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The weak Haagerup property for locally compact groups and the weak Haagerup con-

stant were recently introduced by the second author [27]. The weak Haagerup property

is weaker than both weak amenability introduced by Cowling and the first author [9]

and the Haagerup property introduced by Connes [6] and Choda [5]. In this paper, it

is shown that a connected simple Lie group G has the weak Haagerup property if and

only if the real rank of G is zero or one. Hence for connected simple Lie groups the

weak Haagerup property coincides with weak amenability. Moreover, it turns out that

for connected simple Lie groups the weak Haagerup constant coincides with the weak

amenability constant, although this is not true for locally compact groups in general. It

is also shown that the semidirect product R
2

� SL(2, R) does not have the weak Haagerup

property.

1 Introduction

Amenability is a fundamental concept for locally compact groups, see, for example, the

books [15, 30]. In the 1980s, two weaker properties for locally compact groups were

introduced, first the Haagerup property by Connes [6] and Choda [5] and next weak

amenability by Cowling and the first author [9]. Both properties have been studied

extensively (see [3, Chapter 12; 4; 8] and the references therein). It is well known that
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amenability of a locally compact group G is equivalent to the existence of a net (uα)α∈A

of continuous, compactly supported, positive definite functions on G such that (uα)α∈A

converges to the constant function 1G uniformly on compact subsets of G.

Definition 1.1 ([4, 6]). A locally compact group G has the Haagerup property if there

exists a net (uα)α∈A of continuous positive definite functions on G vanishing at infinity

such that uα → 1G uniformly on compact sets. �

As usual we let C0(G) denote the continuous (complex) functions on G vanishing

at infinity and let Cc(G) be the subspace of functions with compact support. Also, B2(G)

denotes the space of Herz–Schur multipliers on G with the Herz–Schur norm ‖ ‖B2 (see

Section 2 for more details).

Definition 1.2 ([9]). A locally compact group G is weakly amenable if there exist a con-

stant C > 0 and a net (uα)α∈A in B2(G) ∩ Cc(G) such that

‖uα‖B2 ≤ C for every α ∈ A, (1.1)

uα → 1 uniformly on compacts. (1.2)

The best possible constant C in (1.1) is called the weak amenability constant denoted

ΛWA(G). If G is not weakly amenable, then we put ΛWA(G) = ∞. The weak amenability

constant ΛWA(G) is also called the Cowling–Haagerup constant and denoted Λcb(G) or

ΛG in the literature. �

The definition of weak amenability given here is different from the definition

given in [9], but the definitions are equivalent. In one direction, this follows from [9,

Proposition 1.1] and the fact that A(G) ⊆ B2(G), where A(G) denotes the Fourier algebra

of G (see Section 2). In the other direction, one can apply the convolution trick (see [27,

Appendix B]) together with the standard fact that Cc(G) ∗ Cc(G) ⊆ A(G).

Definition 1.3 ([26, 27]). A locally compact group G has the weak Haagerup property if

there exist a constant C > 0 and a net (uα)α∈A in B2(G) ∩ C0(G) such that

‖uα‖B2 ≤ C for every α ∈ A, (1.3)

uα → 1 uniformly on compacts. (1.4)

The best possible constant C in (1.3) is called the weak Haagerup constant denoted

ΛWH(G). If G does not have the weak Haagerup property, then we put ΛWH(G) = ∞. �
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Clearly, the weak Haagerup property is weaker than both the Haagerup property

and weak amenability, and hence there are many known examples of groups with the

weak Haagerup property. Moreover, there exist examples of groups that fail the first two

properties but nevertheless have the weak Haagerup property (see [27, Corollary 5.7]).

Our first result is the following theorem.

Theorem A. The groups SL(3, R), Sp(2, R), and S̃p(2, R) do not have the weak Haagerup

property. �

The case of SL(3, R) can also be found in [28, Theorem 5.1] (take p= ∞). Our proof

of Theorem A is a fairly simple application of the recent methods and results of de Laat

and the first author [17, 18], where it is proved that a connected simple Lie group G of

real rank at least two does not have the Approximation Property (AP), that is, there is no

net (uα)α∈A in B2(G) ∩ Cc(G) which converges to the constant function 1G in the natural

weak∗-topology on B2(G). By inspection of their proofs in the case of the three groups

mentioned in Theorem A, one gets that for those three groups the net (uα)α∈A cannot even

be chosen as functions in B2(G) ∩ C0(G), which proves Theorem A.

By standard structure theory of connected simple Lie groups, it now follows that

the conclusion of Theorem A holds for all connected simple Lie groups of real rank at

least two. Moreover, by [7, 9, 10, 20] every connected simple Lie group of real rank zero

or one is weakly amenable. We thus obtain the following theorem.

Theorem B. Let G be a connected simple Lie group. Then G has the weak Haagerup

property if and only if the real rank of G is at most one. �

For connected simple Lie groups G the constants ΛWA(G) are known: if the real

rank is zero, then G is compact and ΛWA(G) = 1. If the real rank is at least two, then

by [12, 16] the group G is not weakly amenable and hence ΛWA(G) = ∞. Finally, in the

real rank one case, one has by [7, 9, 10, 20] that

ΛWA(G) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1 for G ≈ SO0(1, n)

1 for G ≈ SU(1, n)

2n− 1 for G ≈ Sp(1, n)

21 for G ≈ F4(−20)

(1.5)

where G ≈ H means that G is locally isomorphic to H . We prove the following theorem.

Theorem C. For every connected simple Lie group G, ΛWA(G) = ΛWH(G). �
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It is clear that for every locally compact group G one has 1 ≤ ΛWH(G) ≤ ΛWA(G).

Theorem C then amounts to show that ΛWH(G) = ΛWA(G) when G is locally isomorphic

to Sp(1, n) or F4(−20). Moreover, since the groups Sp(1, n) and F4(−20) are simply connected

and have finite center, one can actually restrict to the case when G is either Sp(1, n) or

F4(−20). The proof of Theorem C in these two cases relies heavily on a result from [25],

namely that for Sp(1, n) and F4(−20) the minimal parabolic subgroup P = MAN of these

groups has the property that A(P ) = B(P ) ∩ C0(P ). Here, A(P ) and B(P ) denote, respec-

tively, the Fourier algebra and the Fourier–Stieltjes algebra of P (see Section 2).

For all the groups mentioned so far, the weak Haagerup property coincides with

weak amenability and with the AP. As an example of a group with the AP which fails the

weak Haagerup property we have the following theorem.

Theorem D. The group R
2

� SL(2, R) does not have the weak Haagerup property. �

Combining Theorem D with [27, Theorem A], we observe that the discrete group

Z
2

� SL(2, Z), which is a lattice in R
2

� SL(2, R), also does not have the weak Haagerup

property.

Theorem D generalizes a result from [16] where it is shown that R
2

� SL(2, R)

is not weakly amenable. Crucial to our proof of Theorem D are some of the techniques

developed in [16]. These techniques are further developed here using a result from [19],

namely that R
2

� SL(2, R) satisfies the AP. Also, [25, Theorem 2] is essential in the proof

of Theorem D.

Both groups R
2 and SL(2, R) enjoy the Haagerup property and hence also the

weak Haagerup property. Theorem D thus shows that extensions of groups with the

(weak) Haagerup property need not have the weak Haagerup property.

2 Preliminaries

Let G be a locally compact group equipped with a left Haar measure. We denote the left

regular representation of G on L2(G) by λ. As usual, C (G) denotes the (complex) contin-

uous functions on G. When G is a Lie group, C ∞(G) is the space of smooth functions

on G.

We first describe the Fourier–Stieltjes algebra and the Fourier algebra of G. These

were originally introduced in the seminal paper [14] to which we refer for further details

about these algebras. Afterwards we describe the Herz–Schur multiplier algebra.

The Fourier–Stieltjes algebra B(G) can be defined as set of matrix coefficients of

strongly continuous unitary representations of G, that is, u∈ B(G) if and only if there
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are a strongly continuous unitary representation π : G → U (H) of G on a Hilbert space

H and vectors x, y∈H such that

u(g) = 〈π(g)x, y〉 for all g ∈ G. (2.1)

The norm ‖u‖B of u∈ B(G) is defined as the infimum (actually a minimum) of all numbers

‖x‖‖y‖, where x, y are vectors in some representation (π,H) such that (2.1) holds. With

this norm B(G) is a unital Banach algebra. The Fourier–Stieltjes algebra coincides with

the linear span of the continuous positive definite functions on G. For any u∈ B(G) the

inequality ‖u‖∞ ≤ ‖u‖B holds, where ‖ ‖∞ denotes the uniform norm.

The compactly supported functions in B(G) form an ideal in B(G), and the clo-

sure of this ideal is the Fourier algebra A(G), which is then also an ideal. The Fourier

algebra coincides with the set of matrix coefficients of the left regular representation λ,

that is, u∈ A(G) if and only if there are vectors x, y∈ L2(G) such that

u(g) = 〈λ(g)x, y〉 for all g ∈ G. (2.2)

The norm of u∈ A(G) is the infimum of all numbers ‖x‖‖y‖, where x, y∈ L2(G) satisfy

(2.2). We often write ‖u‖A for the norm ‖u‖B when u∈ A(G).

The dual space of A(G) can be identified with the group von Neumann algebra

L(G) of G via the duality

〈a, u〉 = 〈ax, y〉 =
∫

G
(ax)(g)y(g) dg

where a∈ L(G) and u∈ A(G) is of the form (2.2).

When G is a Lie group, it is known that C ∞
c (G) ⊆ A(G) (see [14, Proposition 3.26]).

Since the uniform norm is bounded by the Fourier–Stieltjes norm, it follows that

A(G) ⊆ B(G) ∩ C0(G). For many groups this inclusion is strict (see e.g [25]), but in some

cases it is not. We will need the following result when proving Theorem C.

Theorem 2.1 ([25, Theorem 3]). Let G be one of the groups SO(1, n), SU(1, n), Sp(1, n), or

F4(−20), and let G = K AN be the Iwasawa decomposition. The group N is contained in a

closed amenable group P satisfying A(P ) = B(P ) ∩ C0(P ). �

We will need the following lemma in Section 5. For a demonstration, see the

proof of Proposition 1.12 in [10].
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Lemma 2.2 ([10]). Let G be a locally compact group with a closed subgroup H ⊆ G.

If u∈ A(G), then u|H ∈ A(H). Moreover, ‖u|H‖A(H) ≤ ‖u‖A(G). Conversely, if u∈ A(H), then

there is ũ∈ A(G) such that u= ũ|H and ‖u‖A(H) = inf{‖ũ‖A(G) | ũ∈ A(G), ũ|H = u}. �

We now recall the definition of the Herz–Schur multiplier algebra B2(G). A func-

tion k : G × G → C is a Schur multiplier on G if for every bounded operator A= [axy]x,y∈G ∈
B(�2(G)) the matrix [k(x, y)axy]x,y∈G represents a bounded operator on �2(G), denoted

mk(A). If this is the case, then by the closed graph theorem mk defines a bounded oper-

ator on B(�2(G)), and the Schur norm ‖k‖S is defined as the operator norm of mk.

A continuous function u: G → C is a Herz–Schur multiplier, if k(x, y) = u(y−1x) is

a Schur multiplier on G, and the Herz–Schur norm ‖u‖B2 is defined as ‖k‖S. We let B2(G)

denote the space of Herz–Schur multipliers, which is a Banach space, in fact a unital

Banach algebra, with the Herz–Schur norm ‖ ‖B2 . The Herz–Schur norm dominates the

uniform norm.

It is known that B(G) ⊆ B2(G), and ‖u‖B2 ≤ ‖u‖B for every u∈ B(G). In [22, The-

oreme 1(ii)], it is shown that B2(G) multiplies the Fourier algebra A(G) into itself

and ‖uv‖A ≤ ‖u‖B2‖v‖A for every u∈ B2(G), v ∈ A(G). In this way, we can view B2(G) as

bounded operators on A(G), and B2(G) inherits a point-norm (or strong operator) topol-

ogy and a point-weak (or weak operator) topology.

It is known that the space of Herz–Schur multipliers coincides isometrically with

the completely bounded Fourier multipliers, usually denoted M0 A(G) (see [2] or [23]). It

is well known that if G is amenable then B(G) = B2(G) isometrically. The converse is

known to hold, when G is discrete (see [1]).

Given f ∈ L1(G) and u∈ B2(G) define

〈 f, u〉 =
∫

G
f(x)u(x) dx (2.3)

and

‖ f‖Q = sup{|〈 f, u〉| | u∈ B2(G), ‖u‖B2 ≤ 1}.

Then ‖ ‖Q is a norm on L1(G), and the completion of L1(G) with respect to this norm

is a Banach space Q(G) whose dual space is identified with B2(G) via (2.3) (see [10,

Proposition 1.10(b)]). In this way, B2(G) is equipped with a weak∗-topology coming from

its predual Q(G). The weak∗-topology is also denoted σ(B2, Q).

We recall that G has the Approximation Property (AP) if there is a net (uα)α∈A in

B2(G) ∩ Cc(G) which converges to the constant function 1G in the σ(B2, Q)-topology. As

with weak amenability, the definition of the AP just given can be seen to be equivalent
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to the original definition by use of the convolution trick (see [27, Appendix B]). For more

on the σ(B2, Q)-topology and the AP we refer to the original paper [19].

The following lemma is a variant of [19, Proposition 1.3(a)]. The statement of [19,

Proposition 1.3(a)] involves an infinite dimensional Hilbert space H , but going through

the proof of [19, Proposition 1.3(a)] one can check that the statement remains true, if H

is just the one dimensional space C. Hence, we have the following lemma.

Lemma 2.3 ([19]). Let G be a locally compact group. Suppose a∈ L(G), v ∈ A(G) and that

f ∈ A(G) is a compactly supported, positive function with integral 1. Then the functional

ωa,v, f : B2(G) → C defined as

ωa,v, f (u) = 〈a, ( f ∗ u)v〉, u∈ B2(G)

is bounded, that is, ωa,v, f ∈ Q(G). �

It is known that weakly amenable groups have the AP [19, Theorem 1.12], and

extensions of groups with the AP have the AP [19, Theorem 1.15]. In particular, the group

R
2

� SL(2, R) has the AP.

Given a compact subgroup K of G we say that a continuous function f : G → C is

K-bi-invariant, if f(kx) = f(xk) = f(x) for every k∈ K and x ∈ G. The space of continuous

K-bi-invariant functions on G is denoted C (K\G/K).

The following two lemmas concerning weak amenability and the AP are standard

averaging arguments. For the convenience of the reader, we include a proof of the second

lemma. A proof of the first can be manufactured in basically the same way. We note that

the special cases where K is the trivial subgroup follow from [9, Proposition 1.1, 11,

Theorem 1.11], respectively.

Lemma 2.4. Let G be a locally compact group with compact subgroup K. If G is weakly

amenable, say ΛWA(G) ≤ C , then there is a net (vβ) in A(G) ∩ Cc(K\G/K) such that

‖vβv − v‖A(G) → 0 for every v ∈ A(G)

and supβ ‖vβ‖B2 ≤ C . Moreover, if G is a Lie group, we may arrange that each vβ is

smooth. �

Lemma 2.5. Let G be a locally compact group with compact subgroup K. If G has the

AP, then there is a net (vβ) in A(G) ∩ Cc(K\G/K) such that

‖vβv − v‖A(G) → 0 for every v ∈ A(G).

Moreover, if G is a Lie group, we may arrange that each vβ is smooth. �
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Proof. We suppose G has the AP. Then there is a net (uα) in A(G) ∩ Cc(G) such that

uα → 1 in the σ(B2, Q)-topology (see [19, Remark 1.2]). Choose a positive function f ∈
A(G) with compact support and integral 1. By averaging from left and right over K (see

Appendix B in [27]), we may further assume that f and each uα is K-bi-invariant. Let

wα = f ∗ uα. Then wα ∈ A(G) ∩ Cc(K\G/K).

Given a∈ L(G) and v ∈ A(G) we have the following equation:

〈a, wαv〉 = ωa,v, f (uα) → ωa,v, f (1) = 〈a, v〉.

Hence wα → 1 in the point-weak topology on B2(G). It follows from [13, Corollary VI.1.5]

that there is a net (vβ) where each vβ lies in the convex hull of {wα} such that vβ → 1 in the

point-norm topology. In other words, there is a net (vβ) in A(G) ∩ Cc(K\G/K) such that

‖vβv − v‖A(G) → 0 for every v ∈ A(G).

If G is a Lie group, we may further assume that f ∈ C ∞
c (G), in which case vβ becomes

smooth. �

3 Simple Lie Groups of Higher Real Rank

It is known that a connected simple Lie group of real rank at least two is not weakly

amenable [12, 16]. In fact, an even stronger result was proved recently [17, 18, 28].

One could ask if such Lie groups also fail the weak Haagerup property. Using results

from [17, 18] we completely settle this question in the affirmative. We thus prove

Theorems A and B.

3.1 Three groups of real rank two

We will prove that the three groups SL(3, R), Sp(2, R), and the universal covering group

S̃p(2, R) of Sp(2, R) do not have the weak Haagerup property. The cases of SL(3, R) and

Sp(2, R) are similar and are treated together. The case of S̃p(2, R) is more difficult, essen-

tially because S̃p(2, R) is not a matrix Lie group, and we will go into more details in

this case.

When we consider the special linear group SL(3, R), then K = SO(3) will be its

maximal compact subgroup. We now describe the group Sp(2, R) and a maximal compact

subgroup. Consider the matrix 4 × 4 matrix

J =
(

0 I2

−I2 0

)
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where I2 denotes the 2 × 2 identity matrix. The symplectic group Sp(2, R) is defined as

Sp(2, R) = {g ∈ GL(4, R) | gt Jg = J}.

Here gt denotes the transpose of g. The symplectic group Sp(2, R) is a connected simple

Lie group of real rank two. It has a maximal compact subgroup

K =
{(

A −B

B A

)
∈ M4(R) | A+ iB ∈ U(2)

}
(3.1)

which is isomorphic to U(2).

The following is immediate from [27, Proposition 4.3, Lemma A.1(2).

Lemma 3.1. Let G be locally compact group with a compact subgroup K. If G has the

weak Haagerup property, then there is a bounded net (uα) in B2(G) ∩ C0(K\G/K) such

that uα → 1 in the weak∗-topology. �

We remind the reader that B2(G) coincides isometrically with the completely

bounded Fourier multipliers M0 A(G). The following result is then extracted from [17,

pp. 937 + 957].

Theorem 3.2 ([17]). If G is one of the groups SL(3, R) or Sp(2, R) and K is the corre-

sponding maximal compact subgroup in G, then B2(G) ∩ C0(K\G/K) is closed in B2(G)

in the weak∗-topology. �

Theorem 3.3. The groups SL(3, R) and Sp(2, R) do not have the weak Haagerup

property. �

Proof. Let G be one of the groups SL(3, R) or Sp(2, R). Obviously, 1 /∈ B2(G) ∩
C0(K\G/K). Since B2(G) ∩ C0(K\G/K) is weak∗-closed, there can be no net uα ∈ B2(G) ∩
C0(K\G/K) such that uα → 1 in the weak∗-topology. Using Lemma 3.1, we conclude that

G does not have the weak Haagerup property. �

Remark 3.4. An alternative proof of Theorem 3.3 for the group SL(3, R), avoiding the

use of the difficult Theorem 3.2, is to use the fact that R
2

� SL(2, R) is a closed subgroup

of SL(3, R). From Theorem D (to be proved in Section 5), we know that R
2

� SL(2, R) does

not have the weak Haagerup property, and this is sufficient to conclude that SL(3, R)

also fails to have the weak Haagerup property (see [27, Theorem A(1)]). �
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We now turn to the case of S̃p(2, R). To ease notation a bit, in the rest of this

section we let G = Sp(2, R) and G̃ = S̃p(2, R). We now describe the group G̃. This is based

on [31; 18, Section 3].

By definition, G̃ is the universal covering group of G. The group G has fundamen-

tal group π1(G) � π1(U(2)) which is the group Z of integers. There is a smooth function

c : G → T, where T denotes the unit circle in C, such that c induces an isomorphism of

the fundamental groups of G and T (such a c is called a circle function). An explicit

description of c can be found in [18, 31]. The circle function c satisfies

c(1) = 1 and c(g−1) = c(g)−1.

There is a unique smooth map η : G × G → R such that

c(g1g2) = c(g1)c(g2) eiη(g1,g2) and η(1, 1) = 0

for all g1, g2 ∈ G. The map η is also explicitly described in [18, 31]. The universal cover G̃

of G can be realized as the smooth manifold

G̃ = {(g, t) ∈ G × R | c(g) = eit}

with multiplication given by

(g1, t1)(g2, t2) = (g1g2, t1 + t2 + η(g1, g2)).

The identity in G̃ is (1, 0), where 1 denotes the identity in G, and the inverse is given by

(g, t)−1 = (g−1,−t). The map σ : G̃ → G given by σ(g, t) = g is the universal covering homo-

morphism, and the kernel of σ is {(1, 2πk) ∈ G × R | k∈ Z}, which is of course isomorphic

to Z.

Let K be the maximal compact subgroup of G given in (3.1). Then one can show

that

η(g, h) = 0 for all g, h∈ K. (3.2)

Under the obvious identification K � U(2), we consider SU(2) ⊆ U(2) as a subgroup of K.

Define a compact subgroup H̃ of G̃ by

H̃ = {(g, 0) ∈ G × R | g ∈ SU(2)}.

By (3.2) H̃ is indeed a subgroup of G̃.
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When t ∈ R let vt ∈ G be the element

vt =

⎛⎜⎜⎜⎜⎝
cos t 0 − sin t 0

0 cos t 0 − sin t

sin t 0 cos t 0

0 sin t 0 cos t

⎞⎟⎟⎟⎟⎠ ,

and define ṽt = (vt, 2t) ∈ G̃. Then η(vt, g) = η(g, vt) = 0 for any g ∈ G. Obviously, (ṽt)t∈R is a

one-parameter family in G̃, and it is a simple matter to check that conjugation by ṽt is

π-periodic. A simple computation will also show that if g ∈ K, then gvt = vtg and hence

hṽt = ṽth for every h∈ H̃ .

Consider the subspace C of C (G̃) defined by

C = {u∈ C (G̃) | u is H̃-bi-invariant and u(ṽtgṽ−1
t ) = u(g) for all t ∈ R}.

Further, we let C0 = C ∩ C0(G̃). For any f ∈ C (G̃) or f ∈ L1(G̃), let fC : G̃ → C be defined by

fC(x) = 1

π

∫π

0

∫
H̃

∫
H̃

f(h1ṽtxṽ−1
t h2) dh1 dh2 dt, x ∈ G̃,

where dh1 and dh2 both denote the normalized Haar measure on the compact group H̃ .

Lemma 3.5. With the notation as above the following holds:

(1) If u∈ C (G̃), then uC ∈ C.

(2) If f ∈ L1(G̃), then fC ∈ L1(G̃) and ‖ fC‖Q ≤ ‖ f‖Q.

(3) If u∈ B2(G̃), then uC ∈ B2(G̃) and ‖uC‖B2 ≤ ‖u‖B2 .

(4) If u∈ C0(G̃), then uC ∈ C0(G̃). �

Proof.

(1) This is elementary.

(2) Suppose f ∈ L1(G̃). Connected simple Lie groups are unimodular (see [24,

Corollary 8.31]), and hence each left or right translate of f is also in L1(G̃)

with the same norm. Since left and right translation on L1(G) is norm con-

tinuous, it now follows from usual Banach space integration theory that

fC ∈ L1(G̃).

We complete the proof of (2) after we have proved (3).
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(3) This statement is implicit in [18] in the proof of [18, Lemma 3.10]. We have

chosen to include a proof.

For each g ∈ B2(G̃) or g ∈ L1(G̃) and α = (h1, h2, t) ∈ H̃ × H̃ × R define

gα(x) = g(h1ṽtxṽ−1
t h2), x ∈ G̃.

If g ∈ B2(G̃), then gα ∈ B2(G̃) and ‖gα‖B2 = ‖g‖B2 . Similarly, if g ∈ L1(G̃), then

gα ∈ L1(G̃) and ‖gα‖1 = ‖g‖1. Note also that 〈g, fα〉 = 〈gα−1 , f〉 where α−1 =
(h−1

1 , h−1
2 ,−t). In particular,

|〈g, uα〉 − 〈g, uβ〉| ≤ ‖gα−1 − gβ−1‖1‖u‖B2

for α, β ∈ H̃ × H̃ × R, and α �→ uα is weak∗-continuous.

The set S = {uα | α ∈ H̃ × H̃ × [0, π ]} is a norm bounded subset of

B2(G̃). If T = convσ(B2,Q)(S) is the weak∗-closed convex hull of S, then T

is weak∗-compact by Banach–Alaoglu’s theorem. By [32, Theorem 3.27] the

integral

uC = 1

π

∫
H̃×H̃×[0,π ]

uα dμ(α)

exists in B2(G̃). Here dμ(α) = dh1dh2dt. Since the set T is bounded in norm by

‖u‖B2 , and because it follows from [32, Theorem 3.27] that uC ∈ T , we obtain

the inequality ‖uC‖B2 ≤ ‖u‖B2 .

(2) Continued. Let u∈ B2(G̃) be arbitrary. Observe that 〈 fC, u〉 = 〈 f, uC〉. Hence the

norm estimate ‖ fC‖Q ≤ ‖ f‖Q follows from (3).

(4) This is elementary. �

Proposition 3.6. If G̃ had the weak Haagerup property, then there would exist a

bounded net (vα) in B2(G̃) ∩ C0 such that vα → 1 in the weak∗-topology. �

Proof. We suppose G̃ has the weak Haagerup property. Using [27, Proposition 4.2] we

see that there exist a constant C > 0 and a net (uα) in B2(G̃) ∩ C0(G̃) such that

‖uα‖B2 ≤ C for every α,

uα → 1 in the σ(B2, Q)-topology.



The Weak Haagerup Property II: Examples 6953

Let uC
α be given by

uC
α (x) = 1

2π

∫2π

0

∫
H̃×H̃

uα(h1ṽtgṽ−1
t h2) dh1 dh2 dt, x ∈ G̃,

where dh1 and dh2 both denote the normalized Haar measure on H̃ . By Lemma 3.5, we

see that uC
α ∈ B2(G̃) ∩ C0 and that (uC

α ) is a bounded net. Thus, it suffices to prove that

uC
α → 1 in the weak∗-topology.

By Lemma 3.5, the map L1(G̃) → L1(G̃) given by f �→ fC extends uniquely to a

linear contraction R : Q(G̃) → Q(G̃). The dual operator R∗ : B2(G̃) → B2(G̃) obviously sat-

isfies R∗v = vC and is weak∗-continuous. Hence

〈 f, uC
α 〉 = 〈 f, R∗uα〉 → 〈 f, R∗1〉 = 〈 f, 1〉

for any f ∈ Q(G). This proves that uC
α → 1 in the weak∗-topology. �

For β ≥ γ ≥ 0, we let D(β, γ ) denote the element in G given as

D(β, γ ) =

⎛⎜⎜⎜⎜⎝
eβ 0 0 0

0 eγ 0 0

0 0 e−β 0

0 0 0 e−γ

⎞⎟⎟⎟⎟⎠ .

We define D̃(β, γ ) as the element (D(β, γ ), 0) in G̃. Let u∈ B2(G̃) ∩ C be given. If we put

u̇(β, γ, t) = u(ṽ t
2
D̃(β, γ )),

then it is shown in [18, Proposition 3.11] that the limit lims→∞ u̇(2s, s, t) exists for any

t ∈ R. If we let

T = {u∈ B2(G̃) ∩ C | lim
s→∞ u̇(2s, s, t) = 0 for all t ∈ R},

then we can phrase part of the main result of [18] in the following way.

Lemma 3.7 ([18, Lemma 3.12]). The space T is closed in the weak∗-topology. �

Using Lemma 3.7, it is not hard to show that G̃ does not have the weak Haagerup

property. The argument goes as follows.
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Obviously, 1 /∈ T . We claim that B2(G̃) ∩ C0 ⊆ T . Indeed, if u∈ C0(G̃) and t ∈ R, then

u̇(2s, s, t) = u(ṽ t
2
D̃(2s, s)) → 0 as s → ∞.

Since T is weak∗-closed, we conclude by Proposition 3.6 that G̃ does not have the weak

Haagerup property.

Theorem 3.8. The group G̃ = S̃p(2, R) does not have the weak Haagerup property. �

3.2 The general case

Knowing that the three groups SL(3, R), Sp(2, R), and S̃p(2, R) do not have the weak

Haagerup property, it is a simple matter to generalize this result to include all con-

nected simple Lie groups of real rank at least two. The idea behind the general case is

basically that inside any connected simple Lie group of real rank at least two one can

find a subgroup that looks like one of the three mentioned groups. We will make this

statement more precise now. The following is certainly well known.

Lemma 3.9. Let G be a connected simple Lie group of real rank at least two. Then

G contains a closed connected subgroup H locally isomorphic to either SL(3, R) or

Sp(2, R). �

Proof. Consider a connected simple Lie group G of real rank at least two. It is well

known that the Lie algebra of such a group contains one of the Lie algebras sl(3, R)

or sp(2, R) (see [29, Proposition 1.6.2]). Hence there is a connected Lie subgroup H

of G whose Lie algebra is either sl(3, R) or sp(2, R) (see [21, Theorem II.2.1]). By [21,

Theorem II.1.11] we get that H is locally isomorphic to SL(3, R) or Sp(2, R). It remains

only to see that H is closed. This is [12, Corollary 1]. �

Theorem B. A connected simple Lie group has the weak Haagerup property if and only

if it has real rank zero or one. �

Proof. It is known that connected simple Lie groups of real rank zero and one have the

weak Haagerup property. Indeed, connected simple Lie groups of real rank zero are com-

pact, and connected simple Lie groups of real rank one are weakly amenable (see [9, 20]).

This is clearly enough to conclude that such groups have the weak Haagerup property.
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Thus, we must prove that connected simple Lie groups of real rank at least two do not

have the weak Haagerup property.

Let G be a connected simple Lie group of real rank at least two. Then G con-

tains a closed connected subgroup H locally isomorphic to SL(3, R) or Sp(2, R). Because

of [27, Theorem A(1)], it is sufficient to show that H does not have the weak Haagerup

property.

Suppose first that H is locally isomorphic to SL(3, R). The fundamental group

of SL(3, R) has order two, and SL(3, R) has trivial center. Hence the universal cov-

ering group of SL(3, R) has center of order two, and H must have finite center Z of

order one or two. Then SL(3, R) � H/Z . Since SL(3, R) does not have the weak Haagerup

property, we deduce from [27, Theorem A(2)] that H does not have the weak Haagerup

property.

Suppose instead that H is locally isomorphic to Sp(2, R). Then there is a cen-

tral subgroup Z ⊆ S̃p(2, R) such that S̃p(2, R)/Z � H . Since the center of S̃p(2, R) is

isomorphic to π1(Sp(2, R)) � Z, every nontrivial subgroup of the center of S̃p(2, R) is

infinite and of finite index. Hence, if H has infinite center, then S̃p(2, R) � H . In that

case, H does not have the weak Haagerup property. Otherwise, H has finite center Z ,

and then H/Z � Sp(2, R)/{±1}. Since Sp(2, R) does not have the weak Haagerup prop-

erty, we deduce from [27, Theorem A(2)] that H does not have the weak Haagerup

property. �

4 Simple Lie Groups of Real Rank One

In this section, we compute the weak Haagerup constant of the groups Sp(1, n) and

F4(−20). We thus prove Theorem C. Throughout this section G denotes one of the groups

Sp(1, n), n≥ 2, or F4(−20). The symbol R+ denotes the nonnegative reals, that is, R+ =
[0,∞[.

4.1 Preparations

The group Sp(1, n) is defined as the group of quaternion matrices of size n+ 1 that pre-

serve the Hermitian form

〈x, y〉 = ȳ1x1 −
n+1∑
k=2

ȳkxk, x = (xk)
n+1
k=1, y= (yk)

n+1
k=1 ∈ H

n+1.

Equivalently,

Sp(1, n) = {g ∈ GL(n+ 1, H) | g∗ I1,ng = I1,n}
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where I1,n is the (n+ 1) × (n+ 1) diagonal matrix

I1,n =

⎛⎜⎜⎜⎜⎜⎝
1

−1
. . .

−1

⎞⎟⎟⎟⎟⎟⎠ .

The exceptional Lie group F4(−20) is described in [33].

For details about general structure theory of semisimple Lie groups we refer

to [24, Chapters VI–VII; 21, Chapter IX]. The proof of Theorem C builds on [9], where (1.5)

is proved. We adopt the following from [9].

Recall that throughout this section G denotes one of the connected simple real

rank one Lie groups Sp(1, n), n≥ 2 or F4(−20). Let g be the Lie algebra of G. Let θ be a

Cartan involution, g = k ⊕ p the corresponding Cartan decomposition and K the analytic

subgroup corresponding to k. Then K is a maximal compact subgroup of G. Let a be a

maximal abelian subalgebra of p, and decompose g into root spaces,

g = m ⊕ a ⊕
∑
β∈Σ

gβ,

where m is the centralizer of a in k and Σ is the set of roots. Then a is one dimensional

and Σ = {−2α,−α, α, 2α}. Let n = gα ⊕ g2α. We have the Iwasawa decomposition at the Lie

algebra level

g = k ⊕ a ⊕ n

and at the group level

G = K AN

where A and N are the analytic subgroups of G with Lie algebras a and n, respectively.

The group A is abelian and simply connected, and N is nilpotent and simply connected.

Let B be the Killing form of g. Let v = gα, z = g2α and equip the Lie algebra n = v ⊕ z

with the inner product

〈v + z, v′ + z′〉 = −1

2p+ 4q
B
(

v

2
+ z

4
, θ

(
v′

2
+ z′

4

))
v, v′ ∈ v, z, z′ ∈ z where, as in [9],

2p= dim v, q = dim z.
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The inner product on n of course gives rise to a norm | | on n defined by |n| =√〈n, n〉, n∈ n.

The following convenient notation is taken from [9]. Let

(v, z) = exp(v + z/4), v ∈ v, z∈ z. (4.1)

Then (v, z) ∈ N. Since N is connected, nilpotent and simply connected, the exponential

mapping is a diffeomorphism of n onto N ([24, Theorem 1.127]), and hence every element

of N can in a unique way be written in the form (4.1).

We let a= p/2. It is well known that the values of p, q, and a are as follows:

Group p q a

Sp(1, n) 2n− 2 3 n− 1

F4(−20) 4 7 2

(4.2)

As a is one dimensional there is a unique element H in a such that ad(H)|gα
= idgα

.

Let

at = exp(tH) ∈ A, t ∈ R,

and Ā+ = {exp tH | t > 0} = {at ∈ A | t ≥ 0}. Then we have the K AK decomposition of G

(see [21, Theorem IX.1.1])

G = K Ā+K. (4.3)

More precisely, for each g ∈ G there is a unique t ≥ 0 such that g ∈ KatK. Con-

cerning the K AK decomposition of elements of N we can be even more specific. The

following lemma is completely analogous to part of [9, Proposition 2.1], and thus we

leave out the proof.

Lemma 4.1. For every v ∈ v and z∈ z exists a unique t ∈ R+ such that

(v, z) ∈ KatK.

Moreover, t satisfies

4 sinh2 t = 4|v|2 + |v|4 + |z|2. �

The following fact proved by Whitney [34, Theorem 1] identifies the smooth even

functions on R with smooth functions on R+ = [0,∞[.
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Lemma 4.2 ([34]). An even function g on R is smooth if and only if it has the form

g(x) = f(x2) for some (necessarily unique) f ∈ C ∞(R+). �

The following proposition is inspired by Theorem 2.5(b) in [9].

Proposition 4.3. Suppose u∈ C (N). Then u is the restriction to N of a K-bi-invariant

function on G if and only if u is of the form

(v, z) �→ f(4|v|2 + |v|4 + |z|2) (4.4)

for some f ∈ C (R+). In that case, the function f is uniquely determined by u.

The function f is in C ∞(R+), Cc(R+), or C0(R+) if and only if u is in C ∞(N), Cc(N),

or C0(N), respectively. �

Proof. Assume u∈ C (N) is the restriction to N of a K-bi-invariant function on G. Then

by Lemma 4.1, u(v, z) only depends on 4|v|2 + |v|4 + |z|2 when v ∈ v, z∈ z. Hence there is a

unique function f on R+ such that

u(v, z) = f(4|v|2 + |v|4 + |z|2), v ∈ v, z∈ z.

If we fix a unit vector z0 ∈ z then t �→ u(0,
√

tz0) = f(t) is continuous on R+, since u is

continuous. In other words, f ∈ C (R+).

Assume conversely that u is of the form (4.4) for some (necessarily unique) f ∈
C (R+). We define a function ũ on G using the K Ā+K decomposition as follows. For an

element katk′ in G where k, k′ ∈ K and t ∈ R+ we let

ũ(katk
′) = f(4 sinh2 t).

By the uniqueness of t in the K Ā+K decomposition, this is well defined. Clearly, ũ is a

K-bi-invariant function on G. When (v, z) ∈ N we find by Lemma 4.1 that

ũ(v, z) = f(4|v|2 + |v|4 + |z|2) = u(v, z)

so that ũ restricts to u on the subgroup N.

It is easy to see that uhas compact support if and only if f has compact support,

and similarly that u vanishes at infinity if and only if f vanishes at infinity. It is also

clear that smoothness of f implies smoothness of u.
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Finally, assume that u is smooth. If again z0 ∈ z is a unit vector, then t �→
u(0, tz0) = f(t2) is a smooth even function on R. By Lemma 4.2 we obtain f ∈ C ∞(R+). �

We remark that ‖u‖∞ = ‖ f‖∞.

Lemma 4.4. Let (uk) be a sequence, where uk ∈ C (N) is the restrictions to N of a K-bi-

invariant function in C (G), and let fk ∈ C (R+) be as in Proposition 4.3. If uk → 1 point-

wise, then fk → 1 pointwise. �

Proof. This is obvious, since the map (v, z) �→ 4|v|2 + |v|4 + |z|2 is a surjection of N

onto R+. �

4.2 Proof of Theorem C

With almost all the notational preparations in place, we are now ready to aim for the

proof of Theorem C. The starting point is the inequality in Proposition 4.5 which is taken

almost directly from [9]. To ease notation a bit, let

C = 2p+1Γ
( p+q

2

)
Γ (p)Γ

(q
2

) . (4.5)

We remark that with this definition C and (1.5) and (4.2) in mind, then

C

4
Γ (a) = ΛWA(G). (4.6)

Combining Theorem 2.5(b), Proposition 5.1, and Proposition 5.2 in [9] one obtains the

following proposition.

Proposition 4.5 ([9]). If u∈ C ∞
c (N) is the restriction of a K-bi-invariant function on G,

then u is of the form

u(z, v) = f(4|v|2 + |v|4 + |z|2)

for some f ∈ C ∞
c (R), and ∣∣∣∣C ∫

R+
f (a)(4t2 + t4)t2p−1 dt

∣∣∣∣≤ ‖u‖A(N). �

We now aim to prove a variation of the above proposition where we no longer

require the function u to be compactly supported.
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Following [9], we let h :]0,∞[→ R be defined by h(s) = (s1/2 − 2)p−1s−1/2, and let g

be the (a − 1)th derivative of h. It is known (see [9, p. 544]) that

∫∞

4
|g′(s)| ds < ∞ and

∫∞

4
g′(s) ds = Γ (a). (4.7)

Proposition 4.6. If u∈ A(N) ∩ C ∞(N) is the restriction of a K-bi-invariant function on

G, then u is of the form
u(z, v) = f(4|v|2 + |v|4 + |z|2)

for some f ∈ C ∞
0 (R+), and ∣∣∣∣C4

∫∞

4
f(s − 4)g′(s) ds

∣∣∣∣≤ ‖u‖A(N). �

Proof. We use the fact that G is weakly amenable [9]. We will then approximate u by

functions in C ∞
c (N) and apply Proposition 4.5 to those functions.

Choose a sequence vk ∈ C ∞
c (G) of K-bi-invariant functions such that ‖vk‖B2 ≤

ΛWA(G) and

‖vkv − v‖A(G) → 0 for every v ∈ A(G)

(see Lemma 2.4). Put wk = vk|N . Then by Lemma 2.2 we have

‖wkv − v‖A(N) → 0 for every v ∈ A(N).

If we put uk = wku, then we get uk → u uniformly. Note that uk ∈ C ∞
c (N). Let f ∈ C ∞

0 (R+)

and fk ∈ C ∞
c (R+) be chosen according to Proposition 4.3 such that

u(v, z) = f(4|v|2 + |v|4 + |z|2), uk(v, z) = fk(4|v|2 + |v|4 + |z|2).

Using the substitution s = 4 + 4t2 + t4 and then partial integration we get

‖u‖A(N) = lim
k

‖uk‖A(N)

≥ lim
k

∣∣∣∣C ∫
R+

f (a)
k (4t2 + t4)t2p−1 dt

∣∣∣∣
= lim

k

∣∣∣∣C4
∫∞

4
f (a)
k (s − 4)h(s) ds

∣∣∣∣
= lim

k

∣∣∣∣C4
∫∞

4
fk(s − 4)g′(s) ds

∣∣∣∣ .
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There are no boundary terms, since fk has compact support, and because the first p− 2

derivatives of h vanish at s = 4. We observe that

‖ fk‖∞ = ‖uk‖∞ ≤ ‖uk‖B2 ≤ ‖wk‖B2‖u‖B2 ≤ ‖vk‖B2‖u‖B2 ≤ ΛWA(G) ‖u‖B2 ,

so in particular, supk ‖ fk‖∞ < ∞. Finally, since g′(s) is integrable (see (4.7)), we can apply

Lebesgue’s Dominated Convergence Theorem and get

‖u‖A(N) ≥
∣∣∣∣C4

∫∞

4
f(s − 4)g′(s) ds

∣∣∣∣ . �

Proposition 4.7. Suppose uk ∈ A(N) ∩ C ∞(N) is the restriction of a K-bi-invariant func-

tion on G, and suppose further that uk → 1 pointwise as k→ ∞. Then

sup
k

‖uk‖A(N) ≥ ΛWA(G). �

Proof. If supk ‖uk‖A(N) = ∞, there is nothing to prove. So we assume that

supk ‖uk‖A(N) < ∞.

Let fk ∈ C ∞
0 (R+) be chosen according to Proposition 4.3 such that

uk(v, z) = fk(4|v|2 + |v|4 + |z|2).

Observe that fk → 1 pointwise, and supk ‖ fk‖∞ < ∞. By Lebesgue’s Dominated Conver-

gence Theorem we have

sup
k

‖uk‖A(N) ≥ lim
k

∣∣∣∣C4
∫∞

4
fk(s − 4)g′(s)ds

∣∣∣∣= C

4

∫∞

4
g′(s) ds = C

4
Γ (a).

As mentioned in (4.6), ΛWA(G) = CΓ (a)/4. �

Theorem C is an immediate consequence of the following, since we already know

the value ΛWA(G) and that ΛWH(G) ≤ ΛWA(G).

Proposition 4.8. If G is either Sp(1, n), n≥ 2, or F4(−20), then ΛWH(G) = ΛWA(G). �

Proof. We only prove ΛWH(G) ≥ ΛWA(G), since the other inequality holds trivially. Using

Proposition 4.3 in [27], it is enough to prove that if a sequence vk ∈ B2(G) ∩ C ∞
0 (G)
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consisting of K-bi-invariant functions satisfies

‖vk‖B2 ≤ L for all k,

vk → 1 uniformly on compacts as k→ ∞,

then L ≥ ΛWA(G). So suppose such a sequence is given. Consider the subgroup P from

Theorem 2.1. Since P is amenable, B2(P ) = B(P ) isometrically. Then

vk|P ∈ B2(P ) ∩ C0(P ) = B(P ) ∩ C0(P ) = A(P )

by Theorem 2.1, and so vk|N ∈ A(N). To ease notation, we let uk = vk|N . Then (using

amenability of N)

‖uk‖A(N) = ‖uk‖B(N) = ‖uk‖B2(N) ≤ ‖vk‖B2(G).

Hence by Proposition 4.7 and the above inequalities we conclude

ΛWA(G) ≤ sup
k

‖uk‖A(N) ≤ L .

This shows that ΛWA(G) ≤ ΛWH(G), and the proof is complete. �

Proof of Theorem C. Suppose G is a connected simple Lie group. If the real rank of G

is zero, then G is compact and ΛWA(G) = ΛWH(G) = 1. If the real rank of G is at least two,

then ΛWA(G) = ∞ by [12, 16]. By Theorem B also ΛWH(G) = ∞.

Only the case when the real rank of G equals one remains. Then G is locally iso-

morphic to either SO0(1, n), SU(1, n), Sp(1, n) where n≥ 2 or locally isomorphic to F4(−20)

(see, for example, the list [24, p. 426; 21, Theorem II.1.11]). If G is locally isomorphic to

SO0(1, n) or SU(1, n) then by (1.5) we conclude that ΛWA(G) = ΛWH(G) = 1.

Finally, let G̃ be either Sp(1, n) or F4(−20) and suppose G is locally isomorphic

to G̃. If K AN is the Iwasawa decomposition of G̃ then K is Sp(n) × Sp(1) or Spin(9),

respectively (see Section 4, Proposition 1 and Section 5, Theorem 1 in [33] for the latter).

Here Spin(9) is the two-fold simply connected cover of SO(9). In any case, K is sim-

ply connected and compact, so it follows that G̃ is simply connected with finite center

[24, Theorem 6.31].

From Proposition 4.8, we get that ΛWH(G) = ΛWA(G) if G = G̃. Otherwise G is a

quotient of G̃ by a finite central subgroup, and then it follows from (1.5), Proposition 4.8

and [27, Proposition 5.4] that ΛWH(G) = ΛWH(G̃) = ΛWA(G). �



The Weak Haagerup Property II: Examples 6963

5 Another Group Without the Weak Haagerup Property

Throughout this section, we let G be the group G = R
2

� SL(2, R). We show here that this

group does not have the weak Haagerup property. In short, we prove ΛWH(G) = ∞. This

generalizes a result from [11, 16], where it is proved that ΛWA(G) = ∞.

We shall think of G as a subgroup of SL(3, R) in the following way:

G =
(

SL(2, R) R
2

0 1

)
.

We consider the compact group K = SO2(R) as a subgroup of G using the inclusions

SO2(R) ⊆ SL(2, R) ⊆ R
2

� SL(2, R).

We will make use of the following closed subgroups of G.

N =

⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎝

1 x z

0 1 y

0 0 1

⎞⎟⎟⎠
∣∣∣∣∣∣∣∣x, y, z∈ R

⎫⎪⎪⎬⎪⎪⎭ , P =

⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎝

λ x z

0 λ−1 y

0 0 1

⎞⎟⎟⎠
∣∣∣∣∣∣∣∣ x, y, z∈ R, λ > 0

⎫⎪⎪⎬⎪⎪⎭ . (5.1)

The group N is the Heisenberg group. The following is proved in [11, Section 10] (see

also [16, Lemmas A and E]).

Proposition 5.1 ([11]). Consider the Heisenberg group N. If u∈ C ∞
c (N) is the restriction

of a K-bi-invariant function in C ∞(G), then∣∣∣∣∣
∫∞

−∞

u(x, 0, 0)√
1 + x2/4

dx

∣∣∣∣∣≤ 12π‖u‖A(N). �

We now prove a variation of the above lemma where we no longer require the

function in question to be compactly supported.

Proposition 5.2. Suppose u∈ A(N) ∩ C ∞(N) is the restriction of a K-bi-invariant func-

tion in C ∞(G). Then ∫∞

−∞

|u(x, 0, 0)|2√
1 + x2/4

dx ≤ 12π‖u‖2
A(N). �

Proof. The idea is to use the fact (see [19, p. 670]) that G = R
2

� SL(2, R) has the AP. We

will approximate u with compactly supported, smooth functions on N and then apply

Proposition 5.1.
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By Lemma 2.2, there is an extension ũ∈ A(G) of u. It follows from Lemma 2.5 that

there is a sequence (vk) in C ∞
c (K\G/K) such that

‖vkũ− ũ‖A(G) → 0.

We let wk = vk|N . Since restriction does not increase the norm, we have

‖wku− u‖A(N) = ‖(vkũ− ũ)|N‖A(N) ≤ ‖vkũ− ũ‖A(G) → 0.

Since wku→ upointwise we have by Fatou’s Lemma and Proposition 5.1 applied to |wku|2

‖u‖2
A(N) ≥ lim inf

k→∞
‖|wku|2‖A(N) ≥ 1

12π

∫∞

−∞
lim inf

k→∞
|wku(x, 0, 0)|2√

1 + x2/4
dx

= 1

12π

∫∞

−∞

|u(x, 0, 0)|2√
1 + x2/4

dx.

In the first inequality we have used that for every v ∈ A(N) we have |v|2 = vv̄ ∈ A(N) and

‖|v|2‖A ≤ ‖v‖A‖v̄‖A = ‖v‖2
A. �

Having done all the necessary preparations, we are now ready for

Theorem D. The group R
2

� SL(2, R) does not have the weak Haagerup property. �

Proof. Suppose there is a net (un) of Herz–Schur multipliers on G = R
2

� SL(2, R) van-

ishing at infinity and converging uniformly to the constant function 1G on compacts.

We will show that supn‖un‖B2 = ∞. By Proposition 4.3 in [27], we may assume that

un ∈ C ∞
0 (K\G/K), and since G is second countable, we may assume that the net is a

sequence.

Consider the group P defined in (5.1). Since P is amenable, even solvable, we

know that B2(P ) = B(P ) isometrically. We also know that A(P ) = B(P ) ∩ C0(P ) (see [25,

Theorem 2]). Then

un|P ∈ B2(P ) ∩ C0(P ) = B(P ) ∩ C0(P ) = A(P ),

and so un|N ∈ A(N). To ease notation, we let wn = un|N . Then, using amenability of N,

‖wn‖A(N) = ‖wn‖B(N) = ‖wn‖B2(N) ≤ ‖un‖B2(G).
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Hence it will suffice to show that supn‖wn‖A(N) = ∞. By Proposition 5.2, we have

∫∞

−∞

|wn(x, 0, 0)|2√
1 + x2/4

dx ≤ 12π‖wn‖2
A(N).

Since un → 1G uniformly on compacts, we have in particular wn(x, 0, 0) → 1 as n→ ∞. It

follows that

lim inf
n→∞ ‖wn‖2

A(N) ≥ 1

12π

∫∞

−∞

1√
1 + x2/4

dx = ∞.

This completes the proof. �

Remark 5.3. It was proved by the first author [16] that the group R
2

� SL(2, R) is not

weakly amenable. This result was later generalized by Dorofaeff [11] to include the

groups R
n

� SL(2, R) where n≥ 2. Here the action of SL(2, R) on R
n is by the unique irre-

ducible representation of dimension n.

In view of Theorem D, and especially since our proof of Theorem D uses the same

techniques as [11, 16], it is natural to ask if the groups R
n

� SL(2, R) also fail to have the

weak Haagerup property when n≥ 3.

We note that an affirmative answer in the case n= 3 would give a different

proof of Theorem A. This is because SL(3, R) contains R
2

� SL(2, R) as a closed sub-

group, and both groups Sp(2, R) and S̃p(2, R) contain R
3

� SL(2, R) as a closed subgroup

(see [12]). �
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