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An automorphism « of a von Neumann algebra M is called pointwise inner if for
all e M there is a unitary ue M such that ¢oou=ugu*. We analyse such
automorphisms; in particular we show that if M is a factor of type III;, 0<i <1,
with separable predual, then an automorphism « is pointwise inner if and only if
there are an inner automorphism y and an extended modular automorphism 62 in
the sense of Connes and Takesaki, such that a=y06%. © 1990 Academic Press, Inc.

1. INTRODUCTION

In our paper [7] we introduced two classes of automorphisms of von
Neumann algebras. If « € Aut(M) for a von Neumann algebra M, then «
was called pointwise inner if o preserves unitary equivalence classes of
normal states, ie., if for all ¢ in the positive part M of the predual of M,
there is u =u(¢) in the unitary group U(M) of M such that

o0 = ugu*.
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o was called approximately pointwise inner if x preserves norm closures of
unitary equivalence classes in M, ie., if for all ¢ € M, and &> 0 there is
u=u(@, ¢)e U(M) such that

1o 00— ugn*| <.

The approximately pointwise inner automorphisms were studied to some
extent in [7], while we only proved two results for the pointwise inner
ones. One was that if M is semifinite with separable predual, then each
pointwise inner automorphism of M is inner. This followed, as pointed out
to us by V. Jones, from a result of Popa [9] on maximal abelian algebras.
The other result was that each modular automorphism is pointwise inner.

We shall in the present paper give a rather complete description of the
pointwise inner automorphisms for factors M of type 1II;, 0< A <1, with
separable preduals. Our techniques rely heavily on the existence of faithful
normal strictly semifinite lacunary weights of infinite multiplicity on such
factors, hence we are unable to do anything in the III,-case. Let ¢ be such
a weight. Then we first show that an automorphism « of M is pointwise
inner if and only if there is ve U(M) such that «- Adv is ¢-invariant, and
a o Adv|,, = i—the identity map, where M, is the centralizer of ¢. We then
restrict attention to ¢-invariant o’s for which «[,,, =1, and show that the
group of such «s is isomorphic to the unitary group of the center C; of
M. Furthermore, o is inner if and only if its image is a coboundary with
respect to the natural ergodic action induced on C,. This allows us to
define an abelian cohomology group H'(Z, U(C,)) which is isomorphic to
the quotient of the pointwise inner automorphisms by the inner ones. For
example, this group is the circle group when M is of type III;, 0<i< 1.
If M is of type Iy, H'(Z, U(C,)) can also be described as the quotient of
the closure of the inner automorphisms of M implemented by unitaries in
C, by the inner automorphisms in this group.

In [7] we showed that each a e Aut(M) has a natural extension to an
automorphism & of the crossed product M x . R. It was shown that « is
approximately pointwise inner if and only if & is the identity on the center
of M x_s R. In Section 5 we show that « is pointwise inner if and only if &
is inner. Furthermore, it follows from this that the pointwise inner
automorphisms are exactly those of the form Ad u-6¢ with ue U(M) and
¢ the extended modular automorphism of M defined by a dominant
weight and a cocycle ¢ in the flow of weights, as defined by Connes and
Takesaki in [4]. This gives in particular a new proof of the isomorphism
between H'(Z, U(C,)) and H'(F*) proved in [4, Appendix] (see also
[13]). :

Finally we show in Section 6 that in the nonseparable case the situation
is quite different; indeed for some factors of type I, there are pointwise
inner automorphisms which are outer.
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In the Appendix due to C. Sutherland it will be shown that in the
II,-case the cohomology group H'(Z, U(C,)), and hence H'(FM), is
nonsmooth in its natural Borel structure, hence is a very big space.

2. WEIGHTS AND AUTOMORPHISMS

Recall that a faithful normal weight ¢ on a von Neumann algebra is
called strictly semifinite if its restriction to its centralizer is a semifinite
trace, cf. [2, Definition 3.1.5]. Throughout this section, M will be a von
Neumann algebra.

LeMMA 2.1. Let ¢ be a strictly semifinite faithful normal weight on M
and o a pointwise inner automorphism on M. Then there is ue U(M) such
that ¢ o o= ugu*.

Proof. Since ¢ is strictly semifinite there is an orthogonal family (e ), .,
of projections in M, with sum 1 such that ¢(e,) < o0, ke I. Let ¢, = @(e, - ).
Then ¢=3 ., 0, and supp(d,) =e,. Since o is pointwise inner there is
for each kel, u, e UM) such that ¢,ca=u,¢,u¥. Then a='(e,)=
supp(deoa)=ue,uf. Let u=3, ., u.e,. Then a straightforward computa-
tion shows that ue U(M), and, since e, € M, for all k € ], it follows that for
xeM™ we have

Hu*xu)= Z Ple uf xuy)

kel

= 2 ukdeud(x)

kel

= z Proalx)

kel

=goa(x). Q.E.D.

If M is semifinite with separable predual every pointwise inner
automorphism of M is inner by [7, Proposition 12.5]. In the nonseparable
case we can only show the following.

LeMMA 2.2, Suppose t is a faithful normal semifinite trace on M. Then
o€ Aut(M) is pointwise inner if and only if for all xe M* n L' (M, 1) there

is u=u(x)e U(M) such that a{x)= uxu*.

Proof. Suppose « is pointwise inner, and let xe M+ n L'(M, 7). Let
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¢=1(x-). Then pe M}, so there is ue U(M) such that g-o ' =ugu*. By
Lemma 2.1, 7 is a-invariant; hence if ye M™*, we have

t(a(x) yy=t(xa (p))=g(a '(¥) = dlu*yu)
= t{xu*yu) = t(uxu*y).

It follows that o(x)=uxu*.
Conversely suppose such a u exists for each xe M* nL'(M, 7). Let
peM;, and let h=dp/dte L'(M, t)*. Then A is self-adjoint, and we put

hn = X[n,n+ 1)(h)h’

where x, is the characteristic function of a set E. By hypothesis there is
u,€ U(M) such that u, h,u¥=a"'(h,), ne N U {0}. Let

v, = a—‘l(X[n,n+ 1)(h)) unX[n,n+ 1)(h)’

and let u=> . v,. Then an easy computation shows u is unitary and
uhu* =a~'(h). By assumption on g, it is clear that 7 is a-invariant on the
ideal generated by M* n L'(M, 1). Hence, if ye M* then

goa(y)=rtlha(y)) =3 t(h,a(y)) =} t(a”'(h,)y)

=1(a"'(h) y) = t(uhu*y) = t(hu*yu)
= ¢(u*yu),

proving that « is pointwise inner. Q.E.D.

Recall that a faithful normal state or weight ¢ is called lacunary if 1 is
an isolated point of the spectrum Sp(4,) of the modular operator 4, ie.,
there exists A€ (0, 1) such that

Sp(4,) (4 A ")={1}. (1)

It is a folklore result that a faithful normal semifinite lacunary weight is
strictly semifinite. Since the result does not seem to exist in the literature
and it will make the rest of our discussion look nicer, we include a proof.

LEMMA 2.3. Let ¢ be a faithful normal semifinite lacunary weight on M.
Then ¢ is strictly semifinite.

Proof. Choose A€ (0, 1) such that

Sp(dy) (4, 1/2) = {1}.
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Put a =log(1/4). Since the Arveson spectrum of the automorphism group
(6)teR is

log(Sp(4,)— {0}),

cf. [2, Lemma 3.2.27 it follows that if / € L'(R) and supp(f) = (—a, a) then
for all xe M,

[ ot ) a

— o

is in the spectral subspace of M corresponding to {0}; i.e., it is in the fixed
point algebra M, of ¢. We may choose f to be a positive continuous
function such that [©_ f(t)dt=1, and supp(f) < (—a, a). Put

Ex)=[" ot St

Then by the above remarks, E is a normal projection of M onto M,.
Moreover, E is positive and E(axb)=aE(x)b, a, be M,, xe M, so that E
is a conditional expectation of M onto M,. Since ¢ is normal we can

choose an increasing net {¢,},., of positive normal functionals on M such
that

d(x)=sup ¢;(x), xeM™.

ied
Hence for xe M *,

b B =sup 6, | atte) o)

— o

=sup [ gulot) S0 de
=" #2110y

=[" s sy ar

= p(x).

Note that sup and | can be exchanged also if J is uncountable, because
1> ¢,(6%(x)) f(¢) form an increasing family of continuous functions on R.
Since ¢ E = ¢ it follows from [2, 3.1.4] that 4 is strictly semifinite. Q.E.D.
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In the rest of this section we shall show that the conclusion of
Lemma 2.1 holds true for ¢ lacunary whenever « is approximately
pointwise inner. If ¢e M is faithful we denote by | ||; the norm

Ixlly = (x*x) '

LEMMA 2.4. Suppose ¢ is a faithful normal lacunary state on M. Let
ue U(M). Then there exists ve U(M ;) such that

lv—ully, <K, |ugu* — @],
where K, = (6/(1 — 2'2))\2, and 1 satisfies (1).

Proof. By Araki’s generalization of an inequality of Powers and the
second author [1] we have

ld gy EG Il < llugu* — 172,

where we have represented M in the GNS-representation due to ¢, and J,
is the conjugation such that x*¢,=J, 4>x¢,, xe M. The left side can be
written as

lugy—Jyu*J 4yl = (1 —A,l/z) uf.;s“-
By assumption on Sp(4,) we have for 1€ Sp(4,)— {1},

121 >min{l— i i~ 2= 1} =122

Choose a continuous real function f on R™* such that f(1)=1, f(¢t)=0 for
1eSp(4,)— {1}, By spectral theory the operator P,= f(4,) is the projec-
tion on the eigenspace 1 for 4,, and by the above inequality we have

1
/()= 1P Sy 12— 1%, 1eSp(4y).

S(1—4")
It follows that
1
[(f(44)—1) u@lIZSW)—z (47— 1) uéy||?
1
<m ugu* — @1l

Let E, denote the ¢-invariant normal conditional expectation of M onto
M. Then we have

Py(x{y)=E4\x)¢y,  XEM,
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see, e.g., [ 5, Theorem 17. Tt thus follows that

1
HE () —u)é,l° <m ugu™ — ¢||.

Put &= ||[(E,(u) —u)é,|l. Since |1 — P,|| <1, we have e<1. Now M, is a
finite von Neumann algebra. Hence there is ve U(M ) such that the polar
decomposition for E(u) is given by

E (u)=v|Eyu)|.
Put h=|E,(u)|. Then 0<h <1, so that h* + (1 — h)* <1, whence
(1 —h)E, N <= REL N =1 — | Efu) 417 <1 — (1 —£)’ < 2e.
It follows that
08y —ulyll < €y — Ef(u)yll +¢
=llo(h—1)¢40 +¢
<(2e) +¢

< (68)'72.

Since £ < (1/(1 — A%)) llugu* — $| /%, we conclude that
6 1/2
lo—ully< <mm> lugu* — ||, QE.D.

We recall from [7] that if ¢, y e M then ¢~y if there is a sequence
(u,) <= U(M) such that im,, _,  ll¢ —u,pul|=0.

LEMMA 2.5. Let ¢ and y be faithful normal states on M such that ¢ ~ .
If ¢ is lacunary then there is ue U(M) such that ugu* = .

Proof. Choose A€(0,1) such that Sp(4,)n (4, A~")={1}. Choose
u,€ U(M) such that

it ~ gl <27,
Put ¢,=u,¢uf and v,=u,, ,u¥, neN. Then
Un¢nv:1'g = ¢n+ 1
Furthermore, since ||¢, , , — ¢, <2 +2 %"+ 1D <2.2-% we have

HU,‘¢)"U:‘ _¢n” <2 '274'[.
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Put K, =(6/(1-4""))'” as in Lemma 2.4. Since Sp(4,)=Sp(4,) there
exists, by Lemma 2.4, w, e U(M ) such that
I, — v, <2'7*K, 27"
Put s, =v,w} e U(M). Since w, e U(M ), we have
5, = Llg, = v, —w,l, <2VK, 27"
Also since w,e U(M, ),
Su@uSt =0,0,0F=,.1, neN.
Define recursively ¢, e U(M) by
L =u,
L, =58, 1 S U, n=2.
Then we have by induction

LLY =,

Using this we have

1= tallg = 11(su = 1) 2,84
=¢(t3 (s, — D)* (5, = D)1,)
=du((s, = 1)* (s, — 1))
= lls, = Ly,
<2K, 2"

Since ¢ is faithful, (¢,) is a Cauchy sequence in the strong topology on the
unit ball in M, hence there is an isometry u € M such that ¢, - u strongly.
For xe M we have

Y(x)= lim ¢,(x)

n— o

— lim @(t*xt,)

n— oc

= lim (xt,¢,, 1,&,4)

= (xuéd,, “éq})

= p(u*xu),
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ie, Y =ugu* Since Y is faithful and w*u=1, we have 1=y (uu*)=
d(u*uu*u) = ¢(1)=1, so that uu* =1, whence u is unitary. QED.

PROPOSITION 2.6. Suppose o€ Aut(M) is approximately pointwise inner.
Suppose ¢ is a faithful normal semifinite lacunary weight on M. Then there
is ue U(M) such that

¢ oo = upu*.

Proof. 1 ¢ is bounded we may assume ¢ is a state, and the proposition
follows from Lemma 2.5.

Suppose ¢ is unbounded. Since ¢ is strictly semifinite by Lemma 2.3
there is a family (p,);., of orthogonal projections in M, with sum 1 such
that ¢(p,;) < oo for all i. Notice that each p, is ¢-finite having finite value
under ¢. Since « is approximately pointwise inner, if Yy € M, then Yoo~
[7, 12.3 (4)], whence the support projections supp(y o o)~ supp(y) in M
by [7, Theorem 2.2]. In particular, a(p,) ~ p; for all i. Thus if we compose
o by an inner automorphism, we may assume o(p;)= p,, i€, whence «
restricts to an automorphism of p;Mp,, which is also approximately
pointwise inner [7, Theorem 2.27]. Furthermore, we have

Sp(dy,) N (4 A7) ={1};
hence by Lemma 2.5 there exists v, € M with v*v;, =v,0* = p, such that

v,-¢,,,v,-*=(¢ooc)p,., iel

where we have used that p,e M, ,, since a(p,)=p,e M, Put v=3,_,v,.
Then ve U(M) and vgv* =goa. Q.E.D.

3. Factors oF Type IIT;, 0 < A < 1, WITH SEPARABLE PREDUAL

Throughout this section M will denote a factor of type III,, 0< A<,
with separable predual. By [2, Theorem 4.3.2 and Lemma 5.3.2] there
exists a faithful normal strictly semifinite lacunary weight ¢ with infinite
multiplicity on M. Then M, is of type 1. By [2, p. 238] there is a unitary
operator Ue M(¢?, (1, «0)) such that UM,U*=M,, and M, and U
together generate M. Indeed M can be identified with the crossed product
M, x4, Z, where 0 =Ad Ulum, Moreover, by [2, p. 241], U is unique
modulo M, and there is a unique element p of the center C, of M, such
that U*$U=¢(p-). Furthermore, 0<p<iy<! for some i,eR. Using
this notation we have:
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THEOREM 3.1. Let ae Aut(M). Then x is pointwise inner if and only if
there is ve UM) such that ¢ is o< Ad v-invariant and o< Ad v| m, =1—the
identity map.

Proof. Assume « is pointwise inner. By Lemma 2.1 there is ue U(M)
such that ¢oo=ugu* Thus if we replace « by a-Ad u we may, and do,
assume goa=¢. Let he M with ¢(h) < oo. Choose positive real numbers
a, b such that k =ah+ bl satisfies p <Ay <k < 1. If we can show there is
ue U(M) such that a(k)=uw*ku then also a(h)=u*hu. Since ¢ is
a-invariant, a(M,) = M,, i€, «,, € Aut(M,). Since the commutant of & in
M, equals the commutant of & in M, it follows that the weight ¢(k - ) is
strictly semifinite. Thus by Lemma 2.1 there is ue U(M) such that
dka " '(x)) = ¢(kuxu*), xe M*, or by the a-invariance of ¢, @(a(k)x)=
dlkuxu*), xe M*. Since p <Ayl <k <1, p<a(k)<1 as well. Then by [4,
Lemma 1.2.6(c)] applied to the weights ¢(k-) and ¢(a(k)-) we have
ue M, Thus $(a(k)-)=¢(u*ku-). In particular, this holds for the
restriction to My, hence a(k)=u*ku, and so a(#)=u*hu. By Lemma 2.2,
|y, 1s pointwise inner, whence al,, is inner by [7, Proposition 12.5].
Let ve U(M,) satisfy «f,, =Ad v*|,,. Then a-Adv|,,=1, proving the
necessity.

To prove the converse we may assume o|,,, =1 and goa=¢. Let E be
the unique bounded ¢-invariant faithful normal conditional expectation of
M onto M,. Let Yy eM,. Assume first that there is AnM, such that
Y(x)=¢@(hE(x)), xe M. Since a|,,=1, E=a-E, and by uniqueness of E,
anoE=FEo-ua, whence Yyoax=1. In the general case there are, by [4,
Theorem 1.2.2], he M and we U(M) such that ¢ o Ad w(x)=g(hE(x)),
x€E. By the above yoAdwea=1y-Ad w. Since Ad woox =a>Ad o~ '(w),
we have

YooxoAda H(w)=yoAdw

or Yoo =y oAd(wa '(w*)). Since ¥ was arbitrary in M, a is pointwise
inner. Q.E.D.

We denote by Aut,(M) the subgroup of Aut(M),
Auty(M)={a e Aut(M): poo=¢, a|p, =1}
By Theorem 3.1 Auty(M) is a subgroup of the group of pointwise inner

automorphisms.

THEOREM 3.2. (1) The map o —w,=a(U)U* is an isomorphism of
Auty(M) onto U(C,).
(2) If aeAuty(M) then o is inner if and only if w, is a 6-coboundary,
Le., there is ve U(Cy) such that w,=v0(v)*, where 0 =Ad Ul ,,,.
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Proof. (1) Let a e Auty(M) and xe M. Then

w,x=o(U) U*x=a(U) U*xUU* = U(U*xU)) U*

=xa(U)U* = xw,.

Thus w, e M ;N M, which is equal to C,; by [2, Lemma 4.2.3] and [4,
Corollary 1.2.10]. Thus w, e U(C,). If a, f € Aut (M) then

wog=a( U U*=a(wyUYU* =wea(U)U* =wew, =w,wg,

whence the map « — w, is a homomorphism. If w, =w, then a(U) = B(U).
Since af 4, = flr, =1, and U and M, generate M, «=f. Thus the map is
injective.

To show surjectivity let we U(C,). Let w, = w, and for n € Z define w, by
the formula

w, =

{w,,lﬂ”‘l(w), n=2

W, .1 0"M(wW)*, n<0.

Then n — w, is a #-cocycle, and we have the formulas:

Wiy n =W, 0%(w,,), n,melZ (1)
W, = wh(w) - 0" \(w), neN 2)
w_,=0"'(w)*0 (w)*...0 "(w)*, neN. (3)

Let A denote the *-algebra of finite sums > x,U", x,e M, and define a
map a,: A —> A by

a6, (Z X, U”) =Y x,w,U"

From (1) it is easy to show «, is multiplicative. From (2) and (3) we
obtain 6"(w_,)*=w, or w_,=0""(w,), from which it follows that «, is
*-preserving and thus a *-automorphism of A.

Let he M be an operator such that = ¢(k - ) is a faithful normal state
on M. Then w(xU")=0 for xe M, and n#0, hence w|, is a,-invariant.
Thus «, is unitarily implemented in the GNS-representation n,, of w| ;
hence «,, extends by continuity to the weak closure. Since @ is normal and
faithful =, extends to an isomorphism of M onto n,(A4) . Thus «,, extends
to an automorphism « of M. By construction xe Aut, (M) and w,=w.
Thus o« —w, is surjective; hence it is an isomorphism of Aut,(M) onto
U(C,y).
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(2) Suppose w,=v0(v)* is a coboundary with ve U(C,). Then
Ad o(U)=vUv*=0v0(v)* U=w,U, and Adv|,, =1 Thus AdveAuty (M)
and is equal to o by uniqueness, whence « is inner.
Conversely, if = Ad v, ve U(M) then ¢ oo = ¢ implies v e M, and, since
=1 veMynM;=C,. Thus w,=a(U)U* =0v0(v)* with ve U(Cy).
Q.ED.

Recall from [7, Proposition 12.6] that each modular automorphism is
pointwise inner.

COROLLARY 3.3. Let M be of type lII,, 0 < A< 1, with separable predual
and let we Aut(M). Then o is pointwise inner if and only if there are te R
and ue U(M) such that o =c?%>Ad u.

Proof. Let ¢ be a generalized trace of M [2, Definition 4.3.1]. Then
C,=C1, hence U(C,)=T, and so Aut,(M)=T, and the only
f-coboundary is 1. Since M is of type IIl;, ¢? is outer for 1 ¢ 2n/log / Z.
Thus if w,=6?(U)U*, then w,# 1 if and only if 7 ¢ 2n/log A Z. Since o? is
continuous and periodic, the range of 1 - w, is the whole circle T. It then
follows from Theorem 3.2 that o« € Aut,(M) if and only if a= o’ for some
t, and hence by Theorem 3.1 that « is pointwise inner if and only if a =
0?0 Ad u for some te R, ue U(M). Q.ED.

4. COHOMOLOGY

We show in the present section that the pointwise inner automorphisms
modulo the inner can be described as a cohomology group H'(Z, U(C,)).
We retain the notation introduced in Section 3. As remarked in the proof
of Theorem 3.2 each we U(C,) defines a O-cocycle, and conversely each
f-cocycle (w,),. , is uniquely determined by w,. Since U(C,) is an abelian
group, this association defines a multiplicative isomorphism

y: U(C,) = Z(Z, U(Cy))

onto the multiplicative group of f-cocycles in U(C,). Let B'(Z, U(C,)) be
the image under y of the #-coboundaries v8(v)*, ve U(C,). By Theorem 3.2,
B'(Z, U(C,)) is the image in Z'(Z, U(C,)) of the inner automorphisms in
Aut,(M) under the composition « — w, — y(w,). Let H'(Z, U(C,)) be the
cohomology group

HNZ, U(Cy))=Z(Z, U(C,))/BY(Z, U(C,)),
and let ¢ be the canonical homomorphism

&t Aut(M) — Aut(M)/Int(M) = Out(M),
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where Int(M) denotes the inner automorphisms. Summarizing, we have
proved:

LEMMA 4.1. There is a natural isomorphism
g(Auty(M))~ HY(Z, U(Cy))

induced by the composition « - w, — y(w,).
Denote by
Pt Int(M) = {a € Aut(M): o is pointwise inner }.
By Theorem 3.1,
e(Pt Int(M)) = e(Auty(M)).
Since &(PtInt(M)) is independent of the weight ¢ we have by use of

Lemma 4.1:

PROPOSITION 4.2.  The cohomology group H'(Z, U(C,)) is independent of
the lacunary weight ¢, and we have an isomorphism

e(Pt Int(M))~ HY(Z, U(C,))

If we apply this to the generalized trace in a III;-factor we obtain from
the proof of Corollary 3.3.

CorOLLARY 4.3. If M is of type 11, 0 < A< 1, then
HY(Z,U(C,))~T.

If M is of type III, we can give an alternative description of
¢(Pt Int(M)). We denote by

Int(M)={Ad we Aut(M): we U(C,)}.

We denote by Int,(M) the closure of Intc,(M) in Aut(M), where Aut(M)
has the topology of pointwise norm convergence in M.

THEOREM 4.4. Suppose M is of type IIl,, and let ac Aut(M). Then
we Auty,(M) if and only if a € Intc (M)

Proof. Suppose a e Auty(M). Since M is of type 11, C, is purely non-
atomic hence isomorphic to L*([0, 1], 1) for a nonatomic measure y, and
# corresponds to an ergodic nonsingular transformation leaving u quasi-
invariant. By the alternate form of the Rokhlin lemma, see [12, p. 12],
there is a sequence (v,) in U(C,) such that v,60(v,)* - w, strongly. The
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strong convergence follows, since in the Rokhlin lemma the convergence in
L™ is the one induced by L'-convergence. Thus Ad v,(U) — a(U) strongly.
Since M is generated by sums 3., x,U* x;eM,, and Adv,|,, =
[y, =1, it follows that a =1im, Ad v, in Aut(M), ie., a€lnt- (M)
Conversely suppose a€Int(C,). Let (v,) be a sequence in U(C,) such
that Ad v, — o in Aut(M). If xe M, then a(x)=lim, v, xv} = x, so lpg, =1
But then as in the proof of Theorem 3.2, w,=a(U)U*e U(C,), hence
wU")=w,U" with w,eU(C,), neZ, hence ¢ is o-invariant and
ae Aut (M) Q.E.D.

If we combine this result with Lemma 4.1 and Proposition 4.2 we have:

COROLLARY 4.5. Suppose M is of type Illy. Then Intc (M)/Intc (M) is
independent of the weight ¢, and we have an isomorphism

e(PtInt(M)) ~ Int (M)/Int,(M).
If we combine Theorems 3.1 and 4.4 we find:

COROLLARY 4.6. Suppose M is of type IIl,. Then every pointwise inner
automorphism of M is approximately inner.

Remark 4.7. Corollary 4.6 is an extension of a result of Connes [3,
Proposition 3.97 in which he showed that all modular automorphisms of
M are approximately inner. Indeed by [7, Proposition 12.6] all modular
automorphisms are pointwise inner.

Remark 4.8. In the Appendix C. Sutherland will show that in its
natural Borel structure H'(Z, U(C,)) is a nonsmooth Borel space. This
can be used to show that in at least some cases there exist pointwise
inner automorphisms which are not of the form ¢?-Ad . Indeed, let M
be of type I, with T(M) a closed subgroup of R. Then ¢({d?:
teR})~R/T(M), which is smooth by the assumption on T(M), hence
e({a?: teR})+#¢(Pt Int(M)).

5. THE ConNTiNUoUs CROSSED ProODUCT

Let M be a von Neumann algebra acting on a Hilbert space H. Let w
be a faithful normal semifinite weight on M with modular group ¢“. Then
the crossed product N=M x_. R is the von Neumann algebra acting on
L*(R, H) generated by operators n(x), xe M, and A(z), teR, defined as
follows '

(r(x)E)s) =02 (x) &5),  EeL*(R, H)
(M) E)(s)=E(s — 1), seR.
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7 is a representation of M into N and A is a unitary representation of R in
N implementing ¢®. The dual automorphism group 8 of ¢ on N is the
automorphism group determined by

8. (n(x)) =mn(x), xeM
0. (A(1))y=e " 5A(1), s, teR.

Then n(M) is the fixed point algebra of 8. By [6] there is a faithful normal
semifinite operator valued weight 7 of N on n(M) given by

T(5)=[" 0.y)ds

where ds denotes the Lebesgue measure on R. Then for any normal semi-
finite weight ¢ on M its dual weight ¢ on N is given by

F=gontoT

By [14, Lemma 8.2] there is a positive self-adjoint operator # affiliated
with N such that A(¢) = A", and the weight t defined by

w(y)=dh~'y), yeN™,

1s a faithful normal semifinite trace on N such that

S,

1ef,=e¢"’1, seR.

7 is called the canonical trace on N.

By [14, Propositions 3.5 and 4.2] this construction is independent of the
weight @ up to isomorphism. Let « e Aut(M). By [7, Proposition 12.1]
there exists a unique automorphism & € Aut(N) such that

&(n(x)) = n(a(x)), xeM
@A) =n((Dyoat: D(w)),) A(s), seR.

We want to remark that & also has an abstract characterization, which is
a converse to [7, Proposition 12.2].

LEMMA 5.1. Let ac Aut(M). Then & is the unique automorphism of N
such tha

n(x))=n(a(x)), xeM,
@ol,=60 o4, seR,

Tod=T.

580/92/1-13
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Proof. Suppose &, and &, both satisfy the three conditions of the
lemma, «,, a, € Aut(M). Put f=4, '+d,. Then feAut(N), and

B(n(x))=n(x), xXeM,
fol,=0.0p, seR,

'L'Oﬁ:‘['

The second formula implies that f commutes with the operator valued
weight T defined above. By the first formula =~ '(B(y))==n""(y) for
yemn(M), so that

(DoﬁzwoniloToﬁ:a)on"loTz(I),

Since also 7o f =1, the Radon-Nikodym derivative dd/dr is S-invariant.
But A(2) = (d@/dz)". Hence B acts trivially on n(x), xe M, and i(t), te R,
i.e., f is the identity on N, proving the uniqueness of &. Q.ED.

It was shown in [7, Theorem 12.4] that « is approximately pointwise
inner if and only if & ,»,=1, where Z(V) denotes the center of N. We shall
in the present section be concerned with the case when o is pointwise inner.
Notice that if « = Ad u is inner then by Lemma 5.1,

& = Ad n(u) € Int(N).

We should remark that it follows from Lemma 5.1 that if ¢ and « are
faithful normal semifinite weights, and y is the isomorphism of M xR
onto M x,. R constructed in [14, Proposition 3.5] then y carries the
automorphism & defined with respect to M x4 R onto the one defined with
respect to M x,. R. Thus in order to show & is inner, it suffices to do this
in Aut (M x4 R) for some suitably chosen ¢.

THEOREM 5.2. Suppose M is a factor of type III,, 0< A<, with
separable predual, and let o.c Aut(M). Then o is pointwise inner if and only
if & is inner on N.

We first prove a lemma.

LEMMA 5.3. Let ¢ be a faithful normal semifinite weight on a von
Neumann algebra M. Put N=M x4 R and let § be the dual weight of ¢ on
N. Then the centralizer Ny of § is generated by n(M,) and A(R), ie.,

Ny=MyxsR=M,® L*(R).

Proof. 1t is clear that the von Neumann algebra generated by n(M )
and A(R) is contained in N;. To prove the converse inclusion, note first
that N is contained in M ® B(L*R)) with the usual identification of
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LR, H) and H® L*(R). Let Tr be the trace on B(L*(R)) and put
w=¢®Tr. Then
o =0!® Ip(r2my):-
One checks easily that
o (n(x))=n(c7(x)), xeM,
a’(A(s)) = As), seR.

Hence ¢ maps N into itself and the restriction of o’ to N coincides with
o?. Since the centralizer of w is M, @ B(L*(R)),
My=Nn (M, ® B(L(R))).
Since also o‘;"= Ad y(A(1)), we have
M; < (M, ® B(L*(R))) N A(R)".

But A(1)=1®/(t), where I(t) denotes the left translation by ¢ on L*(R).
The von Neumann algebra 4 generated by /(R) is a maximal abelian sub-
algebra of B(L?*(R)) isomorphic to L*(R). Hence

N;cM,® 4'=M,® A.

This completes the proof of Lemma 5.3, because M,,,@A is the von
Neumann algebra generated by n(M,) and A(R). Q.ED.

Proof of Theorem 5.2. We first assume « is pointwise inner.
Let ¢ and U be as in section3 and let f=Ad n(U)e Aut(N). Then
B(n(M,)) =n(M,), and since by Theorem 3.2, a®(U)=w,U, w,e U(C,),

MO r(U) (=)=n(w)n(U)  or  B(A(1))=mn(w,)* A(2),

it follows from Lemma 5.3 that f(Njz)= Nj. By [2, p. 241] there is pe C,
such that 0<p<Ay<1 for some A,eR and ¢, =¢(p-). Let h,=dg/dr.
“Then if xe N* ~n L*(N, 1), we have

(B (hy)x) = t(hy B(x))
=4(B(x))

=¢on“<r

" odpe) as)
= U (T(x)) U*)

=¢(pn~(T(x)))
=1(hyn(p)x).
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Note that by Lemma 5.3, n(p) € Z(Ny). Since h, is affiliated with Z(Ny) so
therefore is m(p)h,. Since x above is arbitrary,

B (hy) =hynl(p) < ighy.

By [11, 23.13] there is a projection e e Z(Ny) such that 3., , f"(e) = 1.
We assert that if ue U(Z(Ny)) then u is a f-coboundary. Indeed, let
Z,=e,Z(Nj), where e, = f"(e), and let b, =e,b for be Z(Ny). Put recur-
sively,
wo=1

Wn=unﬂ(wn—1)’ neN

an:ﬁvl(utn+l)ﬂml(wﬁnlkl)’ nEN.

Since f(Z,)=Z2,.,, w,€ Z,, ne Z. Computing, we have for w=3,_,w,,

oc

WBONE = T (0 B9 ) FwoBv )* Y (waBrn_ 1))

1 =

= Z w»—nu—rlwf—n+u0+ Z unﬁ(wnfl)ﬂ(wnfl)*
=1 n=1

Il
gl
=

X
i
F

ned

proving the assertion.

Now consider « € Aut(M) which is pointwise inner. By Theorem 3.1,
there is ve U(M) such that ¢ is « o Ad v-invariant and a- Ad v[,,, =1 Since
(Adv)~ eInt(N) we may thus replace « by a«cAdv and assume
a€ Auty(M). Let, as in Theorem 3.2, w,=a(U) U* € U(C,). By Lemma 5.3
n(w,)€ Z(Ny), hence is a p-coboundary by the previous paragraph. Let
ve U(Z(Ny)) satisfy n(w,) =vB(v)*. Then we have

ve(U)v* = vn(U) v*n(U)* n(U)
=vf(v*) i(U) =mn(w,U)
=a@(n(U)).

Since Ad v| y; = 1= 4| y;, and N is generated by N and n(U) by Lemma 5.3,
&= Ad velInt(N). ,

Conversely assume & e€Int(N). Let ¢ be a faithful normal strictly semi-
finite lacunary weight of infinite multiplicity on M. By [7, Theorem 12.4],
o Is approximately pointwise inner; so by Proposition 2.6 there is ue U(M)
such that ¢oa = ugu*. Again we may replace « by - Ad « and assume ¢ is
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a-invariant. Say d=Ad v, ve U(N). Since g=¢on'oT, Lemma 5.1 shows
Z is ¥-invariant; hence ve Nj. By Lemma 53, Ny~M,® L*(R, dx),
hence we may write

@
N":LR M (1) dt,

where M4(t)= M. In particular,

®
u=f v, dt, veM, teR
R

Let xeM;. Then since n(x)=x® 1,

®
n(x)=J x,dt, x,=x,teR.
Hence we have
®
(a(x)) = &(n(x)) = vn(x)v* =j v, x0* dt.
R

Since a(x)e My, n(a(x)) =a(x)® 1, hence v, xv}¥ = a(x), a.e. It follows that
there is we U(M,) such that wxw* = a(x). Since this holds for all xe M},
& a, 1s pointwise inner by Lemma 2.2, and so, by [7, Proposition 12.57,
| p, is inner. Say oy, = Ad ul,y,, ue U(M,). Then aoAd u* € Auty(M), so
o is pointwise inner by Theorem 3.1. Q.ED.

For the following we refer to [4]. Let M be an infinite factor with
separable predual. Let w be a dominant weight, and M = M, x, R be the
continuous crossed product decomposition of M with respect to the
centralizer M, and the one-parameter automorphism group 6, on M, such
that wo (0,),=e ‘w. Let {u(s)}, . be the one-parameter unitary group in
M implementing 6,. By [4, Proposition IV.2.1, and Theorems IV.2.2 and
2.4] the extended modular automorphisms of M are, up to multiples by
inner automorphisms, exactly the automorphisms ¢¢ such that ¢%|,, =1
Here ¢ e Z'(F™)—the continuous one-cocycles in the flow of weights with
respect to the flow F™.

If Pis a von Neumann algebra and ¢ is a continuous representation of
R in Aut(P) then an automorphism « of P which commutes with o, extends
to an automorphism & of Px_ R which leaves fixed the unitaries imple-
menting o, see, e.g., [ 14, Propositions 3.4 and 4.2]. In the notation of the
previous paragraph let o € Aut(M) be w-invariant and a(u(s)) = u(s), se R.
Then by [7, Lemma 13.3] there is an isomorphism

M, ® BLAR) > N=Mx_R
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such that

a=(aly,)". (2)

PROPOSITION 5.4. Let M be an infinite factor with separable predual. Let
w be a dominant weight and N=M x ,. R. Let o € Aut(M). Then & is inner
in Aut(N) if and only if there are ve UM) and an extended modular
automorphism 67 of M such that

a=Advoa?.

Proof. We know & is inner if and only if (xcAdu)™~ is inner for
ue U(M). Since there is ue U(M) such that wooa=uwu* [4, Theorem II,
1.1], we may replace o by o Ad u and assume w is a-invariant. As in the
proof of [7, Proposition 13.1] it follows from [4, p. 569] that there exists
be U(M,) such that Ad boa(u(s))=u(s), se R, hence, by (2),

Ad ()= =(Ad boa)™ = (Ad boal,, )~

Thus by (1) applied to Ad b-a, & is inner if and only if «f,, is inner.

Assume ¢ is inner. Then «f,,, is inner, so there is ue U(M,,) such that
Aducaly, =1; hence by the discussion preceding the proposition,
Ad u-a=¢? for a cocycle c. Thus a=Ad voa!’, as asserted.

To show the converse, it suffices to consider the case « =¢2. Choose as
above be U(M,) such that Adbea(u(s))=u(s), seR. Since «of,, =
62|y, =1, Ad boal,, =Ad b|,,, is inner. Thus by the first paragraph of the
proof Ad n(b) - &, and hence &, is inner. Q.E.D.

If we combine the above proposition with Theorem 5.2, we obtain the
following characterization of the pointwise inner automorphisms.

THEOREM 5.5. Let M be a factor of type III,, 0< A< 1, with separable
predual. Let » be a dominant weight and o€ Aut(M). Then a is pointwise
inner if and only if there are ve U(M) and an extended modular
automorphism 62 such that

o =Ad vo .

We remark that if 0 < 4 < 1 the above theorem restricts to Corollary 3.4.
In [4, 1IV.2] Connes and Takesaki defined a cohomology group
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H(FMy=Z"'(FM)/B'(F™), where B'(F™) is the set of coboundaries in
ZY(F™). By [4, Corollary IV.2, 5],

HY (FM)~e({6°: ce Z\(FM)}),

where o is any integrable weight. In particular, with » dominant we thus
have from Theorem 5.5 and Proposition 4.2:

COROLLARY 5.6. Let M be a factor of type HI,, 0<A<1, with
separable predual. Let ¢ be a faithful normal semifinite lacunary weight of
infinite multiplicity on M. Then

H'(Z, U(C,))~ H'(FM).

This corollary could also have been deduced from [4, Appendix] (see
also [13, Theorem 3.1]) by proper measure theoretic translations of the
theory of the flow of weights.

Conjecture. Let M be a factor of type 111, with separable predual. Let ¢
be a faithful normal strictly semifinite weight. Then an automorphism o of M
is pointwise inner if and only if there are ue UM ) and te R such that

a=Adu-o?.

6. THE NONSEPARABLE CASE

We show that in the nonseparable case pointwise inner automorphisms
are not as well behaved as in the separable case. Explicitly we shall exhibit
outer automorphisms of II,-factors which are pointwise inner. If 7 is a trace
on a II,-factor M then |x||, = t(x*x)"? for xe M.

LEMMA 6.1. Let M be a factor of type I, with a finite normal trace .
Let ae Aut(M), and let ¢>0 and xe M ™. Then there is u=u(x, ¢)e U(M)
such that -

floafx) — uxu*|, <.
Proof. Let g =1(x*-)e M}. From the proof of {7, Theorem 12.4] o is
approximately pointwise inner, hence there is u = u(x, ¢) € U(M) such that

Igoo™" —ugu*| <&

Since 7 is a-invariant being the unique trace, t(x?«~'(y)) = t(a(x?) ). Thus
we have

[t(a(x®) y) —t(ux’u*y)| <&’ |y, yeM.
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Hence
o )” — (xa* )|l < 2.
By an inequality of Powers and the second author, see [10, Lemma 4.1],

loe(x) — waxae* | < Jleux)? — (uxu* ) 7 <, QED.

Let M be a factor of type II, with separable predual. Let w be a free
ultrafilter on N. Let

1= {(xn)elw(N, M): 1>~ 0}

M,=1"(N,M)/]I,

Then M, is known to be a Il,-factor, see, e.g., [8]. Denote by n, the
canonical homomorphism of /*(N, M) onto M. If x=(x,)e!*(N, M)
let x=m,((x,))eM,, and if a € Aut(M) let ., e Aut(M,) be defined by

o, (%) = 7, ((a(x,)))-

THEOREM 6.2. In the above notation if ae Aut(M) is outer and not
approximately inner, then o, is pointwise inner and outer.

Proof. We first show o, is pointwise inner. Let X =7,((x,))e M. We
can assume all x,e M. By Lemma 6.1 there exists for each neN,
u,€.U(M) such that

Ha(xn) - unxnu:“ 2 < ;

Let u=n,((u,)). Then #e U(M,) and

axu* —a (f) = nm((un-xn u:f - O((X,,))) =0.

w

Thus by Lemma 2.2 «,, is pointwise inner.

We next show o, is outer in Aut(M,). If not there is u=
n,((u,))€ UM,) such that a, = Ad & Now if = is a homomorphism of a
unital C*-algebra 4 onto a von Neumann algebra N then for each
ue U(N) there is ve U(A) such that n(v)=u. Indeed there is ~e N* such
that « =exp(ih). Choose ke A* such that n(k)=h. Then n(exp(ik))=u.
We can thus assume each u,e U(M). Let x!,..,x"eM™*. Let x*=x*,
neN. Then «,,(x*) = ux*i*, whence

lim {|u, x*u} —a(x“),=0,  k=1,..m,
«

showing that « is approximately inner, contrary to assumption. Q.E.D.



POINTWISE INNER AUTOMORPHISMS 199

REFERENCES

1. H. AraK1, Some properties of modular conjugation operator of von Neumann algebras
and a noncommutative Radon-Nikodym theorem with a chain rule, Pacific J. Math. 50
(1974), 309-354.

2. A. Connes, Une classification des facteurs de type NI, Ann. Sci. Ecole Norm. Sup. (4) 6
(1973), 133-252.

3. A. Connes, Almost periodic states and factors of type IIl,, J. Funct. Anal. 16 (1974),
415-445.

4. A. ConnEs aND M. Takesakl, The flow of weights on factors of type III, Téhoku Math.
J. 29 (1977), 473-575.

S. S. DOPLICHER, D. KASTLER, AND E. ST@RMER, Invariant states and asymptotic abeliannes,
J. Funct. Anal. 3 (1969), 419-434.

6. U. HAAGERUP, On the dual weights for crossed products of von Neumann algebras, 11,
Math. Scand. 43 (1978), 119-140.

7. U. HAAGERUP AND E. STQRMER, Equivalence of normal states on von Neumann algebras
and the flow of weights, Adv. in Math., in press.

8. D. McDurr, Central sequences and the hyperfinite factor, Proc. London Math. Soc. 21
(1970), 443-461.

9. S. Popa, Singular maximal abelian *-subalgebras in continuous von Neumann algebras,
J. Funct. Anal. 50 (1983), 151-166.

10. R. T. Powers AND E. STORMER, Free states of the canonical anticommutation relations,
Comm. Math. Phys. 16 (1970), 1-33.

11. S. STRATILA, “Modular Theory in Operator Algebras,” Abacus, Kent, UK, 1981.

12. C. SUTHERLAND, “Notes on Orbit Equivalence; Krieger's Theorem,” Lecture Notes Ser.
No. 23, Dept. of Math., Univ. of Oslo, 1976.

13. C. SuTHERLAND AND M. TAKESAKI, Actions of discrete amenable groups on injective
factors of type III,, A # 1, to appear.

14. M. Takesakl, Duality for crossed products and the structure of von Neumann algebras
of type III, Acta Math. 131 (1973), 249-310.

APPENDIX: NON-SMOOTHNESS OF THE CoHOMOLOGY GRrRouP H!(Z, U(C,))
Colin Sutherland

It is shown that the cohomology groups H'(Z, U(C,)) and H'(F™) in
the previous discussion are non-smooth Borel spaces. This will follow from
a more general result stated below.

We let (X, ) be a standard non-atomic measure space, and we let %
denote the unitary group in L*(X, u). With an ergodic action of Z on
(X, u)welet Z', B', and H' be the usual spaces of 1-cocycles, coboundaries,
and the quotient cocycles/coboundaries with the topology of convergence
in measure (as in [4, pp. 18, 19, 24]).

THEOREM. For any ergodic action of Z on (X, u), HYZ, %) is not
smooth.
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The proof will be accomplished by showing the existence of a Borel
homomorphism R — Z'(Z, %) by i d*, with d*e B'(Z, %) if and only if
AeaZ +2nZ, where a¢ 2nQ is given in advance. Then non-smoothness of
H' now follows from that of R/xZ + 2nZ (which in turn follows from [3,
Theorem 7.2, p. 148]). We divide the proof into three parts.

(1) Observe that by [1, p.309] H(Z, J’?/):HL(,%,T), where # is
the equivalence relation on (X, i) generated by the Z-action, and this
isomorphism is derived from an isomorphism of Z(Z, %) with Z'(#, T)
carrying B'(Z, %) onto B'(#, T). (The point of doing this is that we may
work with any realization of # that we choose.)

(2) The case A =HR,, the hyperfinite Il -relation. Let 0. e R, a¢2rnQd,
and realize #, as the relation on T generated by the transformation

z=e"™z. Define d*: # - T for Ae R by

d).( T"Z, Z) — L)m),’

and observe d*e Z'(#, T). (Note that in the Z'(Z, %) picture d*(n)=
e™*1, where 1 € % is the constant function.)
Note that d* cobounds if and only if

d*(1)=c(Tz)/c(z) ae.
for some ¢ e 4%, which is equivalent to saying
c(zye*=c(Tz) ae
or to

c(z)e = c(e™z) a.c.

Let c=Y, ., c,z" be the Fourier expansion of ¢ (with convergence in L?).
Then the above equivalence holds if and only if

Y etc,2"=Y e™c,z",  ae,

so that

=c,e", nel. (*)

Thus, if ¢,, #0, e* =™ so that LeaZ + 2nZ.

Conversely, if 2eaZ + 2nZ then (*) has a solution, so d* cobounds, and
we have shown d* is a coboundary if and only if AeaZ + 2n 7, from which
it follows that H'(#, T) is not smooth. (This idea is taken from [2,
p. 6861].)
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(3) The case of general #. By Krieger’s theorem
R=RXRy={((x,2), (x,2): (%, xVeR, (2, 2') e Ky},
so that H (%, T)~ H }(# X %, T). Define
d*((x, 2), (x', 2')) = d*(z, 2'),

and note that A >d*e Z(# x #,, T) is a homomorphism. Clearly, if d*
cobounds, so does d*.
Conversely, if

d'((x, 2), (x, 2')) = f(x, 2)/f(x, Z') a.c.

then, taking z =z', we get f(x, z) = f(x', z) a.e. for each z, so by ergodicity,
f(x,z)=g(z) ae., and so d*(z, z') = g(z)/g(z’) a.c. But this means that d*
cobounds; so by case (2), d* is a coboundary if and only if AeaZ +2nZ,
and again H (%, T) is not smooth. Q.ED.

Remark. Essentially the same argument shows that if we have an
amenable ergodic action of a locally compact group G on (X, u), then
HY(G, %) is not smooth. In particular, H'(G, %) is not smooth for any
properly ergodic action of an amenable group G on (X, u).
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