COMMUTING TUPLE OF MULTIPLICATION OPERATORS
HOMOGENEOUS UNDER THE UNITARY GROUP
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ABSTRACT. Let U(d) be the group of d X d unitary matrices. We find conditions to ensure that a I/(d)-
homogeneous d-tuple T is unitarily equivalent to multiplication by the coordinate functions on some
reproducing kernel Hilbert space Hx (Bq, C") C Hol(B4,C"), n = dim ﬂ?zl kerT. We describe this
class of U(d)-homogeneous operators, equivalently, non-negative kernels K quasi-invariant under the
action of U(d). We classify quasi-invariant kernels K transforming under U(d) with two specific choice
of multipliers. A crucial ingredient of the proof is that the group SU(d) has exactly two inequivalent

irreducible unitary representations of dimension d and none in dimensions 2,...,d — 1, d > 3. We
obtain explicit criterion for boundedness, reducibility and mutual unitary equivalence among these
operators.

1. INTRODUCTION

Let Q be an irreducible bounded symmetric domain of rank = in C% and Aut(Q) be the group of
bi-holomorphic automorphisms on €. Let G be the connected component of identity in Aut(Q2). It is
well known that G acts transitively on ). Let K be the subgroup of linear automorphisms in G. By
Cartan’s theorem [14, Proposition 2, pp. 67], K= {¢ € G : ¢(0) = 0}. The group K is known to be
a maximal compact subgroup of G and (2 is isomorphic to G/K. There is a natural action of K on Q
given by

k-z:=(ki(2),...,ki(2)), ke K and z € Q,
where k1(2),. .., kq(z) are linear polynomials. The group K also acts on a d-tuple T' = (T4, ...,Ty) of
commuting bounded linear operators defined on a complex separable Hilbert space H, naturally, via
the map
k-T:= (kl(Tl,...,Td),.. . ,kd(Tl,... ,Td)), ke K.

Definition 1.1 ([10]). A d-tuple T' = (T1,...,T4) of commuting bounded linear operators on # is
said to be K-homogeneous if for all k in K the operators T' and k - T are unitarily equivalent, that is,
for all k£ in K there exists a unitary operator I'(k) on #H such that

T,T(k) = D(k)k;(Ty, ..., Ty),  j=1,2,....d

In particular, when Q is the Euclidean ball B4 in C?, then K is the group of unitary linear trans-
formations on C¢ and the spherical tuples defined in [5] are nothing but ¢ (d)-homogeneous d-tuples.
In this paper we would be discussing U (d)-homogeneous commuting d-tuple M of multiplication by
coordinate functions z1,. .., z4 on a reproducing kernel Hilbert space H g (B4, C™). This Hilbert space
consists of holomorphic functions defined on B; and taking values in C"”. We consider in some detail
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the case of n = d. However, without any additional effort, we set up the machinery in the much

more general context of a bounded symmetric domain €2 and the maximal compact subgroup K of its

bi-holomorphic automorphism group. A detailed study of K-homogeneous operator is underway.
Now, let Dy : H — H & --- @ H be the operator

Drh = (Tyh,...,Tyh), he™H.

We note that ker Dy = NL, ker T; is the joint kernel and 0,(T) = {w € C¢ : ker Dy_y # 0} is
the joint point spectrum of the d-tuple T'. The class AK(Q2) consisting of K-homogeneous d-tuples of
operators with the property:

(1) dimker D= =1,

(2) ker Dp= is cyclic for T, and

(3) 2 C 0p(T7);
was introduced in the recent paper [10], see also [19]. Among other things, it is shown in [10, Theorem
2.3] that any d-tuple T in AK(2) must be unitarily equivalent to the d-tuple M of multiplication
by the coordinate functions on a reproducing kernel Hilbert space Hx (€2) C Hol(€2,C) for some K-
invariant kernel K. Recall that the Hilbert space Hx(€2) has a direct sum decomposition GBSGZQ Ps,

where ZQ is the set of signatures: s := (s1,...,5,) € ZI, 51 > s3 > --- > s, > 0 and Py are the

irreducible components under the action of K. The invariant kernel K is then of the form: Kq(z,w) =
Zseir asFs(z,w), where E; is the reproducing kernel of Ps equipped with the Fischer-Fock inner
2 + - - - -

product defined by (p, ¢)7 := 7 Jca p(2)q(z)eI7I2dm(2). Here dm(z) denotes the Lebesgue measure
on C%.

The results of [10] also show that the properties of M like boundedness, membership in the Cowen-
Douglas class B1(2), unitary and similarity orbit etc. can be determined from the properties of the
sequence a := {as}, ez - It is therefore natural to investigate the much larger class of d-tuples of
homogeneous operators by assuming only that dim ker Dz~ is finite rather than 1, which is the main
feature of the class defined below. As one might expect, we obtain a model theorem in this case also
with the major difference that the kernel K need not be invariant under the action of the group K,
instead it is quasi-invariant!

Assume that ker Dy« is a cyclic subspace for T of dimension n. Let H®) be the linear space
{p(T)~| v € ker Dp=,p € P}, where P is the space of complex-valued polynomials in d-variables. Fix
an orthonormal basis {71,...,7,} in ker Dp+. For w € C%, the point evaluation evy, : HO — C™ s
defined to be the map

eV ZPi(T)(%‘)) = Zpi(w)ei,
=1 =1

where p1,...,p, are in P and ey, ..., e, are the standard unit vectors in C". Let bpe(T") be the set
{w € C%: ev,, is bounded} (see [17, Definition 2.1]).

Definition 1.2. Let  be an irreducible bounded symmetric domain. A K-homogeneous d-tuple T'
possessing the following properties
(i) dimker Dy« = n,
(ii) the space ker Dy is cyclic for T,
(iii) © C bpe(T), and the evaluation maps ev,, are locally uniformly bounded for w € €,
is said to be in the class A, K(Q).

The local uniform boundedness of the evaluation functionals might appear to be a strong require-
ment but is necessary for constructing a model for d-tuples in A, K(Q) with n > 1 (see proof of
Theorem 2.1). This notion appears in the definition of quasi-free modules introduced in [8]. The
notion of sharp kernels (see [2]) and generalized Bergman kernels (see [6]) occurring in the work of
Agrawal-Salinas and Curto-Salinas are closely related to the kernels implicit in Definition 1.2.
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It follows from [10, Theorem 2.3] that the d-tuples in the class AK(2) introduced earlier in [10]
coincides with to the class A;K(Q2). It would be convenient for us to let AK(Q2) denote the class
A1K(Q). In this paper, we continue the investigation initiated in [10], now for the class A4, K(Q2),
n > 1.

Definition 1.3. Let K : Q x Q@ — M,,(C) be a sesqui-analytic Hermitian function and ¢ : K x  —
GL,(C)) be a function holomorphic in the second variable for each fixed k € K. The function K is
said to be quasi-invariant under the group K with multiplier c if

K(z,w) =c(k,2)K(k™' -z, k™ " w)e(k, w)*, ke K.

We point out that if the function K is quasi-invariant and non-negative definite, then the map I'(k),
k € K defined by the rule: T'(k)(f) = c(k, z)f o k™! is unitary on the reproducing kernel Hilbert space
Hi(2,C"). Also, the map k — I'(k) is a homomorphism if and only if ¢ is a cocycle, that is,

C(klkg,z) = C(kl, ko - Z)C(kg, Z), kl, ko € K.

In the explicit examples we discuss, the map ¢ : K x Q — GL,,(C) is constant in the second variable
and therefore defines a unitary representation of the group K. These examples consist of 2 = B; and
c(k) = k or ¢(k) = k, k € K, which in this case is ¢(d). Consequently, the intertwining operator
['(k) defines a unitary representation k — I'(k) of the group K. Indeed, if there is a unitary I'(k),
k € K, intertwining M and k- M, then the reproducing kernel K must be quasi-invariant. A familiar
argument using the very useful notion of “normalized kernel”, see Remark 2.2, then shows that the
function ¢ must be actually independent of z. What is more, it is also shown that ¢(k) is unitary for
each k € K.

If the d-tuple M on some Hilbert space Hx (£2) is in AK(2), then the kernel K is invariant under
the action of the group K, that is, K(z,w) = Zseig asEs(z,w) with a9 = 1, see [1, Proposition 3.4]
and [10, Theorem 2.3|. But if n > 1 and the d-tuple M acting on Hx(2,C") is in A, K(Q), then we
can only assume that the kernel K is merely quasi-invariant, not necessarily invariant. How do we
construct, if there is any, an example of a kernel K : Q x Q — M,,(C) which is quasi-invariant but
not invariant. Equivalently, we are asking: If M is in A,K(2) acting on the Hilbert space Hx (£2, C")
(n > 1), then does it follow that the quasi-invariant kernel K must be necessarily invariant? Consider,
for example, the kernel

2

Kao(w,w) := Kg('w,'w) ((&Ui@wj log Kq(w, w))),

where Kq : 2x€2 — Cis an invariant positive definite kernel of the form Kq(z,w) = >~ 7. asEs(z, w).
2 + - -
It is known that K4 is not only a positive definite kernel but also quasi-invariant under K, see [11,

Proposition 2.3 and Proposition 6.2]. Indeed, K, transforms according to the rule:
K (e 2 k™ w)k L = Ka(z,w), k €K,

where { denotes the transpose of a matrix. The multiplier ¢ : K x 2 — GL4(C) for the quasi-invariant
kernel g is given by c(k, z) = k, k € K, z € Q. It is not hard to see that kg is not invariant under K,
see Proposition 2.8. Thus, we have many examples of quasi-invariant kernels taking values in M,,(C)
that are not invariant when n = d. We briefly describe below the results of this paper.

In Section 2, we find a concrete model for a d-tuple T in A, K(Q2) as the d-tuple M of multiplication
by the coordinate functions z1,...,zq on some Hilbert space Hx (2, C") C Hol(2,C") possessing a
reproducing kernel K : Q x Q@ — M,,(C). This is Theorem 2.1. We prove, see Theorem 2.7, that a
quasi-invariant kernel K is a sum (with positive coefficients) of certain quasi-invariant kernels in the
Peter-Weyl decomposition of the Hilbert space Hx (€2, C™) with respect to the action of the group K.

In Section 3, we restrict to the case of the Euclidean ball B; C C?. Designating 7, the natural
action of U(d) on the homogeneous polynomials of degree ¢ in d variables equipped with the Fisher-
Fock inner product. We prove that m; ® 7y is reducible and identify an irreducible component in the
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decomposition of 71 ® mp. We obtain a similar result for 71 ® 7y, where 71 is the contragredient of 7.
Choosing the cocycles ¢(u, z) = m1(u), its contragredient c(u, z) = 71 (u), u € U(d), we describe all
the sesqui-analaytic Hermitian quasi-invariant function that transform as in Definition 1.3. Among
these, the non-negative definite functions are identified explicitly. We conclude by discussing two sets
of examples of d-tuples in AzU(By).

In the first half of Section 4, we find conditions for boundedness and irreducibility of the d-tuple M.
The second half is devoted to study of quasi-invariant diagonal kernels K : By x By — M,,(C). In this
case, such a kernel must be invariant and we prove that it is of the form: » ;2 Ay(z, w)t, z, w € By,
see Corollary 4.11.

In the concluding Section 5, first, we identify the two components in the decomposition of m; ® mp
(respectively, 71 ® my) explicitly and show that these components themselves are irreducible. Secondly,
we prove that if a kernel K is quasi-invariant under U(d) taking values in M4(C), transforms as in
Definition 1.3 with ¢ : U(d) — GL4(C), and c¢ is assumed to be an irreducible representation of U(d),
then these kernels fall into two classes explicitly described in Theorem 5.7. To prove this result, we
first establish that, up to unitary equivalence, there are only two irreducible unitary representations
of SU(d), the standard one and its contragredient. We also prove that SU(d) does not have any
irreducible unitary representation of dimension ¢, 2 < ¢ < d — 1. We were not able to locate these
results that might be of independent interest. Therefore, we have included detailed proofs of these
results.

For now, we have complete results only in the particular case of the cocycles ¢(u, z) = u or u of the
group U(d), d € N. We are hopeful of obtaining similar results for an arbitrary cocycle in the case of
the group U(2).

2. DECOMPOSITION OF A QUASI-INVARIANT KERNEL

We begin by providing a model for a d-tuple of operator T in the class A4,K(Q2) acting on some
Hilbert space H. The proof involves transplanting the inner product of H on the subspace C" @ P
of C"-valued polynomials in the space of holomorphic functions Hol(£2, C"). The proof amounts to
constructing a unitary operator intertwining T' and the d-tuple of multiplication operators defined on
the completion of the subspace C" ® P in Hol(2, C").

Theorem 2.1. Suppose that T is a d-tuple of commuting operators in A,K(Q2). Then T is unitarily
equivalent to the d-tuple M of multiplication by the coordinate functions zi,...,zq on a reproducing
kernel Hilbert space Hy (22, C™) C Hol(Q2, C™), for some kernel function K quasi-invariant under K.

Proof. Since T is K-homogeneous, for each k € K there exists a unitary operator I'(k) on H such that
T;I'(k) = T'(k)k;(T), j=1,...,d.
Pick an orthonormal basis {£;,...,&,} C ker Dp«. Let ¢ : ker Dy — C™ be a unitary identifying

€ =>"", x;& with the vector x = )" | x;e;, where eq,...,e, are the standard unit vectors in C".
We define a semi-inner product on C" ® P by extending

to C" ® P by linearity. Suppose that H Y€ ®piH =0, then we claim that ) ;" , e; ® p; = 0. Pick
any w € Q C bpe(T') and note that

1> piwles, < Cul| Y pi(T)E],, = 0.
i=1 i=1

For 1 < i < n, it follows that p;(w) = 0 for all w € Q. Consequently each p;, 1 < i < n, is the zero
polynomial. Therefore, the semi-inner product given by the formula (2.1) defines an inner product on
C"®P.
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Let 57 be the completion of C"* ® P with respect to this inner product. Since we have assumed
that the set bpe(T') contains €, it follows that the Hilbert space % is a reproducing kernel Hilbert
space consisting of functions defined on Q. Let K : Q x 2 — M,,(C) be the kernel function given by
K(z,w) = ev,evy,, that is,

(1) K(-,w)x is in JZ for every vector € C" and every point w € €2,

(2) {f; K(,w)z)r = (f(w), z)2.
Given any function f € J, we can find polynomials p; € C" ® P such that || f —p;||» = 0as j — oo
by assumption. Moreover, since the point evaluations are assumed to be locally uniformly bounded
on ), it follows that for any fixed but arbitrary w € €2, there is an open set O C () containing w such
that sup,cp || K (2, 2)|| = Now < co. For any compact set X C O, and z € X, we have

(2.2) ((2) = pj(2), )] < 11(2) = pi(2)lla < NFallf = pillor

proving that f is holomorphic at w. Consequently, K is holomorphic in the first variable and anti-
holomorphic in the second.
Now for any k € K, since ker Dp+ is invariant under the unitary map I'(k)*, we have

(ei @p, e ®@ q)cnep = (P(T)&;, ¢(T)E;)n
= (L(k)p(k - T)T'(k)*&;, T'(k)q(k - T)I'(k)"&;)n
= (p(k - T)L(k)"&;, q(k - T)T(k)"€;)n
= (I'(k)"t'e;@pok, I(k) "t ej ® gok)crngp.
Therefore, the reproducing kernel K of the Hilbert space 47 is quasi-invariant under K with multiplier
(I'(k)*c*. Finally, the unitary taking e; ® p to p(T')§; extends to a unitary from the Hilbert space H

to the Hilbert space 5. This unitary intertwines the commuting d-tuple T on H with the d-tuple M
of multiplication by the coordinate functions z;, 1 < i <d, on 7. O

Now we gather a few properties of d-tuples in the class A4,K(£2). In particular, we prove that if the
d-tuple M on Hg(2,C") is in A, K(Q), then the intertwining unitary between M and k- M for each
k € K must be of the form f — c(k)(f o k1), c(k) € U(n).

Remark 2.2. We recall that any non-negative definite kernel K : Q x Q — M,,(C) admits a normal-
ization Ky at wy € Q. The normalized kernel K is characterized by the requirement Ky(z,wg) = Id,,
for all z € ). The point wy is arbitrary but fixed. The first two of the three statements below can be
found in [6] and the last one is from [7, p. 285, Remark].
(1) The d-tuple M on Hi (2, C") and Hg,(£2, C") are unitarily equivalent.
(2) If K1 and K2 be the kernels normalized at some fixed wg € 2, then the multiplication d-
tuples on Hg, (2,C") and H, (€2, C") are unitarily equivalent if and only if there is a unitary
U € U(n) such that U*K;(z,w)U = Ky(z,w) for all z,w € Q.
(3) Suppose that C" @ P is densely contained in Hx (2, C") and that the multiplication by the
coordinate functions are bounded on Hx (€2, C"). Then

Miey ker(M; —w;)* = {K(-,w)x: x € C"}.
Moreover, the dimension of the joint kernel at w is n for all w € Q.

Lemma 2.3. Let Hi(Q2,C") be a reproducing kernel Hilbert space consisting of holomorphic functions
on Q taking values in C". Assume that C" @ P is densely contained in Hi(Q2,C"), the d-tuple M
on Hi(2,C") is bounded and the kernel K is normalized at 0. Then the following statements are
equivalent.

(1) The d-tuple M is K-homogeneous, that is, there is a unitary operator I'(k) on Hx (Q, C™) with
D(k)(k - M)D(k)* = M, k € K.
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(2) The kernel K is quasi-invariant under K with multiplier ¢ : K x Q — U(n), c(k, z) is indepen-
dent of z.
(3) There is a map c : K — U(n) such that (T(k)f)(z) := c(k)f(k™1 2), is unitary on H (Q,C").

Proof. Since C" ® P is densely contained in Hx (2, C"), it follows that the dimension of the joint
kernels ﬂle ker D(pg—w)+, w € €, as shown in [7, p. 285, Remark], is n. Therefore, the methods of [6]
applies.

First, it is not hard to see that the d-tuple of operators k- M acting on the Hilbert space Hx (£2, C™)
is unitarily equivalent to the d-tuple M acting on H (2, C"), where K(z,w) =Kkt 2z k1 w)
via the unitary operator f — fok™!, f € Hx(Q,C"). Since K is assumed to be normalized at 0 and k
is linear, it follows that K is also normalized at 0. Second, for a fixed k € K, any intertwining unitary
operator between the d-tuple M on H ;- (Q2,C") and H (2, C") must be of the form f = ¢(k)f, where
(c(k)f)(z) = c(k)f(2) for some unitary ¢(k) € U(n). Finally, these two unitaries combine to give a
unitary operator I'(k) : Hx (2, C") — H (92, C") of the form: T'(k)f(2) = c(k)(f o k~1)(z). Thus we
have proved that the statement (1) implies (3).

Moreover, the unitarity of the map I' in the statement (3) is equivalent to the quasi-invariance of
the kernel K, namely, K(z,w) = c(k)K (k™! - z,k~! - w)c(k)*. This proves the equivalence of the
statements (2) and (3).

The statement (3) clearly implies (1) completing the proof. O

Remark 2.4. Choosing the multiplier ¢ : K — GL,(C) to be unitary without loss of generality and
assuming that c is a homomorphism, we see that the map f — c¢(k)(fok™!) is a unitary representation
of K on the Hilbert space Hy (Q,C").

The group K acts on P naturally by the rule p — pok~!. This action, as is well known, decomposes
into irreducible components Ps parameterized by the signatures s in Z’_. It is pointed out in [1,
Proposition 3.4], that any K-invariant inner product on P must be of the form

deg p

o) =D Y asps,as) 7,
=0 |s|=¢

SEL!,

where deg p is the degree of p and p,, ¢ are the components of p, ¢ € P in the Peter-Weyl decomposition
of P into irreducible subspaces P;. In this paper, what we study amounts to finding K quasi-invariant
inner products on the space C" ® P. We do this by obtaining a generalization of the description of an
invariant inner product from the scalar case given above. This is Proposition 2.6. For the proof, we
need the following elementary lemma (compare with Lemma 2.8 of [5]).

Lemma 2.5. Let Hy := (H,(-,-)1) and Ha = (H, (-,-)2) be two Hilbert spaces. Let p : K — U(H;)

be an irreducible unitary representation for i = 1,2. Then there exists a positive scalar § such that

<., .>1 — 5<7 .>2'

Proof. Let A be the linear map from #H to H such that (f,g)n, = (Af, 9)n,. Now, note that,
(p(k)AS, 9)r, = (Af, p(k ™) g),

= (f,p(k"")g)m,

= (p(k)f, g>7—[1

= (Ap(k) [, 9)n,

Thus it follows that p(k)A = Ap(k). An application of Schur’s lemma completes the proof. O

Let 7 be a unitary representation of the compact group K on a Hilbert space H containing C" ® P
as a dense subspace. By the Peter-Weyl theorem, H is the direct sum of irreducible representations
of K acting on finite dimensional subspaces Hy, A € A. Let my be the restriction of 7w to Hy, that is,
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T = @reay is the Peter-Weyl decomposition relative to the direct sum H = @y cpH ) into reducing
subspaces of 7. For the complete statement of the Peter-Weyl theorem one may consult [12, Theorem,
1.12, p. 17].

Let us transplant the Fischer-Fock inner product on P and the Euclidean inner product on C" to
the tensor product C" @ P. We let (-, -) # denote the inner product on this tensor product space by
a slight abuse of notation. Let Py be the linear subspace of C" ® P identified with H). Now, each of
the subspaces Py C C" ® P inherits the inner product from that of (C" ® P, (-, -) ) to be denoted by
(P, (-, )7, )s A € A. The hypothesis in the following proposition might appear to be restrictive but
for the applications in this paper, they appear naturally.

Proposition 2.6. Fiz an action 7 of the compact group K on a Hilbert space H. Let [-,-] denote
the inner product of H. Assume that C" @ P is a dense subspace of H. Furthermore, we assume
that (a) [p,q] = [w(k)p,w(k)q], that is, m is a unitary representation of K on H (b) (px,q\)F, =
(ma(k)px, mA(K)gn) 7y, k € K, (¢) mn and 7y are inequivalent whenever X # XN. Then there exists

positive scalars ay such that [p,q] = Y ycp ax(Pr, )7y, where p = Y 5caPx and ¢ = Y \cp Grs
p,q e C"®P.

Proof. Let p,q € C" ® P be of the form ) ., px, px € Py, and >, o4 qr, g € Py, respectively. For
any pair A # )\, by hypothesis, 7\ and 7y, are inequivalent, therefore the subspaces Py and Py of the

inner product space (C" ® P, [-,-]) are orthogonal. Therefore, we have
p.dl = Ipx, arl.
AEA
The representation 7y of K on (Py,[-,-]) is unitary and irreducible. It is also unitary and irreducible
on the space (Py, (-, -) 7, ). The proof of the theorem is completed by applying Lemma 2.5. O

As an application of Proposition 2.6, we obtain a description of all the quasi-invariant kernels K
with a multiplier ¢ assuming that ¢ is a unitary representation of K.

Theorem 2.7. Let Hi(Q2,C") be a reproducing kernel Hilbert space densely containing C" @ P as
subspace. Assume that K is quasi-invariant with multiplier ¢, where ¢ : K — U(n) is a representation
of the group K. Let 7 denote the action of the group K on Hi(Q,C") given by the rule w(k)f =
c(k)(fok™Y). In the Peter-Weyl decomposition T = ©xcamy, assume that the unitary representations
wy are inequivalent. Then there exists positive scalars by, A € A, such that

K(z,w) = ZbAK)\(z,w), z,w € €,
AEA
where K is the reproducing kernel of (P, (-, -)r,), and Hi(2,C") = @xeaPa.

Proof. From Lemma 2.3, it follows that the action 7 of the group K on Hg (£, C") is unitary. This
verifies the assumption (a) of Proposition 2.6. The inner product space (C" @ P, (-, -) ) is the ten-
sor product (C", (-, -)2) ® (Px, (-, -)»). Consequently, since c¢(k) is unitary for each k € K verifying
assumption (b) of Proposition 2.6. Finally, the assumption that my, A\ € A, are inequivalent is the
assumption (c¢) of Proposition 2.6. Therefore the proof is completed by applying Proposition 2.6. [

We show that a non-scalar kernel K, quasi-invariant under U(d) associated with a multiplier ¢ that
is irreducible, can not be invariant.

Proposition 2.8. Let K : Q x Q@ — M,,(C) be a non-negative definite kernel. Suppose that ¢ : K —
M, (C) is an irreducible unitary representation and K is quasi-invariant under K with multiplier c. If
the kernel K is also invariant under K, then there exists a non-negative definite scalar valued kernel
k on Q x Q invariant under K such that K(z,w) = k(z,w)1l,, z,w € Q.

Proof. Suppose that K is quasi-invariant with multiplier ¢ : K — M,,(C), that is,
K(z,w)=c(k)K(k™' 2z, k7 - w)e(k)*, k€K, z,w € Q,
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where ¢ is an irreducible unitary representation. If the kernel K is also invariant under K, it follows
that, K(z,w) = c(k)K(z,w)c(k)*, that is, K(z,w)c(k) = ¢(k)K(z,w) for all k € K. By Schur’s
Lemma, K(z,w) = k(z,w)I, for some scalar x(z,w). The kernel K(z,w) is non-negative definite,
therefore k(z,w) is non-negative definite also. Moreover, since K (z,w) is invariant under K, it follows
that x(z,w) is invariant under K as well. This completes the proof. O

Remark 2.9. As we have pointed out earlier, under some additional assumptions, any scalar-valued
non-negative definite kernel K on Q x ) quasi-invariant under K can be shown to be of the form
Z§€Z,«+ asE, for some sequence {a§}§€Z:_ of non-negative real numbers.

3. A CLASS OF QUASI-INVARIANT KERNELS

Let (P, (-, -)r) denote the linear space of all polynomials in d-variables equipped with the Fischer-

Fock inner product and let (CY, (-, -)2) denote the Euclidean inner product space. We have
(Cda <'> >2) & (Pa <'a >.7:) = @(Cd & ,Pfa <'ﬂ '>.7:g)a
=0

where the linear space (C? ® Py, (-, -)7,) denotes the subspace of (C%, (-, -)a) ® (P, (-,-)7) consisting
of homogeneous polynomials of degree ¢. Thus the reproducing kernel of (C% @ Py, (-, -),) is of the
form <Z’lfq}”y[d.

Recall that the unitary group U(d) acts on P by (7(u)(p))(z) = p(u~! - 2), p € P. Therefore, the
map given by the formula:

(3.1) (F®)(2) = ulp(u™ - 2)), pe T &P, ucU(d)
is an unitary homomorphism. Let my(u) denote the restriction of 7(u) to Py and 7y(u) be the restriction
of (u) to C? ® P,. Evidently, the subspaces C¢ ® Py, £ € Z,, are not only invariant under the action

7 of U(d) but also the restriction of 7y to these subspaces is unitary.
There is a second action 7 of the unitary group U(d) on C% ® P given by the formula:

(32) (F(w)(P)(z) =a(p(u™" - 2)), pe C! @ P.

Like before, the restriction 7,(u) of 7(u) to the space C? ® Py is unitary.

3.1. Decomposition of 7,. Let A = (Aj,...,A,) be an n-tuple of bounded linear operators (not
necessarily commuting) A; : H1 — Ha, 1 < i < n, where the Hilbert space #; is possibly different

from Hs. The operators Dy : Hi1 — Ho @ --- ® Hs and DA H, @ - ®Hy — Ho are defined by the
rule

Da(h) = (Aih,...,Aph), h € H; and

hi

DA< ) :Alhl++Anhnv hla-‘-vhneHl‘
hn

It is easy to verify that (DA)* = Dy-.

f1
For any u € U(d), f = ( : ) € C¢® Py and z € C?, we have
fa
d d
Y a(fou)i(z) = (Wl(fou)(z), Z)ca = ((fou)(2), WZ)ca = ) _(u-2)ifi(u-2).
i=1 i=1

Thus, 7 leaves the subspace V; € (C¢® Py, (-, -)7,) invariant, where

fi
Vz={< ) GCd®szzlf1+"'+ded:0}.
fa
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019
: > ‘g€ 73£+1}-
0ag
To verify the claim, let Mz(f) : Py — Pyy1 be the linear map Mz(f)(p) = zip, p € Py. Setting
MO = (Mz(f), ce Mz(f)), we have V; = ker DM Thus Vi =ran (DM“))* =ran D, +. From the
identity (p, ziq) x = (9;p, q)F for any pair of polynomials proved in [18], Proposition 4.11.36, it follows

We claim that the subspace Vj* C (C* @ Py, (-, ) 7,) is { (

that M éf)* = 0; completing the verification of the claim.

Lemma 3.1. The reproducing kernel K; of the inner product space V; is given by the formula:

: 7 (z, w)! ((z, w)ly —EzT) .

f(g(z,w) = W

The reproducing kernel IN(Zl of f/; is given by the formula:
(z, w)!

+ )0

Here, wz' is the matriz product of the column vector W and the row vector z1.

Kit(z,w) = ((z, w)ly +ﬁzT) .

Proof. Let ¢ = ((1,...,(4) be an arbitrary vector in C?. First note that

d d
D zi(Ki(z,w)d, e) = (Eiwz, w)! (Z zi{(z, w)¢ — Wz, Z},ei>>
=1 =1
. ¢ /-1 2 . AT ¢
= m<z7 w) ; (<Zv w) ;G — 2 Wiz, C>)
s W (e )z 8 — (2w 0)

~
=0

It follows that the vector f(g(-, w)( € V,. In order to complete the proof of the first part it suffices to
show that for any f in Vy, w,{ € C4 and i = 1,...,d {f, K;(-,w)e;) 5, = (f(w), €;)ca. Note that

d
(f, (z, w)'wzle) 5, = ) (fj, (z, w)'wiz)F

—_

<

Wy <82fja <Z, ’LU>£_1>]:

Il
.M&

<
Il
-

M=

==Y wi(dif;)(w)

1

= (- 1)!(ai(izjfj)<w> - fi(w))
j=1
= —(¢=D)lfi(w).

<.
I

Hence we have

(3'3) <f7 <z7 w>zilﬁzTei>}—e = _(E - 1)'<f<w)7 ei>(Cd'

Here the second equality follows since (p, ziq) x = (9;p, q)r for any pair of polynomials p,q (see [18,
Proposition 4.11.36]), and the third equality from the reproducing property of the kernel function of
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Py—1. Now, using (3.3), we see that

(f, f(g(.,w)eiﬁg = ¢ Ti (f, (z, w)! ((z, w)e; _EZTei>>}—g

(t+1

~ g (1 ) ) e

= (f(w), €i).

This verifies the formula for K, /-
4
We note that the reproducing kernel of ((Cd ® Pe, (-, ) 7,) is <z’;!”> I;. Now, the verification of the
formula for K;- follows from part (1) and the equality:

V4
zZ, W ~ ~
<€'>Id = Ky(z,w) + K (z,w),

which follows from general theory of reproducing kernel Hilbert spaces. ]

The proof of Proposition 3.6 giving an explicit description of a quasi-invariant kernel under U(d)
transforming as in Definition (1.3) with c¢(u) = u is facilitated by the set of three lemmas proved
below.

Lemma 3.2. Let A be a d x d complex matrix such that uA = Au for all unitary matrices u with

u(ey) = ey. Then A is of the form <aol a212_1> for some complex numbers a1 and as.

Proof. Let A = (il ‘?43 ), where Az and Ay are column vectors in C?~! and A, is in My_1(C). By
4 2

hypothesis, we get Ag3 = A4 = 0 and vAy = Agv for all v € U(d — 1). Now the conclusion follows by
an application of the Schur’s lemma. O

Lemma 3.3. Suppose that K : By x By — M,,(C) is a sesqui-analytic Hermitian function satisfying
the rule K(A -z, A\ - w) = K(z,w) for all A\ on the unit circle T. Then K(z,w) is of the form

oo
Z Z Aaﬁzaﬁﬂ, z,w € By,
£=0 a,BEZi

|lal=|B|=¢

where Ay g are n x n complex matrices.

Proof. Let K(z,w) = Za,ﬁezi Aa,gzaﬁﬂ, z,,w € By. By hypothesis, we have

Z Aawgzo‘ﬁﬁ = Z Aawg)\‘od_'mzo‘ﬁﬁ, z,,weBy AeT.

a,pezd a,BEL]

Comparing coefficients in both sides, we get A, (1 — Mel=I8ly = 0 for all A € T. Hence it follows that
Ay p = 0if |a| # |B|. This completes the proof. O

For any z € By, ||z|| = r, there is a u, € U(d) with the property: u,(z) = re;. The unitary u,
can be determined explicitly, namely, v} = ( %] %), where z is the column vector with components
21,...,%4. For any choice of two sets of complex numbers, {a,,1 : m € Z1} and {ap, 2 : m € Z; } with
ao,1 = a2, set

o0
Di(r,r) = Z am7ir2m,r €1[0,1),i=1,2.
m=0

Also, for any fixed z € B, with ||z|| = r, let U, be the set {u, € U(d) : ux(z) = ||z|/e1}.
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Lemma 3.4. For any u, € U, we have

Dy (r,r) 0 - A
T 1\, _ - z2t
u < 0 Dz(r,r)[d1> Uz = (Di(r,r) — Da(r,1)) . + Dy(r,r)1y.

Proof. For any u, € U,, we have

D 0 _ , _ _
UL ( 18”77”) D2(7"77‘)Id—1> Uz = UL (Dl(r:T)ODQ(nT) 8) Uz + ULDZ(T’ T)Iduz
= Di(r,r) — Do(r,r)ul Btz + Da(r, r)Iquli
Since u.(2) = ||z||e1, we get that ule; = 2. Thus,
il
zZz
ul By iz = uleer uz = poa
This completes the proof. ]
Remark 3.5. An unitary u, € U, such that u,(z) = ||z|/e; is not uniquely determined. However, if

z # 0, we see that

ol <D1(r, T) 0 )u
# 0 DQ(T, T)Id,1 z

is independent of the choice of u, by Lemma 3.4.

Proposition 3.6. Suppose that K : By x By — My(C) is a sesqui-analytic Hermitian function
satisfying the transformation rule with the multiplier c(u) = u:

(%) WK (u-z,u-w)a=K(z,w),u e U(d).
Then K must be of the form

K(Z, Z) = U’L (Dlgf’;r) Dz(rﬂ?)]d_l ) @7 Uy € Z/{z,

where D;(r,r), i = 1,2 are real analytic function on [0,1) of the form Y ov_o am ir*™ with ag1 = ag 2.

Proof. Note that uTK(0,0)a = K (0,0) implying K (0,0) must be a scalar times I;. Let z € By and
z # 0. Putting w = z and u = u, € U, in (%) we get that

K(z,2) = ul K (uz(2), u.(2))uz

(3.4) = ulK(||z]|e1, || z]le1)u.
Using this expression of K(z,z) in (x) we see that
(3.5) ulK(|[z]ler, |zl = ulul . K(lu-z|e, |lu-z|e)w= @
Equivalently, we have
(3.6) Taz wul K (||z]e1, || z]le1) = K(||z|e1, ||z]|e1)uaz wul, for all u € U(d), u. € U,.
Note that w, ﬂul is a unitary and

. . Z U2 (U - Z)

s () = Tz () = A ey

Moreover, if v is a unitary in U(d) with v(e;) = ey, then v can be written as uy Hu;, where u = Tu,,
up = uy and u; = I4. Since Tu,(z) = ||z||v(e1) = ||z|le1, we see that u; = Iy € U,.». Consequently,
it follows that the set {uy Eul cu € U(d),uy € Uy, Uy € Uy.»} coincides with the set {v € U(d) :
v(e1) = e1}. This together with (3.6) gives

(3.7) vK(|[zller, Iz]le1) = K(l|z]les, [|z[le1)v,
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for all v € U(d) with v(e;) = e;. Hence by Lemma 3.2 we get that

(3:8) K(zller, |zller) = (Fr0el=len i ).

Ka(||zlle1,]lzlle1)Ia—1

where K7 and Ky are two scalar-valued sesqui-analytic Hermitian functions on By x B;. Applying
Lemma 3.3, we infer that

z) = Z Z aaﬁzo‘zﬁ, a3 € My(C).

(=0 [o|=|B|=¢

Consequently, we have the equality

(3.9) K(|zllew Izller) = aw, i |l
/=0

Combining Equation (3.9) with the Equations (3.4) and (3.8), completes the verification of the first
of the two equalities claimed for the kernel K. O

Now, we obtain a characterization of the non-negative definite quasi-invariant kernels.

Theorem 3.7. Any sesqui-analytic Hermitian function quasi-invariant with multiplier c¢(u) = u is of
the form

K ’B)z'w Zaj (z,w +ZB]Ksz) aj, pj € C.
7=0

Proof. First, since any sesqui-analytic Hermitian function quasi-invariant with multiplier c(u) = @, it
must be of the form prescribed in Proposition 3.6. Applying Lemma 3.4 to it, and then polarizing the
result, we see that it must be of the form

o0 e}
(#) K(z,w) = (ae,l - aé,2)<Z, w) w2’ + Zaw(% w)'Iy, z,w € By,
(=1 =0

for some choice of complex numbers a1, £ € N, and a2, ¢ € Zy. For any £ > 1, by Lemma 3.1, we
have

(a1 — ae2)(z, w)' "Wzt + apa(z, w)'ly
= a1 (z, W)l — (a2 — ap1)(z, w) ({2, w) — wz")
% - f+ 1) -~
= aﬂ,lg!(Ké + KKL) — (ag71 — aév2)(£)Kf
= ag 00K + (4 Vags — agr) (£ — 1)Ky

Thus, we have

K(Z, w) = ao’gfd + Z (amﬁllﬁ‘ + ((f + 1)0,@,2 — am)(ﬁ — 1)!K5)

(=1
[e.e] 5 o0 5
= ZOéjKj(Z,’UJ) + ZBJKJ'L('Z/u})a
j=1 Jj=0

where a; = ((j + 1)aj2 — aj1) (G — 1)!, B = a;15.
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3.2. Decomposition of #. Consider the two subspaces V; and Wy of (CL@ Py, (-, ) 7,):
R 1
=sf=1": €C'@Pr:01fi+ - +0afa=0
fa
and

we={ <1g> (g€ P}

Zd9

Evidently, the subspace Wg is invariant under the unitary representation 7. Also, we check that the
subspace V;- C (CY® Py, (-, -)7,) is Wh.

To verify this, let Mz(f) : Pe—1 — P¢ be the linear map Mz(f) (p) = zip, p € Py. Clearly, setting
MO = (Mz(f), ce Mz(f)), we see that W, = ran (DM(Z)). Note that for any «, 8 € Zi, (z0Fe 28) r =
B'0a+e,;,8- Thus we have

(zip, @) F = (P, 0iq)F, p,q € P.

Hence it follows that M Z(f) = 0;. Therefore Vg — ker DM | Since (DM (Z))* = D0+, we conclude
that

~ .
V( = ran DM(e) = Wg.
Therefore, V, is also invariant under the representation 7.

Lemma 3.8. Consider the inner product space (C*® Py, (-, -Y7,). Then

(1) The reproducing kernel Ky of Vy is

_ B 1 L ((E+d—1) _
Ky(z,w) := (rd=1)(= 1)!<z, w)’! <€<z, w)l; — sz> ,

where zw' is the matriz product of the column vector z and the row vector w'.
(2) The reproducing kernel K;- of V- is m@, w) 2wl

Proof. Clearly, part (2) is a direct consequence of part (1) of the Lemma. Therefore, we will prove
only part (1), which is similar to the proof of part (1) of Lemma 3.1. Let ¢ = ((1,...,(q) be any
vector in C?. As before, we note that

Ralzw)t, &) = gyt 0 (T e 06 e - (e e (6w

A direct verification shows that

d
Zaj Kg z,w)¢, ej) =0,
7j=1
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therefore, it follows that K (-, w)C € V. Also,

d
<f7 <Z, w>€ Z’l.U 6 Z f], z, w ’U)ZZ]>]:

d

Zl
Z (fi: (2 w)" " z5)F

Z af]a z, ’LU>£ 1>.7:

d
(€= Dlwi > (95 f;)(w
7=1

Thus, <fa I?f('7w)ei>-7'—e = <f(w)7 ei>' O

The proposition below matching with Proposition 3.6 is obtained by replacing c¢(u) = 4 by ¢(u) = u
is proved as before.

Proposition 3.9. Suppose that K : By x By — My(C) is a sesqui-analytic Hermitian function
satisfying the transformation rule with the multiplier c(u) = wu:

() uK(u™ - zu™ - w)a = K(z,w).
Then K must be of the form

K(Z,Z) — (Dlgl" ) Dg(hg)fd—l) Uy, Uy € Uy,

where D;(r,r), i = 1,2 are real analytic function on [0,1) of the form Y oe_o Gm 7*™ with ap.1 = Go,2.

We need the following lemma similar to Lemma 3.4 to prove the main theorem describing sesqui-
analytic Hermitian function quasi-invariant with multiplier ¢(u) = w.

Lemma 3.10. For any u, € U, we have

T
—t (D1(r,7) 0 B ) ﬁ
" < 0 Do(r,r) g ) "%~ (D1(r,r) = Da(r,r)) =5~ + Da(r,r) 1.
Proof. The proof is similar to the proof of Lemma 3.4 except that we have to use the equality:
il
@TElluz et % D
r

Theorem 3.11. Any sesqui-analytic Hermitian function quasi-invariant with multiplier c¢(u) = u is
of the form

o0

R\V(O[’ﬁ)(,z,w):zaj/\ zw +ZBJ aj’ﬁje(c

J=0

Proof. As before, since the kernel K is sesqui-analytic Hermitian function quasi-invariant with multi-
plier ¢(u) = wu, it must be of the form prescribed in Proposition 3.9. Now, appealing to Lemma 3.10,
we obtain

() K(z,w) = > (s — ar)(z, w) 2@+ aga(z, w)ly
(=1 =0

The remaining portion of the proof is similar to that of Theorem 3.7, where o; = a;2j! and 3; =
(@ji(j+d—1)—aj2(d—1))(j — 1)! for all j. O
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To determine among the kernels described in Theorem 3.7 (respectively, Theorem 3.11), the ones
that are non-negative definite, we recall a slight generalization of the criterion for non-negative defi-
niteness of Farut-Koranyi [9, Lemma 5.4]:

Lemma 3.12 (Lemma 5.1, [4]). Let Q be a domain in C?. Let K : Q x Q — M, (C) be a non-negative
definite kernel and Hi (2, C™) be the reproducing kernel Hilbert space determined by K. Suppose
that Hx (2, C") can be decomposed as an orthogonal direct sum ©32,He and Ky is the reproducing
kernel of Hy. Further assume that {c¢}iez, is any sequence of complex numbers such that the sum
Yoo celo(z,w) converges on Q x Q. Then ;2 ceKi(z,w) is non-negative definite if and only if
ce >0 foralll € Zs.

Combining Faraut-Koranyi lemma with Theorem 3.6 and Theorem 3.11, we obtain a condition for
a sesqui-analytic Hermitian function to be non-negative.

Theorem 3.13. Suppose that K5 : By x By — My(C) is a sesqui-analytic Hermitian function
as in Theorem 3.6 (respectively, K8 qs in Theorem 3.11). Then the kernel K(h8) (respectively,
K(a’ﬁ)) is non-negative definite if and only if a; > 0,8; > 0.

Proof. In the expansion of K(®#) obtained in Theorem 3.7, the kernels K ; and K jL are non-negative
definite. Therefore, by Lemma 3.12, we conclude that K is non-negative definite if and only if aj >
0,3; > 0. The proof for K(@B) is similar and therefore omitted. ]

As a corollary of Theorem 3.7 (respectively, Theorem 3.11), we prove that the restriction of the
representation 7, to V, (respectively, restriction of 7, to V) is irreducible.

Corollary 3.14. (1) The restriction ﬁg|w of Ty to the linear subspace V, equipped with the re-
striction of the inner product (-, -) r, from C* @ Py is irreducible.
(2) The restriction ﬁg\% of Tty to the linear subspace Vy equipped with the restriction of the inner

product (-, -)r, from C? ® Py is irreducible.

Proof. To prove part (1) of the corollary, suppose that there is a decomposition V, = Vgl D VEQ, where
Vel and Vg are reducing subspaces for 7,. Let K, el and Kz? be the kernel functions of Vgl and VeQ,
respectively. Evidently, both K él and K 52 are quasi-invariant with respect to the same multiplier .
It follows that K, = K} ® K?. If £ =0, then Vo = {0} and there is nothing to prove. Fix ¢ € N, it
follows from Theorem 3.7 that K} must be of the form y o; K+ ﬁjl? ]J- for some choice of a set of
non-negative numbers {a;} and {8;}. The Hilbert space determined by o;K; + 8, K ]J- contains the
Hilbert space determined by ajk ;j as well as the one determined by BJK' Jl Now, if there is a non-zero
aj with j # ¢, then f}j must be a subspace of Vel. Therefore a; = 0 except for j = £. A similar

argument shows that 8; = 0 for all j. In consequence, if ay > 0, then Vel =V, otherwise Vél = {0}.
The proof of part (2) of the Corollary is obtained exactly as in the proof of part (1) using Theorem
3.11. ([l

3.3. Examples. The examples discussed below shows that there are many quasi-invariant kernels K
on By with multiplier of the form c(u) = @ (resp. c(u) = w). In these examples, the monomials
{20® ¢ :acZ%, ¢ e C? are no longer orthogonal.

Let d > 2. Recall that the Bergman kernel B of the unit ball B is given by B(z,w) =
For t € R, we set

1
(1= (z,w))4+t"

0? d
B - B ((71 B)) .
(z,w) 0z;0W; ©8 z‘,j:l(z’ w)
Clearly B® is a sesqui-analytic hermitian function for any real number ¢. It follows from [11, Lemma
6.1] that B (1) is quasi-invariant with the multiplier c(u) =u. A direct computation shows that
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1-— Zj;ﬁl 2 W;j 29101 cee 2qW1
d+1 21W3 L= g 2wy - 2dWs
) — J
G0 B = e : . .
21104 22Wq R S PRSI
Thus
d+1 1 0
(®) —
(3.11) B (rej,re1) = (1= 2y (0 (1- TQ)Id_l) ,0<r<1.
Note that B®)(0,0) = (d 4 1)I;. Thus by Proposition 3.6 we have B®)(z, z) = ul, B® (rei,re1)uz,
where 7 = ||z|| and u, is a unitary of the form v} = ( Z| % ). Equivalently,
oo o0
(3.12) B (z,w) =) (a1 —ar2)(z, w) w2+ ara(z, w)'Iy,
=1 £=0

where a¢; = (d + 1)% and ago = (d + 1)% for all £ € Z, . In this case it is easy to
verify that ap; < (¢ + 1)ag s if and only if ¢ > 0. Therefore by Theorem 3.13 it follows that BW ig a
non-negative definite kernel if and only if ¢t > 0.

Since B® is quasi-invariant with respect to the multiplier c(u) = @, it is easy to see that B(“Jr
is qu?si—invariant with respect to the multiplier ¢(u) = u. Further, using (3.12) and the identity
(z, w)

=pr=1g = Ky + Kj‘, we obtain

(3.13) B(t)T(z,'w) = ((ap1 — ap2)(t +d —1)(€ — 1) + ago ) K7 (2, w) + Zagg UKy(z,w).
(=1 =0

Hence it follows from Theorem 3.13 that the transpose B ol of the kernel B® is a non-negative definite

kernel if and only if t(d+ 1) +1 > 0.

Since B®, ¢ > 0, as well as B(t)T, t(d+ 1) +1 > 0, are non-negative definite, it follows from
Proposition 2.8 that these kernels are quasi-invariant but not invariant.

4. U(d) HOMOGENEOUS OPERATORS

4.1. Boundedness and Irreducibility. In this subsection, we derive explicit criterion for U(d)-
homogeneous d-tuple of multiplication operator M to be (a) bounded and (b) irreducible. This is
done separately for the class of kernels of the form appearing in Theorem 3.7 and Theorem 3.11.

Theorem 4.1. Suppose that K : By x By — My4(C) is a non-negative definite kernel of the form ().
Then the d-tuple M on the Hilbert space Hy (Bg, C?) is bounded if and only if

{ (l+1)ag—12 —ar—11 ar—1, }
, < 00
(L4 1)ags — agy a1

sup
4

Proof. The multiplication d-tuple M on the Hilbert space H g (Bg, C%) is bounded if and only if there
exists ¢ > 0 such that (¢? — (2, w)) K (2, w) is non-negative definite [11, Lemma 2.7(ii)].

lflﬁzT

(C2 - <z7 w>)K(z7w)’res ClxP, :{62 (a’f,l - a&?) - (a€*1’1 - a5*172)}<z7 w>
+ (Faga — ar—12) (=, w)'1y
:{02((€ + 1)&572 — agyl) — ((f + l)ag,LQ — ag,171)}(£ — 1)!Kg

+ (62ag71 — ag_l,l)E!Kj.
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Hence by Lemma 3.12 (¢* — (z, w)) K (z, w) is non-negative definite if and only if for all I € N,

02((€ + Dago —ae1) — (0 + Dag—12 — ar—11) >0
and
agy — ap—11 > 0.
The claim of the theorem is clearly equivalent to these two positivity conditions completing the

proof. O

Theorem 4.2. Suppose that K : By x By — My4(C) is a non-negative definite kernel function of the
form (#1). Then the d-tuple M on the Hilbert space Hy(Bg, C?) is bounded if and only if

{(6 +d—1)ap—11 — (d—1)apr_12 d€—1,2} < 5
(l+d—1ags — (d—Dagz = s .

sup
¢

Corollary 4.3. Let K be a non-negative definite kernel function either of the form () or (8§). Assume
that the d-tuple M on the Hilbert space Hy (Bg, C?) is bounded. Then it is U(d)-homogeneous.

Proof. Since K is quasi-invariant under U(d), the conclusion follows from Lemma 2.3. O

Theorem 4.4. Let d > 2. Let K be a non-negative definite kernel function either of the form (f) or
(#f). Assume that the d-tuple M on the Hilbert space Hy (Bg, C%) is bounded. Then M is reducible if
and only if ag1 = aga or Gy = g2 according as K is of the form () or of the form (8f), £ € N.

Proof. First, let us consider the case of a kernel of the form (f). Assume that as; = as2, £ € N.
Then K(z,w) = > ;2 ar2(z, w)’Iy. Since d > 2, it is evident that the multiplication d-tuple M
on H(Bg,C%) is reducible. Conversely, assume that M on Hg (Bg, C?) is reducible. Since K(z,0)
is constant and M is bounded, the discussion following Lemma 5.1 of [13], there exists a non-trivial
projection on P on C? such that PK(z,w) = K(z,w)P. In case, K is of the form (4), this is equivalent
to

o o
(4.1) P( Z (ag’l — am) (=, w)eflﬁzT) = (Z (ag,l — W,Z) (=, w)eflﬁzT)P.
(=1 =1
Rewriting Equation (4.1), we have
oo
0= (am —ag2)(z, w>£_1 (P@zJr — EZTP)
=1

00 d
! o
= (agi —agz) Y ol Z (PE;j — E; jP)z" 5w te,
=1 |aj=0—1 i,j=1
Let ¢ > 1 be fixed and choose a = (¢ — 1)g;, 1 <i < d. Then a + g;j and a + ¢; are of the form
(e_ 1)51 +€j7 fgia 1 < ] < d?
respectively. If we choose any other multi-index 8 # « with |3] = £ — 1 and a pair of natural numbers
m,n, 1 < m,n < d, then we can’t have 3 + e, = le; and f+ ¢, = (£ — 1)g; + ¢;. It follows that
the coefficients of zf_lzjwf must be zero. This means that P must commute with all the elementary
matrices F; j, 1 < 4,5 < d. Hence P can not be a non-trivial projection contrary to our hypothesis
unless ap1 = agp.
If K is of the form (ft), we have
oo oo
(4.2) P> (ae1 — o)z, w) ™l zw') = (D (ar1 — dr2) (2, w) ' 2w") P.
=1 =1
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Again, rewriting Equation (4.2), we have
o
0= (a1 —ar)(z w) " (Pzw' — zw'P)
/=1
d

[e.e]
= Z (de,l - Ew,z) Z |a7!! Z (PE;; — E@,’jp)za%ifvaﬁj‘
=1

(62
|ar]=0—1 i,5=1

Choosing a = (¢ — 1)g;, as before, we see that P can not be a non-trivial projection contrary to our
hypothesis unless a1 = a2. This completes the proof. O

4.2. Computation of matrix coefficients and unitary equivalence. We wish to determine when
the d-tuple M on the reproducing kernel Hilbert space H  (Bg, C?), where K is given by either (1) or
(£2), are unitarily equivalent. For this, we rewrite the kernel K in the form K (z,w) =>_, 5 Ag pzow”,
where o, 3 € Z4 and A, g are d x d complex matrices. Since the kernels K given in (f) and (4) are
normalized, any two d-tuple M acting on Hx (Bg, (Cd) and H g (Bg, (Cd) are unitarily equivalent if and
only if for all o, 3, A, is unitarily equivalent to A/a,,e by a fixed unitary U. Here we have taken
K'(z,w) = Za,ﬁ A’aﬂzaﬂ)ﬁ. Therefore, we proceed to find the matrix coefficients A, g.
We will first consider a non-negative definite kernel of the form (f), that is,

K(z,w) = Z (am — ag,2)<z, w)g_lﬁ 2t Zam(z, w>£Id
=1 =0
:ZZ<>( ZPZMH)% )zafva
=0 |a|=¢ 1,j=1
_ Z <’a>PO ‘Oz| 2w + Z Z( ) ” ‘a‘_'_ ) a+5],wa+sz
aeZd a€Zd 4]

where Py(|a]) = ajq2lq and P;j(|a]) = (aja,1 — @ja)2)Eij- The only monomials that occur in the
kernel K are of the form z®w” with o — 3 = €j — ;. To find the coefficient of such a monomial, we

consider two cases, namely, i # j and i = j. If i # j, then the coefficient Anc; a+e; of the monomial
zotei@litei s

[0 . .
(4.3 Anreyare = (0 ) Pisllal + 1 i £ .

On the other hand if ¢ = j, we have

(4.4) A= () \a|+i(’“ ) Putal)

Replacing Py(|al) by Py(|al) := e 2lq and P, j(|al) by Pij(lal) = (a1 — djaj2) EL, we get the
matrix coefficients for the kernel K of the form ().

Theorem 4.5. Let K and K’ be two non-negative definite kernel function either of the form (§) or
of the form (tf). Assume that the d-tuples M on the Hilbert space Hy (Bq, C?) and Hy:(Bg, C?) are
bounded. Then these two d-tuples are unitarily equivalent if and only if the two kernels K and K' are
equal.

Proof. Since the kernels K and K’ are normalized at 0, it follows that the d-tuples M on two of these
spaces are unitarily equivalent if and only if the matrix coefficients in the expansion of these kernels,
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as above, are unitarily equivalent via a fixed unitary U of size d x d, see [6, Lemma 4.8 (c)]. To prove
the theorem, we first consider two kernels K and K’ of the form (f), that is,

o o
K(z7 ’LU) - (af,l - a@,?) <Z, w>£_1EzT + Z CL@72<Z, w>ZId
(=1 =0
and
oo oo
K'(z,w) = Z (ap1 — apo)(z, w) w2t + Zab(z, w)tly.
(=1 £=0

Assume that the d-tuples M on the Hilbert spaces H (Bg, C?) and Hy:(Bg, C?) are unitarily equiv-
alent. For fixed £ € Z, set ay := ag1 — ap2 and ay = ay; — aj,. It follows from Equation (4.3) that
aUE;; = ayE; ;U for every i # j, 1 < i,j < d. Therefore we conclude that a, and aj are simulta-
neously 0 or not. If ay and aj are both zero for all ¢, then the two kernels K and K’ are invariant
kernels of the form Y, ap2l4(z, w)* and 3, ayola(z, w)? respectively. Hence the d-tuples M acting
on K and K’ are unitarily equivalent if and only if as2 = aj ,, for all /.

Assume that ay; # a2 for some £ € N. Fix one such ¢ and evaluate Equation (4.3) for a fixed pair
i,7 with ¢ # j. We then see that every column of the d x d matrix a,UFE; ; is zero except for the jth
column. This non-zero column is ay times the the ith column of U. On the other hand, each row of
d x d matrix a}E; ;U is zero except for the ith one, which is aj, times the jth row of U. Since neither
ag nor aj, is zero, it follows that Uy,; = 0, 1 < k # i < d, similarly, U;, =0, 1 < p # j < d. Hence
U must be a diagonal matrix. Moreover, we have that a,U;; = a,U;; for 1 < i # j < d. We claim
a¢ = ay. For the proof, start with a%Um- = ar(ayU;j ) = a’ZQUM and conclude that a; = aj. Hence
Ui = Uj; for i # j and it follows that Ui 1 = Uz s = U3z 3 = --- = Uy 4. In consequence, U must be a
unimodular scalar times identity.

If the kernels K and K’ are of the form (f), then the proof is similar and therefore omitted. [

The theorem below answers the question of unitary equivalence between two U(d)-homogeneous
multiplication tuples acting on H y:(Bg, C%) and H s (Bg, C?).

Theorem 4.6. Let K* be a kernel of the form () and K* be a kernel of the form (#). Assume that
the d-tuples M on the Hilbert space Hc:(Bg, C?) and H s (Bg, C?) are bounded. Then
(1) if d > 2, these two d-tuples are unitarily equivalent if and only if agq1 = argo = Gp1 = g2,
{eN.
(2) if d = 2, these two d-tuples are unitarily equivalent if and only if apy = Ggo and aps = Gy,
{eN.

Proof. The idea of the proof of part (1) is the same as that of the proof for Theorem 4.5. As in that
proof, expanding K* and K* and assume that there is a unitary U intertwining all the coefficients
described in (4.3) and (4.4) with the ones described in the comments following these two equations.
Assume that a,,1 # am2 (and therefore @, 1 # am2) for some m € N. For every fixed but arbitrary
pair (7, ), we must have

d d
(@m,1 — am,z)( Z Uk:,éEk:,K> E;j = (am1 — dm,2)E1j< Z Uk,éEk,z>-
kf—1 k=1

Since EyE;; = 5@71‘Ek7j, it follows that Zk,l Uiy = Zk Ug,iEk, ;- Similarly, Elj Zkz,l Uke =
> ¢UiiEj;. Thus for j # i, we have that U;; = AUj;, |A| = 1. Now, assume that d > 2. More-
over, for a fixed k # ¢, we have Uy = 0 = U; 4, and for fixed £ # j, we have U;j o = 0 = Uy 4. Therefore
for d > 2, we arrive at a contradiction unless ag1 = ag2 and as1 # a2 for all £ € N, or that there is
no unitary intertwiner.
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The proof of part (2) involves verifying that the unitary (_01 é) intertwines the two kernels
whenever ay; = ag2 and ago = ag1, £ € N. O

4.3. Quasi-invariant diagonal kernels are invariant. While there might be a characterization of
all the invariant kernels on an arbitrary bounded symmetric domain €2, unfortunately, we haven’t been
able to find one. Therefore, we have decided to include a description of all the U(d)-invariant kernels
for the special case of {2 = B, the only case that we are able to resolve. We begin by describing the
kernels invariant under the group U(d).

Proposition 4.7. Let K : ByxBy — My, (C) be a non-negative definite kernel. Suppose K is invariant
under U(d). Then K must be of the form K(z,w) = Y52 Ai(z, w)t, for some sequence {As}iez, of
positive definite n X n matrices.

Proof. Let K(z,w) = Za,ﬁeZi Aaﬁzo‘ﬁﬂ, z,w € B;. Suppose that K is invariant under U(d), that
is, K(u-z,u-w) = K(z,w), for all z,w € By and u € U(d). Choosing u to be the diagonal unitary
matrices diag(e™', ..., e"%), 0 := (0y,...,0;) € R%, we get that

Z Aaﬁzaﬁﬁei(a—ﬂ)-é = Z Aaﬁzo‘ﬁﬂ,z,'w € By,

a,BGZi a,ﬁEZi
where (o — ) -0 := (a1 — B1)01 + - - - + (g — Bq)04q. Therefore we have
(4.5) A p(e@=B0) _ 1) =0, for all a,8 € Z%, § € RY,

Let o, 8 € Zi and a # 3. Then there exists m, 1 < m < d, such that o, # 3,,. Choosing ¢; = 0 for
all j # m in (4.5), we obtain that A, 3 = 0. Hence K(z,w) is of the form Zaezi A ozw”. Now

choosing u to be u,, we see that

K(z,2) = K(uz - z,uz - 2) = K(||zllex, |z]le1) = > Are, e, [12]*
=0

By polarization, we get that K(z,w) = Y ,° Ate, te; (2, w>£ =>0 Az, w>£, where 4, = Ape, ey -
Since K is non-negative definite, by [6, Lemma 4.1 (c)], it follows that Ay is positive definite, completing
the proof. O

For any u in U(d) and a € Z‘i with |a] = ¢, let X4 5 B € Z%,|8| = ¢, be the complex numbers
given by

(4.6) (u-2) =Y X2

|81=¢
We arrive at the same conclusion as that of Proposition 4.5 even if we assume that K is merely a
quasi-invariant diagonal kernel. For the proof, we begin by proving a couple of preparatory lemmas.

Lemma 4.8. For any u € U(d), the matrix (((%)%X&‘ 6)) is unitary.

loo|=]8|=¢
Proof. Consider the space of homogeneous polynomials P, endowed with the Fischer-Fock inner prod-

uct. Note that {27
. oz . . .
representation of the unitary map p — p o u with respect to this orthonormal basis. O

}y|=¢ forms an orthonormal basis of P, and (((%)%X375))|a‘:‘ﬁ|:€ is the matrix

Lemma 4.9. There ezists a unitary u € U(d) such that Xj.  # 0 for all a € Z¢ with |af = L.

Proof. Choose a unitary u = (“ij);‘i,j:l in U(d) such that uq; # 0 for j =1,...,d. Since

/)
(u'z)é81 = (u1121 —i—-~+u1dzd)€ = Z auﬁl ...u(l"j 2% a=(a1,...,0q) € Zd,

|a|=£
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we get that X7 = i',uu .ug, which is certainly non-zero by our choice of w. U

We now prove the main theorem of this section stated below using Lemma 4.8 and Lemma 4.9.
Theorem 4.10. Let H C Hol(By, C™) be a reproducing kernel Hilbert space. Suppose that C™-valued
polynomials are dense in H and (z® @&, 2°®@n) = 0, for all « # B in Zi and &,m in C". If the

d-tuple M on H is U(d)-homogeneous, then there exists a sequence of positive definite n x n matrices
{A¢}oez, such that

12" @ &]* = (A0, &), a€Zf, geCn
Proof. Since M on H is U(d)-homogeneous, by Lemma 2.3, for each u € U(d) there exists a unitary
I'(u) on H of the form
L(u)(f) = c(w)fou, fe,
where c(u) € U(n) for all u € U(d). Let £ € Z,. For o,B € Z% with |a| = |B] = £, a # B3, and
&,n e C” we have
(L(u)(z* ® &), T(u)(z” @m)) = ((u-2)* @ c(wi, (u-2)” @ c(u)n)

= Z Xo~7" @ c(u)é, Z Xgﬁz‘s ® c(u)n)

[v|=¢ |6]=¢
(47) Z on'y [37 Z’y ® ( )Ea 27 ® C(U)n>

Iv|=¢
Since T'(u) is unitary and (2 ® &, 2% @n) = 0, it follows that (I'(u)(2* ® &), I'(u)(2® ® 1)) = 0.
Hence from (4.7) we obtain
(4.8) S XU, X (27 @ (), 27 © cluym) = 0.

[vI=¢
Since ¢(u) is unitary and the above equality holds for all &, € C", we get
(4.9) ZXQ,Y Xg (27 ®€ 27on) =0.
[v1=¢

By Lemma 4.9, there exists a unitary ug € U(d) such that X;° ., # 0 for all v with [y| = £. Choosing
a = ley and u = g in (4.9), we get for all § # le; with |5] = ¢,

(4.10) YOXP (e on) X5 =0.
[v|=¢
Hence it follows from Lemma 4.8 that

X;gol 7<Z7®€,Z7®ﬂ> Xt.em V'ngl ~?

that is, (27 ® §,27 @ 1) = xren 7!, for all v with |y| = £ and for some constant x¢¢ . Clearly there
exists a n X n positive definite matrix A, such that

<AZ€)T’>(C" = Xt,¢m> 57 ne Cc".
This completes the proof. ]

As a corollary, we conclude that a quasi-invariant non-negative definite diagonal kernel defined on
the Euclidean ball must necessarily be invariant.

Corollary 4.11. Let K : By xBy — M,,(C) be a non-negative definite kernel such that 9*9° K (0,0) =
0 whenever o # (. Suppose that C"-valued polynomials are dense z'n HK(IBd,C"). If K is quasi-

1’
invariant under U(d) then it must be of the form K(z,w) = ), A_ -, where Ag is a positive
invertible n X n matriz for all ¢ € Z.
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Proof. Since K is quasi-invariant under U(d), by Lemma 2.3, the d-tuple M on Hy(By, C") is U(d)-
homogeneous. It follows from Theorem 4.10 that the set

T o172 .
— ]l < < =
{\/az A, g1 <0< n,|al K}
forms an orthonormal basis for the space of C"-valued homogeneous polynomial Py@C" in Hx (B4, C"),
where Ay is a positive definite invertible n x n matrix for all £ € Z,. Equivalently, the reproducing
kernel K, of the (finite dimensional) Hilbert space Py, ® C" is given by the formula:

l
iz, w
Kg(z,w):Aél< 7 ) .

Thus the kernel K must be of the K(z,w) = >, A, 2w’ g all z,w € BZ This proves the
result. O

There are several separate equivalent assertions that are implicit in the previous corollary. We list
them below.

(1) the inner product on P, ® C™ is given by the usual Hilbert space tensor product of the two
finite dimensional Hilbert spaces, namely, (774, (-, -);e) and ((C”, (-, '>A¢), where (€, n)a, =
<Af€7 >

(2) The set {\/» “A, V2 i1<i< n,|al = E} form an orthonormal basis for P, ® C™.

(3) The kernel function K on the (finite dimensional) Hilbert space (P, (-, -)7,) ® (C*, (-, -)a,)
is given by the formula:

14

_14\%,
Kg(z,’UJ) = AE 1<£'

(4) The kernel function K of the Hilbert space H i (Bg, C") is of the form K(z,w) =", A, Z'

, Z,W e B

5. CLASSIFICATION

Before we discuss the question of classification of U (d)-homogeneous operators, we note that some
of our results exist in the representation theory literature albeit somewhat disguised. We believe
unraveling this relationship would serve a useful purpose.

5.1. Decomposition of tensor product of 7 ® my and 7y ® mp. There is an alternative but
equivalent description of the representations 7y and 7y, given below, which is also useful. For this, we
identify the space of linear polynomials P; as the dual of the linear space C?. We define ¢ : C*®@ P, —
P1 ® Py by setting

d d
¢<Z€ipf})(zaw) = zipj(w), z, w € By.
-1 i=1

Therefore we see that Im (¢) is the space P; ® Py of homogeneous polynomials of degree ¢ + 1 in
2d-variables. Since the monomials z1,..., 24 form an orthonormal basis in P; with respect to the
Fisher-Fock inner product, it follows that ¢ is unitary. Hence, 7y is unitarily equivalent, via ¢, with
T ® 7y, where

(m1(u) @ me(u)) p(z, w) = p(u™" - z,u”" -w), p € P1® Py
The contragredient of the representation 7 is the defined to be the representation 7 (u)p1(2z) ==
pi(ul - 2), p1 € P1, we have

(T1(w) ® me(u))p(z,w) = p(u’ - 2,u™" - w),p € PL &P
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Again, ¢ intertwines 7y and T ® my:

_ fa
Let Sy = (Pg,m¢) and S; (P1,71). Note that in the standard terminology of representation

theory, the representation 7y ~, m ® 7 is S ® Sy, \_zvhere ~, stands for unitary equivalence of the
two representations. Similarly, 7ty ~, 1 ® 7y is S1 ® Sp. From Equation (23.12) of [16], we see that

f
where v € U(d) and f = ( : ) cC'®P,.

(5.1) S51®S¢=Dgy,. 0-0)® Do, 01-0)

where Do, 01-¢) ~u S¢_1 and using Proposition 23.3 of [16], it follows that D ,....0,—¢) is unitarily
equivalent to the restriction of the representation 7, to the subspace )74 C C%® P, via the map ¢.

Note that the restriction of 7, to ]7g is irreducible (refer to Corollary 3.14) and the representation 7y
has exactly two irreducible components, see (5.1). Therefore, we have proved the following theorem.

Theorem 5.1. The subspaces 17@ and 95‘ of CY®@ Py are reducing for the representation 7y, moreover,
the restriction of &y to these subspaces are irreducible.

One would like to obtain a similar decomposition of 7y into irreducible representations as in Theorem
5.1. However, such a decomposition appears to be not available in any explicit form. This, we provide
below. Clearly,

Im (¢) = ¢(Ve) ® 6 (V7).
where
(1) 6(7) = {p(z,w) = 2L, zipj(w) € Py @ Py : presa = 0}, where A = {(2,2) : z € By},
(2) 6(V}) = {3 2i0ig041(w) € Pr® Py : g1 € Prya}
Also, we note that (;S(f/;) = {Pjresa : P € P1 ® Pr}. Since V, is invariant under 7, and ¢ is an
intertwining map between 7, and m ® 7y, it follows that ¢(Vy) is invariant under m ® ;. Let

R : P1 ®Py — Pyi1 be the restriction map, that is, Rp(z, w) := p(z,z) = Zle z;p,(z). Thus we have
proved the lemma that follows.

Lemma 5.2. The map R on gb(f/j) is onto Pyrq and is isometric when Ppyq is equipped with the
Fischer-Fock inner product. Moreover, R(mi(u) ® mp(u))R* = moq1(u).

As before, since mp1 1 is an irreducible representation, the proof of the theorem stated below follows
from Lemma 5.2.

Theorem 5.3. The subspaces Vy and f)j of C4® Py are reducing for the representation 7y, moreover,
the restriction of 7y to these subspaces are irreducible.

We point out that half of Theorems 5.1 and 5.3 has been already proved in Corollary 3.14. The
remaining half can also be proved in a similar manner to that of the proof in Corollary 3.14. However,
we believe the proof we have given here is more revealing.
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Recall the decomposition of K (o"ﬁ)(z, w) given in Theorem 3.7. Let A =Z,. For A € A, choosing

oy ita=2j+1
YT iEA=12,

and setting

Ki(z,w), if \=2j+1

Ky(z.w) =14
Az w) {K;(z,w),imzzj,

we obtain a second decomposition of the kernel K(®#) from Theorem 2.7 that coincides with the

previous one from Theorem 3.7. A similar statement can be made about the kernel K(@B) appearing
in Theorem 3.11.

5.2. Classification. The natural action of the unitary group U(d) on C? ® P associated with the
multiplier ¢ is given by p — c(u)(pou~!), p € C¢® P and u € U(d). We obtain two classes of U(d)-
homogeneous d-tuple of operators with respect to two different multipliers ¢(u) = u (see Theorem 3.7)
and c(u) = u (see Theorem 3.11). The map u +— @ and u — u are d-dimensional irreducible unitary
representations of the group U(d).

The classification of finite dimensional irreducible unitary representations of the unitary group U (n)
is well studied. The result is summarized in [16, Proposition 22.2] and is reproduced below for ready
reference.

Proposition 5.4. Each irreducible unitary representation of U(n) restricts to an irreducible unitary
representation of SU(n), and all irreducible unitary representations of SU(n) are obtained in this
fashion. Furthermore, two irreducible unitary representations w1 and wy of U(n) restrict to the same
representation of SU(n) if and only if, for some j € Z,
m(g) = (detgY'mi(g), Vg € U(n).
Hence the set of equivalence classes of irreducible unitary representations of SU(n) is parametrized by
{(d1,...,dp-1,0)€Z" :dy > dy > -+ > dp,—1 > 0}

Also, recall the Weyl dimension formula for an irreducible unitary representation m of U(n) with
weights: wy > -+ > wy, w; € Z, [15, Theorem 11.4] (see also [3, Proposition 2.5]),

) wj —wg+k—7j
dimm = J .
o
1<j<k<n

Combining Proposition 5.4 with the Weyl dimension formula, we find all the d-dimensional rep-
resentations of SU(d). The representations of U(d) can be then made up from the ones for SU(d)
using the relationship between these representations prescribed in Proposition 5.4 as follows. The d-
dimensional (inequivalent, irreducible and unitary) representations of the group U(d) are determined
by weights of the form: (¢ + 1,¢,...,¢) and (m,...,m,m — 1), {,m € Z. As noted in [16, Propo-
sition 22.2], the representation p; corresponding to the weight (¢ + 1,¢,...,¢) differs from py by a
power of the determinant: pg(u) = (det(u))’po(u), u € U(d). The representation p,, corresponding
to (m,...,m,m — 1) is similarly related to pg. We also point out that py is the contragredient of pg.
We claim that p; and p,, are the only d-dimensional irreducible unitary representations of U(d) up to
unitary equivalence (Lemma 5.5). We also claim that SU(d) has no irreducible unitary representation
of dimension 2,...,d — 1 (Lemma 5.6).

It might be that both of these results are well-known, although, we are not able to locate them.
However, A. Koranyi in private communication to one of the authors, has provided a very short proof
of Lemma 5.6 using Lie algebraic machinery. A little more effort gives a proof of Lemma 5.5 as well,
thanks to A. Khare, E. K. Narayanan, and C. Varughese. However, here we give, what we consider
to be an elementary proof of these assertions.
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Lemma 5.5. Suppose that ¢ : U(d) — GL4(C) is an irreducible unitary representation of U(d). Then,
up to unitary equivalence, either c(u) = det(u)'@ or c(u) = det(u)™u, £,m € Z.

Lemma 5.6. Ifn € N: 2 < n < d—1, then there is no n-dimensional irreducible unitary representation
of U(d), or that of SU(d).

B. Bagchi has observed that Lemma 5.5 and 5.6 can be combined into the following assertion.

Let wy > -+ > wyg = 0 be integers. Then, either wy = -+ =wy =0, or [[1<j<k<a (1 + w;g:?’k) > d.
wq=0
Equality holds in this inequality if and only if either w; = -+ = wg_1 = L,wg = 0 or w; = 1 and
wy = -+ = wg = 0. The proof is then by induction on the dimension d similar to the proofs we give
below.

The first half of Theorem 5.7 below describing all the quasi-invariant kernels, which transform as
in Definition 1.3 via an irreducible d-dimensional unitary representation ¢ of U(d), is an immediate
consequence of Lemma 5.5 combined with Theorem 3.7 (resp. Theorem 3.11) and Theorem 3.13. The
second half follows from Lemma 5.6. We would have liked to prove a similar classification theorem for
all the U(d)-homogeneous operators in the class A4 (B;). However, unfortunately, such a classification
doesn’t follow immediately from the theorem below and requires further investigation.

Theorem 5.7. Let K : By x By — M, (C) be a non-negative definite kernel.

(a) Suppose thatn = d, and K is quasi-invariant under U(d) with respect to the multiplier ¢, where
c:U(d) = GL4(C) is an irreducible unitary representation. Then there exists U € U(d) such
that UK (z,w)U* is either of the form

e}

o0
Z (am — CL&Q)<Z, w)g_lﬁZT + Z aw(z, w>eId, z,w € By,
/=1 =0
where agp >0 and ag; < (04 1)ags for all € € Z., or of the form

o0

oo
Z(d“ — Gpo)(z, w) 2w + Z apalz, w)ly, zw € By,
=1 =0
where apo >0 and (d —1)age < (+d—1)ag; for all ¢ € Z,.
(b) If 1 < n < d, then there is no n-dimensional irreducible unitary representation c¢ such that K
is quasi-invariant under U(d) with multiplier ¢ : U(d) — GL,(C).

5.3. Elementary proof of Lemma 5.5 and of Lemma 5.6.

Proof of Lemma 5.5. We begin the proof with the claim that any irreducible unitary representation, up
to unitary equivalence, of SU(d) acting on C? are the ones determined by the weights: (1,0, ...,0) and
(1,...,1,0). In other words, we have to show that the only (admissible) weights w = (w1, ..., w4_1,0)
for which

w; —wg +k—7J
5.2 J =d
(5.2) H P
1<j<k<d
wq=0

are of the form: (1,0,...,0) or (1,1,...,1,0).
For d = 2, the claim is evident from the dimension formula. Assume that the claim is valid for
d — 1, that is, if

[[ wometkei gy
1<j<k<d—1 k—J
wq—1=0

then there are only two alternatives for w, namely, either w = (1,0,...,0), or w = (1,...,1,0).
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Let w = (wy,...,wq_1,0) be a weight satisfying the equality in the dimension formula (5.2). Split-
ting the product in (5.2), we have

—wp k= —w +k— +d—j
(5.3 [[ “—trd= i I e
. k—3j . kE—3j , d—j
1%0]<k0§d 1<j<k<d-1 1<5j<d-1
i=

We shall consider three possibilities, namely,

w; —wg+k—7
4 J =d—1
(5:4) 11 k=
1<j<k<d—-1

and the two other possibilities of being strictly greater than d—1 and less than d—1. First, consider the
case of equality. In this case, the weight w = (w1, ..., wq_1) satisfying (5.4) determines a irreducible
unitary representation of U(d — 1) of dimension d — 1. But this is also the dimension of the irreducible
unitary representation of SU(d — 1) determined by (w; — wg_1, w2 —wgq—_1,...,w4—2 —wg—1,0). Then
by the induction hypothesis, we either have w; = wg_1 + 1,ws = -+ = wWyg_o = Wy_1 OF W = Wy =
++ = wg_9 = wg—1 + 1. Therefore, the weight w of size d must be of the form (m,m—1,...,m—1,0),
or (m,...,m;m —1,0), m > 1. In case of the first alternative, to ensure validity of (5.2), we must
also have

d wj+d—j/r (m+d-1)(m+d—3)---(m+2)-(m+1)-m
1] ' (_ 2- )

1<jea 47 (d—1)(d—2)---2-1

This is possible only if m = 1 providing one of the two choices in the induction step. In case of the
second alternative, w = (m,...,m,m —1,0), and we have

H wij+d—j (m+d-1)(m+d—-2)---(m+2)-m
d—j (d—1)(d—-2)---2-1

1<j<d—1

Since m > 1, it follows that the smallest possible value of this product is % and it is achieved at

m = 1. Thus it cannot equal % unless d = 3. But if d = 3, and m = 1, the weight of size 2 from the
induction hypothesis is of the form (1,0). So, we get nothing new when d = 3.

Now, if possible, suppose that H1§j<k§d—1%;k_j > d. Then we must have
| d—j
1<j<d-1

which is evidently false unless w; =0, 1 < j < d — 1. But if we choose w = (0, ...,0), then we can’t
have equality in Equation (5.2), therefore it is not an admissible choice.

Finally, let us suppose that 1 < H1<j<k<d—1m ={ < d—2. First, if /£ = 1, the only

k—j
possible choice of the weight w is w1 = -+ = wg_1. We must then ensure that
wi+d—7
S
1<j<d-1 —J
which is possible only if wy = -+ = wg_1 = 1. This, together with the choice wy = 0 that we
have made earlier, proves that w = (1,...,1,0) providing the second choice in the induction step. In
particular, the dimension of the representation determined by the weight (1,1,...,1,0) is d. Now, we

must establish that there is no other choice of w satisfying (5.2). This follows from Lemma 5.6 proved
below. It is also easy to verify directly: If d = 2 or 3, there is nothing more to be done. If d > 3, then
fix £:2</{<d-—2, and pick w such that H1§j<k§d_1%jk_] = d — {. Having picked w, we also
need

d wj+d—j
d—7? H d—j
1<j<d-1
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that is,
d' = (w1+d—1)-~(wg—i—d—€)(d—€)(wg+1+d—€—1)~-(wd,1+1),
which is valid only if w is of the form (1,...,1,w; = 1,0,...,0). For this choice of w, we see that
H wj—wk+k:—j_<d—1>
1<j<k<d—1 k=j ¢

which can’t be equal to £ for any d > 3. So, there are no more admissible weights in this case. This
completes the verification of the induction step and therefore the proof of the claim. Now, the result
follows directly from Proposition 5.4. 0

Proof of Lemma 5.6. The proof is by induction on the dimension d. The base case of d = 3 is
easily verified. Now, we assume by the induction hypothesis, that there are no irreducible unitary
representation such that

w; —wg +k—7
2<t:= J <d-2.
<t= I e
1<j<k<d-1

Thus the only choice for ¢ is either t = 1, or t > d — 1. To complete the induction step, we have to
show that there is no weight w = (w1, ..., wg_1,0) such that

2< (= IIQ”_Z%fk_jgd—L
iy

1<j<k<d
wq=0

If t = 1, then the only possible choice of the weight w is w; = - -+ = wy_1, say u. From Equation (5.3),

it follows that

, d—j
1<j<d—1
However since the product on the left hand side of the equation above is an increasing function of u
and its smallest value is 1, the next possible value is d, it follows that the value £ :2 </ <d —1 is
not taken. Now, let ¢ > d — 1 for some w. Then from Equation (5.3), we see that

, d—j
1<j<d—1

to ensure the existence of a ¢-dimensional representation. Since % < 1 while the product on the right
hand side of the equation above is greater or equal to 1, it follows that the two sides can be equal only

if wy =--- =wg_1 = 0. But then ¢ must be equal to 1 contrary to our hypothesis. g

A. Koranyi has pointed out that SU(d) is a simple Lie group with discrete center and its Lie algebra
su(d) is simple. Therefore any non-trivial homomorphism of it can have at most a discrete null space,
i.e., has to be a local isomorphism. So the image of a representation is a closed subgroup of U(n),
therefore must have the same dimension (as a Lie group) as SU(d). If d > n, then this is not possible
proving Lemma 5.6.

E. K. Narayanan observed that a proof of Lemma 5.5 follows from the description of the Lie
algebra homomorphisms from su(d) to u(d), the Lie algebra of U(d). A. Khare and C. Varughese
independently of each other have provided the following argument proving Lemma 5.5: Since su(d)
is simple and u(d) = su(d) @ R, it follows that any Lie algebra homomorphism must map su(d) to
itself isomorphically. Also, the inequivalent representastions of su(d) are characterized by the outer
automorphisms. These are in one to one correspondence with automorphisms of the corresponding
Dynkin diagram. The Dynkin diagram of su(d) is A1) consisting of d — 1 dots connected by single
lines. For d > 2, the (graph) automorphism group of A¢_y) is of order 2 (identity and a reflection).
It follows that there are at most two inequivalent irreducible unitary representations of SU(d), d > 2.
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We believe, it will be interesting to find an answer to the two questions: (a) What possible values
dim 7 can take if d is fixed. (b) If d and n = dim 7 are fixed, how many n-dimensional inequivalent
irreducible unitary representations are there of the group SU(d).

Note added in proof. One of the reviewers has noted the following, and we quote: A.A. Johnson, in
“The automorphisms of unitary groups over infinite fields”, Amer. J. Math. 95 (1973), has proved
the following theorem: Let K be an infinite field and consider the unitary group Uy(K) with respect
to some involution a — a of K. Suppose that d > 3. Then any automorphism 7 : Uy(K) — Uy(K)
has the form

m(u) = x(u)gug™*
where y is a character and g : K% — K% is a semi-linear automorphism. For K = C the characters
are x(u) = det(u)” for some n € Z, and semi-linear means C-linear or C antilinear. In the first case,

g € Uy(C) and we are done. In the second case define h := g o+ where 1£ = € for all £ € C? is the
conjugation. Then h is C-linear and hence h € Uy(C). Moreover

gug_lz(hOL)Ouo(LOh_l) :ho(LOUOL)oh_lzhOEOh_l.

This yields the second case in Lemma 5.5. Johnson’s proof is in the spirit of projective geometry
and is independent of Lie theory.
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