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Abstract

In [4] we introduced the class of DT-operators, which are modeled by certain upper
triangular random matrices, and showed that if the spectrum of a DT-operator is not reduced
to a single point, then it has a nontrivial, closed, hyperinvariant subspace. In this paper, we
prove that also every DT-operator whose spectrum is concentrated on a single point has a
nontrivial, closed, hyperinvariant subspace. In fact, each such operator has a one-parameter
family of them. It follows that every DT-operator generates the von Neumann algebra L(F,)
of the free group on two generators.
© 2003 Elsevier Inc. All rights reserved.

MSC: 47A15; 46L54

1. Introduction

Let & be a separable, infinite dimensional Hilbert space and let #(#) be the
algebra of bounded operators on . Let A€ #B(H). An invariant subspace of A is a
subspace # o< A such that A(#) <= H o, and a hyperinvariant subspace of A is a
subspace # of # that is invariant for every operator Be () that commutes with
A. A subspace of # is said to be nontrivial if it is neither {0} nor J# itself. The
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famous invariant subspace problem for Hilbert space asks whether every operator in
B(A) has a closed, nontrivial, invariant subspace, and the hyperinvariant subspace
problem asks whether every operator in %(s#) that is not a scalar multiple of the
identity operator has a closed, nontrivial, hyperinvariant subspace.

On the other hand, if .# = %() is a von Neumann algebra, a closed subspace #
of A is affiliated to . if the projection p from # onto # belongs to .#. It is not
difficult to show that every closed, hyperinvariant subspace of A is affiliated to the
von Neumann algebra, W*(A), generated by A. The question of whether every
element of a von Neumann algebra .# has a nontrivial invariant subspace affiliated
to .4 1is called the invariant subspace problem relative to the von Neumann
algebra ./ .

In [3], we began using upper triangular random matrices to study invariant
subspaces for certain operators arising in free probability theory, including
Voiculescu’s circular operator. In the sequel [4], we introduced the DT-operators;
these form a class of operators including all those studied in [3]. (We note that the
DT-operators were defined in terms of approximation by upper triangular random
matrices, and have been shown in [5] to solve a maximization problem for free
entropy.) We showed that DT-operators are decomposable in the sense of Foias,
which entails that those DT-operators whose spectra contain more than one point
have nontrivial, closed, hyperinvariant subspaces. In this paper, we show that also
DT-operators whose spectra are singletons have (a continuum of) closed, nontrivial,
hyperinvariant subspaces. These operators are all scalar translates of scalar multiples
of a single operator, the DT(dy, 1)-operator, which we will denote by 7.

The free group factor L(F,)=%(A) is generated by a semicircular element X
and a free copy of L*[0,1], embedded via a normal x-homomorphism A/ :
L>*[0,1]—> L(F2) such that toA(f) = folf(t) dt, where 7 is the tracial state on
L(F;). Thus X and the image of A are free with respect to 7 and together they
generate L(F,). As proved in [4, Section 4], the DT(dy, 1)—operator T can be
obtained by using projections from A(L*[0,1]) to cut out the ““upper triangular
part” of X; in the notation of [4, Section 4], T = %7 (X, ). It is clear from this
construction that each of the subspaces #, = A(1))# is an invariant subspace of
T. We will show that each of these subspaces is affiliated to W*(T) by proving
Doe W*(T), where Dy = /(id);;) and idjp; is the identity function from [0, 1] to
itself. Since X = T + T*, this will also imply W*(T) = L(F,). We will then show
that each ., is actually a hyperinvariant subspace of 7', by characterizing J#, as the
set of vectors £e.# such that ||T%¢|| has a certain asymptotic property as k — co.

2. Preliminaries and statement of results

In [4, Section 8], we showed that the distribution of 7*T is the probability measure
won [0,e] given by
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where ¢:(0,e) > R" is the function given uniquely by

i 1.
q)<¥exp(vcotv))—s1nvexp(vcotv), O<v<m. (2.1)
T
Proposition 2.1. Let F(x) = [ ¢(1) dt,x€[0,e]. Then
sinv v 1sinv
F|——exp(veotv) | =1 ——+— , O<v<m. (2.2)
v T T

Proof. From the proof of [4, Theorem 8.9] we have that
a:v»—»?exp(u cotv) (2.3)

is a decreasing bijection from (0,7) onto (0, ¢). Hence

g / (% qo(a(u))) o (u) du

. n . .
1 [sin’ u 1 (" u sinu 1 sin® v v
+— —_———du=— +1—-— O
, T.J, sinu  u v m
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—
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>
=
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>
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The following is the central result of this paper.

Theorem 2.2. Let Si = k((Tk)*Tk)%7 k=1,2,... . Then o(Sx) = [0,¢] for all keN
and

lim |[F(Si) = Doll, =0 for k—on.
— 00

In particular Doe W*(T). Therefore #, = 1y (Do) # = A(10,9)#,0<t<1 is a one-
parameter family of nontrivial, closed, T-invariant subspaces aﬁ?hated with W*(T).

Corollary 2.3. W*(T)=L(F,). Moreover, if Z is any DT-operator, then
W*(Z)=L(F,).

Proof. As described in the introduction, with 7= %7 (X, 1) e W*(X 0 A(L*[0,1]))
= L(F,), from Theorem 2.2 we have Dye W*(T). Since clearly X € W*(T), we have
W*(T) = L(F,). By [4, Theorem 4.4], Z can be realized as Z = D + ¢T for some
Del(L*[0,1]) and ¢>0. By [4, Lemma 6.2], Te W*(Z), so W*(Z) = L(F,). O
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We now outline the proof of Theorem 2.2. Let M be a factor of type II; with
tracial state tr, and let 4, Be My,. By [1, Section 1], there is a unique probability
measure (1, g on 6(A) x a(B), such that for all bounded Borel functions f, g on ¢(4)
and o(B), respectively, one has

(£ (A)g(B)) = / / o 990 (2 (24)

The following lemma is a simple consequence of (2.4) (cf. [1, Proposition 1.1]).

Lemma 2.4. Let A, B and i  be as above, then for all bounded Borel functions f and g
on o(A) and o(B), respectively,

1£(A) — g(B)E = / / o =g it ) (2.5)

We shall need the following key result of Sniady [6]. Strictly speaking, the results of
[6] concern an operator that can be described as a generalized circular operator with a
given variance matrix. It is not entirely obvious that the operator T studied in [4] and
in the present article is actually of this form. A proof is supplied in Appendix A.

Theorem 2.5 (éniady [6, Theorem 5]). Let Eg be the trace preserving conditional
expectation of W*(Dy, T) onto 9 = W*(Dy), which we identify with L* [0, 1] as in [6].
Let keN and let (Pyp),., be the sequence of polynomials in a real variable x
determined by

Pro(x) =1, (2.6)
POG) = Pai(x+1), n=1.2,.., (2.7)
Pea(0) = P/ (0) = - =PV (0) =0, n=12, ..., (2.8)

where P;(/Zl denotes the /th derivative of Py ,. Then for all k,neN,
Eg((TF)'T*)")(x) = Pra(x),  xe[0,1].
Remark 2.6. The above Theorem is equivalent to [6, Theorem 5] because
Eg((TF)'T*)")(x) = Eo((T*(T)")")(1 = x), xe[0,1].

Sniady used Theorem 2.5 to prove the following formula, which was conjectured
in [4, Section 9].
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Theorem 2.7 (Sniady [6, Theorem 7]). For all n,keN:

nnk

(T4 T)") = Gk + )T

(2.9)

Sniady proved that Theorem 2.5 implies Theorem 2.7 by a tricky and clever
combinatorial argument. In the course of proving Theorem 2.2, we also obtained a
purely analytic proof of Theorem 2.5 = Theorem 2.7 (see (3.2) and Remark 4.3).
Note that it follows from Theorem 2.7 that Sf = k*(7*)"T* has the same moments

as (T*T)*. Hence the distribution measures tts, and pz.7 in Prob(R) are equal. In
particular their supports are equal. Hence, by [4, Theorem 8.9],

o(Sk) = o(T"T) = [0, e]. (2.10)

We will use Theorem 2.5 to derive in Theorem 2.8 an explicit formula for the
measure p, s, defined in (2.4). The formula involves Lambert’s W function, which is
defined as the multivalued inverse function of the function Csz+—>ze*. We define a
function p by

p(z) = —Wy(-2), zeC\E,oo), (2.11)

where W) is the principal branch of Lambert’s W-function. By [2, Section 4], p is an
analytic bijection of C\[}, c0) onto

Q={x+iy| —n<y<m x<ycoty},

where we have used the convention 0 cot 0 = 1. Moreover, p is the inverse function
of the function f defined by

fw)=we™, weQ.
Note that / maps the boundary of  onto [1, c0), because

f(0cot0+i0) = f (ﬁf_ﬂ@) 0 ocon (2.12)

and 03800 cot0 jg 4 bijection of (0,7) onto (0,e) (see [4, Section 8]). By (2.12), it
also follows that if we define functions p*, p~ : [1, 00) > C by

0
+ —0 cot 0 : <
P (si Oe ) =f0cotf+if, 0<O<m, (2.13)
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then

In particular p*(1) = p~(1) = 1.

Theorem 2.8. Let keN be fixed. Define for t>1 and j=0, ...,k the functions a;(1),
¢i(t) by

a() = p™ (1), (2.14)
and

as(1)

¢j(t) = —ka;(t) ;;[j - a0 (2.15)

Then the probability measure pp, s, on a(Dg) x 6(Sk) = [0,1] x [0, €] is absolutely

continuous with respect to the two-dimensional Lebesgue measure and, with ¢ as in
(2.1), has density

dup, 5, (x,y) . I\ ka(v-Dx
STV Ay (Gt
o= o) | D e (2.16)
j=0

Jfor x€(0,1) and ye (0, ¢e).

We will prove Theorem 2.2 by combining Lemma 2.4 and Theorem 2.8 (see
Section 6).

Finally, we will prove the following characterization of the subspaces #; (see

Section 7).

Theorem 2.9. For every t€|0, 1],

%,:{fe% limsup<]£||Tk§|2/k><t}. (2.17)

n— oo

In particular, #; is a closed, hyperinvariant subspace of T.
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3. Proof of Theorem 2.8 for k =1

This section is devoted to the proof of Theorem 2.8 in the special case kX = 1, which
is somewhat easier than in the general case. For k = 1 it is easy to solve Egs. (2.6)—
(2.8) explicitly to obtain

Py a(x) :%x(x—i—n)”*l, (n=1). (3.1)

From (3.1) one immediately gets (2.9) for k = 1, because

1
n

1
tr((T*°T)") :/0 Piy(x)dx = [ﬁ (x—=1D)(x+n)" 0: CESE (3.2)

Lemma 3.1. For xeR and zeC, |z| <1, one has

o0
5 oy =

n=0

where p: C\[%, o0 ) — C is the analytic function defined in Section 2.

Proof. Note that p(0) =0,p'(0) =1. Let p(z) =, 7,2" be the power-series
expansion of p in B(0,1). The convergence radius is 1, because p is analytic in B(0,1)

and i is a singular point for p. Hence for |z| <% and xeC, the function (z, x) > e?(?)*
has a power-series expansion

o0
PO = Z Crmz’ XM
¢ ,m=0
Since
N
ep(z)x — Z _p(z)mxm
m!
m=0

and since the first non-zero term in the power series for p(z)" is 2, we have ¢/, = 0
for /<m. Hence

P = 0oy (x)z/ (3.3)
/=0

where Q,(x) is the polynomial 3/, _ ¢/, x". Putting z = 0 in (3.3) we get Qp(x) = 1
and putting x = 0 in (3.3) we get 0,,(0) = 0 for n>1. Moreover since p(z)e *) = z
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for C\[, 00), we get

d . .
- (e?¥) = p(2)e? ¥ = p(z)e PPN — Zor()lxt])

Hence differentiating (3.3), we get

o0 0

& , 1
Q/(X)Z/ = Q X+1 £+1 Z Q/ 1 X+ /, |Z|<E

/=0 /=0

Therefore Q,/(x) = Q;—1(x+ 1) for />1. Together with Qy(x) =1, Q,(x) =0
(/=1), this proves that Q;(x) = P, /(x) for /=0. O

Remark 3.2. From Lemma 3.1 and (3.1) we can find the power-series expansion of
p(z), namely

p(z n+1 - I’l + 1 +1 - nn72
= Py = 3.4
p(z) = ze Z 1 nz:; . ; e (3.4)
Similarly one gets
o, & 1 & ="
@ = P —1)z" 1 _ n—1
p(z) =z ¢ ; ta(=1)z z ; n! o
1 - "
=3 (3.5)
z 4~ (n+1)!

The latter formula was also found in [4, Section 8] by different means. Actually,
both formulae can be obtained from the Lagrange Inversion Formula, (cf. [8,
Example 5.44)).

Lemma 3.3. For every x€|0, 1] there is a unique probability measure v, on [0, e] such
that

/Oey” dvy(y) = P1a(x), neNy. (3.6)

Proof. The uniqueness is clear by Weierstrass’ approximation theorem. For
existence, recall that o(Dg) = [0, 1] and, by [4, Section 8], ¢(T*T) = [0, ¢]. Let now
W= pip, -7 denote the joint distribution of Dy and T*T in the sense of (2.4). For
x =0, v, = dy (the Dirac measure at 0) is a solution of (3.6). Assume now that x>0
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and let e€(0,x). Then for ne Ny,
X 1
/ Piu(x') dx' = / L] (X)P1p(x") dX' = tr(1jx_ (Do) Eo ((T*T)"))
xX—¢ 0
:tr(l[‘c ex](DO TT _/,/01 x(0e] [x—e,x] )y d:u'( ay)

Let v, denote the Borel measure on [0, ¢] given by v (B) =1 u([x — ¢,x] x B) for
any Borel set B in [0, ¢]. Then by the above calculation,

/y"dvéﬁx(y):%/’ Pi,(x")dx', neN. (3.7)
0 xX—¢

Since P o(x') = 1, v, is a probability measure. By (3.7), v, converges as ¢ —0 in the
w*-topology on Prob([0, ¢]) to a measure v, satisfying (3.6). O

Lemma 3.4. Let x€[0, 1].
(a) For AeC\|0,¢|, the Stieltjes transform (or Cauchy transform) of v, is given by

601 =en(o(2)s) ”

(b) If xe(0,1],dvy(y) = hy(y)dy, where

he(y) n—ﬂ}lm(exp(p*(%)x)), ve(0,el. (3.9)

Proof. (a) Since Gy( fo — ydvx( ») is analytic in C\[0, ¢], it is sufficient to check

Gy (1) )”H/y dvy(y) = Z :lexp< C)x)
(7 V :0 (1

(b) For ye(0,¢], put

he(y) = —% lim Im(Gu(y +i2)) = —Jylm(exp(p(;)x»
ool (7))

It is easy to see that the above convergence is uniform for y in compact subsets of
(0, ¢], so by the inverse Stieltjes transform, the restriction of v, to (0, ¢] is absolutely
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continuous with respect to the Lebesgue measure and has density /. (y). It remains to
be proved that v,({0}) = 0. But

lim 2Gy(4) = v.({0}) + lim (/( 4] dv, (y)> = v,({0}).

4=0" —0- 0,e] |’1| +y :
However, 2G.(%) = exp(p(})x) >0 as 1—>0~, because x>0 and lim,_, _, p(y) =
—o0. Hence v,({0}) = 0, which completes the proof of (b). O

Proof of Theorem 2.8 for k = 1. Put u = up, 7.7 as defined in (2.4). For m,ne Ny we
get from Lemmas 3.3 and 3.4,

/ / X"y du(x, y)
[0,1]%[0,¢]

1
= tr(DI(T*T)") = tr(DEo(T*T)")) = /0 X"Py(x) dx

1 e 1 e
= / x" / V'dvy(y) dx = / ( / X"y hi(y) dy) dx.
0 0 0 0

Hence by the Stone—Weierstrass Theorem, u is absolutely continuous with respect to
the two-dimensional Lebesgue measure on [0, 1] x [0, ¢], and for xe(0,1), ye(0,e),

we have
dg)(cxc;;) = () = niylm (exp (p* (i) x)) (3.10)

We now have to compare (3.10) with (2.16) in Theorem 2.8. Putting k = 1 in (2.14)
and (2.15) one gets for r>1,

ao(t) = p (1), a(t)=p*(1)

and

N30 PP [ U]
0 =5mmer @y Y= A Impr ()

Hence the RHS of (2.16) becomes
oom () el (1) -oo(r ()
ity (oo ()
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Substituting now yz%eﬂ'“’t“ with O<v<m as in (2.3), by (2.13) and (2.1)
we get

+(1y)2

M ! (sinve_vcow- v ) - (3.11)
Imp*(l) T

¥

sin” v my

Hence (3.10) coincides with (2.16) for k =1. O

4. A generating function for Sniady’s polynomials for & >2

Throughout this section and Section 5, k is a fixed integer, k>2.

Lemma 4.1. Let oy, ..., o be distinct complex numbers and put
=1 L j=1,..n (4.1)
L THMTY
Then
k
" (4.2)

k
>0 =0 forp=1,2,... k-1
J=1

Proof. We can express (4.2) as

IS TR B I 1
o o o 72| 0 (43)
VORI s 0

where the determinant of the coefficient matrix is non-zero (Vandermonde’s
determinant), so we just have to check that (4.1) is the unique solution to (4.3).
Let A denote the coefficient matrix in (4.3). Then the solution to (4.3) is given by

! 1
V-2 — 4] 0

Yk 0
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Hence y; = (— l)f“d;;f(”’”) where A); is the (1,7)th minor of 4. By Vandermonde’s

formula,
det 4 = H —ay)
/<m
and
det(Ay) = (1o 1) (o1 o) [ (am—ar).
/<m
(L m#j
Hence
—1)/H! oL
Y = (=1) H/;ej / _ H oy . 0
H/<‘/(°‘j — o) H/>j(°‘/ — %) 1 %Y

We prove next a generalization of Lemma 3.1 to k>2.

Proposition 4.2. Let (Py ), be the sequence of polynomials defined Theorem 2.5. For
zeC, |z|<tandj=1, ...k, put

(4.4)
%;(z) .
pi(z) = { iz ae(2) = (z) 0 (4.5)
1/k, z=0
Then
3 (6 Pea) = 3 20 (46)
n=0

for all ze B(0,1) and all xeR.

Proof. Since p is analytic and one-to-one on C\[X
analytic in B(0,

one gets

, 00), it is clear that o;(z) is
1) and y;(z) is analytic in B(0,1)\{0}. Using p(0) = 0 and p'(0) = 1,

iy 1) = 11—y~ T(-oe(%7) -
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But the numbers exp(i%), m=1,...,k—1 are precisely the k — 1 roots of the
polynomial
k
-1
S(Z)—Z _kl+zk—2+ +1
z—1
Hence
lim 3,() = <7 = 7 = 3(0)
A =5 TR Y

Thus y; is analytic in B(0, ) The RHS of (4.6) is equal to

Z B(2)x
/=0
where
k
Z (2)k"o(2)
Since o;(0) = 0, the coefficients to 1,z, ..., z/~! in the power-series expansion of f,(z)
are equal to 0. Hence
k
Z ’V/( ko{l * Z ﬁ/mx Zm (47)
j=1 £ m=0

where f8,,, = 0 when m</. But, by the definition of o;(z) and y,(z) the LHS of (4.7)

is invariant under the transformation z— ' *z. Hence f3,,, = 0 unless m is a multiple
of k. Therefore,

>
8

7,(2)e O =" R, (x)2", (4.8)
j=1 n=0
where
nk
Ru(x) = Broux’ (4.9)
/=0

is a polynomial of degree at most nk. To complete the proof of Proposition 4.2, we
now have to prove, that the sequence of polynomials

0,(x) =k R,(x), n=0,1,2,... (4.10)

satisfies the same three conditions (2.6)—(2.8) as Py ,. Putting z = 0 in (4.8) we get

k
Qo(x) Z"/J
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Moreover by (4.8)

dk - NnK k oi(zZ)Xx
dx"( Ry (x)z A) = 2 Y/(Z)kko‘j(z)kek (),
n j=

-0

By definition of p, p(z)e ) = z for all zeC\(L, o). Hence

so differentiating termwise, we get

RO (x) = kR, (x+1), nx>1

n

and thus Q,gk)(x) = Qu-1(x+ 1) for all n=1. We next check the last condition (2.8)
for the Q,, i.e.

0,(0)=0,0)= - =0%V0)=0, n=>1.
If we put x =0 in (4.5), we get
0 k
YT R(x)Z* =y =1,
n=0 j=1

where the last equality follows from (4.2) in Lemma 4.1. Hence Q,(0) = R,(0) =0
forn=1. Forp=1,...,k — 1 we have

k

- NnK dp oi(zZ)x
Z RY(0)=" = ﬁ( Z "/j(Z)ek ’(')“>

n=0 j=1

k
=K Y 9(2)9(2) =0,
J=1

x=0

where we again use (4.2) from Lemma 4.1. Hence Q,(f) (0) = K=k R (0) = 0 for all
n=0,1,2,...andp=1,....k—1.

Altogether we have shown that (Q,(x)),-, satisfies the defining relations (2.6)—
(2.8) for Py ,(x), and hence Q,(x) = Pk ,(x) for all n and. This proves (4.6). O

Remark 4.3. Based on Proposition 4.2, we give a new proof of the implication
Theorem 2.5 = Theorem 2.7. Put

i
Sk = tr(((TF) TF)") = /0 Py n(x) dx.
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Then by (4.6)

k
Z Skn(kz)" Z /1 k(2% (4.12)

for all ze B(0,1). Using (4.11), for every ze B(0,1)\{0} we get

! 1 1 1
kozj X — koj(z) _ 1 k=1
/0 dx = kocj(z)(e )= kzk %(2) koy(z)

By Lemma 4.1, we have Z;C:o yj(z)ocj(z)k*1 = 0. Hence by (4.12),

0 k Z
> sealkes)™ = - Z: ) (4.13)

n=0

N‘ |

To compute the RHS of (4.13), we apply the residue theorem to the rational function

f(s) = S%H];:l 5 5€C\{0, 00,00, ..., o }. In the following computation z is fixed, so
let us put o; = o;(z), 7; = 7;(z). Note that /" has simple poles at a1, ..., and
1 % Vi

Res(fiog) =~ [] -2 = -2
0 74 Oy — 0 o

Moreover f has a second-order pole at 0 and Res(f7;0) is the coefficient of s in the
power-series expansion of s°f(s) = Hle(l — é)fl, ie.

Res(f;0) =Zl

=&

<0

Since f(s) = 0(|s|7(k+2>) as |s| > oo, we have

lim f(s)ds=0.
R->o Jap(o,R)

Hence, by the residue Theorem, Res(f;0) + Z —, Res(f;0;) =0, giving

Zk:ﬁzz o . (4.14)

=t % =1
Thus, by (4.13), we get
@ | Kk 1 Kk .
Z Sk,n(kz)nk -7k Z O‘j(Z)il =7 Z p(ze )7L (4.15)
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By (3.5), p(z) ' =137 ) - 2" whenever 0<|z| <l Hence

m=0 (m+1)!
k m 0 nk
m (nk) k
p(ze' k =—k — "=k — " 4.16
; l;;(m—kl)! HZ; (nk +1)! (4.16)

So by comparing the terms in (4.15) and (4.16), we get sy, = ; as desired.

(nkJr 1)

5. Proof of Theorem 2.8 for k>2

Lemma 5.1. Put Q = {zeC|z"¢[e™*, 0)} and define o;(z), 7(2), j=1,....,k by
(4.4) and (4.5) for all ze Q. Then for every xR, the function

i koc, X (51)

is analytic in @y and for every te [%, o), the following two limits exist:

M) = lim M(z), M, ()= lim M(z).

X
ImA>0 ImA<O

Let a;(t) and ¢;(t) for t>1 and j =0, ...,k be as in Theorem 2.8. Then for t>1,

Im M (1) = hnpiﬂ@zk: ¢j(t)ek 0~ (5.2)

Proof. Since p : C\[}, 0)—>C is one-to-one and analytic, it is clear, that M, is
defined and analytic on Q. Moreover for 12%,

fm a,<>—{”(f“) =l
111;?;0 p (1), Jj=k,
_ aj(t)7 J:17 ak_lv
Cl()(t), Jj =k,

and similarly
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Moreover
(T
ey
o<i<k_1ar(t) — a(t)
>y
lim 9,(z) = o
Imz>0 as =k,
o<i<k—1 ar(t) —a;(t)
(%0
as(t) .
lim 7;(z) = — j=1,... k.
oo l<,1:[<k as(1) — a;(1)
/4

Hence the two limits M () and M (¢) are well defined and by relabeling the kth
term to be the Oth term in case of M () one gets:

+ _ = a/(t) keaj(1)x
MiO=>| ] ——2 ", (5.3)

§ S o<rcin () — ()

(#]
k
_ as(t) k(1)
M= 71 LA 5.4
Y ; 151/_[@ as (1) — a;(t) (5.4)
/%

It is clear, that M. (Z) = M,(z), z€ Q. Therefore, M; (t) = M; (t) and

Im M (1) = = (M} (1) — M; (1),

l A
Hence for 1>1,

k
Im ]\47L Z bj /‘“/
j=0

where

b=~ [ —2

20 7o ap(t) = ao(t)’

L ao(t) (1) as (1)
bj(t)_zi(ao(z)_aj(t) ak(t)—aj(t)> I1 @00 = ao(?)

1</<k-1
(#]

_ ! ()
bit) = =3; i S )

RIS
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Using (2.15) and the identity

a(t) _at)  _ (0)(a(r) —a(1))
ao(r) — (1) ar(t) — (1) (ao(t) — aj(1))(ax (1) — a;(1))’

one observes that for all je{0,1, ..., k}

o Lao(t) — ak(1) oilf) = Im p* (1) o
bi() 2i kao(t)ay(?) i Ko+ (1) i(0).

This proves (5.2). O
We next prove results analogous to Lemmas 3.3 and 3.4 for k>2.

Lemma 5.2. For every x€ |0, 1], there is a unique probability measure v, on [0, "], such
that

k

/ u”dvx(u):k”kPk’n(x), neNp. (5.5)
0

For 2.€C\[0,¢"], the Cauchy transform of v is given by

Ek: )k (5.6)

>~ |

1/k -1

is the principal value of (¥/7)
Moreover, the restriction of v, to (0,eX] is absolutely continuous with respect to
Lebesgue measure, and its density is given by

where o;,7; are given by (4.4) and (4.5) and 1~

1

dvi(u)  utlo(!/*) & ~1/K) ke (wVF)x
= Zc, (5.7)

for ue (0, k).
Proof. By Theorem 2.5
K" Picn(x) = Eo (K™ ((T)'T)")(x) = Eo(S{)(x),  x€[0,1].

Moreover ¢(SK) = a(S;)* = [0, €] by (2.10). Hence the existence and uniqueness of
vy can be proved exactly as in Lemma 3.3. From Proposition 4.2, we get that for
|A|>eF, the Stieltjes transform G, (1) of v, is given by

1 o —nynk 1 k 71 y 1 .
Gi(4) =5 S AR P (x) = > S g bkt b,
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Let M. (z),zeQ and M (¢), M (t), t>1/e be as in Lemma 5.1. Then it is easy to see
that the function

M(z) = M- (z), zell/e, o)

X

~ {Mx(z), zeQg,

is a continuous function on the set
—1
X+iy|x=0,— o <y<0y.

Hence, by applying the inverse Stieltjes transform, we get that the restriction of
v, to (0,€"] is absolutely continuous with respect to the Lebesgue measure with
density

1 . 1 & e
he() = = — lim Im(Gy(u + iv)) = — ] ilinl/k< Z % )
Imz<0

1 1
= — —Im M (uV*) = —Im M} (%),
L m M () = —Im M (™)

Hence, by Lemma 5.1 we get that for ue (0, e~),

_ k
u) = 1 Im( l/k Z . 71/]( ke 1//)
T k|p*(u l/k = J

By (3.11),

11 (1

oly) = - IOUD) g o

Ty [pt(1/y)]

Hence
1 1/ky _k ~
ity = S g ek o (58)
=0

Remark 5.3. In order to derive Theorem 2.8 from Lemma 5.2, we will have to prove
v«({0}) = 0 for almost all xe 0, 1] with respect to Lebesgue measure. This is done in
the proof of Lemma 5.4 below. Actually it can be proved that v,({0}) = 0 for a//
x>0. This can be obtained from the formula

V’(({O}) = lir{){ )‘Gx(;‘)
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(cf. proof of Lemma 3.4) together with the following asymptotic formula for p(z) for
large values of |z|:

p(z) = —log(—z) + log(log(—z)) + 0(%}

where log(—z) is the principal value of the logarithm. The latter formula can be
obtained from [2, pp. 347-350] using (2.11).

Lemma 5.4. Let v = pp, g be the measure on [0,1] x [0,€"] defined in (2.4). Then

v is absolutely continuous with respect to the Lebesgue measure, and its density is
given by

dv(x,u)

— k
dx du _hX(u)v XG(O, 1)7 ue(O,e )7

where hy(u) is given by (5.8).

Proof. For m,neNy we have from Lemma 5.2 and Theorem 2.5 that
/ / X" dv(x, u) = tr(DJ'SE") = tr(DP Eo (S{)
(0,1]x[0,¢4]
t
= / xm(k”kPk,,,(x)) dx
0

L

Put g(x) = v4({0}), x€[0, 1]. From the definition of v, it is clear that x> v, is a w*-
continuous function from [0, 1] to Prob([0, €]), i.e.

u" dvx(u)> dx. (5.9)

xX— /oe f(u)dvi(u), xe[0,1]

is continuous for all f € C([0,"]). Put for jeN,

) ) O=<u<l1/j,
fj(u)_{O, u>1/j.

Then ¢g(x) = limjﬁoo(fgkﬁ(u) dvy(u)), and hence ¢ is a Borel function on [0, 1].
Putting now m = 0 in (5.9) we get
1 e

wesin= [ [

0o \Jo

k

u'hy(u) du) dx, n=1.2,.. (5.10)
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and for n = 0 we get

:/01 dx+/ </ iy du> (5.11)

Let AeProb([0,¢"]) be the distribution of S¥. Then

k

/ " i) = (S5
0

so by (5.10) and (5.11), A({0}) = fo x) dx and 1 is absolutely continuous on (0, e]
with respect to Lebesgue measure, w1th density u— fo u) dx, ue (0, eF). However

by (2.9) Sk and (7*T)" have the same moments. Thus S" and (T*T)* have the same
distribution measure. By ([4, Section 8]), ker(7*T) = ker (T) = {0}. Hence A({0}) =
0, which implies that g(x) = 0 for almost all x€[0, 1]. Thus, using (5.9), we have for

all m,neNj
1 e
/ m l‘l dv<x u) / xl‘ﬂ /
[0,1][0,¢k] 0 0

Hence by Stone—Weierstrass Theorem, v is absolutely continuous with respect to
two-dimensional Lebesgue measure, and

k

u'hy(u) du) dx.

dv(x,u)
dx du

= h(u), xe(0,1), wue(0,e"). d

Proof of Theorem 2.8 for k>2. Let f, g be bounded Borel functions on [0, 1] and
[0, ¢] respectively, and put
gi1(u) = g(u'*), ue0,e].

By Lemma 5.4,

w(/(Pu)g(s) = (7 Ooan(s) = [ [ 7@ nw s

=[] e v,
[0,1]x[0¢]

where the last equality is obtained by substituting u = y*, ye[0,e]. Hence the
measure pp s 1S absolutely continuous with respect to the two-dimensional



K. Dykema, U. Haagerup | Journal of Functional Analysis 209 (2004) 332-366 353

Lebesgue measure, and by (5.8) the density is given by

_ = | A
hx(yk)kyk 1 _ go(y) ZC/<;> ek j(J,)

=0
for xe(0,1), ye(0,e). O
6. Proof of Theorem 2.8 = Theorem 2.2

Lemma 6.1. Let keN and let ay, ..., ax be distinct numbers in C\{0} and put

7=0
#]
Then
k
Y obid =0 p=1,2,...k 6.1)
=0
k
> obi=1, (6.2)
Jj=0
k k
> biat =3 q, (6.3)
J=0 Jj=0
k
Z b]a]_2 = Z (aia;) ! (6.4)
j=0 0<i<j<k

Proof. By applying Lemma 4.1 to the k + 1 numbers «y, ...,ar, we get (6.1) and
(6.2). Moreover, (6.3) follows from the residue calculus argument in Remark 4.3
(cf. (4.14)), and (6.4) follows by a similar argument. Indeed, letting g be the rational
function

ds — S

1 & a
g(s):S_3H< ‘ )a SEC\{Oaa07---aalc}7
/=0

we have Res(g;a;) = —% I1/.; % = —ba;* and Res(g; 0) is the coefficient of s in
the power-series expansion of

k

-1 k 2
3 B s\ s s
sg(s)—”(l—a—/) _/_0<1+a_/+a_%+m)'

/=0
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Hence Res(g;0) =3 0<ici<k (a,-aj)_l. Since g(s) = O(|s|"*™) as |s|—> o0, as in
Remark 4.3 we get

k
Res(g;0) + Z Res(g; a;) = 0.
=0

This proves (6.4). [

Lemma 6.2. Let keN be fixed and let a;(1), ¢;(t) for te (L, 00) and j =0, ...,k be
defined as in (2.14) and (2.15). Put

k
H(x,t) = Z ()Y xeR, t>1]e, (6.5)
=0
1 k -1
m(t) = —— ai(t)” ", (6.6)
=0
1 & i
o) =15 D a(1) (6.7)
j=0
Then
1
/ H(x,t)dx =1. (6.8)
0
Moreover, if k=2, then
1
/ xH(x,t)dx = m(t) (6.9)
0
and if k=3, then
1
/ X H(x, 1) dx = m(t)* + (). (6.10)
0

Proof. For a fixed re(}, c0), we will apply Lemma 6.1 to the numbers (1),
j=0,...,k and

bi() =11 __al) (6.11)

72y ar(t) = a;(1)
Note that by (2.15)
(1) = —ka(1)by(1). (6.12)
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Since ¢ is fixed, we will drop the ¢ in a;(¢), b;(¢) and ¢;(¢) in the rest of this proof. We

have

k
/th Zk—’ (e — 1

j=0
Recall that
ap = p* (1),
@ =p(te¥), 1<j<n,
ap = p~ (1),

where 7e(L, 00). Since p(z)e @) =z for ze C\[},
Im z>0, respectively Im z<0, that also

P (e 0 = p= (e O =1,

Hence
which shows

Hence by (6.13), (6.1) and (6.2) we get

/OIH(x,t)dx

which proves (6.8). Moreover,

1 k
/ xH(x,t)dx = Z
0 =0

J

(—kajb;) [x
Using (6.14), (6.1) and (6.3) we get

1 1 k 1 k
/ xH(x,t)dx:—l—kijq;‘—FWZ
0 =0

J=0

k 1 k .
Z(; bj — [T‘ Z bjaj
J=

=0

ekujx

Ta

M

— ek, (6.13)

o0) we get in the limit z—¢ with

"k’
(6.14)

=1,

ka;x !
e
(kaj)zlg

ko
o Iy Lo
a; Tk jzz(; a;
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provided k>2. This proves (6.9). Similarly

1 5 k 5 ekax ghapx ekax !
x“H(x,t)dx = (—ka;b;) | x 2x +2

\/(; ]Z:(; he) kd] (ka])Z (k(lj)3 .

RS K, 2 : k—1 2 ¢ ko, 2 : b

=g ba D haT —m Y b g Y

J=0 J=0 J=0 J=0 "7
Hence by (6.1) and (6.4), we get for k=3
' 2 R R R
/ X“H(x,1)dx =0 Z (aia;) =5 Z a; +Z a;
0 0<i<j<k =0 =0

=m(t) +v(r). O

The functions H,m, v, a;, ¢; in Lemma 5.2 depend on ke N. Therefore we will in the
rest of this section rename them Hy, my., vg, ag, cxj. Let F(y) =[5 @(u) du, ye|0, €] as
in Proposition 2.1. Since ¢ is the density of a probability measure on [0, ¢], we have

0<F(y)<l, yel0,¢]. (6.15)
Lemma 6.3. For te (L, ),
1
lim g (1) = F(—), (6.16)
k— o t
lim (1) = 0. (6.17)

Proof.

k k .
= 3w = 1(550())

Jj=0 Jj=0

where f : [0, 1] - C is the continuous function

Pt u=0,
flu)=q plee™)™, 0<u<l,
pi(t)ila u=1.

Hence

! 1/ 1 1 1
lim my (¢ :—/ u)duy = —— —dO = / dz. 6.18
e o0 0 0 S 2n )y p(te?) 2mi Jop(o.) 2P (2) (6.18)
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To evaluate the RHS of (6.18) we apply the residue theorem to compute the integral
of (zp(z))™" along the closed path C,, 0<e<1, which is drawn in Fig. 1.
Since p(z)#0 when z#0 we have

1 dz 1
. — Res| — -
2t Jo o) <zp<z>’°>

and by (3.5), Res(#(z)7 0) = —1. Thus, taking the limit ¢—>0", we get

1 ([ a dz Ve qr
o — —+ — | =-1
2ni\ Jyije tpt(2) oB(0,r) ZP(2) . (9
Since p~(t) = p*(t), we get by (3.11)
/ dz
i Jopo.) Zp(2)
t t +
:7171/ lIm< : >ds1+1/ Im p7(5) 4
T Jife S p*(s) T Jije s|pT(s)]

t e
:—1+/ lz(p(l> ds:—1+/ o(u) du
1/e S S 1/t

=—14+F(1) = F(1/1) = —F(1/1).

‘

[\®]

Hence (6.16) follows from (6.18). In the same way we get

-
\.

Fig. 1. The contour C,.
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Hence
1
lim kuve(r) = / 1 () du,
k— o0 0

so in particular

lim Dk(l‘) =0. |

k— oo

Proof of Theorem 2.2. By Lemma 2.4, Theorem 2.8 and (6.5),
1
10 FSOB= [ [ e FO)Po)Helx ) .
[0,1]x[0,¢] y

Moreover by (6.8)—(6.10) we have for ye(0,¢) and k=3,

/Ol(x — F(y))Hx <x%) dx = (w((%) +mk(i>2> _ 2mk(%)F(y) L FO)?
() ()
Hence for k=3

100~ FS0IE = [ e((mk( ;) - F<y>)2+vk( i))my) dy.

Since ¢(y) Hi(x, )l) is a continuous density function for the probability measure up g,
on (0,1) x (0,e), and since ¢(y)>0, 0<y<e, we have H(x,)=>0 for all xe(0,1)
and re (1, c0). Thus by (6.8)~(6.10), m () and v, (r) are the mean and variance of a
probability measure on (0,1). In particular 0<my(#)<1 and 0<wvi(?)<1 for all
t>1/e. Hence by (6.16), (6.17) and Lebesgue’s dominated convergence theorem

lim ||Dy — F(Si)|; = 0.
k— o0

Hence Doe W*(T). For 0<t<I, the subspace #'; = 19 (Do) # is clearly T-
invariant, and since Dye W*(T), #, is affiliated with W*(T). O

7. Hyperinvariant subspaces for 7’

In this section, we prove Theorem 2.9. The proof relies on the following four
results. Lemma 7.2 is probably well known, but we include a proof for convenience.

Lemma 7.1. For every keN, ||T*|| = (&2,
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2 k — k
Proof. By (2.10), ||T*||” = ||[(T*)"T*|| = k7 %||S*|| = (9. O

Lemma 7.2. Let (S,),. , be a bounded net of selfadjoint operators on a Hilbert space
A which converges in strong operator topology to the selfadjoint operator Se B(H),
and let c,(S) denote the set of eigenvalues of S. Then for all teR\c,(S), we have

m 1o (S2) = 100 4 (S), (7.1)

where the limit is in strong operator topology.

Proof. There is a compact interval [a,b] such that ¢(S;)<|a,b] for all A and
o(S)<|[a, b]. Therefore, given a continuous function ¢ : R—R, approximating by
polynomials we get

lim ¢(S;) = ¢(S),

reA

in strong operator topology. Let teR, let ¢>0 and choose a continuous function
¢ : R->Rsuch that 0<¢p <1, ¢p(x) =1 for x<t — ¢ and ¢(x) = 0 for x>¢. Then for
every e

U ag(S)EE) SCH(S)E ) = lim ($(S;)E &) <Hminf (1 g(S)E,ED
Hence taking the limit as ¢, we get

e y(8)E,E) < lirinei/lnf 2, (82)E, 8> (7.2)

Similarly, by using a continuous function s : R— R satisfying y(x) = 1 for x<¢ and
Y(x) =0 for x>t +¢, we get

{(eo,(8)E,¢) = lim sup Tmon g (S2)€, 85 (7.3)

If t¢06,(S), then 1_y, ;(S) = 1(— 4(S), and thus by (7.2) and (7.3), we have

ﬁg L—o(S2) = 1= (S), (7.4)

with convergence in weak operator topology. However, the weak and strong
operator topologies coincide on the set of projections in %(#). Hence we have
convergence (7.1) in strong operator topology, as desired. [

Proposition 7.3. Let F : [0,¢e]— [0, 1] be the increasing function defined in Proposition
2.1 and fix t€[0,1]. Let

. . k
L= {e:eyflaéke%,klgn; I = &ll =0, tim sup (ng"ékl”")@}-

— 0

Then & = H p(er)-
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Proof. Forz =1, we have by Lemma 7.1 that & = # = A\ = A p(,). Assume now
0<t<1,and let E€ H (o) = ljo p(en) (Do) H = 1jg e (F(Do))# . Since 6,(Dy) = @ and
since F is one-to-one, we also have ¢,(F(Dy)) = 0. Hence, by Theorem 2.8 and
Lemma 7.2,

klifrgc 11,1 (Sk)E = 1)0,eq(F(Do))é = &.
Let & = 1)9.e7(Sk)¢. Then as we just showed, limy -, o, [|€ — &|| = 0. Moreover, since
(T*)*T* = k% Sk, we have
k _ enk
IT &1 = k< Sk, &> <k (e lI&P < (T) 11elP.

Hence limsup, _, ,, (& ||7%¢,||**) <1, which proves # () = %,. To prove the reverse
inclusion, let €%, and choose &, € # such that

) ) k
lim &~ &l =0.  limsup ( ||Tkzk||2/"> <t (7.5)

— 0

By (2.10), a(Sk) = [0, ¢]. Let Ej be the spectral measure of S and let
7k(B) = {Ex(B)Cy, &k »

for every Borel set B< 0, ¢]. Then y, is a finite Borel measure on [0, ¢] of total mass
7:([0,€]) = ||&4])* and for all bounded Borel functions f : [0, ¢] —C, we have

SS0e 80 = [ i 76)
0
In particular,

(SEEn, &> = / ey (x).

0

Let 0<e<1—1t. By (7.5), there exists koeN such that '§||Tk~fk||2/k<t+§ for all
k>=ky. Thus,

e e\ k
|t = ¢Stanas =RIT GNP (e(1+5)) Gk
Since (-2-)">1 for xele(t + ¢), ], we have

e(t+¢)
nlletr+ o). )< [ e(ﬁ)kw)s(jjf)knéknz.

Hence, by (7.6),

& k
(4%
s (S = e (S0, 6> < (12 ) Nl



K. Dykema, U. Haagerup | Journal of Functional Analysis 209 (2004) 332-366 361
which tends to zero as k— oo. Since ||&, — &||—0 as k— o0, we get

[T () 00) (SE)EN = 0,

which is equivalent to

kll»n;: 1[0,e(t+£)](Sk)f =<
Hence, by Theorem 2.8 and Lemma 7.2,
Lo, 7 (e(e+2)] (D0)E = 1g.e(14)] (F (Do) & = &,

i.e. €A p(e(11e) for all e€ (0,1 — 7). Since

it follows that &, = # f(.), which completes the proof of the proposition. [

Lemma 7.4. Let t€(0,1) and define (ay), -, recursively by
a; = Fet), (7.7)
t
py1 = aF (6). (7.8)
n
Then (ay),-, is a strictly decreasing sequence in [0, 1] and lim,,, o, a, = .
Proof. The function x+ F(ex) is a strictly increasing, continuous bijection of [0, 1]

onto itself. By definition, the restriction of F to (0,e) is differentiable with
continuous derivative

F'(x) = ¢(x), xe(0,¢),

where ¢ is uniquely determined by
sin v 1.
¢ ——exp(veotv) | =—sinvexp(—vcotv).
v n

As observed in the proof of [4, Theorem 8.9], the map v »—»S“‘TL exp(vcot v) is a strictly
decreasing bijection from (0, 7) onto (0, e). Moreover,

v
—(si —vcotv)) = ——exp(—vcotv) >0
(sin v exp(—vcotv)) 5 Uexp( veotv)

dv
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for ve (0,m). Hence ¢ is a strictly decreasing function on (0, ¢), which implies that F
is strictly convex on [0, e]. Hence

F(ex)>(1 —x)F(0) + xF(e) =x, xe(0,1). (7.9)

With 7€ (0,1) and with (a,),-, defined by (7.7) and (7.8), from (7.9) we have a; =
F(et)e(t,1). If ae(t,1) and if @ = aF (%), then clearly @’ <a. Moreover, by (7.9),

et t
a’:aF(—>>a~—:t.
a a

Hence (ay,),-, is a strictly decreasing sequence in (7, 1) and therefore converges. Let
ay = lim,_,  a,. Then by the continuity of F on [0, ¢], we have

t
dy

Hence F () = 1, which implies a,, = 7. [

Proof of Theorem 2.9. Let T = %7 (X, 1) be constructed using [4, Section 4], as
described in the introduction. For 7€]0, 1], let

Ji",_{ée% limsup<k||Tk§|2/k)<t}. (7.10)
n— oo e
We will show
C%,E,%-[EC#F@,), ZE[O’ 1} (7.11)

The second inclusion in (7.11) follows immediately from Proposition 7.3. The first
inclusion is trivial for # =0, so we can assume 7>0. Letting P, = 1j (Do) be the
projection onto ', from [4, Lemma 4.10] we have

| |
7Y —Tt, =P, TP, =T (— P,XP, /It), (7.12)

Vi Vi

where 4, : L*]0,1]— P,L(F,)P, is the injective, normal *-homomorphism given by

2 (f) = A(f;), where

) f(s/0) if se0,1],
Jils) = {o it se (s, 1].

Therefore, T, is itself a DT(dg,1)-operator in (P.#P,t 'l p 4p). Hence, by
Lemma 7.1 applied to T,, we have, for all € #,,

. te\ k/2
I8l = A Tiel< (Z) 1l
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Therefore, lim sup,_, ., (§||ka||2/k)<l and ¢e,. This completes the proof of
(7.11).

From (7.11), we have in particular g = #y = {0} and A4 = #| = #. Let
t€(0,1) and let (a,),~, be the sequence defined by Lemma 7.4. We will prove by
induction on n that 4", = #, . By (7.11), 4", < #,,. Let neN and assume 4, < # .
Then

k
A, = {fe%’an | lim sup <g ||Tk£|2/k) <z} (7.13)
k— oo

Uk L
| >\an}. (7.14)

But the space (7.14) is the analogue of 7, for the operator T,,. By (7.11) applied
to the operator 7,,, we have that 4", is contained in the analogue of # r(./,,) for Ty,
Using (7.12) (with a, instead of ), we see that this latter space is

—{cestu 1 imsup (L 178e
k— w0

Aan(l[(]‘F(et/a,,)])%an = ;L(l[O‘a,,F(er/a,,)])%an = ;L(][O.,a”“])%a,, = cyfa,lﬂ .

Thus ', = #,, , and the induction argument is complete.
Now applying Lemma 7.4, we get 4", = (2, # o, = # 1, as desired. [

Appendix A. Z-Gaussianity of 7', T*

The operator T was defined in [4] as the limit in x-moments of upper triangular
Gaussian random matrices, and it was shown in [4] that T can be constructed as
T=%7(X,2) in a von Neumann algebra .# equipped with a normal, faithful,
tracial state 7, from a semicircular element X e.# with t1(X) =0 and t(X?) = 1 and
an injective, unital, normal x-homomorphism 4 : L*[0,1]—.# such that {X} and
A(L*[0,1]) are free with respect to t and toA(f) = folf(t) dt. (See the description in
the introduction and [4, Section 4].) Let 2 = A(L* [0, 1]) and let Eg : .4 — 2 be the
T-preserving conditional expectation onto Z.

In [6], it was asserted that T is a generalized circular element with respect to
Eg and with a particular variance. It is the purpose of this appendix to provide a
proof.

Lemma A.1. Let feL™[0,1]. Then

Eq(TA(N)T) = A9), (A1)

Eq(T"A(f)T) = A(h), (A2)
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Eo(TA(f)T) =0, (A3)
Eo(T*3(f)T") =0, (A4)
where
mwzl?mm,mw=47ww. (A5)
Moreover,
E4(T) = 0. (A.6)

Proof. From [4, Section 4], lim,,, . ||T — T,|| = 0, where

and pla, b] = A(1j,p)). Therefore,

lim ||Eq(TA(f)T") = Eo(TuA(f)T,)I| = 0.

We have

Eo(T,A(f)T!) = 22_:1 p[j;l,ﬂ Ey (Xp [zjn, l]i(f)X)

—1

<

Fixing n and letting a = j}l/z,, f(¢) dt, we have

Xp[%, 1}1(,‘)){: X<p[2in, 1]1(,‘) —a>X+a(X2 —1)+a,

and from this we see that Eg(Xp[zf—;, 1JA(f)X) is the constant fjl/z,lf(l) dt. Therefore,

we get Eq(T,A(f)T) = A(gn), where

L
S fde it msx<d jeqr, -1y,
gn(x = ‘ .

0 if

<x<l.
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Letting n— oo, we obtain (A.1) with g as in (A.5).
Eqgs. (A.2)-(A.4) and (A.6) are obtained similarly. [

Comparing Sniady’s definition of a generalized circular element (with respect to
2) in [6] with Speicher’s algorithm for passing from Z-cummulants to Z-moments in
[7, Sections 2.1 and 3.2], we see that an operator Se L(F,) is generalized circular if
and only if all Z-cummulants of order k2 for the pair (S, S*) vanish. Hence S is
generalized circular if and only if the pair (S,S*) is Z-Gaussian in the sense of
[7, Definition 4.2.3]. Thus, in order to prove that 7" has the properties used in [6],
it suffices to prove the following.

Proposition A.2. The distribution of the pair T, T* with respect to Eg is a &-Gaussian
distribution with covariance matrix determined by (A.1)—(A.6).

Proof. Take X, X5, ... €.#, each a (0, 1)-semicircular element such that
7, ({X1)i%
is a free family of sets of random variables. Then the family

(W (2u{X})L,

of x-subalgebras of ./ is free (over &) with respect to Eg. Let T; = %7 (X;, ). Then
each T; has -valued *-distribution (with respect to Ey) the same as T'. Therefore,
by Speicher’s Z-valued free central limit theorem [7, Theorem 4.2.4], the Z-valued *-

distribution of % converges as n— oo to a Z-Gaussian *-distribution with the

correct covariance. However, % is a (0, 1)-semicircular element that is free
from &, and

Ti+ -+ T,

_qr (Nt X +X”,z .
\/ﬁ

NG

Thus % itself has the same Z-valued *-distribution as 7. [J
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