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Abstract. Let U(d) be the group of d×d unitary matrices. We find conditions to ensure that a U(d)-
homogeneous d-tuple T is unitarily equivalent to multiplication by the coordinate functions on some
reproducing kernel Hilbert space HK(Bd,Cn) ⊆ Hol(Bd,Cn), n = dim∩d

j=1 kerT
∗
j . We describe this

class of U(d)-homogeneous operators, equivalently, non-negative kernels K quasi-invariant under the
action of U(d). We classify quasi-invariant kernels K transforming under U(d) with two specific choice
of multipliers. A crucial ingredient of the proof is that the group SU(d) has exactly two inequivalent
irreducible unitary representations of dimension d and none in dimensions 2, . . . , d − 1, d ≥ 3. We
obtain explicit criterion for boundedness, reducibility and mutual unitary equivalence among these
operators.

1. Introduction

Let Ω be an irreducible bounded symmetric domain of rank r in Cd and Aut(Ω) be the group of
bi-holomorphic automorphisms on Ω. Let G be the connected component of identity in Aut(Ω). It is
well known that G acts transitively on Ω. Let K be the subgroup of linear automorphisms in G. By
Cartan’s theorem [14, Proposition 2, pp. 67], K = {ϕ ∈ G : ϕ(0) = 0}. The group K is known to be
a maximal compact subgroup of G and Ω is isomorphic to G/K. There is a natural action of K on Ω
given by

k · z :=
(
k1(z), . . . , kd(z)

)
, k ∈ K and z ∈ Ω,

where k1(z), . . . , kd(z) are linear polynomials. The group K also acts on a d-tuple T = (T1, . . . , Td) of
commuting bounded linear operators defined on a complex separable Hilbert space H, naturally, via
the map

k · T :=
(
k1(T1, . . . , Td), . . . , kd(T1, . . . , Td)

)
, k ∈ K.

Definition 1.1 ([10]). A d-tuple T = (T1, . . . , Td) of commuting bounded linear operators on H is
said to be K-homogeneous if for all k in K the operators T and k · T are unitarily equivalent, that is,
for all k in K there exists a unitary operator Γ(k) on H such that

TjΓ(k) = Γ(k)kj(T1, . . . , Td), j = 1, 2, . . . , d.

In particular, when Ω is the Euclidean ball Bd in Cd, then K is the group of unitary linear trans-
formations on Cd and the spherical tuples defined in [5] are nothing but U(d)-homogeneous d-tuples.
In this paper we would be discussing U(d)-homogeneous commuting d-tuple M of multiplication by
coordinate functions z1, . . . , zd on a reproducing kernel Hilbert space HK(Bd,Cn). This Hilbert space
consists of holomorphic functions defined on Bd and taking values in Cn. We consider in some detail
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the case of n = d. However, without any additional effort, we set up the machinery in the much
more general context of a bounded symmetric domain Ω and the maximal compact subgroup K of its
bi-holomorphic automorphism group. A detailed study of K-homogeneous operator is underway.

Now, let DT : H → H⊕ · · · ⊕ H be the operator

DTh := (T1h, . . . , Tdh), h ∈ H.

We note that kerDT = ∩d
i=1 kerTi is the joint kernel and σp(T ) = {w ∈ Cd : kerDT−wI ̸= 0} is

the joint point spectrum of the d-tuple T . The class AK(Ω) consisting of K-homogeneous d-tuples of
operators with the property:

(1) dimkerDT ∗ = 1,
(2) kerDT ∗ is cyclic for T , and
(3) Ω ⊆ σp(T

∗);

was introduced in the recent paper [10], see also [19]. Among other things, it is shown in [10, Theorem
2.3] that any d-tuple T in AK(Ω) must be unitarily equivalent to the d-tuple M of multiplication
by the coordinate functions on a reproducing kernel Hilbert space HK(Ω) ⊆ Hol(Ω,C) for some K-
invariant kernel K. Recall that the Hilbert space HK(Ω) has a direct sum decomposition ⊕

s∈Z⃗r
+
Ps,

where Z⃗r
+ is the set of signatures: s := (s1, . . . , sr) ∈ Zr

+, s1 ≥ s2 ≥ · · · ≥ sr ≥ 0 and Ps are the
irreducible components under the action of K. The invariant kernel K is then of the form: Ka(z,w) =∑

s∈Z⃗r
+
asEs(z,w), where Es is the reproducing kernel of Ps equipped with the Fischer-Fock inner

product defined by ⟨p, q⟩F := 1
πd

∫
Cd p(z)q(z)e

−∥z∥22dm(z). Here dm(z) denotes the Lebesgue measure

on Cd.
The results of [10] also show that the properties of M like boundedness, membership in the Cowen-

Douglas class B1(Ω), unitary and similarity orbit etc. can be determined from the properties of the
sequence a := {as}s∈Z⃗r

+
. It is therefore natural to investigate the much larger class of d-tuples of

homogeneous operators by assuming only that dimkerDT ∗ is finite rather than 1, which is the main
feature of the class defined below. As one might expect, we obtain a model theorem in this case also
with the major difference that the kernel K need not be invariant under the action of the group K,
instead it is quasi-invariant!

Assume that kerDT ∗ is a cyclic subspace for T of dimension n. Let H(0) be the linear space
{p(T )γ| γ ∈ kerDT ∗ , p ∈ P}, where P is the space of complex-valued polynomials in d-variables. Fix

an orthonormal basis {γ1, . . . , γn} in kerDT ∗ . For w ∈ Cd, the point evaluation evw : H(0) → Cn is
defined to be the map

evw
( n∑
i=1

pi(T )(γi)
)
:=

n∑
i=1

pi(w)ei,

where p1, . . . , pn are in P and e1, . . . , en are the standard unit vectors in Cn. Let bpe(T ) be the set
{w ∈ Cd : evw is bounded} (see [17, Definition 2.1]).

Definition 1.2. Let Ω be an irreducible bounded symmetric domain. A K-homogeneous d-tuple T
possessing the following properties

(i) dimkerDT ∗ = n,
(ii) the space kerDT ∗ is cyclic for T ,
(iii) Ω ⊆ bpe(T ), and the evaluation maps evw are locally uniformly bounded for w ∈ Ω,

is said to be in the class AnK(Ω).

The local uniform boundedness of the evaluation functionals might appear to be a strong require-
ment but is necessary for constructing a model for d-tuples in AnK(Ω) with n > 1 (see proof of
Theorem 2.1). This notion appears in the definition of quasi-free modules introduced in [8]. The
notion of sharp kernels (see [2]) and generalized Bergman kernels (see [6]) occurring in the work of
Agrawal-Salinas and Curto-Salinas are closely related to the kernels implicit in Definition 1.2.
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It follows from [10, Theorem 2.3] that the d-tuples in the class AK(Ω) introduced earlier in [10]
coincides with to the class A1K(Ω). It would be convenient for us to let AK(Ω) denote the class
A1K(Ω). In this paper, we continue the investigation initiated in [10], now for the class AnK(Ω),
n > 1.

Definition 1.3. Let K : Ω × Ω → Mn(C) be a sesqui-analytic Hermitian function and c : K × Ω →
GLn(C)) be a function holomorphic in the second variable for each fixed k ∈ K. The function K is
said to be quasi-invariant under the group K with multiplier c if

K(z,w) = c(k, z)K(k−1 · z, k−1 ·w)c(k,w)∗, k ∈ K.

We point out that if the function K is quasi-invariant and non-negative definite, then the map Γ(k),
k ∈ K defined by the rule: Γ(k)(f) = c(k, z)f ◦ k−1 is unitary on the reproducing kernel Hilbert space
HK(Ω,Cn). Also, the map k → Γ(k) is a homomorphism if and only if c is a cocycle, that is,

c(k1k2, z) = c(k1, k2 · z)c(k2, z), k1, k2 ∈ K.

In the explicit examples we discuss, the map c : K×Ω → GLn(C) is constant in the second variable
and therefore defines a unitary representation of the group K. These examples consist of Ω = Bd and
c(k) = k or c(k) = k̄, k ∈ K, which in this case is U(d). Consequently, the intertwining operator
Γ(k) defines a unitary representation k → Γ(k) of the group K. Indeed, if there is a unitary Γ(k),
k ∈ K, intertwining M and k ·M , then the reproducing kernel K must be quasi-invariant. A familiar
argument using the very useful notion of “normalized kernel”, see Remark 2.2, then shows that the
function c must be actually independent of z. What is more, it is also shown that c(k) is unitary for
each k ∈ K.

If the d-tuple M on some Hilbert space HK(Ω) is in AK(Ω), then the kernel K is invariant under
the action of the group K, that is, K(z,w) =

∑
s∈Z⃗r

+
asEs(z,w) with a0 = 1, see [1, Proposition 3.4]

and [10, Theorem 2.3]. But if n > 1 and the d-tuple M acting on HK(Ω,Cn) is in AnK(Ω), then we
can only assume that the kernel K is merely quasi-invariant, not necessarily invariant. How do we
construct, if there is any, an example of a kernel K : Ω × Ω → Mn(C) which is quasi-invariant but
not invariant. Equivalently, we are asking: If M is in AnK(Ω) acting on the Hilbert space HK(Ω,Cn)
(n > 1), then does it follow that the quasi-invariant kernel K must be necessarily invariant? Consider,
for example, the kernel

Ka(w,w) := K2
a(w,w)

(( ∂2

∂wi∂w̄j
logKa(w,w)

))
,

whereKa : Ω×Ω → C is an invariant positive definite kernel of the formKa(z,w) =
∑

s∈Z⃗r
+
asEs(z,w).

It is known that Ka is not only a positive definite kernel but also quasi-invariant under K, see [11,
Proposition 2.3 and Proposition 6.2]. Indeed, Ka transforms according to the rule:

k−1†Ka(k
−1 · z, k−1 ·w)k−1 = Ka(z,w), k ∈ K,

where † denotes the transpose of a matrix. The multiplier c : K×Ω → GLd(C) for the quasi-invariant
kernel Ka is given by c(k, z) = k, k ∈ K, z ∈ Ω. It is not hard to see that Ka is not invariant under K,
see Proposition 2.8. Thus, we have many examples of quasi-invariant kernels taking values in Mn(C)
that are not invariant when n = d. We briefly describe below the results of this paper.

In Section 2, we find a concrete model for a d-tuple T in AnK(Ω) as the d-tuple M of multiplication
by the coordinate functions z1, . . . , zd on some Hilbert space HK(Ω,Cn) ⊆ Hol(Ω,Cn) possessing a
reproducing kernel K : Ω × Ω → Mn(C). This is Theorem 2.1. We prove, see Theorem 2.7, that a
quasi-invariant kernel K is a sum (with positive coefficients) of certain quasi-invariant kernels in the
Peter-Weyl decomposition of the Hilbert space HK(Ω,Cn) with respect to the action of the group K.

In Section 3, we restrict to the case of the Euclidean ball Bd ⊆ Cd. Designating πℓ the natural
action of U(d) on the homogeneous polynomials of degree ℓ in d variables equipped with the Fisher-
Fock inner product. We prove that π1 ⊗ πℓ is reducible and identify an irreducible component in the
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decomposition of π1 ⊗ πℓ. We obtain a similar result for π̄1 ⊗ πℓ, where π̄1 is the contragredient of π1.
Choosing the cocycles c(u, z) = π1(u), its contragredient c(u, z) = π̄1(u), u ∈ U(d), we describe all
the sesqui-analaytic Hermitian quasi-invariant function that transform as in Definition 1.3. Among
these, the non-negative definite functions are identified explicitly. We conclude by discussing two sets
of examples of d-tuples in AdU(Bd).

In the first half of Section 4, we find conditions for boundedness and irreducibility of the d-tuple M .
The second half is devoted to study of quasi-invariant diagonal kernels K : Bd×Bd → Mn(C). In this
case, such a kernel must be invariant and we prove that it is of the form:

∑∞
ℓ=0Aℓ⟨z, w⟩ℓ, z,w ∈ Bd,

see Corollary 4.11.
In the concluding Section 5, first, we identify the two components in the decomposition of π1 ⊗ πℓ

(respectively, π̄1⊗πℓ) explicitly and show that these components themselves are irreducible. Secondly,
we prove that if a kernel K is quasi-invariant under U(d) taking values in Md(C), transforms as in
Definition 1.3 with c : U(d) → GLd(C), and c is assumed to be an irreducible representation of U(d),
then these kernels fall into two classes explicitly described in Theorem 5.7. To prove this result, we
first establish that, up to unitary equivalence, there are only two irreducible unitary representations
of SU(d), the standard one and its contragredient. We also prove that SU(d) does not have any
irreducible unitary representation of dimension ℓ, 2 ≤ ℓ ≤ d − 1. We were not able to locate these
results that might be of independent interest. Therefore, we have included detailed proofs of these
results.

For now, we have complete results only in the particular case of the cocycles c(u, z) = u or ū of the
group U(d), d ∈ N. We are hopeful of obtaining similar results for an arbitrary cocycle in the case of
the group U(2).

2. Decomposition of a quasi-invariant kernel

We begin by providing a model for a d-tuple of operator T in the class AnK(Ω) acting on some
Hilbert space H. The proof involves transplanting the inner product of H on the subspace Cn ⊗ P
of Cn-valued polynomials in the space of holomorphic functions Hol(Ω,Cn). The proof amounts to
constructing a unitary operator intertwining T and the d-tuple of multiplication operators defined on
the completion of the subspace Cn ⊗ P in Hol(Ω,Cn).

Theorem 2.1. Suppose that T is a d-tuple of commuting operators in AnK(Ω). Then T is unitarily
equivalent to the d-tuple M of multiplication by the coordinate functions z1, . . . , zd on a reproducing
kernel Hilbert space HK(Ω,Cn) ⊂ Hol(Ω,Cn), for some kernel function K quasi-invariant under K.

Proof. Since T is K-homogeneous, for each k ∈ K there exists a unitary operator Γ(k) on H such that

TjΓ(k) = Γ(k)kj(T ), j = 1, . . . , d.

Pick an orthonormal basis {ξ1, . . . , ξn} ⊆ kerDT ∗ . Let ι : kerDT ∗ → Cn be a unitary identifying
ξ =

∑n
i=1 xiξi with the vector x =

∑n
i=1 xiei, where e1, . . . , en are the standard unit vectors in Cn.

We define a semi-inner product on Cn ⊗ P by extending

(2.1) ⟨ei ⊗ p, ej ⊗ q⟩ := ⟨p(T )ξi, q(T )ξj⟩H, p, q ∈ P,

to Cn ⊗ P by linearity. Suppose that
∥∥∑n

i=1 ei ⊗ pi
∥∥ = 0, then we claim that

∑n
i=1 ei ⊗ pi = 0. Pick

any w ∈ Ω ⊆ bpe(T ) and note that∥∥ n∑
i=1

pi(w)ei
∥∥
2
≤ Cw

∥∥ n∑
i=1

pi(T )ξi
∥∥
H = 0.

For 1 ≤ i ≤ n, it follows that pi(w) = 0 for all w ∈ Ω. Consequently each pi, 1 ≤ i ≤ n, is the zero
polynomial. Therefore, the semi-inner product given by the formula (2.1) defines an inner product on
Cn ⊗ P.
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Let H be the completion of Cn ⊗ P with respect to this inner product. Since we have assumed
that the set bpe(T ) contains Ω, it follows that the Hilbert space H is a reproducing kernel Hilbert
space consisting of functions defined on Ω. Let K : Ω× Ω → Mn(C) be the kernel function given by
K(z,w) = evz ev

∗
w, that is,

(1) K(·,w)x is in H for every vector x ∈ Cn and every point w ∈ Ω,
(2) ⟨f, K(·,w)x⟩H = ⟨f(w), x⟩2.

Given any function f ∈ H , we can find polynomials pj ∈ Cn⊗P such that ∥f − pj∥H → 0 as j → ∞
by assumption. Moreover, since the point evaluations are assumed to be locally uniformly bounded
on Ω, it follows that for any fixed but arbitrary w ∈ Ω, there is an open set O ⊆ Ω containing w such
that supz∈O ∥K(z, z)∥ = NO,w < ∞. For any compact set X ⊆ O, and z ∈ X, we have

(2.2) |⟨f(z)− pj(z), ei⟩| ≤ ∥f(z)− pj(z)∥2 ≤ N
1/2
O,w∥f − pj∥H

proving that f is holomorphic at w. Consequently, K is holomorphic in the first variable and anti-
holomorphic in the second.

Now for any k ∈ K, since kerDT ∗ is invariant under the unitary map Γ(k)∗, we have

⟨ei ⊗ p, ej ⊗ q⟩Cn⊗P = ⟨p(T )ξi, q(T )ξj⟩H
= ⟨Γ(k)p(k · T )Γ(k)∗ξi, Γ(k)q(k · T )Γ(k)∗ξj⟩H
= ⟨p(k · T )Γ(k)∗ξi, q(k · T )Γ(k)∗ξj⟩H
= ⟨ιΓ(k)∗ι∗ei ⊗ p ◦ k, ιΓ(k)∗ι∗ej ⊗ q ◦ k⟩Cn⊗P .

Therefore, the reproducing kernel K of the Hilbert space H is quasi-invariant under K with multiplier
ιΓ(k)∗ι∗. Finally, the unitary taking ei ⊗ p to p(T )ξi extends to a unitary from the Hilbert space H
to the Hilbert space H . This unitary intertwines the commuting d-tuple T on H with the d-tuple M
of multiplication by the coordinate functions zi, 1 ≤ i ≤ d, on H . □

Now we gather a few properties of d-tuples in the class AnK(Ω). In particular, we prove that if the
d-tuple M on HK(Ω,Cn) is in AnK(Ω), then the intertwining unitary between M and k ·M for each
k ∈ K must be of the form f → c(k)(f ◦ k−1), c(k) ∈ U(n).

Remark 2.2. We recall that any non-negative definite kernel K : Ω×Ω → Mn(C) admits a normal-
ization K0 at w0 ∈ Ω. The normalized kernel K0 is characterized by the requirement K0(z,w0) = Idn
for all z ∈ Ω. The point w0 is arbitrary but fixed. The first two of the three statements below can be
found in [6] and the last one is from [7, p. 285, Remark].

(1) The d-tuple M on HK(Ω,Cn) and HK0(Ω,Cn) are unitarily equivalent.
(2) If K1 and K2 be the kernels normalized at some fixed w0 ∈ Ω, then the multiplication d-

tuples on HK1(Ω,Cn) and HK2(Ω,Cn) are unitarily equivalent if and only if there is a unitary
U ∈ U(n) such that U∗K1(z,w)U = K2(z,w) for all z,w ∈ Ω.

(3) Suppose that Cn ⊗ P is densely contained in HK(Ω,Cn) and that the multiplication by the
coordinate functions are bounded on HK(Ω,Cn). Then

∩n
i=1 ker(Mi − wi)

∗ = {K(·,w)x : x ∈ Cn}.

Moreover, the dimension of the joint kernel at w is n for all w ∈ Ω.

Lemma 2.3. Let HK(Ω,Cn) be a reproducing kernel Hilbert space consisting of holomorphic functions
on Ω taking values in Cn. Assume that Cn ⊗ P is densely contained in HK(Ω,Cn), the d-tuple M
on HK(Ω,Cn) is bounded and the kernel K is normalized at 0. Then the following statements are
equivalent.

(1) The d-tuple M is K-homogeneous, that is, there is a unitary operator Γ(k) on HK(Ω,Cn) with

Γ(k)(k ·M)Γ(k)∗ = M , k ∈ K.
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(2) The kernel K is quasi-invariant under K with multiplier c : K×Ω → U(n), c(k, z) is indepen-
dent of z.

(3) There is a map c : K → U(n) such that (Γ(k)f)(z) := c(k)f(k−1 ·z), is unitary on HK(Ω,Cn).

Proof. Since Cn ⊗ P is densely contained in HK(Ω,Cn), it follows that the dimension of the joint
kernels ∩d

i=1 kerD(M−w)∗ , w ∈ Ω, as shown in [7, p. 285, Remark], is n. Therefore, the methods of [6]
applies.

First, it is not hard to see that the d-tuple of operators k ·M acting on the Hilbert space HK(Ω,Cn)

is unitarily equivalent to the d-tuple M acting on HK̂(Ω,Cn), where K̂(z,w) := K(k−1 · z, k−1 ·w)

via the unitary operator f → f ◦k−1, f ∈ HK(Ω,Cn). Since K is assumed to be normalized at 0 and k

is linear, it follows that K̂ is also normalized at 0. Second, for a fixed k ∈ K, any intertwining unitary
operator between the d-tuple M on HK̂(Ω,Cn) and HK(Ω,Cn) must be of the form f̂ → c(k)f̂ , where

(c(k)f̂)(z) = c(k)f̂(z) for some unitary c(k) ∈ U(n). Finally, these two unitaries combine to give a
unitary operator Γ(k) : HK(Ω,Cn) → HK(Ω,Cn) of the form: Γ(k)f(z) = c(k)(f ◦ k−1)(z). Thus we
have proved that the statement (1) implies (3).

Moreover, the unitarity of the map Γ in the statement (3) is equivalent to the quasi-invariance of
the kernel K, namely, K(z,w) = c(k)K(k−1 · z, k−1 · w)c(k)∗. This proves the equivalence of the
statements (2) and (3).

The statement (3) clearly implies (1) completing the proof. □

Remark 2.4. Choosing the multiplier c : K → GLn(C) to be unitary without loss of generality and
assuming that c is a homomorphism, we see that the map f → c(k)(f ◦k−1) is a unitary representation
of K on the Hilbert space HK(Ω,Cn).

The group K acts on P naturally by the rule p → p◦k−1. This action, as is well known, decomposes

into irreducible components Ps parameterized by the signatures s in Z⃗r
+. It is pointed out in [1,

Proposition 3.4], that any K-invariant inner product on P must be of the form

⟨p, q⟩ =
deg p∑
ℓ=0

∑
|s|=ℓ

s∈Z⃗r
+

as⟨ps, qs⟩F ,

where deg p is the degree of p and ps, qs are the components of p, q ∈ P in the Peter-Weyl decomposition
of P into irreducible subspaces Ps. In this paper, what we study amounts to finding K quasi-invariant
inner products on the space Cn⊗P. We do this by obtaining a generalization of the description of an
invariant inner product from the scalar case given above. This is Proposition 2.6. For the proof, we
need the following elementary lemma (compare with Lemma 2.8 of [5]).

Lemma 2.5. Let H1 := (H, ⟨·, ·⟩1) and H2 := (H, ⟨·, ·⟩2) be two Hilbert spaces. Let ρ : K → U(Hi)
be an irreducible unitary representation for i = 1, 2. Then there exists a positive scalar δ such that
⟨·, ·⟩1 = δ⟨·, ·⟩2.

Proof. Let A be the linear map from H to H such that ⟨f, g⟩H1 = ⟨Af, g⟩H2 . Now, note that,

⟨ρ(k)Af, g⟩H2 = ⟨Af, ρ(k−1)g⟩H2

= ⟨f, ρ(k−1)g⟩H1

= ⟨ρ(k)f, g⟩H1

= ⟨Aρ(k)f, g⟩H2

Thus it follows that ρ(k)A = Aρ(k). An application of Schur’s lemma completes the proof. □

Let π be a unitary representation of the compact group K on a Hilbert space H containing Cn ⊗P
as a dense subspace. By the Peter-Weyl theorem, H is the direct sum of irreducible representations
of K acting on finite dimensional subspaces Hλ, λ ∈ Λ. Let πλ be the restriction of π to Hλ, that is,
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π = ⊕λ∈Λπλ is the Peter-Weyl decomposition relative to the direct sum H = ⊕λ∈ΛHλ into reducing
subspaces of π. For the complete statement of the Peter-Weyl theorem one may consult [12, Theorem,
1.12, p. 17].

Let us transplant the Fischer-Fock inner product on P and the Euclidean inner product on Cn to
the tensor product Cn ⊗ P. We let ⟨·, ·⟩F denote the inner product on this tensor product space by
a slight abuse of notation. Let Pλ be the linear subspace of Cn ⊗ P identified with Hλ. Now, each of
the subspaces Pλ ⊂ Cn ⊗P inherits the inner product from that of (Cn ⊗P, ⟨·, ·⟩F ) to be denoted by
(Pλ, ⟨·, ·⟩Fλ

), λ ∈ Λ. The hypothesis in the following proposition might appear to be restrictive but
for the applications in this paper, they appear naturally.

Proposition 2.6. Fix an action π of the compact group K on a Hilbert space H. Let [·, ·] denote
the inner product of H. Assume that Cn ⊗ P is a dense subspace of H. Furthermore, we assume
that (a) [p, q] = [π(k)p, π(k)q], that is, π is a unitary representation of K on H (b) ⟨pλ, qλ⟩Fλ

=
⟨πλ(k)pλ, πλ(k)qλ⟩Fλ

, k ∈ K, (c) πλ and πλ′ are inequivalent whenever λ ̸= λ′. Then there exists
positive scalars aλ such that [p, q] =

∑
λ∈Λ aλ⟨pλ, qλ⟩Fλ

, where p =
∑

λ∈Λ pλ and q =
∑

λ∈Λ qλ,
p, q ∈ Cn ⊗ P.

Proof. Let p, q ∈ Cn ⊗ P be of the form
∑

λ∈Λ pλ, pλ ∈ Pλ, and
∑

λ∈Λ qλ, qλ ∈ Pλ, respectively. For
any pair λ ̸= λ′, by hypothesis, πλ and πλ′ are inequivalent, therefore the subspaces Pλ and Pλ′ of the
inner product space (Cn ⊗ P, [·, ·]) are orthogonal. Therefore, we have

[p, q] =
∑
λ∈Λ

[pλ, qλ].

The representation πλ of K on (Pλ, [·, ·]) is unitary and irreducible. It is also unitary and irreducible
on the space (Pλ, ⟨·, ·⟩Fλ

). The proof of the theorem is completed by applying Lemma 2.5. □

As an application of Proposition 2.6, we obtain a description of all the quasi-invariant kernels K
with a multiplier c assuming that c is a unitary representation of K.

Theorem 2.7. Let HK(Ω,Cn) be a reproducing kernel Hilbert space densely containing Cn ⊗ P as
subspace. Assume that K is quasi-invariant with multiplier c, where c : K → U(n) is a representation
of the group K. Let π denote the action of the group K on HK(Ω,Cn) given by the rule π(k)f =
c(k)(f ◦ k−1). In the Peter-Weyl decomposition π = ⊕λ∈Λπλ, assume that the unitary representations
πλ are inequivalent. Then there exists positive scalars bλ, λ ∈ Λ, such that

K(z,w) =
∑
λ∈Λ

bλKλ(z,w), z,w ∈ Ω,

where Kλ is the reproducing kernel of (Pλ, ⟨·, ·⟩Fλ
), and HK(Ω,Cn) = ⊕λ∈ΛPλ.

Proof. From Lemma 2.3, it follows that the action π of the group K on HK(Ω,Cn) is unitary. This
verifies the assumption (a) of Proposition 2.6. The inner product space (Cn ⊗ P, ⟨·, ·⟩F ) is the ten-
sor product (Cn, ⟨·, ·⟩2) ⊗ (Pλ, ⟨·, ·⟩λ). Consequently, since c(k) is unitary for each k ∈ K verifying
assumption (b) of Proposition 2.6. Finally, the assumption that πλ, λ ∈ Λ, are inequivalent is the
assumption (c) of Proposition 2.6. Therefore the proof is completed by applying Proposition 2.6. □

We show that a non-scalar kernel K, quasi-invariant under U(d) associated with a multiplier c that
is irreducible, can not be invariant.

Proposition 2.8. Let K : Ω× Ω → Mn(C) be a non-negative definite kernel. Suppose that c : K →
Mn(C) is an irreducible unitary representation and K is quasi-invariant under K with multiplier c. If
the kernel K is also invariant under K, then there exists a non-negative definite scalar valued kernel
κ on Ω× Ω invariant under K such that K(z,w) = κ(z,w)In, z,w ∈ Ω.

Proof. Suppose that K is quasi-invariant with multiplier c : K → Mn(C), that is,
K(z,w) = c(k)K(k−1 · z, k−1 ·w)c(k)∗, k ∈ K, z,w ∈ Ω,
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where c is an irreducible unitary representation. If the kernel K is also invariant under K, it follows
that, K(z,w) = c(k)K(z,w)c(k)∗, that is, K(z,w)c(k) = c(k)K(z,w) for all k ∈ K. By Schur’s
Lemma, K(z,w) = κ(z,w)In for some scalar κ(z,w). The kernel K(z,w) is non-negative definite,
therefore κ(z,w) is non-negative definite also. Moreover, since K(z,w) is invariant under K, it follows
that κ(z,w) is invariant under K as well. This completes the proof. □

Remark 2.9. As we have pointed out earlier, under some additional assumptions, any scalar-valued
non-negative definite kernel K on Ω × Ω quasi-invariant under K can be shown to be of the form∑

s∈Z⃗r
+
asEs for some sequence {as}s∈Z⃗r

+
of non-negative real numbers.

3. A class of quasi-invariant kernels

Let (P, ⟨·, ·⟩F ) denote the linear space of all polynomials in d-variables equipped with the Fischer-
Fock inner product and let (Cd, ⟨·, ·⟩2) denote the Euclidean inner product space. We have

(Cd, ⟨·, ·⟩2)⊗ (P, ⟨·, ·⟩F ) =
∞⊕
ℓ=0

(Cd ⊗ Pℓ, ⟨·, ·⟩Fℓ
),

where the linear space (Cd ⊗ Pℓ, ⟨·, ·⟩Fℓ
) denotes the subspace of (Cd, ⟨·, ·⟩2) ⊗ (P, ⟨·, ·⟩F ) consisting

of homogeneous polynomials of degree ℓ. Thus the reproducing kernel of (Cd ⊗ Pℓ, ⟨·, ·⟩Fℓ
) is of the

form ⟨z, w⟩ℓ
ℓ! Id.

Recall that the unitary group U(d) acts on P by (π(u)(p))(z) = p(u−1 · z), p ∈ P. Therefore, the
map given by the formula:

(3.1)
(
π̂(u)(p)

)
(z) := u(p(u−1 · z)), p ∈ Cd ⊗ P, u ∈ U(d)

is an unitary homomorphism. Let πℓ(u) denote the restriction of π(u) to Pℓ and π̂ℓ(u) be the restriction
of π̂(u) to Cd ⊗Pℓ. Evidently, the subspaces Cd ⊗Pℓ, ℓ ∈ Z+, are not only invariant under the action
π̂ of U(d) but also the restriction of π̂ℓ to these subspaces is unitary.

There is a second action π̃ of the unitary group U(d) on Cd ⊗ P given by the formula:

(3.2)
(
π̃(u)(p)

)
(z) = u(p(u−1 · z)), p ∈ Cd ⊗ P.

Like before, the restriction π̃ℓ(u) of π̃(u) to the space Cd ⊗ Pℓ is unitary.

3.1. Decomposition of π̃ℓ. Let A = (A1, . . . , An) be an n-tuple of bounded linear operators (not
necessarily commuting) Ai : H1 → H2, 1 ≤ i ≤ n, where the Hilbert space H1 is possibly different
from H2. The operators DA : H1 → H2 ⊕ · · · ⊕ H2 and DA : H1 ⊕ · · · ⊕ H1 → H2 are defined by the
rule

DA(h) = (A1h, . . . , Anh), h ∈ H1 and

DA

(
h1

...
hn

)
= A1h1 + · · ·+Anhn, h1, . . . , hn ∈ H1.

It is easy to verify that (DA)∗ = DA∗ .

For any u ∈ U(d), f =

(
f1
...
fd

)
∈ Cd ⊗ Pℓ and z ∈ Cd, we have

d∑
i=1

zi(u
†(f ◦ u))i(z) = ⟨u†(f ◦ u)(z), z⟩Cd = ⟨(f ◦ u)(z), u · z⟩Cd =

d∑
i=1

(u · z)ifi(u · z).

Thus, π̃ leaves the subspace Ṽℓ ⊆ (Cd ⊗ Pℓ, ⟨·, ·⟩Fℓ
) invariant, where

Ṽℓ =

{(
f1
...
fd

)
∈ Cd ⊗ Pℓ : z1f1 + · · ·+ zdfd = 0

}
.
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We claim that the subspace Ṽ⊥
ℓ ⊆ (Cd ⊗ Pℓ, ⟨·, ·⟩Fℓ

) is
{( ∂1g

...
∂dg

)
: g ∈ Pℓ+1

}
.

To verify the claim, let M
(ℓ)
zi : Pℓ → Pℓ+1 be the linear map M

(ℓ)
zi (p) = zip, p ∈ Pℓ. Setting

M (ℓ) = (M
(ℓ)
z1 , . . . ,M

(ℓ)
zd ), we have Ṽℓ = kerDM (ℓ)

. Thus Ṽ⊥
ℓ = ran (DM (ℓ)

)∗ = ran D
M (ℓ)∗ . From the

identity ⟨p, ziq⟩F = ⟨∂ip, q⟩F for any pair of polynomials proved in [18], Proposition 4.11.36, it follows

that M
(ℓ)∗
zi = ∂i completing the verification of the claim.

Lemma 3.1. The reproducing kernel K̃ℓ of the inner product space Ṽℓ is given by the formula:

K̃ℓ(z,w) =
ℓ

(ℓ+ 1)ℓ!
⟨z, w⟩ℓ−1

(
⟨z, w⟩Id −wz†

)
.

The reproducing kernel K̃⊥
ℓ of Ṽ⊥

ℓ is given by the formula:

K̃⊥
ℓ (z,w) =

⟨z, w⟩ℓ−1

(ℓ+ 1)ℓ!

(
⟨z, w⟩Id +wz†

)
.

Here, wz† is the matrix product of the column vector w and the row vector z†.

Proof. Let ζ = (ζ1, . . . , ζd) be an arbitrary vector in Cd. First note that

d∑
i=1

zi⟨K̃ℓ(z,w)ζ, ei⟩ =
ℓ

(ℓ+ 1)ℓ!
⟨z, w⟩ℓ−1

(
d∑

i=1

zi
〈
⟨z, w⟩ζ −w⟨z, ζ̄⟩, ei

〉)

=
ℓ

(ℓ+ 1)ℓ!
⟨z, w⟩ℓ−1

d∑
i=1

(
⟨z, w⟩ziζi − ziw̄i⟨z, ζ̄⟩

)
=

ℓ

(ℓ+ 1)ℓ!
⟨z, w⟩ℓ−1

(
⟨z, w⟩⟨z, ζ̄⟩ − ⟨z, w⟩⟨z, ζ̄⟩

)
= 0.

It follows that the vector K̃ℓ(·,w)ζ ∈ Ṽℓ. In order to complete the proof of the first part it suffices to

show that for any f in Ṽℓ, w, ζ ∈ Cd, and i = 1, . . . , d ⟨f, K̃ℓ(·,w)ei⟩Fℓ
= ⟨f(w), ei⟩Cd . Note that

⟨f, ⟨z, w⟩ℓ−1wz†ei⟩Fℓ
=

d∑
j=1

⟨fj , ⟨z, w⟩ℓ−1wjzi⟩F

=
d∑

j=1

wj⟨∂ifj , ⟨z, w⟩ℓ−1⟩F

= (ℓ− 1)!
d∑

j=1

wj(∂ifj)(w)

= (ℓ− 1)!
(
∂i

( d∑
j=1

zjfj

)
(w)− fi(w)

)
= −(ℓ− 1)!fi(w).

Hence we have

(3.3) ⟨f, ⟨z, w⟩ℓ−1wz†ei⟩Fℓ
= −(ℓ− 1)!⟨f(w), ei⟩Cd .

Here the second equality follows since ⟨p, ziq⟩F = ⟨∂ip, q⟩F for any pair of polynomials p, q (see [18,
Proposition 4.11.36]), and the third equality from the reproducing property of the kernel function of
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Pℓ−1. Now, using (3.3), we see that

⟨f, K̃ℓ(·,w)ei⟩Fℓ
=

ℓ

(ℓ+ 1)ℓ!
⟨f, ⟨z, w⟩ℓ−1

(
⟨z, w⟩ei −wz†ei

)
⟩Fℓ

=
ℓ

(ℓ+ 1)

(
1 +

1

ℓ

)
⟨f(w), ei⟩

= ⟨f(w), ei⟩.

This verifies the formula for K̃ℓ.

We note that the reproducing kernel of (Cd ⊗ Pℓ, ⟨·, ·⟩Fℓ
) is ⟨z,w⟩ℓ

ℓ! Id. Now, the verification of the

formula for K̃⊥
ℓ follows from part (1) and the equality:

⟨z, w⟩ℓ

ℓ!
Id = K̃ℓ(z,w) + K̃⊥

ℓ (z,w),

which follows from general theory of reproducing kernel Hilbert spaces. □

The proof of Proposition 3.6 giving an explicit description of a quasi-invariant kernel under U(d)
transforming as in Definition (1.3) with c(u) = ū is facilitated by the set of three lemmas proved
below.

Lemma 3.2. Let A be a d × d complex matrix such that uA = Au for all unitary matrices u with

u(e1) = e1. Then A is of the form
(

a1 0
0 a2Id−1

)
for some complex numbers a1 and a2.

Proof. Let A =
(

A1 A†
3

A4 A2

)
, where A3 and A4 are column vectors in Cd−1 and A2 is in Md−1(C). By

hypothesis, we get A3 = A4 = 0 and vA2 = A2v for all v ∈ U(d − 1). Now the conclusion follows by
an application of the Schur’s lemma. □

Lemma 3.3. Suppose that K : Bd × Bd → Mn(C) is a sesqui-analytic Hermitian function satisfying
the rule K(λ · z, λ ·w) = K(z,w) for all λ on the unit circle T. Then K(z,w) is of the form

∞∑
ℓ=0

∑
α,β∈Zd

+

|α|=|β|=ℓ

Aα,βz
αwβ, z,w ∈ Bd,

where Aα,β are n× n complex matrices.

Proof. Let K(z,w) =
∑

α,β∈Zd
+
Aα,βz

αwβ, z, ,w ∈ Bd. By hypothesis, we have∑
α,β∈Zd

+

Aα,βz
αwβ =

∑
α,β∈Zd

+

Aα,βλ
|α|−|β|zαwβ, z, ,w ∈ Bd, λ ∈ T.

Comparing coefficients in both sides, we get Aα,β(1− λ|α|−|β|) = 0 for all λ ∈ T. Hence it follows that
Aα,β = 0 if |α| ≠ |β|. This completes the proof. □

For any z ∈ Bd, ∥z∥ = r, there is a uz ∈ U(d) with the property: uz(z) = re1. The unitary uz
can be determined explicitly, namely, u∗z = ( z

r | ⋆ ), where z is the column vector with components
z1, . . . , zd. For any choice of two sets of complex numbers, {am,1 : m ∈ Z+} and {am,2 : m ∈ Z+} with
a0,1 = a0,2, set

Di(r, r) :=

∞∑
m=0

am,ir
2m, r ∈ [0, 1), i = 1, 2.

Also, for any fixed z ∈ Bd with ∥z∥ = r, let Uz be the set {uz ∈ U(d) : uz(z) = ∥z∥e1}.
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Lemma 3.4. For any uz ∈ Uz, we have

u†z

(
D1(r, r) 0

0 D2(r, r)Id−1

)
uz =

(
D1(r, r)−D2(r, r)

)zz†

r2
+D2(r, r)Id.

Proof. For any uz ∈ Uz, we have

u†z

(
D1(r,r) 0

0 D2(r,r)Id−1

)
uz = u†z

(
D1(r,r)−D2(r,r) 0

0 0

)
uz + u†zD2(r, r)Iduz

= D1(r, r)−D2(r, r)u
†
zE11uz +D2(r, r)Idu

†
zuz

Since uz(z) = ∥z∥e1, we get that u†ze1 =
z̄
r . Thus,

u†zE11uz = u†ze1e1
†uz =

z̄z†

r2
.

This completes the proof. □

Remark 3.5. An unitary uz ∈ Uz such that uz(z) = ∥z∥e1 is not uniquely determined. However, if
z ̸= 0, we see that

u†z

(
D1(r, r) 0

0 D2(r, r)Id−1

)
uz

is independent of the choice of uz by Lemma 3.4.

Proposition 3.6. Suppose that K : Bd × Bd → Md(C) is a sesqui-analytic Hermitian function
satisfying the transformation rule with the multiplier c(u) = u:

(∗) u†K(u · z, u ·w)u = K(z, w), u ∈ U(d).
Then K must be of the form

K(z, z) = u†z

(
D1(r,r) 0

0 D2(r,r)Id−1

)
uz, uz ∈ Uz,

where Di(r, r), i = 1, 2 are real analytic function on [0, 1) of the form
∑∞

m=0 am,ir
2m with a0,1 = a0,2.

Proof. Note that u†K(0, 0)ū = K(0, 0) implying K(0, 0) must be a scalar times Id. Let z ∈ Bd and
z ̸= 0. Putting w = z and u = uz ∈ Uz in (∗) we get that

K(z, z) = u†zK(uz(z), uz(z))uz

= u†zK(∥z∥e1, ∥z∥e1)uz.(3.4)

Using this expression of K(z, z) in (∗) we see that

(3.5) u†zK(∥z∥e1, ∥z∥e1)uz = u†u†u·zK(∥u · z∥e1, ∥u · z∥e1)uu·z u.

Equivalently, we have

(3.6) uu·z uu†zK(∥z∥e1, ∥z∥e1) = K(∥z∥e1, ∥z∥e1)uu·z uu†z, for all u ∈ U(d), uz ∈ Uz.

Note that uu·z uu†z is a unitary and

uu·z uu†z(e1) = uu·z u(
z

∥z∥
) =

uu·z(u · z)
∥z∥

= e1.

Moreover, if v is a unitary in U(d) with v(e1) = e1, then v can be written as u1 uu†2, where u = vuz,
u2 = uz and u1 = Id. Since vuz(z) = ∥z∥v(e1) = ∥z∥e1, we see that u1 = Id ∈ Uu·z. Consequently,

it follows that the set {uu·z uu†z : u ∈ U(d), uz ∈ Uz, uu·z ∈ Uu·z} coincides with the set {v ∈ U(d) :
v(e1) = e1}. This together with (3.6) gives

(3.7) vK(∥z∥e1, ∥z∥e1) = K(∥z∥e1, ∥z∥e1)v,
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for all v ∈ U(d) with v(e1) = e1. Hence by Lemma 3.2 we get that

(3.8) K(∥z∥e1, ∥z∥e1) =
(

K1(∥z∥e1,∥z∥e1) 0
0 K2(∥z∥e1,∥z∥e1)Id−1

)
,

where K1 and K2 are two scalar-valued sesqui-analytic Hermitian functions on Bd × Bd. Applying
Lemma 3.3, we infer that

K(z, z) =
∞∑
ℓ=0

∑
|α|=|β|=ℓ

aα,βz
αz̄β, aα,β ∈ Md(C).

Consequently, we have the equality

(3.9) K(∥z∥e1, ∥z∥e1) =
∞∑
ℓ=0

aℓε1,ℓε1∥z∥2ℓ.

Combining Equation (3.9) with the Equations (3.4) and (3.8), completes the verification of the first
of the two equalities claimed for the kernel K. □

Now, we obtain a characterization of the non-negative definite quasi-invariant kernels.

Theorem 3.7. Any sesqui-analytic Hermitian function quasi-invariant with multiplier c(u) = ū is of
the form

K̃(α,β)(z,w) =

∞∑
j=1

αjK̃j(z,w) +

∞∑
j=0

βjK̃
⊥
j (z,w), αj , βj ∈ C.

Proof. First, since any sesqui-analytic Hermitian function quasi-invariant with multiplier c(u) = ū, it
must be of the form prescribed in Proposition 3.6. Applying Lemma 3.4 to it, and then polarizing the
result, we see that it must be of the form

K̃(z,w) =
∞∑
ℓ=1

(
aℓ,1 − aℓ,2

)
⟨z, w⟩ℓ−1wz† +

∞∑
ℓ=0

aℓ,2⟨z, w⟩ℓId, z,w ∈ Bd,(♯)

for some choice of complex numbers aℓ,1, ℓ ∈ N, and aℓ,2, ℓ ∈ Z+. For any ℓ ≥ 1, by Lemma 3.1, we
have (

aℓ,1 − aℓ,2
)
⟨z, w⟩l−1wz† + aℓ,2⟨z, w⟩lId

= aℓ,1⟨z, w⟩ℓId −
(
aℓ,2 − aℓ,1

)
⟨z, w⟩ℓ−1

(
⟨z, w⟩ −wz†)

= aℓ,1ℓ!
(
K̃ℓ + K̃⊥

ℓ

)
−
(
aℓ,1 − aℓ,2

)(ℓ+ 1)ℓ!

ℓ
K̃ℓ

= aℓ,1ℓ!K̃
⊥
ℓ +

(
(ℓ+ 1)aℓ,2 − aℓ,1

)
(ℓ− 1)!K̃ℓ.

Thus, we have

K̃(z, w) = a0,2Id +
∞∑
ℓ=1

(
aℓ,1ℓ!K̃

⊥
ℓ +

(
(ℓ+ 1)aℓ,2 − aℓ,1

)
(ℓ− 1)!K̃ℓ

)
=

∞∑
j=1

αjK̃j(z,w) +
∞∑
j=0

βjK̃
⊥
j (z,w),

where αj =
(
(j + 1)aj,2 − aj,1

)
(j − 1)!, βj = aj,1j!.

□
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3.2. Decomposition of π̂. Consider the two subspaces V̂ℓ and Ŵℓ of (Cd ⊗ Pℓ, ⟨·, ·⟩Fℓ
):

V̂ℓ =

{
f :=

(
f1
...
fd

)
∈ Cd ⊗ Pℓ : ∂1f1 + · · ·+ ∂dfd = 0

}

and

Ŵℓ =
{( z1g

...
zdg

)
: g ∈ Pℓ−1

}
.

Evidently, the subspace Ŵℓ is invariant under the unitary representation π̂. Also, we check that the

subspace V̂⊥
ℓ ⊆ (Cd ⊗ Pℓ, ⟨·, ·⟩Fℓ

) is Ŵℓ.

To verify this, let M
(ℓ)
zi : Pℓ−1 → Pℓ be the linear map M

(ℓ)
zi (p) = zip, p ∈ Pℓ. Clearly, setting

M (ℓ) = (M
(ℓ)
z1 , . . . ,M

(ℓ)
zd ), we see that Ŵℓ = ran (DM (ℓ)

). Note that for any α, β ∈ Zd
+, ⟨zα+εi , zβ⟩F =

β!δα+εi,β. Thus we have

⟨zip, q⟩F = ⟨p, ∂iq⟩F , p, q ∈ P.

Hence it follows that M
(ℓ)∗
zi = ∂i. Therefore V̂ℓ = kerDM (ℓ)∗

. Since
(
DM (ℓ))∗

= DM (ℓ)∗ , we conclude
that

V̂⊥
ℓ = ran DM (ℓ) = Ŵℓ.

Therefore, V̂ℓ is also invariant under the representation π̂.

Lemma 3.8. Consider the inner product space (Cd ⊗ Pℓ, ⟨·, ·⟩Fℓ
). Then

(1) The reproducing kernel K̂ℓ of V̂ℓ is

K̂ℓ(z,w) :=
1

(ℓ+ d− 1)(ℓ− 1)!
⟨z, w⟩ℓ−1

(
(ℓ+ d− 1)

ℓ
⟨z, w⟩Id − zw†

)
,

where zw† is the matrix product of the column vector z and the row vector w†.

(2) The reproducing kernel K̂⊥
ℓ of V̂⊥

ℓ is 1
(ℓ+d−1)(ℓ−1)!⟨z, w⟩ℓ−1zw†.

Proof. Clearly, part (2) is a direct consequence of part (1) of the Lemma. Therefore, we will prove
only part (1), which is similar to the proof of part (1) of Lemma 3.1. Let ζ = (ζ1, . . . , ζd) be any
vector in Cd. As before, we note that

⟨K̂ℓ(z,w)ζ, ej⟩ =
1

(ℓ+ d− 1)(ℓ− 1)!
⟨z, w⟩ℓ−1

(
(ℓ+ d− 1)

ℓ
⟨z, w⟩⟨ζ, ej⟩ − ⟨z, ej⟩⟨ζ, w⟩

)
A direct verification shows that

d∑
j=1

∂j⟨K̂ℓ(z,w)ζ, ej⟩ = 0,
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therefore, it follows that K̂ℓ(·,w)ζ ∈ V̂ℓ. Also,

⟨f, ⟨z, w⟩ℓ−1zw†ei⟩Fℓ
=

d∑
j=1

⟨fj , ⟨z, w⟩ℓ−1wizj⟩F

=
d∑

j=1

wi⟨fj , ⟨z, w⟩ℓ−1zj⟩F

=
d∑

j=1

wi⟨∂jfj , ⟨z, w⟩ℓ−1⟩F

= (ℓ− 1)!wi

d∑
j=1

(∂jfj)(w) = 0.

Thus, ⟨f, K̂ℓ(·,w)ei⟩Fℓ
= ⟨f(w), ei⟩. □

The proposition below matching with Proposition 3.6 is obtained by replacing c(u) = ū by c(u) = u
is proved as before.

Proposition 3.9. Suppose that K : Bd × Bd → Md(C) is a sesqui-analytic Hermitian function
satisfying the transformation rule with the multiplier c(u) = u:

(∗∗) uK(u−1 · z, u−1 ·w)u† = K(z,w).

Then K must be of the form

K(z, z) = uz
†
(

D1(r,r) 0
0 D2(r,r)Id−1

)
uz, uz ∈ Uz,

where Di(r, r), i = 1, 2 are real analytic function on [0, 1) of the form
∑∞

m=0 ãm,ir
2m with ã0,1 = ã0,2.

We need the following lemma similar to Lemma 3.4 to prove the main theorem describing sesqui-
analytic Hermitian function quasi-invariant with multiplier c(u) = u.

Lemma 3.10. For any uz ∈ Uz, we have

uz
†
(
D1(r, r) 0

0 D2(r, r)Id−1

)
uz =

(
D1(r, r)−D2(r, r)

)zz†

r2
+D2(r, r)Id.

Proof. The proof is similar to the proof of Lemma 3.4 except that we have to use the equality:

uz
†E11uz =

zz†

r2
. □

Theorem 3.11. Any sesqui-analytic Hermitian function quasi-invariant with multiplier c(u) = u is
of the form

K̂(α,β)(z,w) =

∞∑
j=0

αjK̂j(z,w) +

∞∑
j=1

βjK̂
⊥
j (z,w), αj , βj ∈ C.

Proof. As before, since the kernel K̂ is sesqui-analytic Hermitian function quasi-invariant with multi-
plier c(u) = u, it must be of the form prescribed in Proposition 3.9. Now, appealing to Lemma 3.10,
we obtain

(♯♯) K̂(z,w) =

∞∑
ℓ=1

(ãℓ,1 − ãℓ,2)⟨z, w⟩ℓ−1z w† +

∞∑
ℓ=0

ãℓ,2⟨z, w⟩ℓId.

The remaining portion of the proof is similar to that of Theorem 3.7, where αj = ãj,2j! and βj =
(ãj,1(j + d− 1)− ãj,2(d− 1))(j − 1)! for all j. □
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To determine among the kernels described in Theorem 3.7 (respectively, Theorem 3.11), the ones
that are non-negative definite, we recall a slight generalization of the criterion for non-negative defi-
niteness of Farut-Koranyi [9, Lemma 5.4]:

Lemma 3.12 (Lemma 5.1, [4]). Let Ω be a domain in Cd. Let K : Ω×Ω → Mn(C) be a non-negative
definite kernel and HK(Ω,Cn) be the reproducing kernel Hilbert space determined by K. Suppose
that HK(Ω,Cn) can be decomposed as an orthogonal direct sum ⊕∞

ℓ=0Hℓ and Kℓ is the reproducing
kernel of Hℓ. Further assume that {cℓ}ℓ∈Z+ is any sequence of complex numbers such that the sum∑∞

ℓ=0 cℓKℓ(z, w) converges on Ω × Ω. Then
∑∞

ℓ=0 cℓKℓ(z, w) is non-negative definite if and only if
cℓ ≥ 0 for all ℓ ∈ Z+.

Combining Faraut-Koranyi lemma with Theorem 3.6 and Theorem 3.11, we obtain a condition for
a sesqui-analytic Hermitian function to be non-negative.

Theorem 3.13. Suppose that K̃(α,β) : Bd × Bd → Md(C) is a sesqui-analytic Hermitian function

as in Theorem 3.6 (respectively, K̂(α,β) as in Theorem 3.11). Then the kernel K̃(α,β) (respectively,

K̂(α,β)) is non-negative definite if and only if αj ≥ 0, βj ≥ 0.

Proof. In the expansion of K̃(α,β) obtained in Theorem 3.7, the kernels K̃j and K̃⊥
j are non-negative

definite. Therefore, by Lemma 3.12, we conclude that K̃ is non-negative definite if and only if αj ≥
0, βj ≥ 0. The proof for K̂(α,β) is similar and therefore omitted. □

As a corollary of Theorem 3.7 (respectively, Theorem 3.11), we prove that the restriction of the

representation π̃ℓ to Ṽℓ (respectively, restriction of π̂ℓ to V̂ℓ) is irreducible.

Corollary 3.14. (1) The restriction π̃ℓ|Ṽℓ
of π̃ℓ to the linear subspace Ṽℓ equipped with the re-

striction of the inner product ⟨·, ·⟩Fℓ
from Cd ⊗ Pℓ is irreducible.

(2) The restriction π̂ℓ|V̂ℓ
of π̂ℓ to the linear subspace V̂ℓ equipped with the restriction of the inner

product ⟨·, ·⟩Fℓ
from Cd ⊗ Pℓ is irreducible.

Proof. To prove part (1) of the corollary, suppose that there is a decomposition Ṽℓ = V1
ℓ ⊕ V2

ℓ , where
V1
ℓ and V2

ℓ are reducing subspaces for π̃ℓ. Let K1
ℓ and K2

ℓ be the kernel functions of V1
ℓ and V2

ℓ ,
respectively. Evidently, both K1

ℓ and K2
ℓ are quasi-invariant with respect to the same multiplier ū.

It follows that K̃ℓ = K1
ℓ ⊕K2

ℓ . If ℓ = 0, then Ṽ0 = {0} and there is nothing to prove. Fix ℓ ∈ N, it
follows from Theorem 3.7 that K1

ℓ must be of the form
∑

j αjK̃j + βjK̃
⊥
j for some choice of a set of

non-negative numbers {αj} and {βj}. The Hilbert space determined by αjK̃j + βjK̃
⊥
j contains the

Hilbert space determined by αjK̃j as well as the one determined by βjK̃
⊥
j . Now, if there is a non-zero

αj with j ̸= ℓ, then Ṽj must be a subspace of V1
ℓ . Therefore αj = 0 except for j = ℓ. A similar

argument shows that βj = 0 for all j. In consequence, if αℓ > 0, then V1
ℓ = Ṽℓ, otherwise V1

ℓ = {0}.
The proof of part (2) of the Corollary is obtained exactly as in the proof of part (1) using Theorem

3.11. □

3.3. Examples. The examples discussed below shows that there are many quasi-invariant kernels K
on Bd with multiplier of the form c(u) = ū (resp. c(u) = u). In these examples, the monomials
{zα ⊗ ζ : α ∈ Zd

+, ζ ∈ Cd} are no longer orthogonal.

Let d ≥ 2. Recall that the Bergman kernel B of the unit ball B is given by B(z,w) = 1
(1−⟨z,w⟩)d+1 .

For t ∈ R, we set

B(t)(z,w) = Bt
(( ∂2

∂zi∂wj
logB

))d
i,j=1

(z,w).

Clearly B(t) is a sesqui-analytic hermitian function for any real number t. It follows from [11, Lemma

6.1] that B(t) is quasi-invariant with the multiplier c(u) = u. A direct computation shows that
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B(t)(z,w) =
d+ 1

(1− ⟨z,w⟩)t(d+1)+2


1−

∑
j ̸=1 zjw̄j z2w̄1 · · · zdw̄1

z1w̄2 1−
∑

j ̸=2 zjw̄j · · · zdw̄2

...
...

...
...

z1w̄d z2w̄d · · · 1−
∑

j ̸=d zjw̄j

 .(3.10)

Thus

(3.11) B(t)(re1, re1) =
d+ 1

(1− r2)t(d+1)+2

(
1 0
0 (1− r2)Id−1

)
, 0 ≤ r < 1.

Note that B(t)(0, 0) = (d + 1)Id. Thus by Proposition 3.6 we have B(t)(z, z) = u†zB
(t)(re1, re1)uz,

where r = ∥z∥ and uz is a unitary of the form u∗z = ( z
r | ⋆ ). Equivalently,

(3.12) B(t)(z,w) =
∞∑
ℓ=1

(
aℓ,1 − aℓ,2

)
⟨z, w⟩ℓ−1wz† +

∞∑
ℓ=0

aℓ,2⟨z, w⟩ℓId,

where aℓ,1 = (d + 1) (t(d+1)+2)ℓ
ℓ! and aℓ,2 = (d + 1) (t(d+1)+1)ℓ

ℓ! for all ℓ ∈ Z+. In this case it is easy to

verify that aℓ,1 ≤ (ℓ + 1)aℓ,2 if and only if t ≥ 0. Therefore by Theorem 3.13 it follows that B(t) is a
non-negative definite kernel if and only if t ≥ 0.

Since B(t) is quasi-invariant with respect to the multiplier c(u) = u, it is easy to see that B(t)†

is quasi-invariant with respect to the multiplier c(u) = u. Further, using (3.12) and the identity
⟨z,w⟩ℓ

ℓ! Id = Kℓ +K⊥
ℓ , we obtain

(3.13) B(t)†(z,w) =
∞∑
ℓ=1

(
(aℓ,1 − aℓ,2)(ℓ+ d− 1)(ℓ− 1)! + aℓ,2 ℓ!

)
K⊥

ℓ (z,w) +
∞∑
ℓ=0

aℓ,2 ℓ!Kℓ(z,w).

Hence it follows from Theorem 3.13 that the transpose B(t)† of the kernel B(t) is a non-negative definite
kernel if and only if t(d+ 1) + 1 ≥ 0.

Since B(t), t ≥ 0, as well as B(t)†, t(d + 1) + 1 ≥ 0, are non-negative definite, it follows from
Proposition 2.8 that these kernels are quasi-invariant but not invariant.

4. U(d) Homogeneous operators

4.1. Boundedness and Irreducibility. In this subsection, we derive explicit criterion for U(d)-
homogeneous d-tuple of multiplication operator M to be (a) bounded and (b) irreducible. This is
done separately for the class of kernels of the form appearing in Theorem 3.7 and Theorem 3.11.

Theorem 4.1. Suppose that K : Bd ×Bd → Md(C) is a non-negative definite kernel of the form (♯).
Then the d-tuple M on the Hilbert space HK(Bd,Cd) is bounded if and only if

sup
ℓ

{
(ℓ+ 1)aℓ−1,2 − aℓ−1,1

(ℓ+ 1)aℓ,2 − aℓ,1
,
aℓ−1,1

aℓ,1

}
< ∞.

Proof. The multiplication d-tuple M on the Hilbert space HK(Bd,Cd) is bounded if and only if there
exists c > 0 such that

(
c2 − ⟨z, w⟩

)
K(z,w) is non-negative definite [11, Lemma 2.7(ii)].(

c2 − ⟨z, w⟩
)
K(z,w)|res Cd⊗Pℓ

=
{
c2
(
aℓ,1 − aℓ,2

)
−
(
aℓ−1,1 − aℓ−1,2

)}
⟨z, w⟩l−1wz†

+
(
c2aℓ,2 − aℓ−1,2

)
⟨z, w⟩lId

=
{
c2
(
(ℓ+ 1)aℓ,2 − aℓ,1

)
−
(
(ℓ+ 1)aℓ−1,2 − aℓ−1,1

)}
(ℓ− 1)!Kℓ

+
(
c2aℓ,1 − aℓ−1,1

)
ℓ!K⊥

ℓ .
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Hence by Lemma 3.12
(
c2 − ⟨z, w⟩

)
K(z,w) is non-negative definite if and only if for all l ∈ N,

c2
(
(ℓ+ 1)aℓ,2 − aℓ,1

)
−
(
(ℓ+ 1)aℓ−1,2 − aℓ−1,1

)
≥ 0

and

c2aℓ,1 − aℓ−1,1 ≥ 0.

The claim of the theorem is clearly equivalent to these two positivity conditions completing the
proof. □

Theorem 4.2. Suppose that K : Bd × Bd → Md(C) is a non-negative definite kernel function of the
form (♯♯). Then the d-tuple M on the Hilbert space HK(Bd,Cd) is bounded if and only if

sup
ℓ

{
(ℓ+ d− 1)ãℓ−1,1 − (d− 1)ãℓ−1,2

(ℓ+ d− 1)ãℓ,1 − (d− 1)ãℓ,2
,
ãℓ−1,2

ãℓ,2

}
< ∞.

Corollary 4.3. Let K be a non-negative definite kernel function either of the form (♯) or (♯♯). Assume
that the d-tuple M on the Hilbert space HK(Bd,Cd) is bounded. Then it is U(d)-homogeneous.

Proof. Since K is quasi-invariant under U(d), the conclusion follows from Lemma 2.3. □

Theorem 4.4. Let d ≥ 2. Let K be a non-negative definite kernel function either of the form (♯) or
(♯♯). Assume that the d-tuple M on the Hilbert space HK(Bd,Cd) is bounded. Then M is reducible if
and only if aℓ,1 = aℓ,2 or ãℓ,1 = ãℓ,2 according as K is of the form (♯) or of the form (♯♯), ℓ ∈ N.

Proof. First, let us consider the case of a kernel of the form (♯). Assume that aℓ,1 = aℓ,2, ℓ ∈ N.
Then K(z, w) =

∑∞
ℓ=0 aℓ,2⟨z, w⟩ℓId. Since d ≥ 2, it is evident that the multiplication d-tuple M

on HK(Bd,Cd) is reducible. Conversely, assume that M on HK(Bd,Cd) is reducible. Since K(z, 0)
is constant and M is bounded, the discussion following Lemma 5.1 of [13], there exists a non-trivial
projection on P on Cd such that PK(z,w) = K(z,w)P. In case, K is of the form (♯), this is equivalent
to

(4.1) P
( ∞∑
ℓ=1

(
aℓ,1 − aℓ,2

)
⟨z, w⟩ℓ−1wz†) = ( ∞∑

ℓ=1

(
aℓ,1 − aℓ,2

)
⟨z, w⟩ℓ−1wz†)P.

Rewriting Equation (4.1), we have

0 =

∞∑
ℓ=1

(
aℓ,1 − aℓ,2)⟨z, w⟩ℓ−1

(
Pwz† −wz†P

)
=

∞∑
ℓ=1

(
aℓ,1 − aℓ,2

) ∑
|α|=ℓ−1

|α|!
α!

d∑
i,j=1

(PEi,j − Ei,jP )zα+εjw̄α+εi .

Let ℓ ≥ 1 be fixed and choose α = (ℓ− 1)εi, 1 ≤ i ≤ d. Then α+ εj and α+ εi are of the form

(ℓ− 1)εi + εj , ℓεi, 1 ≤ j ≤ d,

respectively. If we choose any other multi-index β ̸= α with |β| = ℓ− 1 and a pair of natural numbers
m,n, 1 ≤ m,n ≤ d, then we can’t have β + εm = ℓεi and β + εn = (ℓ − 1)εi + εj . It follows that

the coefficients of zℓ−1
i zjw̄

ℓ
i must be zero. This means that P must commute with all the elementary

matrices Ei,j , 1 ≤ i, j ≤ d. Hence P can not be a non-trivial projection contrary to our hypothesis
unless aℓ,1 = aℓ,2.

If K is of the form (♯♯), we have

(4.2) P
( ∞∑
ℓ=1

(
ãℓ,1 − ãℓ,2

)
⟨z, w⟩ℓ−1zw†) = ( ∞∑

ℓ=1

(
ãℓ,1 − ãℓ,2

)
⟨z, w⟩ℓ−1zw†)P.
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Again, rewriting Equation (4.2), we have

0 =

∞∑
ℓ=1

(
ãℓ,1 − ãℓ,2

)
⟨z, w⟩ℓ−1

(
Pzw† − zw†P

)
=

∞∑
ℓ=1

(
ãℓ,1 − ãℓ,2

) ∑
|α|=ℓ−1

|α|!
α!

d∑
i,j=1

(PEi,j − Ei,jP )zα+εiw̄α+εj .

Choosing α = (ℓ − 1)εi, as before, we see that P can not be a non-trivial projection contrary to our
hypothesis unless ãℓ,1 = ãℓ,2. This completes the proof. □

4.2. Computation of matrix coefficients and unitary equivalence. We wish to determine when
the d-tuple M on the reproducing kernel Hilbert space HK(Bd,Cd), where K is given by either (♯) or
(♯♯), are unitarily equivalent. For this, we rewrite the kernel K in the form K(z,w) =

∑
α,β Aα,βz

αw̄β,

where α, β ∈ Zd
+ and Aα,β are d × d complex matrices. Since the kernels K given in (♯) and (♯♯) are

normalized, any two d-tuple M acting on HK(Bd,Cd) and HK′(Bd,Cd) are unitarily equivalent if and
only if for all α, β, Aα,β is unitarily equivalent to A′

α,β by a fixed unitary U . Here we have taken

K ′(z,w) =
∑

α,β A
′
α,βz

αw̄β. Therefore, we proceed to find the matrix coefficients Aα,β.

We will first consider a non-negative definite kernel of the form (♯), that is,

K(z,w) =

∞∑
ℓ=1

(
aℓ,1 − aℓ,2

)
⟨z, w⟩ℓ−1w · z† +

∞∑
ℓ=0

aℓ,2⟨z, w⟩ℓId

=

∞∑
ℓ=0

∑
|α|=ℓ

(
ℓ

α

)(
P0(ℓ) +

d∑
i,j=1

Pi,j(ℓ+ 1)zjw̄i

)
zαw̄α

=
∑
α∈Zd

+

(
|α|
α

)
P0(|α|)zαw̄α +

∑
α∈Zd

+

∑
i,j

(
|α|
α

)
Pi,j(|α|+ 1)zα+εjw̄α+εi ,

where P0(|α|) = a|α|,2Id and Pi,j(|α|) = (a|α|,1 − a|α|,2)Eij . The only monomials that occur in the

kernel K are of the form zαw̄β with α − β = εj − εi. To find the coefficient of such a monomial, we
consider two cases, namely, i ̸= j and i = j. If i ̸= j, then the coefficient Aα+εj ,α+εi of the monomial

zα+εjw̄β+εi is

(4.3) Aα+εj ,α+εi =

(
|α|
α

)
Pi,j(|α|+ 1), i ̸= j.

On the other hand if i = j, we have

(4.4) Aα,α =

(
|α|
α

)
P0(|α|) +

d∑
i=1

(
|α| − 1

α− εi

)
Pi,i(|α|).

Replacing P0(|α|) by P̃0(|α|) := ã|α|,2Id and Pi,j(|α|) by P̃i,j(|α|) := (ã|α|,1 − ã|α|,2)E
†
ij , we get the

matrix coefficients for the kernel K of the form (♯♯).

Theorem 4.5. Let K and K ′ be two non-negative definite kernel function either of the form (♯) or
of the form (♯♯). Assume that the d-tuples M on the Hilbert space HK(Bd,Cd) and HK′(Bd,Cd) are
bounded. Then these two d-tuples are unitarily equivalent if and only if the two kernels K and K ′ are
equal.

Proof. Since the kernels K and K ′ are normalized at 0, it follows that the d-tuples M on two of these
spaces are unitarily equivalent if and only if the matrix coefficients in the expansion of these kernels,
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as above, are unitarily equivalent via a fixed unitary U of size d× d, see [6, Lemma 4.8 (c)]. To prove
the theorem, we first consider two kernels K and K ′ of the form (♯), that is,

K(z,w) =
∞∑
ℓ=1

(
aℓ,1 − aℓ,2

)
⟨z, w⟩ℓ−1wz† +

∞∑
ℓ=0

aℓ,2⟨z, w⟩ℓId

and

K ′(z,w) =

∞∑
ℓ=1

(
a′ℓ,1 − a′ℓ,2

)
⟨z, w⟩ℓ−1wz† +

∞∑
ℓ=0

a′ℓ,2⟨z, w⟩ℓId.

Assume that the d-tuples M on the Hilbert spaces HK(Bd,Cd) and HK′(Bd,Cd) are unitarily equiv-
alent. For fixed ℓ ∈ Z+, set aℓ := aℓ,1 − aℓ,2 and a′ℓ := a′ℓ,1 − a′ℓ,2. It follows from Equation (4.3) that

aℓ UEi,j = a′ℓEi,jU for every i ̸= j, 1 ≤ i, j ≤ d. Therefore we conclude that aℓ and a′ℓ are simulta-
neously 0 or not. If aℓ and a′ℓ are both zero for all ℓ, then the two kernels K and K ′ are invariant

kernels of the form
∑

ℓ aℓ,2Id⟨z, w⟩ℓ and
∑

ℓ a
′
ℓ,2Id⟨z, w⟩ℓ respectively. Hence the d-tuples M acting

on K and K ′ are unitarily equivalent if and only if aℓ,2 = a′ℓ,2, for all ℓ.

Assume that aℓ,1 ̸= aℓ,2 for some ℓ ∈ N. Fix one such ℓ and evaluate Equation (4.3) for a fixed pair
i, j with i ̸= j. We then see that every column of the d× d matrix aℓUEi,j is zero except for the jth
column. This non-zero column is aℓ times the the ith column of U . On the other hand, each row of
d× d matrix a′ℓEi,jU is zero except for the ith one, which is a′ℓ times the jth row of U . Since neither
aℓ nor a′ℓ is zero, it follows that Uk,i = 0, 1 ≤ k ̸= i ≤ d, similarly, Uj,p = 0, 1 ≤ p ̸= j ≤ d. Hence
U must be a diagonal matrix. Moreover, we have that aℓUi,i = a′ℓUj,j for 1 ≤ i ̸= j ≤ d. We claim

aℓ = a′ℓ. For the proof, start with a2ℓUi,i = aℓ(a
′
ℓUj,j) = a′ℓ

2Ui,i and conclude that aℓ = a′ℓ. Hence
Ui,i = Uj,j for i ̸= j and it follows that U1,1 = U2,2 = U3,3 = · · · = Ud,d. In consequence, U must be a
unimodular scalar times identity.

If the kernels K and K ′ are of the form (♯♯), then the proof is similar and therefore omitted. □

The theorem below answers the question of unitary equivalence between two U(d)-homogeneous
multiplication tuples acting on HK♯(Bd,Cd) and HK♯♯(Bd,Cd).

Theorem 4.6. Let K♯ be a kernel of the form (♯) and K♯♯ be a kernel of the form (♯♯). Assume that
the d-tuples M on the Hilbert space HK♯(Bd,Cd) and HK♯♯(Bd,Cd) are bounded. Then

(1) if d > 2, these two d-tuples are unitarily equivalent if and only if aℓ,1 = aℓ,2 = ãℓ,1 = ãℓ,2,
ℓ ∈ N.

(2) if d = 2, these two d-tuples are unitarily equivalent if and only if aℓ,1 = ãℓ,2 and aℓ,2 = ãℓ,1,
ℓ ∈ N.

Proof. The idea of the proof of part (1) is the same as that of the proof for Theorem 4.5. As in that
proof, expanding K♯ and K♯♯ and assume that there is a unitary U intertwining all the coefficients
described in (4.3) and (4.4) with the ones described in the comments following these two equations.
Assume that am,1 ̸= am,2 (and therefore ãm,1 ̸= ãm,2) for some m ∈ N. For every fixed but arbitrary
pair (i, j), we must have

(am,1 − am,2)
( d∑

k,ℓ=1

Uk,ℓEk,ℓ

)
Ei,j = (ãm,1 − ãm,2)E

†
i,j

( d∑
k,ℓ=1

Uk,ℓEk,ℓ

)
.

Since Ek,ℓEi,j = δℓ,iEk,j , it follows that
∑

k,l Uk,ℓEi,j =
∑

k Uk,iEk,j . Similarly, E†
i,j

∑
k,l Uk,ℓ =∑

ℓ Ui,lEj,l. Thus for j ̸= i, we have that Ui,j = λUj,i, |λ| = 1. Now, assume that d > 2. More-
over, for a fixed k ̸= i, we have Uk,ℓ = 0 = Uj,ℓ, and for fixed ℓ ̸= j, we have Uj,ℓ = 0 = Uk,ℓ. Therefore
for d > 2, we arrive at a contradiction unless aℓ,1 = aℓ,2 and ãℓ,1 ̸= ãℓ,2 for all ℓ ∈ N, or that there is
no unitary intertwiner.
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The proof of part (2) involves verifying that the unitary
(
0 1
−1 0

)
intertwines the two kernels

whenever aℓ,1 = ãℓ,2 and aℓ,2 = ãℓ,1, ℓ ∈ N. □

4.3. Quasi-invariant diagonal kernels are invariant. While there might be a characterization of
all the invariant kernels on an arbitrary bounded symmetric domain Ω, unfortunately, we haven’t been
able to find one. Therefore, we have decided to include a description of all the U(d)-invariant kernels
for the special case of Ω = Bd, the only case that we are able to resolve. We begin by describing the
kernels invariant under the group U(d).

Proposition 4.7. Let K : Bd×Bd → Mn(C) be a non-negative definite kernel. Suppose K is invariant
under U(d). Then K must be of the form K(z,w) =

∑∞
ℓ=0Aℓ⟨z, w⟩ℓ, for some sequence {Aℓ}ℓ∈Z+ of

positive definite n× n matrices.

Proof. Let K(z,w) =
∑

α,β∈Zd
+
Aα,βz

αwβ, z,w ∈ Bd. Suppose that K is invariant under U(d), that
is, K(u · z, u ·w) = K(z,w), for all z,w ∈ Bd and u ∈ U(d). Choosing u to be the diagonal unitary
matrices diag(eiθ1 , . . . , eiθd), θ := (θ1, . . . , θd) ∈ Rd, we get that∑

α,β∈Zd
+

Aα,βz
αwβei(α−β)·θ =

∑
α,β∈Zd

+

Aα,βz
αwβ, z,w ∈ Bd,

where (α− β) · θ := (α1 − β1)θ1 + · · ·+ (αd − βd)θd. Therefore we have

(4.5) Aα,β(e
i((α−β)·θ) − 1) = 0, for all α, β ∈ Zd

+, θ ∈ Rd.

Let α, β ∈ Zd
+ and α ̸= β. Then there exists m, 1 ≤ m ≤ d, such that αm ̸= βm. Choosing θj = 0 for

all j ̸= m in (4.5), we obtain that Aα,β = 0. Hence K(z,w) is of the form
∑

α∈Zd
+
Aα,αz

αwα. Now

choosing u to be uz, we see that

K(z, z) = K(uz · z, uz · z) = K(∥z∥e1, ∥z∥e1) =
∞∑
ℓ=0

Aℓϵ1,ℓϵ1∥z∥2ℓ.

By polarization, we get that K(z,w) =
∑∞

ℓ=0Aℓϵ1,ℓϵ1⟨z, w⟩ℓ =
∑∞

ℓ=0 Ãℓ⟨z, w⟩ℓ, where Ãℓ = Aℓϵ1,ℓϵ1 .

SinceK is non-negative definite, by [6, Lemma 4.1 (c)], it follows that Ãℓ is positive definite, completing
the proof. □

For any u in U(d) and α ∈ Zd
+ with |α| = ℓ, let Xu

α,β, β ∈ Zd
+, |β| = ℓ, be the complex numbers

given by

(4.6) (u · z)α =
∑
|β|=ℓ

Xu
α,βz

β.

We arrive at the same conclusion as that of Proposition 4.5 even if we assume that K is merely a
quasi-invariant diagonal kernel. For the proof, we begin by proving a couple of preparatory lemmas.

Lemma 4.8. For any u ∈ U(d), the matrix
((
(β!α!)

1
2Xu

α,β

))
|α|=|β|=ℓ

is unitary.

Proof. Consider the space of homogeneous polynomials Pℓ endowed with the Fischer-Fock inner prod-

uct. Note that { zγ

(γ!)
1
2
}|γ|=ℓ forms an orthonormal basis of Pℓ and

((
(β!α!)

1
2Xu

α,β

))
|α|=|β|=ℓ

is the matrix

representation of the unitary map p → p ◦ u with respect to this orthonormal basis. □

Lemma 4.9. There exists a unitary u ∈ U(d) such that Xu
ℓε1,α

̸= 0 for all α ∈ Zd
+ with |α| = ℓ.

Proof. Choose a unitary u = (uij)
d
i,j=1 in U(d) such that u1j ̸= 0 for j = 1, . . . , d. Since

(u · z)ℓε1 = (u11z1 + · · ·+ u1dzd)
ℓ =

∑
|α|=ℓ

ℓ!

α!
uα1
11 . . . u

αd
1d zα, α = (α1, . . . , αd) ∈ Zd

+,
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we get that Xu
ℓε1,α

= ℓ!
α!u

α1
11 . . . u

αd
1d , which is certainly non-zero by our choice of u. □

We now prove the main theorem of this section stated below using Lemma 4.8 and Lemma 4.9.

Theorem 4.10. Let H ⊂ Hol(Bd,Cn) be a reproducing kernel Hilbert space. Suppose that Cn-valued
polynomials are dense in H and ⟨zα ⊗ ξ, zβ ⊗ η⟩ = 0, for all α ̸= β in Zd

+ and ξ,η in Cn. If the
d-tuple M on H is U(d)-homogeneous, then there exists a sequence of positive definite n× n matrices
{Aℓ}ℓ∈Z+ such that

∥zα ⊗ ξ∥2 = α!⟨A|α|ξ, ξ⟩, α ∈ Zd
+, ξ ∈ Cn.

Proof. Since M on H is U(d)-homogeneous, by Lemma 2.3, for each u ∈ U(d) there exists a unitary
Γ(u) on H of the form

Γ(u)(f) = c(u)f ◦ u, f ∈ H,

where c(u) ∈ U(n) for all u ∈ U(d). Let ℓ ∈ Z+. For α, β ∈ Zd
+ with |α| = |β| = ℓ, α ̸= β, and

ξ,η ∈ Cn, we have

⟨Γ(u)(zα ⊗ ξ), Γ(u)(zβ ⊗ η)⟩ = ⟨(u · z)α ⊗ c(u)ξ, (u · z)β ⊗ c(u)η⟩

= ⟨
∑
|γ|=ℓ

Xu
α,γz

γ ⊗ c(u)ξ,
∑
|δ|=ℓ

Xu
β,δz

δ ⊗ c(u)η⟩

=
∑
|γ|=ℓ

Xu
α,γX

u
β,γ⟨z

γ ⊗ c(u)ξ, zγ ⊗ c(u)η⟩.(4.7)

Since Γ(u) is unitary and ⟨zα ⊗ ξ, zβ ⊗ η⟩ = 0, it follows that ⟨Γ(u)(zα ⊗ ξ), Γ(u)(zβ ⊗ η)⟩ = 0.
Hence from (4.7) we obtain

(4.8)
∑
|γ|=ℓ

Xu
α,γX

u
β,γ⟨z

γ ⊗ c(u)ξ, zγ ⊗ c(u)η⟩ = 0.

Since c(u) is unitary and the above equality holds for all ξ,η ∈ Cn, we get

(4.9)
∑
|γ|=ℓ

Xu
α,γX

u
β,γ⟨z

γ ⊗ ξ, zγ ⊗ η⟩ = 0.

By Lemma 4.9, there exists a unitary u0 ∈ U(d) such that Xu0
ℓε1,γ

̸= 0 for all γ with |γ| = ℓ. Choosing

α = ℓε1 and u = u0 in (4.9), we get for all β ̸= ℓε1 with |β| = ℓ,

(4.10)
∑
|γ|=ℓ

Xu0
ℓε1,γ

⟨zγ ⊗ ξ, zγ ⊗ η⟩ Xu0
β,γ = 0.

Hence it follows from Lemma 4.8 that

Xu0
ℓε1,γ

⟨zγ ⊗ ξ, zγ ⊗ η⟩ = χℓ,ξ,η γ!Xu0
ℓε1,γ

,

that is, ⟨zγ ⊗ ξ, zγ ⊗ η⟩ = χℓ,ξ,η γ!, for all γ with |γ| = ℓ and for some constant χℓ,ξ,η. Clearly there
exists a n× n positive definite matrix Aℓ such that

⟨Aℓξ,η⟩Cn = χℓ,ξ,η, ξ,η ∈ Cn.

This completes the proof. □

As a corollary, we conclude that a quasi-invariant non-negative definite diagonal kernel defined on
the Euclidean ball must necessarily be invariant.

Corollary 4.11. Let K : Bd×Bd → Mn(C) be a non-negative definite kernel such that ∂α∂̄βK(0, 0) =
0 whenever α ̸= β. Suppose that Cn-valued polynomials are dense in HK(Bd,Cn). If K is quasi-

invariant under U(d) then it must be of the form K(z,w) =
∑

ℓA
−1
ℓ

⟨z,w⟩ℓ
ℓ! , where Aℓ is a positive

invertible n× n matrix for all ℓ ∈ Z+.
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Proof. Since K is quasi-invariant under U(d), by Lemma 2.3, the d-tuple M on HK(Bd,Cn) is U(d)-
homogeneous. It follows from Theorem 4.10 that the set{

1√
α!

zαA
−1/2
ℓ εi : 1 ≤ i ≤ n, |α| = ℓ

}
forms an orthonormal basis for the space of Cn-valued homogeneous polynomial Pℓ⊗Cn inHK(Bd,Cn),
where Aℓ is a positive definite invertible n × n matrix for all ℓ ∈ Z+. Equivalently, the reproducing
kernel Kℓ of the (finite dimensional) Hilbert space Pℓ ⊗ Cn is given by the formula:

Kℓ(z,w) = A−1
ℓ

⟨z, w⟩ℓ

ℓ!
.

Thus the kernel K must be of the K(z,w) =
∑

ℓA
−1
ℓ

⟨z,w⟩ℓ
ℓ! for all z,w ∈ Bd. This proves the

result. □

There are several separate equivalent assertions that are implicit in the previous corollary. We list
them below.

(1) the inner product on Pℓ ⊗ Cn is given by the usual Hilbert space tensor product of the two
finite dimensional Hilbert spaces, namely,

(
Pℓ, ⟨·, ·⟩Fℓ

)
and

(
Cn, ⟨·, ·⟩Aℓ

)
, where ⟨ξ, η⟩Aℓ

=
⟨Aℓξ, η⟩Cn .

(2) The set
{

1√
α!
zαA

−1/2
ℓ εi : 1 ≤ i ≤ n, |α| = ℓ

}
form an orthonormal basis for Pℓ ⊗ Cn.

(3) The kernel function Kℓ on the (finite dimensional) Hilbert space
(
Pℓ, ⟨·, ·⟩Fℓ

)
⊗
(
Cn, ⟨·, ·⟩Aℓ

)
is given by the formula:

Kℓ(z,w) = A−1
ℓ

⟨z, w⟩ℓ

ℓ!
, z,w ∈ Bd.

(4) The kernel functionK of the Hilbert spaceHK(Bd,Cn) is of the formK(z,w) =
∑

ℓA
−1
ℓ

⟨z,w⟩ℓ
ℓ! .

5. Classification

Before we discuss the question of classification of U(d)-homogeneous operators, we note that some
of our results exist in the representation theory literature albeit somewhat disguised. We believe
unraveling this relationship would serve a useful purpose.

5.1. Decomposition of tensor product of π1 ⊗ πℓ and π̄1 ⊗ πℓ. There is an alternative but
equivalent description of the representations π̃ℓ and π̂ℓ, given below, which is also useful. For this, we
identify the space of linear polynomials P1 as the dual of the linear space Cd. We define ϕ : Cd⊗Pℓ →
P1 ⊗ Pℓ by setting

ϕ
( d∑

i=1

eip
i
ℓ

)
(z,w) =

d∑
i=1

zip
i
ℓ(w), z, w ∈ Bd.

Therefore we see that Im (ϕ) is the space P1 ⊗ Pℓ of homogeneous polynomials of degree ℓ + 1 in
2d-variables. Since the monomials z1, . . . , zd form an orthonormal basis in P1 with respect to the
Fisher-Fock inner product, it follows that ϕ is unitary. Hence, π̃ℓ is unitarily equivalent, via ϕ, with
π1 ⊗ πℓ, where

(π1(u)⊗ πℓ(u)) p(z,w) = p(u−1 · z, u−1 ·w), p ∈ P1 ⊗ Pℓ.

The contragredient of the representation π1 is the defined to be the representation π1(u)p1(z) :=
p1(u

† · z), p1 ∈ P1, we have

(π1(u)⊗ πℓ(u))p(z,w) = p(u† · z, u−1 ·w), p ∈ P1 ⊗ Pℓ.



MULTIPLICATION TUPLES HOMOGENEOUS UNDER THE UNITARY GROUP 23

Again, ϕ intertwines π̂ℓ and π1 ⊗ πℓ:

(ϕπ̂ℓ(u))f(w) =

d∑
i=1

zi(u(f ◦ u−1))i(w)

= ⟨u(f ◦ u−1)(w), z⟩Cd

= ⟨(f ◦ u−1)(w), u† · z⟩Cd

=
d∑

i=1

(u† · z)ifi(u−1 ·w) = (π1(u)⊗ πℓ(u))ϕ(f)(w),

where u ∈ U(d) and f =

(
f1
...
fd

)
∈ Cd ⊗ Pℓ.

Let Sℓ = (Pℓ, πℓ) and S1 = (P1, π1). Note that in the standard terminology of representation
theory, the representation π̃ℓ ∼u π1 ⊗ πℓ is S̄1 ⊗ S̄ℓ, where ∼u stands for unitary equivalence of the
two representations. Similarly, π̂ℓ ∼u π̄1 ⊗ πℓ is S1 ⊗ S̄ℓ. From Equation (23.12) of [16], we see that

(5.1) S1 ⊗ Sℓ = D(1,0,...,0,−ℓ) ⊕D(0,...,0,1−ℓ),

where D(0,...,0,1−ℓ) ∼u Sℓ−1 and using Proposition 23.3 of [16], it follows that D(1,0,...,0,−ℓ) is unitarily

equivalent to the restriction of the representation π̂ℓ to the subspace V̂ℓ ⊂ Cd ⊗ Pℓ via the map ϕ.

Note that the restriction of π̂ℓ to V̂ℓ is irreducible (refer to Corollary 3.14) and the representation π̂ℓ
has exactly two irreducible components, see (5.1). Therefore, we have proved the following theorem.

Theorem 5.1. The subspaces V̂ℓ and V̂⊥
ℓ of Cd⊗Pℓ are reducing for the representation π̂ℓ, moreover,

the restriction of π̂ℓ to these subspaces are irreducible.

One would like to obtain a similar decomposition of π̃ℓ into irreducible representations as in Theorem
5.1. However, such a decomposition appears to be not available in any explicit form. This, we provide
below. Clearly,

Im (ϕ) = ϕ(Ṽℓ)⊕ ϕ(Ṽ⊥
ℓ ),

where

(1) ϕ(Ṽℓ) = {p(z,w) =
∑d

i=1 zip
i
ℓ(w) ∈ P1 ⊗ Pℓ : p|res∆ = 0}, where ∆ := {(z, z) : z ∈ Bd},

(2) ϕ(Ṽ⊥
ℓ ) = {

∑d
i=1 zi∂iqℓ+1(w) ∈ P1 ⊗ Pℓ : qℓ+1 ∈ Pℓ+1}.

Also, we note that ϕ(Ṽ⊥
ℓ ) = {p|res∆ : p ∈ P1 ⊗ Pℓ}. Since Ṽℓ is invariant under π̃ℓ and ϕ is an

intertwining map between π̃ℓ and π1 ⊗ πℓ, it follows that ϕ(Ṽℓ) is invariant under π1 ⊗ πℓ. Let

R : P1⊗Pℓ → Pℓ+1 be the restriction map, that is, Rp(z,w) := p(z, z) =
∑d

i=1 zip
i
ℓ(z). Thus we have

proved the lemma that follows.

Lemma 5.2. The map R on ϕ(Ṽ⊥
ℓ ) is onto Pℓ+1 and is isometric when Pℓ+1 is equipped with the

Fischer-Fock inner product. Moreover, R(π1(u)⊗ πℓ(u))R
∗ = πℓ+1(u).

As before, since πℓ+1 is an irreducible representation, the proof of the theorem stated below follows
from Lemma 5.2.

Theorem 5.3. The subspaces Ṽℓ and Ṽ⊥
ℓ of Cd⊗Pℓ are reducing for the representation π̃ℓ, moreover,

the restriction of π̃ℓ to these subspaces are irreducible.

We point out that half of Theorems 5.1 and 5.3 has been already proved in Corollary 3.14. The
remaining half can also be proved in a similar manner to that of the proof in Corollary 3.14. However,
we believe the proof we have given here is more revealing.
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Recall the decomposition of K̃(α,β)(z,w) given in Theorem 3.7. Let Λ = Z+. For λ ∈ Λ, choosing

bλ =

{
αj , if λ = 2j + 1

βj , if λ = 2j,

and setting

Kλ(z,w) =

{
K̃j(z,w), if λ = 2j + 1

K̃⊥
j (z,w), if λ = 2j,

we obtain a second decomposition of the kernel K̃(α,β) from Theorem 2.7 that coincides with the

previous one from Theorem 3.7. A similar statement can be made about the kernel K̂(α,β) appearing
in Theorem 3.11.

5.2. Classification. The natural action of the unitary group U(d) on Cd ⊗ P associated with the
multiplier c is given by p → c(u)(p ◦ u−1), p ∈ Cd ⊗ P and u ∈ U(d). We obtain two classes of U(d)-
homogeneous d-tuple of operators with respect to two different multipliers c(u) = ū (see Theorem 3.7)
and c(u) = u (see Theorem 3.11). The map u 7→ ū and u 7→ u are d-dimensional irreducible unitary
representations of the group U(d).

The classification of finite dimensional irreducible unitary representations of the unitary group U(n)
is well studied. The result is summarized in [16, Proposition 22.2] and is reproduced below for ready
reference.

Proposition 5.4. Each irreducible unitary representation of U(n) restricts to an irreducible unitary
representation of SU(n), and all irreducible unitary representations of SU(n) are obtained in this
fashion. Furthermore, two irreducible unitary representations π1 and π2 of U(n) restrict to the same
representation of SU(n) if and only if, for some j ∈ Z,

π2(g) = (det g)jπ1(g), ∀g ∈ U(n).
Hence the set of equivalence classes of irreducible unitary representations of SU(n) is parametrized by

{(d1, . . . , dn−1, 0) ∈ Zn : d1 ≥ d2 ≥ · · · ≥ dn−1 ≥ 0}

Also, recall the Weyl dimension formula for an irreducible unitary representation π of U(n) with
weights: w1 ≥ · · · ≥ wn, wi ∈ Z, [15, Theorem 11.4] (see also [3, Proposition 2.5]),

dimπ =
∏

1≤j<k≤n

wj − wk + k − j

k − j
.

Combining Proposition 5.4 with the Weyl dimension formula, we find all the d-dimensional rep-
resentations of SU(d). The representations of U(d) can be then made up from the ones for SU(d)
using the relationship between these representations prescribed in Proposition 5.4 as follows. The d-
dimensional (inequivalent, irreducible and unitary) representations of the group U(d) are determined
by weights of the form: (ℓ + 1, ℓ, . . . , ℓ) and (m, . . . ,m,m − 1), ℓ,m ∈ Z. As noted in [16, Propo-
sition 22.2], the representation ρℓ corresponding to the weight (ℓ + 1, ℓ, . . . , ℓ) differs from ρ0 by a
power of the determinant: ρℓ(u) = (det(u))ℓρ0(u), u ∈ U(d). The representation ρ̄m corresponding
to (m, . . . ,m,m− 1) is similarly related to ρ̄0. We also point out that ρ̄0 is the contragredient of ρ0.
We claim that ρℓ and ρ̄m are the only d-dimensional irreducible unitary representations of U(d) up to
unitary equivalence (Lemma 5.5). We also claim that SU(d) has no irreducible unitary representation
of dimension 2, . . . , d− 1 (Lemma 5.6).

It might be that both of these results are well-known, although, we are not able to locate them.
However, A. Koranyi in private communication to one of the authors, has provided a very short proof
of Lemma 5.6 using Lie algebraic machinery. A little more effort gives a proof of Lemma 5.5 as well,
thanks to A. Khare, E. K. Narayanan, and C. Varughese. However, here we give, what we consider
to be an elementary proof of these assertions.
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Lemma 5.5. Suppose that c : U(d) → GLd(C) is an irreducible unitary representation of U(d). Then,
up to unitary equivalence, either c(u) = det(u)ℓū or c(u) = det(u)mu, ℓ,m ∈ Z.

Lemma 5.6. If n ∈ N : 2 ≤ n ≤ d−1, then there is no n-dimensional irreducible unitary representation
of U(d), or that of SU(d).

B. Bagchi has observed that Lemma 5.5 and 5.6 can be combined into the following assertion.

Let w1 ≥ · · · ≥ wd = 0 be integers. Then, either w1 = · · · = wd = 0, or
∏

1≤j<k≤d
wd=0

(
1 +

wj−wk

k−j

)
≥ d.

Equality holds in this inequality if and only if either w1 = · · · = wd−1 = 1, wd = 0 or w1 = 1 and
w2 = · · · = wd = 0. The proof is then by induction on the dimension d similar to the proofs we give
below.

The first half of Theorem 5.7 below describing all the quasi-invariant kernels, which transform as
in Definition 1.3 via an irreducible d-dimensional unitary representation c of U(d), is an immediate
consequence of Lemma 5.5 combined with Theorem 3.7 (resp. Theorem 3.11) and Theorem 3.13. The
second half follows from Lemma 5.6. We would have liked to prove a similar classification theorem for
all the U(d)-homogeneous operators in the classAdU(Bd). However, unfortunately, such a classification
doesn’t follow immediately from the theorem below and requires further investigation.

Theorem 5.7. Let K : Bd × Bd → Mn(C) be a non-negative definite kernel.

(a) Suppose that n = d, and K is quasi-invariant under U(d) with respect to the multiplier c, where
c : U(d) → GLd(C) is an irreducible unitary representation. Then there exists U ∈ U(d) such
that UK(z,w)U∗ is either of the form

∞∑
ℓ=1

(
aℓ,1 − aℓ,2

)
⟨z, w⟩ℓ−1wz† +

∞∑
ℓ=0

aℓ,2⟨z, w⟩ℓId, z,w ∈ Bd,

where aℓ,1 ≥ 0 and aℓ,1 ≤ (ℓ+ 1)aℓ,2 for all ℓ ∈ Z+, or of the form

∞∑
ℓ=1

(ãℓ,1 − ãℓ,2)⟨z, w⟩ℓ−1zw† +
∞∑
ℓ=0

ãℓ,2⟨z, w⟩ℓId, z,w ∈ Bd,

where ãℓ,2 ≥ 0 and (d− 1)ãℓ,2 ≤ (ℓ+ d− 1)ãℓ,1 for all ℓ ∈ Z+.
(b) If 1 < n < d, then there is no n-dimensional irreducible unitary representation c such that K

is quasi-invariant under U(d) with multiplier c : U(d) → GLn(C).

5.3. Elementary proof of Lemma 5.5 and of Lemma 5.6.

Proof of Lemma 5.5. We begin the proof with the claim that any irreducible unitary representation, up
to unitary equivalence, of SU(d) acting on Cd are the ones determined by the weights: (1, 0, . . . , 0) and
(1, . . . , 1, 0). In other words, we have to show that the only (admissible) weights w = (w1, . . . , wd−1, 0)
for which

(5.2)
∏

1≤j<k≤d
wd=0

wj − wk + k − j

k − j
= d

are of the form: (1, 0, . . . , 0) or (1, 1, . . . , 1, 0).
For d = 2, the claim is evident from the dimension formula. Assume that the claim is valid for

d− 1, that is, if ∏
1≤j<k≤d−1
wd−1=0

wj − wk + k − j

k − j
= d− 1,

then there are only two alternatives for w, namely, either w = (1, 0, . . . , 0), or w = (1, . . . , 1, 0).
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Let w = (w1, . . . , wd−1, 0) be a weight satisfying the equality in the dimension formula (5.2). Split-
ting the product in (5.2), we have

(5.3)
∏

1≤j<k≤d
wd=0

wj − wk + k − j

k − j
=

∏
1≤j<k≤d−1

wj − wk + k − j

k − j

∏
1≤j≤d−1

wj + d− j

d− j
.

We shall consider three possibilities, namely,

(5.4)
∏

1≤j<k≤d−1

wj − wk + k − j

k − j
= d− 1

and the two other possibilities of being strictly greater than d−1 and less than d−1. First, consider the
case of equality. In this case, the weight ŵ = (w1, . . . , wd−1) satisfying (5.4) determines a irreducible
unitary representation of U(d−1) of dimension d−1. But this is also the dimension of the irreducible
unitary representation of SU(d− 1) determined by (w1 −wd−1, w2 −wd−1, . . . , wd−2 −wd−1, 0). Then
by the induction hypothesis, we either have w1 = wd−1 + 1, w2 = · · · = wd−2 = wd−1 or w1 = w2 =
· · · = wd−2 = wd−1+1. Therefore, the weight w of size d must be of the form (m,m−1, . . . ,m−1, 0),
or (m, . . . ,m,m − 1, 0), m ≥ 1. In case of the first alternative, to ensure validity of (5.2), we must
also have

d

d− 1
=

∏
1≤j≤d−1

wj + d− j

d− j

(
=

(m+ d− 1)(m+ d− 3) · · · (m+ 2) · (m+ 1) ·m
(d− 1)(d− 2) · · · 2 · 1

)
.

This is possible only if m = 1 providing one of the two choices in the induction step. In case of the
second alternative, w = (m, . . . ,m,m− 1, 0), and we have∏

1≤j≤d−1

wj + d− j

d− j
=

(m+ d− 1)(m+ d− 2) · · · (m+ 2) ·m
(d− 1)(d− 2) · · · 2 · 1

.

Since m ≥ 1, it follows that the smallest possible value of this product is d
2 and it is achieved at

m = 1. Thus it cannot equal d
d−1 unless d = 3. But if d = 3, and m = 1, the weight of size 2 from the

induction hypothesis is of the form (1, 0). So, we get nothing new when d = 3.

Now, if possible, suppose that
∏

1≤j<k≤d−1
wj−wk+k−j

k−j ≥ d. Then we must have∏
1≤j≤d−1

wj + d− j

d− j
≤ 1,

which is evidently false unless wj = 0, 1 ≤ j ≤ d− 1. But if we choose w = (0, . . . , 0), then we can’t
have equality in Equation (5.2), therefore it is not an admissible choice.

Finally, let us suppose that 1 ≤
∏

1≤j<k≤d−1
wj−wk+k−j

k−j = ℓ ≤ d − 2. First, if ℓ = 1, the only

possible choice of the weight w is w1 = · · · = wd−1. We must then ensure that∏
1≤j≤d−1

wj + d− j

d− j
= d,

which is possible only if w1 = · · · = wd−1 = 1. This, together with the choice wd = 0 that we
have made earlier, proves that w = (1, . . . , 1, 0) providing the second choice in the induction step. In
particular, the dimension of the representation determined by the weight (1, 1, . . . , 1, 0) is d. Now, we
must establish that there is no other choice of w satisfying (5.2). This follows from Lemma 5.6 proved
below. It is also easy to verify directly: If d = 2 or 3, there is nothing more to be done. If d > 3, then

fix ℓ : 2 ≤ ℓ ≤ d− 2, and pick w such that
∏

1≤j<k≤d−1
wj−wk+k−j

k−j = d− ℓ. Having picked w, we also

need
d

d− ℓ
=

∏
1≤j≤d−1

wj + d− j

d− j
,
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that is,

d! = (w1 + d− 1) · · · (wℓ + d− ℓ)(d− ℓ)(wℓ+1 + d− ℓ− 1) · · · (wd−1 + 1),

which is valid only if w is of the form (1, . . . , 1, wℓ = 1, 0, . . . , 0). For this choice of w, we see that∏
1≤j<k≤d−1

wj − wk + k − j

k − j
=

(
d− 1

ℓ

)
,

which can’t be equal to ℓ for any d > 3. So, there are no more admissible weights in this case. This
completes the verification of the induction step and therefore the proof of the claim. Now, the result
follows directly from Proposition 5.4. □

Proof of Lemma 5.6. The proof is by induction on the dimension d. The base case of d = 3 is
easily verified. Now, we assume by the induction hypothesis, that there are no irreducible unitary
representation such that

2 ≤ t :=
∏

1≤j<k≤d−1

wj − wk + k − j

k − j
≤ d− 2.

Thus the only choice for t is either t = 1, or t ≥ d− 1. To complete the induction step, we have to
show that there is no weight w = (w1, . . . , wd−1, 0) such that

2 ≤ ℓ :=
∏

1≤j<k≤d
wd=0

wj − wk + k − j

k − j
≤ d− 1.

If t = 1, then the only possible choice of the weight w is w1 = · · · = wd−1, say u. From Equation (5.3),
it follows that ∏

1≤j≤d−1

u+ d− j

d− j
= ℓ.

However since the product on the left hand side of the equation above is an increasing function of u
and its smallest value is 1, the next possible value is d, it follows that the value ℓ : 2 ≤ ℓ ≤ d − 1 is
not taken. Now, let t ≥ d− 1 for some w. Then from Equation (5.3), we see that

ℓ

t
=

∏
1≤j≤d−1

wj + d− j

d− j

to ensure the existence of a ℓ-dimensional representation. Since ℓ
t ≤ 1 while the product on the right

hand side of the equation above is greater or equal to 1, it follows that the two sides can be equal only
if w1 = · · · = wd−1 = 0. But then t must be equal to 1 contrary to our hypothesis. □

A. Koranyi has pointed out that SU(d) is a simple Lie group with discrete center and its Lie algebra
su(d) is simple. Therefore any non-trivial homomorphism of it can have at most a discrete null space,
i.e., has to be a local isomorphism. So the image of a representation is a closed subgroup of U(n),
therefore must have the same dimension (as a Lie group) as SU(d). If d > n, then this is not possible
proving Lemma 5.6.

E. K. Narayanan observed that a proof of Lemma 5.5 follows from the description of the Lie
algebra homomorphisms from su(d) to u(d), the Lie algebra of U(d). A. Khare and C. Varughese
independently of each other have provided the following argument proving Lemma 5.5: Since su(d)
is simple and u(d) = su(d) ⊕ R, it follows that any Lie algebra homomorphism must map su(d) to
itself isomorphically. Also, the inequivalent representastions of su(d) are characterized by the outer
automorphisms. These are in one to one correspondence with automorphisms of the corresponding
Dynkin diagram. The Dynkin diagram of su(d) is A(d−1) consisting of d− 1 dots connected by single
lines. For d > 2, the (graph) automorphism group of A(d−1) is of order 2 (identity and a reflection).
It follows that there are at most two inequivalent irreducible unitary representations of SU(d), d ≥ 2.
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We believe, it will be interesting to find an answer to the two questions: (a) What possible values
dimπ can take if d is fixed. (b) If d and n = dimπ are fixed, how many n-dimensional inequivalent
irreducible unitary representations are there of the group SU(d).

Note added in proof. One of the reviewers has noted the following, and we quote: A.A. Johnson, in
“The automorphisms of unitary groups over infinite fields”, Amer. J. Math. 95 (1973), has proved
the following theorem: Let K be an infinite field and consider the unitary group Ud(K) with respect
to some involution a → ā of K. Suppose that d ⩾ 3. Then any automorphism π : Ud(K) → Ud(K)
has the form

π(u) = χ(u)gug−1

where χ is a character and g : Kd → Kd is a semi-linear automorphism. For K = C the characters
are χ(u) = det(u)n for some n ∈ Z, and semi-linear means C-linear or C antilinear. In the first case,
g ∈ Ud(C) and we are done. In the second case define h := g ◦ ι where ιξ = ξ̄ for all ξ ∈ Cd is the
conjugation. Then h is C-linear and hence h ∈ Ud(C). Moreover

gug−1 = (h ◦ ι) ◦ u ◦
(
ι ◦ h−1

)
= h ◦ (ι ◦ u ◦ ι) ◦ h−1 = h ◦ ū ◦ h−1.

This yields the second case in Lemma 5.5. Johnson’s proof is in the spirit of projective geometry
and is independent of Lie theory.
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