =

[
T2 0
A2 N2

]
.

But

M∗z1Mz1 =
[
T ∗1 A∗1
0 N∗1

] [
T1 0
A1 N1

]
=
[
T ∗1 T1 +A∗1A1 A∗1N1

N∗1A1 N∗1N1

]
=
[
IT 0
0 IT ⊥

]
,

and hence, A∗1A1 = 0 or, equivalently, A1 = 0. Similarly, A2 = 0. Consequently, T is a
joint (Mz1 ,Mz2)-reducing subspace of H2(D2) which is a contradiction (as none of the reducing
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subspaces, H2(D)⊕{0} or {0}⊕H2(D), of H2(D2) are unitarily equivalent to S). Note that Mz1

and Mz2 are isometries. Hence, so are T1 and T2. Therefore, we have proved the following.

Proposition 3. The Hilbert module S does not have any resolution

· · · −→ H2(D2) X−→ S −→ 0

with X a co-isometric module map.

There is a useful alternative description of the Hilbert module S discussed above based on
Proposition 2. First, we observe that the linear subspace {f(z, z) : f ∈ H2(D2)} ⊆ O(4), the
space of holomorphic functions on 4, is not isomorphic to the Hardy module H2(D) but rather
to the Bergman module L2

a(D). Let H1/2(D2) be the Hilbert space of holomorphic functions on
the bi-disc D2 determined by the positive definite kernel

B1/2(z,w) =
1

(1− z1w̄1)
1
2

1

(1− z2w̄2)
1
2

, z = (z1, z2), w = (w1, w2) ∈ D2.

We recall that the restriction map res : H1/2(D2) → H2(D) defined by the formula f 7→ f|res 4
(that is, restriction to the diagonal 4), is a co-isometry. The orthocompliment Q of the kernel
of this map in H1/2(D2), considered as a quotient module, is therefore isometrically isomorphic
to the Hardy module H2(D). Let KQ denote the reproducing kernel for the module Q. Then

KQ(z,w) = KH1/2(D2)(z,w)− (z1 − z2) · χ(z,w) · (w̄1 − w̄2),

for some positive definite kernel χ on the bi-disk D2. By a result of Aronszajn [6], the kernel
function for S is given by

KS(z,w) = KH2(D2)(z,w) +KH1/2(D2)(z,w)− (z1 − z2) · χ(z,w) · (w̄1 − w̄2).

This fact requires an identification of the space associated with the sum of two kernel functions
and the space S constructed above.

Now let us consider the question of whether S possesses an isometric co-extension to H2
V(D2)

for some Hilbert space V. By Theorem 5, this is equivalent to the positive definiteness of

H(z,w) = (1− z1w̄1)(1− z2w̄2)KS(z,w).

However, this is not the case since the restriction of H(z,w) to the diagonal 4 is not positive.
More precisely,

H(z, z;w,w) = (1− zw̄)2{(1− zw̄)−2 + (1− zw̄)−1} = 1 + (1− zw̄) = 2− zw̄;

which is not positive definite. Therefore, S is a contractive quasi-free Hilbert module over the
bi-disk algebra but the kernel function KS does not admit the Sz̈ego kernel as a factor. Thus this
provides another proof that the module S does not possess a H2(D2) co-isometric extension.

5. Other Kernel functions in Several Variables

The results of Section 3 apply to more than the case of the Hardy module which we stated in
Theorem 4. More precisely, we have

Theorem 6. Let M be a Hilbert module over A(Ω) for Ω ⊆ Cm (or C[z] for Ω = Bm or Dm)
having the kernel function K(z,w) = k(z,w)IV , where k(z,w) is a scalar kernel function and
V is a Hilbert space. Let H be a Hilbert module over the same algebra with kernel function
KH(z,w) such that k−1(M ,M∗) ≥ 0, where M is the coordinate multipliers on H. Then H can
be realized as a quotient module of M⊗Q over the same algebra for some Hilbert space Q, and
conversely. Hence H has an isometric co-extension to M⊗Q for some Hilbert space Q if and
only if k−1(M ,M∗) ≥ 0 if and only if k−1KH ≥ 0.
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We note that the operator positivity assumption in the above theorem includes implicitly the
additional hypothesis that one can define a functional calculus so that k−1(M ,M∗) makes sense
for the kernel function k. It was pointed out in the paper by Arazy and Englis [5] that for many
reproducing kernel Hilbert spaces, one can define such a 1

k -calculus. Thus our result is true to
that extent. We now provide some examples to which these results apply.

The kernel function for the Bergman module, L2
a(D), is B1(z, w) = (1− zw̄)−2. Therefore, the

kernel function for L2
a(Dm) is the product

Bm(z,w) = Πm
i=1(1− ziw̄i)−2, z,w ∈ Dm.

Applying Theorem 6 we obtain the following result

Corollary 1. If H is a contractive reproducing kernel Hilbert module over A(Dm), then H has
an L2

a(Dm)⊗ E isometric co-extension if and only if

B−1
Dm(M ,M∗) ≥ 0,

or, equivalently, if and only if
B−1

DmK ≥ 0,

where K is the kernel function for H.

Note that if B−1
DmK ≥ 0, it follows that S−1

DmK ≥ 0. Hence, if H has an isometric Bergman
space co-extension, it also has a Hardy space one, a result which can be proved directly.

Further, note that one could state similar results for the weighted Bergman spaces on Dm. We
omit the details.

We now consider examples on the unit ball. Let Bm := {z ∈ Cm : |z1|2 + · · · + |zm|2 < 1}
be the Euclidean unit ball and K be a positive definite kernel on Bm. Let T`, 1 ≤ ` ≤ m,
be the operator defined on the normed linear space H0 =

∨
{K(·,w) : w ∈ Bm} by the formula

T`K(·,w) = w̄`K(·,w). The following extension of Lemma 1 gives a criterion for the contractivity
of the operator

∑m
`=1 T

∗
` T` ≤ I.

Corollary 2. Let K be a positive definite kernel function on the unit ball Bm. The commut-
ing m-tuple T = (T1, . . . , Tm) of linear maps on H0 ⊆ HK satisfies the contractivity condition∑m

`=1 T
∗
` T` ≤ I if and only if the function (1−

〈
z,w

〉
)K(z,w) is positive definite.

Proof. We note that
∑m

`=1 T
∗
` T` is a Hermitian operator. Therefore, it is enough to compute

sup{
〈 m∑
`=1

T ∗` T`η, η
〉

: η =
n∑
i=1

K(·,wi)xi}, wi ∈ Bm, n ∈ N.

But the computation for each term of the summand, is the same as the one in the proof of Lemma
1. Adding all of these inequalities completes the proof.

Suppose M is a Hilbert module over the ball algebra A(Bm) and let KM be its reproducing
kernel. The operatorsM` of multiplication by the coordinate functions onM satisfy the inequality∑m

`=1M
∗
`M` ≤ I if and only if KM(z,w) = (1−

〈
z,w

〉
)−1K(z,w) for some positive definite kernel

K on the ball Bm. The Hilbert module over the ball algebra A(Bm) corresponding to the kernel
(1 −

〈
z,w

〉
)−1, z,w ∈ Bm, is the Drury-Arveson space H2

m. For this module, the operator
inequality of the lemma is evident. Let N be the Hilbert space corresponding to the positive
definite kernel K which appears in the factorization of KM. Now, assume that

∑m
`=1M`M

∗
` ≤ I.

It then follows from an extension of Theorem 6 that the Hilbert module M admits an isometric
co-extension to the Drury-Arveson space H2

m ⊗ N ≡ H2
m(N ). Thus we have obtained a special

case of Arveson’s dilation result (cf. [2]):
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Proposition 4. Let M be a quasi-free Hilbert module over the ball algebra A(Bm). Suppose that
the m-tuple of operators defined to be multiplication by the coordinate functions on M satisfies
the operator inequality

∑m
`=1M`M

∗
` ≤ I. ThenM can be realized as a quotient module of H2

m⊗N
for some Hilbert space N .

Just as we did for the Bergman module for the polydisk, we can also consider possible dilations
on the ball under the assumption that (1 − 〈z,w〉)kK is positive definite. For k = 1 we have
the previous result. For k = m, we obtain the result for the Hardy module over the ball and
for k = m + 1, we obtain the result for the Bergman module on the ball. Again, the existence
of a dilation for one value of k implies the existence for all smaller k, and hence always for the
Drury-Arveson space if for any k.

A final observation concerns fractional exponents for which one obtain Besov-like spaces. Ar-
guments such as those given in this section to yield additional relationships between these Hilbert
modules and should be worth considering.

6. Curvature Inequality

Let R(k) be a scalar reproducing kernel Hilbert module for the n.n.d. kernel function k
over the polynomial ring C[z] consisting of holomorphic functions on some bounded domain
Ω in Cm. Assume that C[z] ⊆ R(k) is dense in R(k). It then follows ([10]) that the map
w 7→ ∩mi=1 ker(Mi − wi)∗ is anti-holomorphic from Ω to the projective space of R(k) and defines
an anti-holomorphic line bundle E∗R(k) on Ω via the map w 7→ k(·,w), w ∈ Ω. The dual bundle
ER(k) is a holomorphic bundle over Ω. Moreover, ER(k) is Hermitian, where the Hermitian metric
on the line bundle is induced by the standard Hermitian inner product on R(k). In other words,
with respect to the frame {s}, where s(w) = k(·,w), the Hermitian structure of ER(k) defines a
Hermitian form

h(w) =< s(w), s(w) >= ‖k(·,w)‖2, w ∈ Ω.
Then the canonical Chern connection on ER(k) is given by

O = ∂h.h−1,

with the curvature form

(6.5) KR(k)(w) = −1
2
∂∂̄logh = −1

2

m∑
i,j=1

∂

∂wi

∂

∂w̄j
log k(w,w) dwi ∧ dw̄j , w ∈ Ω.

We want to compare the curvatures of the bundles associated with a quotient module and
the bundle for the isometric co-extension. First, we need to recall some results from complex
geometry concerning curvatures of sub-bundles and quotient bundles (cf. [18], pp. 78-79).

Let E be a Hermitian holomorphic bundle over Ω ⊆ Cm (possibly infinite rank) and F be
a holomorphic sub-bundle of E such that the quotient Q = E/F is also holomorphic. Let OE

denote the Chern connection on E and ΘE the corresponding curvature form. There are two
canonical connections that we can define on F and the quotient bundle Q. The first ones are
the Chern connections OF and OQ on F and Q, respectively. To obtain the second connections,
let P denote the projection-valued bundle map of E so that P (z) is the orthogonal projection of
E(z) onto F (z). Then

OPE = POEP and OP⊥E = P⊥OEP
⊥,

define connections on F and Q, respectively, where P⊥ = I − P and Q is identified fiber wise
with P⊥E. The following result from complex geometry relates the curvatures for these pairs of
connections.
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Theorem 7. If F is a holomorphic sub-bundle of the holomorphic bundle E over Ω ⊆ Cm such
that E/F is holomorphic, then the curvature functions for the connections OF , OPE , OQ and
OP⊥E satisfy

ΘF (w) ≥ ΘPE(w) and ΘQ(w) ≤ ΘP⊥E(w), w ∈ Ω.

The proof is essentially a matrix calculation involving the off-diagonal entries of OE , one of
which is the second fundamental form and the other its dual (cf. [18]). (Note in [18], E is finite
rank but the proof extends to the more general case.)

We apply this result to Hilbert modules as follows.

Theorem 8. Let R be a quasi-free Hilbert module over A(Ω) for Ω ⊆ Cm (or over C[z]) of
multiplicity one and S be a submodule of R ⊗ E for a Hilbert space E such that the quotient
module Q = (R⊗ E)/S is in Bn(Ω) for some 1 ≤ n < ∞. If ER and EQ are the corresponding
Hermitian holomorphic bundles over Ω, then

P⊥(w)(ΘER(w)⊗ IE)P⊥(w) ≥ ΘQ(w), w ∈ Ω.

Proof. The result follows from the previous theorem by setting E = ER⊗E , F = ES and Q = EQ.

In particular, we have the following extremal property of the curvature functions.

Theorem 9. A necessary condition for a Hilbert module H in Bn(Ω) over A(Ω), Ω ⊆ Cm, to
have R⊗ E for some Hilbert space E as an isometric co-extension is that

ΘER(w)⊗ IE ≥ ΘH(w), w ∈ Ω.

The converse of this result is false, but is valid with a stronger notion of positivity. We plan
to take up this matter in the future.

Recalling Corollary 2, we see that any contractive reproducing kernel Hilbert module M(K)
over the polynomial algebra C[z] satisfies the inequality KH2

m
−KM(K) ≥ 0. This is a general-

ization of the curvature inequality for the disk from [19], see also [24, 20].
The above inequality shows in view of Corollary 2 that the module H2

m is an extremal element
in the set of contractive Hilbert modules over the algebra C[z]. Similarly, for the polydisk Dm,
the Hardy module is an extremal element in the set of those modules over the algebra A(Dm)
which admit a co-extension to the Hardy space H2(Dm)⊗ V.
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