Collected Works of Uffe Haagerup
(Disclaimer: If you find something in this page that shouldn't be here, please contact me at soumyashant [at] gmail [dot] com and I will take it down. The scanned articles are shared in good faith. I do not stand to materially profit in any way.)
1970–1979
Normal weights on $W^*$-algebras.
J. Functional Analysis 19 (1975), 302–317. (MR0380438)
The standard form of von Neumann algebras.
Math. Scand. 37 (1975), no. 2, 271–283. (MR0407615)
Operator valued weights and crossed products (M).
Academic Press, London-New York, 1976, pp. 241–251. (MR0442705)
An example of a weight with type III centralizer.
Proc. Amer. Math. Soc. 62 (1977), no. 2, 278–280. (MR0430801)
Unbounded derivations and invariant states.
Comm. Math. Phys. 59 (1978), no. 1, 79–95. (MR0482251)
Les meilleures constantes de l'inégalité de Khintchine (M).
C. R. Acad. Sci. Paris Sér. A-B 286 (1978), no. 5, A259–A262. (MR0510997)
On the dual weights for crossed products of von Neumann algebras I - Removing separability conditions.
Math. Scand. 43 (1978), no. 1, 99–118. (MR0523830)
On the dual weights for crossed products of von Neumann algebras II - Application of operator valued weights.
Math. Scand. 43 (1978), no. 1, 119–140. (MR0523831)
The best constants in the Khintchine inequality (M).
BSB B. G. Teubner Verlagsgesellschaft, Leipzig, 1978, pp. 69–79. (MR0528260)
An example of a non nuclear $C^*$-algebra, which has the metric approximation property.
Invent. Math. 50 (1979), no. 3, 279–293. (MR0520930)
Operator valued weights in von Neumann algebras, I.
J. Functional Analysis 32 (1979), no. 2, 175–206. (MR0534673)
A density theorem for left Hilbert algebras.
Lecture Notes in Math., 725, Springer, Berlin, 1979, pp. 170–179. (MR0548114)
Operator valued weights in von Neumann algebra, II.
J. Functional Analysis 33 (1979), no. 3, 339–361. (MR0549119)
Lp spaces associated with an arbitrary von Neumann algebra.
Colloq. Internat. CNRS, 274, Éditions du Centre National de la Recherche Scientifique (CNRS), Paris, 1979, pp. 175–184. (MR0560633)
1980–1989
Simplices of maximal volume in hyperbolic n-space.
Acta Math. 147 (1981), no. 1-2, 1–11. (MR0631085 )
Geometric aspects of the Tomita-Takesaki theory II.
MMath. Scand. 48 (1981), no. 2, 241–252. (MR0631339)
The reduced $C^*$-algebra of the free group on two generators.
Progr. Math., 11, Birkhäuser, Boston, MA, 1981, pp. 321–335. (MR0633366)
The best constants in the Khintchine inequality.
Studia Math. 70 (1981), no. 3, 231–283. (MR0654838)
Solution of the similarity problem for cyclic representations of $C^*$-algebras.
Ann. of Math. (2) 118 (1983), no. 2, 215–240. (MR0717823)
All nuclear $C^*$-algebras are amenable.
Invent. Math. 74 (1983), no. 2, 305–319. (MR0723220)
Sur la propriété de Dixmier pour les $C^*$-algèbres (M).
C. R. Acad. Sci. Paris Sér. I Math. 298 (1984), no. 8, 173–176. (MR0741088)
Tomita-Takesaki theory for Jordan algebras.
J. Operator Theory 11 (1984), no. 2, 343–364. (MR0749167)
Multipliers of the Fourier algebras of some simple Lie Groups and their discrete subgroups.
Amer. J. Math. 107 (1985), no. 2, 455–500. (MR0784292)
The Grothendieck inequality for bilinear forms on $C^*$-algebras.
Adv. in Math. 56 (1985), no. 2, 93–116. (MR0788936)
Lifting problems and local reflexivity for $C^*$-algebras.
Duke Math. J. 52 (1985), no. 1, 103–128. (MR0791294)
A new proof of the equivalence of injectivity and hyperfiniteness for factors on a separable Hilbert space.
J. Funct. Anal. 62 (1985), no. 2, 160–201. (MR0791846)
Diameters of state spaces of type III factors.
Lecture Notes in Math., 1132, Springer-Verlag, Berlin, 1985, 91–116. (MR0799565)
Injectivity and decomposition of completely bounded maps.
Lecture Notes in Math., 1132, Springer-Verlag, Berlin, 1985, 170–222. (MR0799569)
The structure of factors on a separable Hilbert space (M).
Vísindafél. Ísl., XLIV, Icelandic Mathematical Society, Science Institute, Unviersity of Iceland, Reykjavík, 1985, 60–77. (MR0828023)
Connes' bicentralizer problem and uniqueness of the injective factor of type III1.
Acta Math. 158 (1987), no. 1-2, 95–148. (MR0880070)
A new upper bound for the complex Grothendieck constant.
Israel J. Math. 60 (1987), no. 2, 199–224. (MR0931877)
Almost L2 matrix coefficients.
J. Reine Angew. Math. 387 (1988), 97–110. (MR0946351)
The injective factors of type III$\lambda$, $0 < \lambda < 1$.
Pacific J. Math. 137 (1989), no. 2, 265–310. (MR0990214)
Completely bounded multipliers of the Fourier algebra of a simple Lie group of real rank one.
Invent. Math. 96 (1989), no. 3, 507–549. (MR0996553)
Factorization of analytic functions with values in noncommutative L1-spaces and applications.
Canad. J. Math. 41 (1989), no. 5, 882–906. (MR1015588)
1990–1999
Pointwise inner automorphisms of von Neumann algebras.
J. Funct. Anal. 92 (1990), no. 1, 177–201. (MR1064693)
Equivalence of normal states on von Neumann algebras and the flow of weights.
Adv. Math. 83 (1990), no. 2, 180–262. (MR1074023)
Automorphisms which preserve unitary equivalence classes of normal states.
Proc. Sympos. Pure Math., 51, Part 1, American Mathematical Society, Providence, RI, 1990, 531–537. (MR1077407)
On convex combinations of unitary operators in $C^*$-algebras.
Progr. Math., 84, Birkhäuser Boston, Inc., Boston, MA, 1990, 1–13. (MR1103371)
Minimal projections in the reduced group $C^*$-algebra of $Z_n * Z_m$ .
J. Operator Theory 26 (1991), no. 1, 3–23. (MR1214917)
The numerical radius of a nilpotent bounded operator on a Hilbert space.
Proc. Amer. Math. Soc. 115 (1992), no. 2, 371–379. (MR1072339)
Bounded linear operators between $C^*$-algebras.
Duke Math. J. 71 (1993), no. 3, 889–925. (MR1240608)
$C^*$-algebras of unitary rank two.
J. Operator Theory 30 (1993), no. 1, 161–171. (MR1302614)
Approximation properties for group $C^*$-algebras and group von Neumann algebras.
Trans. Amer. Math. Soc. 344 (1994), no. 2, 667–699. (MR1220905)
Pointwise inner automorphisms of injective factors.
J. Funct. Anal. 122 (1994), no. 2, 307–314. (MR1276160)
Resolvent estimate for Hermitian operators and a related minimal extrapolation problem.
Acta Sci. Math. (Szeged) 59 (1994), no. 3-4, 503–524. (MR1317170)
Principal graphs of subfactors in the index range $4<[M:N]<3+\sqrt{2}$ (M).
World Scientific Publishing Co., Inc., River Edge, NJ, 1994, 1–38. (MR1317352)
Subfactors of a factor of type $III_{\lambda}$, which contain a maximal centralizer.
Internat. J. Math. 6 (1995), no. 2, 273–277. (MR1316303)
Perturbations of the rotation $C^*$-algebras and of the Heissenberg commutation relation (M).
Duke Math. J. 77 (1995), no. 3, 627–656. (MR1324637)
Grothendieck type norms for bilinear forms on $C^*$-algebras.
J. Operator Theory 34 (1995), no. 2, 263–283. (MR1373324)
Positive projections of von Neumann algebras onto JW-algebras.
Rep. Math. Phys. 36 (1995), no. 2-3, 317–330. (MR1382921)
Compositions of subfactors: new examples of infinite depth subfactors.
Ann. Sci. École Norm. Sup. (4) 29 (1996), no. 3, 329–383. (MR1386923)
On Voiculescu's $R-$ and $S-$transforms for free non-commuting random variables (M).
Fields Inst. Commun., 12, American Mathematical Society, Providence, RI, 1997, 127–148. (MR1426838)
The stable rank of some free product $C^*$-algebras.
Duke Math. J. 90 (1997), no. 1, 95–121. (MR1478545)
Orthogonal maximal abelian $*$-subalgebras of the $n \times n$ matrices and cyclic $n$-roots (M).
International Press, Cambridge, MA, 1997, 296–322. (MR1491124)
Maximality of entropy in finite von Neumann algebras.
Invent. Math. 132 (1998), no. 2, 433–455. (MR1621440)
The Effros-Mareshal topology in the space of von Neumann algebras (M).
Amer. J. Math. 120 (1998), no. 3, 567–617.(MR1623416)
Correction to "The stable rank of some free product $C^*$-algebras".
Duke Math. J. 94 (1998), no. 1, 213. (MR1635920)
Weak amenability of $C^*$-algebras and a theorem of Goldstein.
Walter de Gruyter & Co., Berlin, 1998, 223–243. (MR1656608)
On maximality of entropy in finite von Neumann algebras.
Contemp. Math., 228, American Mathematical Society, Providence, RI, 1998, 99–109. (MR1667657)
Exotic subfactors of finite depth with Jones indices $(5+\sqrt{13})/2$ and $(5+\sqrt{17})/2$.
Comm. Math. Phys. 202 (1999), no. 1, 1–63. (MR1686551)
Random matrices and K-theory for exact $C^*$-algebras.
Doc. Math. 4 (1999), 341–450. (MR1710376)
2000–2009
The Effros-Maréchal topology in the space of von Neumann algebras. II.
J. Funct. Anal. 171 (2000), no. 2, 401–431. (MR1745629)
Brown's spectral distribution measure for $R-$diagonal elements in finite von Neumann algebras (M).
J. Funct. Anal. 176 (2000), no. 2, 331–367. (MR1784419)
Random matrices and non-exact $C^*$-algebras.
Springer-Verlag, Berlin, 2000, 71–91. (MR179691)
On the Banach-isomorphic classification of $L_p$ spaces of hyperfinite von Neumann algebras.
C. R. Acad. Sci. Paris Sér. I Math. 331 (2000), no. 9, 691–695. (MR1797753)
Invariant subspaces of Voiculescu's circular operator.
Geom. Funct. Anal. 11 (2001), no. 4, 693–741. (MR1866799)
Random matricies, free probability and the invariant subspace problem, relative to a von Neumann algebra.
Proceedings of the International Congress of Mathematicians 2002 Vol. 1, 273-290 (2002). (MR1989189 )
Banach embedding properties of non-commutative $L^p$ spacesi (M).
Mem. Amer. Math. Soc. 163 (2003), no. 776, vi+68 pp. (MR1963854)
Random matrices with complex Gaussian entries.
Expo. Math. 21 (2003), no. 4, 293–337. (MR202200)
DT-operators and decomposability of Voiculescu's circular operator.
Amer. J. Math. 126 (2004), no. 1, 121–189. (MR2033566)
Invariant subspaces of the the quasinilpotent DT-operator.
J. Funct. Anal. 209 (2004), no. 2, 332–366. (MR2044226)
Moment formulas for the quasi-nilpotent DT-operator.
Internat. J. Math. 15 (2004), no. 6, 581–628. (MR207888)
A new application of random matrices: $Ext(C_{red}^*(F_2))$ is not a group.
Ann. of Math. (2) 162 (2005), no. 2, 711–775. (MR2183281)
A random matrix approach to the lack of projections in $C_{red}^*(\mathbb{F}_2)$.
Adv. Math. 204 (2006), no. 1, 1–83. (MR2233126)
Means of unitary operators, revisited.
Math. Scand. 100 (2007), no. 2, 193–197. (MR2339367)
Brown measures of unbounded operators affiliated with a finite von Neumann algebra.
Math. Scand. 100 (2007), no. 2, 209–263. (MR2339369)
On the best constants in noncommutative Khintchine-type inequalities.
J. Funct. Anal. 250 (2007), no. 2, 588–624. (MR2352492)
The Effros-Ruan conjecture for bilinear forms on $C^*$-algebras.
Invent. Math. 174 (2008), no. 1, 139–163. (MR2430979)
Invariant subspaces for operators in a general $II_1$-factor.
Publ. Math. Inst. Hautes Études Sci.(2009), no. 109, 19–111. (MR2511586)
Classification of hyperfinite factors up to completely bounded isomorphism of their preduals.
J. Reine Angew. Math. 630 (2009), 141–176. (MR252678)
2010–2019
A reduction method for noncommutative $L_p$-spaces and applications.
Trans. Amer. Math. Soc. 362 (2010), no. 4, 2125–2165. (MR2574890)
Resolvents of $R$-diagonal operators.
Trans. Amer. Math. Soc. 362 (2010), no. 11, 6029–6064. (MR2661507)
Schur multipliers and spherical functions on homogeneous trees.
Internat. J. Math. 21 (2010), no. 10, 1337–1382. (MR274819)
Factorization and dilation problems for completely positive maps on von Neumann algebras.
Comm. Math. Phys. 303 (2011), no. 2, 555–594. (MR2782624)
New presentations of Thompson's group and applications.
J. Operator Theory 66 (2011), no. 1, 217–232. (MR2806554)
Fusion rules on a parametrized series of graphs.
Pacific J. Math. 253 (2011), no. 2, 257–288. (MR2878811)
Asymptotic expansions for the Gaussian Unitary Ensemble.
Infin. Dimens. Anal. Quantum Probab. Relat. Top. 15 (2012), no. 1, 1250003, 41 pp. (MR2922846)
Radial multipliers on reduced free products of operator algebras.
J. Funct. Anal. 263 (2012), no. 8, 2507–2528. (MR2964692)
Simple Lie groups without the approximation property.
Duke Math. J. 162 (2013), no. 5, 925–964. (MR3047470)
The law of large numbers for the free multiplicative convolution.
Nordforsk Network Closing Conference Procededings. Springer Proc. Math. Stat, 58, Springer, Heidelberg, 2013, 157–186. (MR3142036)
Inequalities for Jacobi polynomials.
Ramanujan J. 33 (2014), no. 2, 227–246. (MR3165537)
Ultraproducts of von Neumann algebras.
J. Funct. Anal. 266 (2014), no. 12, 6842–6913. (MR3198856)
Quasitraces on exact $C^*$-algebras are traces (M).
C. R. Math. Acad. Sci. Soc. R. Can. 36 (2014), no. 2-3, 67–92. (MR3241179)
On the free gamma distributions.
Indiana Univ. Math. J. 63 (2014), no. 4, 1159–1194. (MR3263926)
A Lévy-Khinchin formula for free groups.
Proc. Amer. Math. Soc. 143 (2015), no. 4, 1477–1489. (MR3314063)
A computational approach to the Thompson group $F$.
Internat. J. Algebra Comput. 25 (2015), no. 3, 381–432. (MR3334642)
An asymptotic property of factorizable completely positive maps and the Connes embedding problem.
Comm. Math. Phys. 338 (2015), no. 2, 721–752. (MR3351056)
The weak Haagerup property II: Examples.
Int. Math. Res. Not. IMRN (2015), no. 16, 6941–6967. (MR3428951)
Simple Lie groups without the approximation property II.
Trans. Amer. Math. Soc. 368 (2016), no. 6, 3777–3809. (MR3453357)
Group $C^*$-algebras without the completely bounded approximation property (M).
J. Lie Theory 26 (2016), no. 3, 861–887. (MR3476201)
Ultraproducts, QWEP von Neumann algebras, and the Effros-Maréchal topology.
J. Reine Angew. Math. 715 (2016), 231–250. (MR3507925)
A complete characterization of connected Lie groups with the approximation property.
Ann. Sci. Éc. Norm. Supér. (4) 49 (2016), no. 4, 927–946. (MR3552017)
On the uniqueness of the injective $III_1$ factor.
Doc. Math. 21 (2016), 1193–1226. (MR3578209)
Non-inner amenability of the Thompson groups $T$ and $V$.
J. Funct. Anal. 272 (2017), no. 11, 4838–4852. (MR3630641)
A new look at $C^*$-simplicity and the unique trace property of a group.
Abel Symp., 12, Springer, [Cham], 2017, 167–176. (MR3837596)
2020–2021
Structure of bicentralizer algebras and inclusions of type $III$ factors.
Math. Ann. 376 (2020), no. 3-4, 1145–1194. (MR4081112)
Computational explorations of the Thompson group $T$ for the amenability problem of $F$ (M).
Exp. Math. 30 (2021), no. 1, 105–126. (MR4223286)
Extreme points and factorizability for new classes of unital quantum channels.
Ann. Henri Poincaré 22 (2021), no. 10, 3455–3496. (MR4314131)
Correction to: Extreme points and factorizability for new classes of unital quantum channels.
Ann. Henri Poincaré 22 (2021), no. 10, 3497–3498. (MR4314132)