

JOURNAL OF Functional Analysis

Journal of Functional Analysis 209 (2004) 332-366

http://www.elsevier.com/locate/jfa

Invariant subspaces of the quasinilpotent DT-operator

Ken Dykema^{a,*,1} and Uffe Haagerup^{b,2}

^a Department of Mathematics, Texas A&M University, College Station, TX 77843-3368, USA
^b Department of Mathematics and Computer Science, University of Southern Denmark, Campusvej 55, 5230 Odense M. Denmark

Received 15 January 2003; revised 2 April 2003; accepted 2 April 2003

Communicated by D. Voiculescu

Abstract

In [4] we introduced the class of DT-operators, which are modeled by certain upper triangular random matrices, and showed that if the spectrum of a DT-operator is not reduced to a single point, then it has a nontrivial, closed, hyperinvariant subspace. In this paper, we prove that also every DT-operator whose spectrum is concentrated on a single point has a nontrivial, closed, hyperinvariant subspace. In fact, each such operator has a one-parameter family of them. It follows that every DT-operator generates the von Neumann algebra $L(\mathbf{F}_2)$ of the free group on two generators.

© 2003 Elsevier Inc. All rights reserved.

MSC: 47A15; 46L54

1. Introduction

Let \mathscr{H} be a separable, infinite dimensional Hilbert space and let $\mathscr{B}(\mathscr{H})$ be the algebra of bounded operators on \mathscr{H} . Let $A \in \mathscr{B}(\mathscr{H})$. An *invariant subspace* of A is a subspace $\mathscr{H}_0 \subseteq \mathscr{H}$ such that $A(\mathscr{H}_0) \subseteq \mathscr{H}_0$, and a *hyperinvariant subspace* of A is a subspace \mathscr{H}_0 of \mathscr{H} that is invariant for every operator $B \in \mathscr{B}(\mathscr{H})$ that commutes with A. A subspace of \mathscr{H} is said to be *nontrivial* if it is neither $\{0\}$ nor \mathscr{H} itself. The

^{*}Corresponding author.

E-mail addresses: kdykema@math.tamu.edu (K. Dykema), haagerup@imada.sdu.dk (U. Haagerup).

¹Supported in part by NSF Grant DMS-0070558.

²Affiliated with MaPhySto, Centre for Mathematical Physics and Stochastics, which is funded by a grant from The Danish National Research Foundation.

famous *invariant subspace problem* for Hilbert space asks whether every operator in $\mathcal{B}(\mathcal{H})$ has a closed, nontrivial, invariant subspace, and the *hyperinvariant subspace problem* asks whether every operator in $\mathcal{B}(\mathcal{H})$ that is not a scalar multiple of the identity operator has a closed, nontrivial, hyperinvariant subspace.

On the other hand, if $\mathcal{M} \subseteq \mathcal{B}(\mathcal{H})$ is a von Neumann algebra, a closed subspace \mathcal{H}_0 of \mathcal{H} is affiliated to \mathcal{M} if the projection p from \mathcal{H} onto \mathcal{H}_0 belongs to \mathcal{M} . It is not difficult to show that every closed, hyperinvariant subspace of A is affiliated to the von Neumann algebra, $W^*(A)$, generated by A. The question of whether every element of a von Neumann algebra \mathcal{M} has a nontrivial invariant subspace affiliated to \mathcal{M} is called the invariant subspace problem relative to the von Neumann algebra \mathcal{M} .

In [3], we began using upper triangular random matrices to study invariant subspaces for certain operators arising in free probability theory, including Voiculescu's circular operator. In the sequel [4], we introduced the DT-operators; these form a class of operators including all those studied in [3]. (We note that the DT-operators were defined in terms of approximation by upper triangular random matrices, and have been shown in [5] to solve a maximization problem for free entropy.) We showed that DT-operators are decomposable in the sense of Foias, which entails that those DT-operators whose spectra contain more than one point have nontrivial, closed, hyperinvariant subspaces. In this paper, we show that also DT-operators whose spectra are singletons have (a continuum of) closed, nontrivial, hyperinvariant subspaces. These operators are all scalar translates of scalar multiples of a single operator, the DT(δ_0 , 1)-operator, which we will denote by T.

The free group factor $L(\mathbf{F}_2) \subseteq \mathcal{B}(\mathcal{H})$ is generated by a semicircular element X and a free copy of $L^{\infty}[0,1]$, embedded via a normal *-homomorphism λ : $L^{\infty}[0,1] \to L(\mathbf{F}_2)$ such that $\tau \circ \lambda(f) = \int_0^1 f(t) \, dt$, where τ is the tracial state on $L(\mathbf{F}_2)$. Thus X and the image of λ are free with respect to τ and together they generate $L(\mathbf{F}_2)$. As proved in [4, Section 4], the $\mathrm{DT}(\delta_0,1)$ -operator T can be obtained by using projections from $\lambda(L^{\infty}[0,1])$ to cut out the "upper triangular part" of X; in the notation of [4, Section 4], $T = \mathscr{UT}(X,\lambda)$. It is clear from this construction that each of the subspaces $\mathscr{H}_t = \lambda(1_{[0,t]})\mathscr{H}$ is an invariant subspace of T. We will show that each of these subspaces is affiliated to $W^*(T)$ by proving $D_0 \in W^*(T)$, where $D_0 = \lambda(\mathrm{id}_{[0,1]})$ and $\mathrm{id}_{[0,1]}$ is the identity function from [0,1] to itself. Since $X = T + T^*$, this will also imply $W^*(T) = L(\mathbf{F}_2)$. We will then show that each \mathscr{H}_t is actually a hyperinvariant subspace of T, by characterizing \mathscr{H}_t as the set of vectors $\xi \in \mathscr{H}$ such that $||T^k\xi||$ has a certain asymptotic property as $k \to \infty$.

2. Preliminaries and statement of results

In [4, Section 8], we showed that the distribution of T^*T is the probability measure μ on [0, e] given by

$$d\mu(x) = \varphi(x) dx$$

where $\varphi:(0,e)\to \mathbb{R}^+$ is the function given uniquely by

$$\varphi\left(\frac{\sin v}{v}\exp(v\cot v)\right) = \frac{1}{\pi}\sin v\exp(-v\cot v), \quad 0 < v < \pi.$$
 (2.1)

Proposition 2.1. Let $F(x) = \int_0^x \varphi(t) dt, x \in [0, e]$. Then

$$F\left(\frac{\sin v}{v}\exp(v\cot v)\right) = 1 - \frac{v}{\pi} + \frac{1}{\pi}\frac{\sin^2 v}{v}, \quad 0 < v < \pi.$$
 (2.2)

Proof. From the proof of [4, Theorem 8.9] we have that

$$\sigma: v \mapsto \frac{\sin v}{v} \exp(v \cot v) \tag{2.3}$$

is a decreasing bijection from $(0, \pi)$ onto (0, e). Hence

$$F(\sigma(v)) = \int_0^{\sigma(v)} \varphi(t) dt = -\int_v^{\pi} \varphi(\sigma(u)) \sigma'(u) du$$

$$= -\left[\varphi(\sigma(u)) \sigma(u)\right]_v^{\pi} + \int_v^{\pi} \left(\frac{d}{du} \varphi(\sigma(u))\right) \sigma(u) du$$

$$= -\frac{1}{\pi} \left[\frac{\sin^2 u}{u}\right]_v^{\pi} + \frac{1}{\pi} \int_v^{\pi} \frac{u}{\sin u} \cdot \frac{\sin u}{u} du = \frac{1}{\pi} \frac{\sin^2 v}{v} + 1 - \frac{v}{\pi}.$$

The following is the central result of this paper.

Theorem 2.2. Let $S_k = k((T^k)^*T^k)^{\frac{1}{k}}, \ k = 1, 2, ...$. Then $\sigma(S_k) = [0, e]$ for all $k \in \mathbb{N}$ and

$$\lim_{k\to\infty} ||F(S_k) - D_0||_2 = 0 \quad \text{for} \quad k\to\infty.$$

In particular $D_0 \in W^*(T)$. Therefore $\mathcal{H}_t = 1_{[0,t]}(D_0)\mathcal{H} = \lambda(1_{[0,t]})\mathcal{H}$, 0 < t < 1 is a one-parameter family of nontrivial, closed, T-invariant subspaces affiliated with $W^*(T)$.

Corollary 2.3. $W^*(T) \cong L(\mathbb{F}_2)$. Moreover, if Z is any DT-operator, then $W^*(Z) \cong L(\mathbb{F}_2)$.

Proof. As described in the introduction, with $T = \mathscr{U}\mathscr{T}(X,\lambda) \in W^*(X \cup \lambda(L^{\infty}[0,1]))$ $= L(\mathbf{F}_2)$, from Theorem 2.2 we have $D_0 \in W^*(T)$. Since clearly $X \in W^*(T)$, we have $W^*(T) = L(\mathbf{F}_2)$. By [4, Theorem 4.4], Z can be realized as Z = D + cT for some $D \in \lambda(L^{\infty}[0,1])$ and c > 0. By [4, Lemma 6.2], $T \in W^*(Z)$, so $W^*(Z) = L(\mathbf{F}_2)$. \square

We now outline the proof of Theorem 2.2. Let M be a factor of type II_1 with tracial state tr, and let $A, B \in M_{sa}$. By [1, Section 1], there is a unique probability measure $\mu_{A,B}$ on $\sigma(A) \times \sigma(B)$, such that for all bounded Borel functions f, g on $\sigma(A)$ and $\sigma(B)$, respectively, one has

$$\operatorname{tr}(f(A)g(B)) = \int \int_{\sigma(A) \times \sigma(B)} f(x)g(y) \, d\mu_{A,B}(x). \tag{2.4}$$

The following lemma is a simple consequence of (2.4) (cf. [1, Proposition 1.1]).

Lemma 2.4. Let A, B and $\mu_{A,B}$ be as above, then for all bounded Borel functions f and g on $\sigma(A)$ and $\sigma(B)$, respectively,

$$||f(A) - g(B)||_2^2 = \int \int_{\sigma(A) \times \sigma(B)} |f(x) - g(y)|^2 d\mu_{A,B}(x,y).$$
 (2.5)

We shall need the following key result of Śniady [6]. Strictly speaking, the results of [6] concern an operator that can be described as a generalized circular operator with a given variance matrix. It is not entirely obvious that the operator T studied in [4] and in the present article is actually of this form. A proof is supplied in Appendix A.

Theorem 2.5 (Śniady [6, Theorem 5]). Let $E_{\mathscr{D}}$ be the trace preserving conditional expectation of $W^*(D_0, T)$ onto $\mathscr{D} = W^*(D_0)$, which we identify with $L^{\infty}[0, 1]$ as in [6]. Let $k \in \mathbb{N}$ and let $(P_{k,n})_{n=0}^{\infty}$ be the sequence of polynomials in a real variable x determined by

$$P_{k,0}(x) = 1, (2.6)$$

$$P_{kn}^{(k)}(x) = P_{k,n-1}(x+1), \quad n = 1, 2, ...,$$
 (2.7)

$$P_{k,n}(0) = P_{k,n}'(0) = \dots = P_{k,n}^{(k-1)}(0) = 0, \quad n = 1, 2, \dots,$$
 (2.8)

where $P_{k,n}^{(\ell)}$ denotes the ℓ th derivative of $P_{k,n}$. Then for all $k, n \in \mathbb{N}$,

$$E_{\mathcal{D}}(((T^k)^*T^k)^n)(x) = P_{k,n}(x), \quad x \in [0,1].$$

Remark 2.6. The above Theorem is equivalent to [6, Theorem 5] because

$$E_{\mathscr{D}}(((T^k)^*T^k)^n)(x) = E_{\mathscr{D}}((T^k(T^k)^*)^n)(1-x), \quad x \in [0,1].$$

Sniady used Theorem 2.5 to prove the following formula, which was conjectured in [4, Section 9].

Theorem 2.7 (Sniady [6, Theorem 7]). For all $n, k \in \mathbb{N}$:

$$\operatorname{tr}(((T^k)^*T^k)^n) = \frac{n^{nk}}{(nk+1)!}.$$
(2.9)

Sniady proved that Theorem 2.5 implies Theorem 2.7 by a tricky and clever combinatorial argument. In the course of proving Theorem 2.2, we also obtained a purely analytic proof of Theorem 2.5 \Rightarrow Theorem 2.7 (see (3.2) and Remark 4.3). Note that it follows from Theorem 2.7 that $S_k^k = k^k (T^k)^* T^k$ has the same moments as $(T^*T)^k$. Hence the distribution measures μ_{S_k} and μ_{T^*T} in Prob(**R**) are equal. In particular their supports are equal. Hence, by [4, Theorem 8.9],

$$\sigma(S_k) = \sigma(T^*T) = [0, e]. \tag{2.10}$$

We will use Theorem 2.5 to derive in Theorem 2.8 an explicit formula for the measure μ_{D_0,S_k} defined in (2.4). The formula involves Lambert's W function, which is defined as the multivalued inverse function of the function $\mathbb{C} \ni z \mapsto ze^z$. We define a function ρ by

$$\rho(z) = -W_0(-z), \quad z \in \mathbb{C} \setminus \left[\frac{1}{e}, \infty \right), \tag{2.11}$$

where W_0 is the principal branch of Lambert's W-function. By [2, Section 4], ρ is an analytic bijection of $\mathbb{C}\setminus [\frac{1}{e}, \infty)$ onto

$$\Omega = \{ x + iy \mid -\pi < y < \pi, \ x < y \cot y \},\$$

where we have used the convention $0 \cot 0 = 1$. Moreover, ρ is the inverse function of the function f defined by

$$f(w) = we^{-w}, \quad w \in \Omega.$$

Note that f maps the boundary of Ω onto $\left[\frac{1}{e}, \infty\right)$, because

$$f(\theta \cot \theta \pm i\theta) = f\left(\frac{\theta}{\sin \theta}e^{\pm i\theta}\right) = \frac{\theta}{\sin \theta}e^{-\theta \cot \theta}$$
 (2.12)

and $\theta \mapsto \frac{\sin \theta}{\theta} e^{\theta \cot \theta}$ is a bijection of $(0, \pi)$ onto (0, e) (see [4, Section 8]). By (2.12), it also follows that if we define functions $\rho^+, \rho^- : [\frac{1}{e}, \infty) \to \mathbb{C}$ by

$$\rho^{\pm} \left(\frac{\theta}{\sin \theta} e^{-\theta \cot \theta} \right) = \theta \cot \theta \pm i\theta, \quad 0 \le \theta < \pi, \tag{2.13}$$

then

$$\rho^{\pm}(x) = \lim_{y \downarrow 0} \rho(x \pm iy), \quad x \in \left[\frac{1}{e}, \infty\right).$$

In particular $\rho^+(\frac{1}{\rho}) = \rho^-(\frac{1}{\rho}) = 1$.

Theorem 2.8. Let $k \in \mathbb{N}$ be fixed. Define for $t > \frac{1}{e}$ and j = 0, ..., k the functions $a_j(t)$, $c_j(t)$ by

$$a_0(t) = \rho^+(t),$$

$$a_j(t) = \rho \left(t \exp\left(i\frac{2\pi j}{k}\right) \right), \quad 1 \le j \le k - 1,$$

$$a_k(t) = \rho^-(t), \tag{2.14}$$

and

$$c_j(t) = -ka_j(t) \prod_{\ell \neq j} \frac{a_{\ell}(t)}{a_{\ell}(t) - a_j(t)}.$$
 (2.15)

Then the probability measure μ_{D_0,S_k} on $\sigma(D_0) \times \sigma(S_k) = [0,1] \times [0,e]$ is absolutely continuous with respect to the two-dimensional Lebesgue measure and, with φ as in (2.1), has density

$$\frac{d\mu_{D_0,S_k}(x,y)}{dx\,dy} = \varphi(y) \left(\sum_{j=0}^k c_j(y^{-1})e^{ka_j(y^{-1})x}\right)$$
(2.16)

for $x \in (0,1)$ and $y \in (0,e)$.

We will prove Theorem 2.2 by combining Lemma 2.4 and Theorem 2.8 (see Section 6).

Finally, we will prove the following characterization of the subspaces \mathcal{H}_t (see Section 7).

Theorem 2.9. For every $t \in [0, 1]$,

$$\mathcal{H}_{t} = \left\{ \xi \in \mathcal{H} \mid \lim_{n \to \infty} \sup \left(\frac{k}{e} ||T^{k} \xi||^{2/k} \right) \leqslant t \right\}. \tag{2.17}$$

In particular, \mathcal{H}_t is a closed, hyperinvariant subspace of T.

3. Proof of Theorem 2.8 for k=1

This section is devoted to the proof of Theorem 2.8 in the special case k = 1, which is somewhat easier than in the general case. For k = 1 it is easy to solve Eqs. (2.6)–(2.8) explicitly to obtain

$$P_{1,n}(x) = \frac{1}{n!}x(x+n)^{n-1}, \quad (n \ge 1).$$
(3.1)

From (3.1) one immediately gets (2.9) for k = 1, because

$$\operatorname{tr}((T^*T)^n) = \int_0^1 P_{1,n}(x) \, dx = \left[\frac{1}{(n+1)!} (x-1)(x+n)^n \right]_0^1 = \frac{n^n}{(n+1)!}. \tag{3.2}$$

Lemma 3.1. For $x \in \mathbb{R}$ and $z \in \mathbb{C}$, $|z| < \frac{1}{e}$, one has

$$\sum_{n=0}^{\infty} P_{1,n}(x) z^n = e^{\rho(z)x}$$

where $\rho: \mathbb{C}\setminus [\frac{1}{e}, \infty) \to \mathbb{C}$ is the analytic function defined in Section 2.

Proof. Note that $\rho(0) = 0$, $\rho'(0) = 1$. Let $\rho(z) = \sum_{n=1}^{\infty} \gamma_n z^n$ be the power-series expansion of ρ in $B(0, \frac{1}{e})$. The convergence radius is $\frac{1}{e}$, because ρ is analytic in $B(0, \frac{1}{e})$ and $\frac{1}{e}$ is a singular point for ρ . Hence for $|z| < \frac{1}{e}$ and $x \in \mathbb{C}$, the function $(z, x) \mapsto e^{\rho(z)x}$ has a power-series expansion

$$e^{\rho(z)x} = \sum_{\ell,m=0}^{\infty} c_{\ell m} z^{\ell} x^{m}.$$

Since

$$e^{\rho(z)x} = \sum_{m=0}^{\infty} \frac{1}{m!} \rho(z)^m x^m$$

and since the first non-zero term in the power series for $\rho(z)^m$ is z^m , we have $c_{\ell m} = 0$ for $\ell < m$. Hence

$$e^{\rho(z)x} = \sum_{\ell=0}^{\infty} Q_{\ell}(x)z^{\ell}$$
(3.3)

where $Q_{\ell}(x)$ is the polynomial $\sum_{m=0}^{\ell} c_{\ell m} x^m$. Putting z=0 in (3.3) we get $Q_0(x)=1$ and putting x=0 in (3.3) we get $Q_n(0)=0$ for $n \ge 1$. Moreover since $\rho(z)e^{-\rho(z)}=z$

for $\mathbb{C}\setminus [\frac{1}{e}, \infty)$, we get

$$\frac{d}{dx}(e^{\rho(z)x}) = \rho(z)e^{\rho(z)x} = \rho(z)e^{-\rho(z)}e^{\rho(z)(x+1)} = ze^{\rho(z)(x+1)}.$$

Hence differentiating (3.3), we get

$$\sum_{\ell=0}^{\infty} Q_{\ell}'(x)z^{\ell} = \sum_{\ell=0}^{\infty} Q_{\ell}(x+1)z^{\ell+1} = \sum_{\ell=1}^{\infty} Q_{\ell-1}(x+1)z^{\ell}, \quad |z| < \frac{1}{e}.$$

Therefore $Q_{\ell}'(x) = Q_{\ell-1}(x+1)$ for $\ell \ge 1$. Together with $Q_0(x) = 1$, $Q_{\ell}(x) = 0$, $(\ell \ge 1)$, this proves that $Q_{\ell}(x) = P_{1,\ell}(x)$ for $\ell \ge 0$. \square

Remark 3.2. From Lemma 3.1 and (3.1) we can find the power-series expansion of $\rho(z)$, namely

$$\rho(z) = ze^{\rho(z)} = \sum_{n=0}^{\infty} P_{1,n}(1)z^{n+1} = \sum_{n=0}^{\infty} \frac{(n+1)^{n-1}}{n!}z^{n+1} = \sum_{n=1}^{\infty} \frac{n^{n-2}}{(n-1)!}z^n.$$
 (3.4)

Similarly one gets

$$\frac{1}{\rho(z)} = \frac{1}{z} e^{-\rho(z)} = \sum_{n=0}^{\infty} P_{1,n}(-1)z^{n-1} = \frac{1}{z} - \sum_{n=1}^{\infty} \frac{(n-1)^{n-1}}{n!} z^{n-1}
= \frac{1}{z} - \sum_{n=0}^{\infty} \frac{n^n}{(n+1)!} z^n.$$
(3.5)

The latter formula was also found in [4, Section 8] by different means. Actually, both formulae can be obtained from the Lagrange Inversion Formula, (cf. [8, Example 5.44]).

Lemma 3.3. For every $x \in [0, 1]$ there is a unique probability measure v_x on [0, e] such that

$$\int_0^e y^n \, dv_x(y) = P_{1,n}(x), \quad n \in \mathbb{N}_0. \tag{3.6}$$

Proof. The uniqueness is clear by Weierstrass' approximation theorem. For existence, recall that $\sigma(D_0) = [0,1]$ and, by [4, Section 8], $\sigma(T^*T) = [0,e]$. Let now $\mu = \mu_{D_0,T^*T}$ denote the joint distribution of D_0 and T^*T in the sense of (2.4). For x = 0, $v_x = \delta_0$ (the Dirac measure at 0) is a solution of (3.6). Assume now that x > 0

and let $\epsilon \in (0, x)$. Then for $n \in \mathbb{N}_0$,

$$\int_{x-\epsilon}^{x} P_{1,n}(x') dx' = \int_{0}^{1} 1_{[x-\epsilon,x]}(x') P_{1,n}(x') dx' = \operatorname{tr}(1_{[x-\epsilon,x]}(D_{0}) E_{\mathscr{D}}((T^{*}T)^{n}))$$

$$= \operatorname{tr}(1_{[x-\epsilon,x]}(D_{0})(T^{*}T)^{n}) = \int \int_{[0,1]\times[0,\epsilon]} 1_{[x-\epsilon,x]}(x') y^{n} d\mu(x',y).$$

Let $v_{\epsilon,x}$ denote the Borel measure on [0,e] given by $v_{\epsilon,x}(B) = \frac{1}{\epsilon} \mu([x-\epsilon,x] \times B)$ for any Borel set B in [0,e]. Then by the above calculation,

$$\int_{0}^{e} y^{n} dv_{\epsilon,x}(y) = \frac{1}{\epsilon} \int_{x-\epsilon}^{x} P_{1,n}(x') dx', \quad n \in \mathbb{N}_{0}.$$
 (3.7)

Since $P_{1,0}(x') = 1$, $v_{\epsilon,x}$ is a probability measure. By (3.7), $v_{\epsilon,x}$ converges as $\epsilon \to 0$ in the w^* -topology on Prob([0,e]) to a measure v_x satisfying (3.6). \square

Lemma 3.4. Let $x \in [0, 1]$.

(a) For $\lambda \in \mathbb{C} \setminus [0, e]$, the Stieltjes transform (or Cauchy transform) of v_x is given by

$$G_x(\lambda) = \frac{1}{\lambda} \exp\left(\rho\left(\frac{1}{\lambda}\right)x\right).$$
 (3.8)

(b) If $x \in (0, 1], dv_x(y) = h_x(y)dy$, where

$$h_x(y) = \frac{1}{\pi y} \operatorname{Im}\left(\exp\left(\rho^+\left(\frac{1}{y}\right)x\right)\right), \quad y \in (0, e].$$
 (3.9)

Proof. (a) Since $G_x(\lambda) = \int_0^e \frac{1}{\lambda - y} dv_x(y)$ is analytic in $\mathbb{C} \setminus [0, e]$, it is sufficient to check (3.8) for $|\lambda| > e$. In this case, we get from Lemmas 3.3 and 3.1 that

$$G_{X}(\lambda) = \sum_{n=0}^{\infty} \frac{1}{\lambda^{n+1}} \int_{0}^{e} y^{n} dv_{X}(y) = \frac{1}{\lambda} \sum_{n=0}^{\infty} \lambda^{-n} P_{n}(x) = \frac{1}{\lambda} \exp\left(\rho\left(\frac{1}{\lambda}\right)x\right).$$

(b) For $y \in (0, e]$, put

$$h_{x}(y) = -\frac{1}{\pi} \lim_{z \to 0^{+}} \operatorname{Im}(G_{x}(y+iz)) = -\frac{1}{\pi y} \operatorname{Im}\left(\exp\left(\rho^{-}\left(\frac{1}{y}\right)x\right)\right)$$
$$= \frac{1}{\pi y} \operatorname{Im}\left(\exp\left(\rho^{+}\left(\frac{1}{y}\right)x\right)\right).$$

It is easy to see that the above convergence is uniform for y in compact subsets of (0, e], so by the inverse Stieltjes transform, the restriction of v_x to (0, e] is absolutely

continuous with respect to the Lebesgue measure and has density $h_x(y)$. It remains to be proved that $v_x(\{0\}) = 0$. But

$$\lim_{\lambda \to 0^{-}} \lambda G_{x}(\lambda) = \nu_{x}(\{0\}) + \lim_{\lambda \to 0^{-}} \left(\int_{(0,e]} \frac{|\lambda|}{|\lambda| + y} d\nu_{x}(y) \right) = \nu_{x}(\{0\}).$$

However, $\lambda G_x(\lambda) = \exp(\rho(\frac{1}{\lambda})x) \to 0$ as $\lambda \to 0^-$, because x > 0 and $\lim_{y \to -\infty} \rho(y) = -\infty$. Hence $v_x(\{0\}) = 0$, which completes the proof of (b). \square

Proof of Theorem 2.8 for k=1**.** Put $\mu=\mu_{D_0,T^*T}$ as defined in (2.4). For $m,n\in\mathbb{N}_0$ we get from Lemmas 3.3 and 3.4,

$$\int \int_{[0,1]\times[0,e]} x^m y^n \, d\mu(x,y)$$

$$= \operatorname{tr}(D_0^m (T^*T)^n) = \operatorname{tr}(D_0^m E_{\mathscr{D}}((T^*T)^n)) = \int_0^1 x^m P_{1,n}(x) \, dx$$

$$= \int_0^1 x^m \int_0^e y^n \, dv_x(y) \, dx = \int_0^1 \left(\int_0^e x^m y^n h_x(y) \, dy \right) dx.$$

Hence by the Stone–Weierstrass Theorem, μ is absolutely continuous with respect to the two-dimensional Lebesgue measure on $[0,1] \times [0,e]$, and for $x \in (0,1)$, $y \in (0,e)$, we have

$$\frac{d\mu(x,y)}{dx\,dy} = h_x(y) = \frac{1}{\pi y} \operatorname{Im}\left(\exp\left(\rho^+\left(\frac{1}{y}\right)x\right)\right). \tag{3.10}$$

We now have to compare (3.10) with (2.16) in Theorem 2.8. Putting k=1 in (2.14) and (2.15) one gets for $t > \frac{1}{e}$,

$$a_0(t) = \rho^+(t), \quad a_1(t) = \overline{\rho^+(t)}$$

and

$$c_0(t) = \frac{|\rho^+(t)|^2}{2i\operatorname{Im}(\rho^+(t))}, \quad c_1(t) = -\frac{|\rho^+(t)|^2}{2i\operatorname{Im}(\rho^+(t))}.$$

Hence the RHS of (2.16) becomes

$$\begin{split} \varphi(y)c_0\bigg(\frac{1}{y}\bigg)\bigg(\exp\bigg(\rho^+\bigg(\frac{1}{y}\bigg)x\bigg) - \exp\bigg(\overline{\rho^+\bigg(\frac{1}{y}\bigg)}x\bigg)\bigg)\\ &= \frac{\varphi(y)|\rho^+(\frac{1}{y})|^2}{\operatorname{Im}\rho^+(\frac{1}{y})}\operatorname{Im}\bigg(\exp\bigg(\rho^+\bigg(\frac{1}{y}\bigg)x\bigg)\bigg). \end{split}$$

Substituting now $y = \frac{\sin v}{v} e^{v \cot v}$ with $0 < v < \pi$ as in (2.3), by (2.13) and (2.1) we get

$$\frac{\varphi(y)|\rho^{+}(\frac{1}{y})|^{2}}{\text{Im }\rho^{+}(\frac{1}{y})} = \frac{1}{\pi v} \left(\sin v e^{-v \cot v} \cdot \frac{v^{2}}{\sin^{2} v} \right) = \frac{1}{\pi y}.$$
 (3.11)

Hence (3.10) coincides with (2.16) for k = 1. \square

4. A generating function for Śniady's polynomials for $k \ge 2$

Throughout this section and Section 5, k is a fixed integer, $k \ge 2$.

Lemma 4.1. Let $\alpha_1, ..., \alpha_k$ be distinct complex numbers and put

$$\gamma_j = \prod_{\ell \neq j} \frac{\alpha_\ell}{\alpha_\ell - \alpha_j}, \quad j = 1, \dots, n.$$
 (4.1)

Then

$$\begin{cases} \sum_{j=1}^{k} \gamma_{j} = 1, \\ \sum_{j=1}^{k} \gamma_{j} \alpha_{j}^{p} = 0 \quad \text{for } p = 1, 2, \dots, k - 1. \end{cases}$$
 (4.2)

Proof. We can express (4.2) as

$$\begin{bmatrix} 1 & 1 & \dots & 1 \\ \alpha_1 & \alpha_2 & & \alpha_k \\ \vdots & & & \vdots \\ \alpha_1^{k-1} & \dots & \dots & \alpha_k^{k-1} \end{bmatrix} \begin{bmatrix} \gamma_1 \\ \gamma_2 \\ \vdots \\ \gamma_k \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \tag{4.3}$$

where the determinant of the coefficient matrix is non-zero (Vandermonde's determinant), so we just have to check that (4.1) is the unique solution to (4.3). Let A denote the coefficient matrix in (4.3). Then the solution to (4.3) is given by

$$\begin{bmatrix} \gamma_1 \\ \gamma_2 \\ \vdots \\ \gamma_L \end{bmatrix} = A^{-1} \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}.$$

Hence $\gamma_j = (-1)^{j+1} \frac{\det(A_{1j})}{\det(A)}$, where A_{1j} is the (1,j)th minor of A. By Vandermonde's formula,

$$\det A = \prod_{\ell < m} \left(a_m - a_\ell \right)$$

and

$$\det(A_{1j}) = (\alpha_1 \cdots \alpha_{j-1})(\alpha_{j+1} \cdots \alpha_k) \prod_{\substack{\ell < m \\ \ell, m \neq j}} (a_m - a_\ell).$$

Hence

$$\gamma_j = \frac{(-1)^{j+1} \prod_{\ell \neq j} \alpha_\ell}{\prod_{\ell < j} (\alpha_j - \alpha_\ell) \prod_{\ell > j} (\alpha_\ell - \alpha_j)} = \prod_{\ell \neq j} \frac{\alpha_\ell}{\alpha_\ell - \alpha_j}. \qquad \Box$$

We prove next a generalization of Lemma 3.1 to $k \ge 2$.

Proposition 4.2. Let $(P_{k,n})_{n=0}^{\infty}$ be the sequence of polynomials defined Theorem 2.5. For $z \in \mathbb{C}$, $|z| < \frac{1}{e}$ and j = 1, ..., k, put

$$\alpha_j(z) = \rho(ze^{i\frac{2\pi j}{k}}),\tag{4.4}$$

$$\gamma_j(z) = \begin{cases} \prod_{\ell \neq j} \frac{\alpha_j(z)}{\alpha_\ell(z) - \alpha_j(z)}, & z \neq 0, \\ 1/k, & z = 0. \end{cases}$$
(4.5)

Then

$$\sum_{n=0}^{\infty} (kz)^{nk} P_{k,n}(x) = \sum_{i=1}^{k} \gamma_j(z) e^{k\alpha_j(z)x}$$
 (4.6)

for all $z \in B(0, \frac{1}{e})$ and all $x \in \mathbb{R}$.

Proof. Since ρ is analytic and one-to-one on $\mathbb{C}\setminus [\frac{1}{e}, \infty)$, it is clear that $\alpha_j(z)$ is analytic in $B(0, \frac{1}{e})$ and $\gamma_j(z)$ is analytic in $B(0, \frac{1}{e})\setminus \{0\}$. Using $\rho(0)=0$ and $\rho'(0)=1$, one gets

$$\lim_{z \to 0} \gamma_j(z) = \prod_{\ell \neq j} \frac{1}{1 - \exp\left(i\frac{2\pi(j-\ell)}{k}\right)} = \prod_{m=1}^{k-1} \left(1 - \exp\left(i\frac{2\pi m}{k}\right)\right)^{-1}.$$

But the numbers $\exp(i\frac{2\pi m}{k})$, $m=1,\ldots,k-1$ are precisely the k-1 roots of the polynomial

$$S(z) = \frac{z^{k} - 1}{z - 1} = z^{k-1} + z^{k-2} + \dots + 1.$$

Hence

$$\lim_{z\to 0} \gamma_j(z) = \frac{1}{S(1)} = \frac{1}{k} = \gamma_j(0).$$

Thus γ_i is analytic in $B(0,\frac{1}{\rho})$. The RHS of (4.6) is equal to

$$\sum_{\ell=0}^{\infty} \beta_{\ell}(z) x^{\ell},$$

where

$$eta_{\ell}(z) = \sum_{j=1}^k \gamma_j(z) k^{\ell} \alpha_j(z)^{\ell}.$$

Since $\alpha_j(0) = 0$, the coefficients to $1, z, ..., z^{\ell-1}$ in the power-series expansion of $\beta_{\ell}(z)$ are equal to 0. Hence

$$\sum_{j=1}^{k} \gamma_{j}(z) e^{k\alpha_{j}(z)x} = \sum_{\ell,m=0}^{\infty} \beta_{\ell,m} x^{\ell} z^{m}, \tag{4.7}$$

where $\beta_{\ell,m} = 0$ when $m < \ell$. But, by the definition of $\alpha_j(z)$ and $\gamma_j(z)$ the LHS of (4.7) is invariant under the transformation $z \to e^{i\frac{2\pi}{k}}z$. Hence $\beta_{\ell,m} = 0$ unless m is a multiple of k. Therefore,

$$\sum_{j=1}^{k} \gamma_j(z) e^{k\alpha_j(z)x} = \sum_{n=0}^{\infty} R_n(x) z^{nk}, \tag{4.8}$$

where

$$R_n(x) = \sum_{\ell=0}^{nk} \beta_{\ell,nk} x^{\ell} \tag{4.9}$$

is a polynomial of degree at most nk. To complete the proof of Proposition 4.2, we now have to prove, that the sequence of polynomials

$$Q_n(x) = k^{-nk} R_n(x), \quad n = 0, 1, 2, ...$$
 (4.10)

satisfies the same three conditions (2.6)–(2.8) as $P_{k,n}$. Putting z=0 in (4.8) we get

$$Q_0(x) = R_0(x) = \sum_{j=1}^k \gamma_j(0) = 1.$$

Moreover by (4.8)

$$\frac{d^k}{dx^k} \left(\sum_{n=0}^{\infty} R_n(x) z^{nk} \right) = \sum_{j=1}^k \gamma_j(z) k^k \alpha_j(z)^k e^{k\alpha_j(z)x}.$$

By definition of ρ , $\rho(z)e^{-\rho(z)}=z$ for all $z \in \mathbb{C} \setminus (\frac{1}{\rho}, \infty)$. Hence

$$(\alpha_j(z)e^{-\alpha_j(z)})^k = (ze^{i\frac{2\pi}{k}j})^k = z^k, \quad j = 1, ..., k.$$
 (4.11)

Thus

$$\frac{d^k}{dx^k} \left(\sum_{n=0}^{\infty} R_n(z) z^{nk} \right) = (kz)^k \sum_{j=1}^k \gamma_j(z) e^{k\alpha_j(z)(x+1)} = (kz)^k \sum_{n=0}^{\infty} R_n(x+1) z^{nk}
= k^k \sum_{n=1}^{\infty} R_{n-1}(x+1) z^{nk}$$

so differentiating termwise, we get

$$R_n^{(k)}(x) = k^k R_{n-1}(x+1), \quad n \geqslant 1$$

and thus $Q_n^{(k)}(x) = Q_{n-1}(x+1)$ for all $n \ge 1$. We next check the last condition (2.8) for the Q_n , i.e.

$$Q_n(0) = Q_n'(0) = \dots = Q_n^{(k-1)}(0) = 0, \quad n \ge 1.$$

If we put x = 0 in (4.5), we get

$$\sum_{n=0}^{\infty} R_n(x) z^{nk} = \sum_{j=1}^{k} \gamma_j(z) = 1,$$

where the last equality follows from (4.2) in Lemma 4.1. Hence $Q_n(0) = R_n(0) = 0$ for $n \ge 1$. For p = 1, ..., k - 1 we have

$$\sum_{n=0}^{\infty} R_n^{(p)}(0) z^{nk} = \frac{d^p}{dx^p} \left(\sum_{j=1}^k \gamma_j(z) e^{k\alpha_j(z)x} \right) \bigg|_{x=0} = k^p \sum_{j=1}^k \gamma_j(z) \alpha_j(z)^p = 0,$$

where we again use (4.2) from Lemma 4.1. Hence $Q_n^{(p)}(0) = k^{-nk} R_n^{(p)}(0) = 0$ for all n = 0, 1, 2, ... and p = 1, ..., k - 1.

Altogether we have shown that $(Q_n(x))_{n=0}^{\infty}$ satisfies the defining relations (2.6)–(2.8) for $P_{k,n}(x)$, and hence $Q_n(x) = P_{k,n}(x)$ for all n and. This proves (4.6). \square

Remark 4.3. Based on Proposition 4.2, we give a new proof of the implication Theorem $2.5 \Rightarrow$ Theorem 2.7. Put

$$s_{k,n} = \operatorname{tr}(((T^k)^* T^k)^n) = \int_0^1 P_{k,n}(x) dx.$$

Then by (4.6)

$$\sum_{n=0}^{\infty} s_{k,n}(kz)^{nk} = \sum_{j=1}^{k} \gamma_j(k) \int_0^1 e^{k\alpha_j(z)x} dx$$
 (4.12)

for all $z \in B(0, \frac{1}{e})$. Using (4.11), for every $z \in B(0, \frac{1}{e}) \setminus \{0\}$ we get

$$\int_0^1 e^{k\alpha_j(z)x} dx = \frac{1}{k\alpha_j(z)} (e^{k\alpha_j(z)} - 1) = \frac{1}{kz^k} \alpha_j(z)^{k-1} - \frac{1}{k\alpha_j(z)}.$$

By Lemma 4.1, we have $\sum_{j=0}^{k} \gamma_{j}(z) \alpha_{j}(z)^{k-1} = 0$. Hence by (4.12),

$$\sum_{n=0}^{\infty} s_{k,n}(kz)^{nk} = -\frac{1}{k} \sum_{j=1}^{k} \frac{\gamma_j(z)}{\alpha_j(z)}.$$
 (4.13)

To compute the RHS of (4.13), we apply the residue theorem to the rational function $f(s) = \frac{1}{s^2} \prod_{\ell=1}^k \frac{\alpha_{\ell}}{\alpha_{\ell} - s}, s \in \mathbb{C} \setminus \{0, \alpha_1, \alpha_2, \dots, \alpha_k\}$. In the following computation z is fixed, so let us put $\alpha_j = \alpha_j(z), \gamma_j = \gamma_j(z)$. Note that f has simple poles at $\alpha_1, \dots, \alpha_k$ and

$$\operatorname{Res}(f; \alpha_j) = -\frac{1}{\alpha_j} \prod_{\ell \neq j} \frac{\alpha_\ell}{\alpha_\ell - \alpha_j} = -\frac{\gamma_j}{\alpha_j}.$$

Moreover f has a second-order pole at 0 and $\operatorname{Res}(f;0)$ is the coefficient of s in the power-series expansion of $s^2f(s) = \prod_{\ell=1}^k (1 - \frac{s}{\alpha_\ell})^{-1}$, i.e.

$$\operatorname{Res}(f;0) = \sum_{j=1}^{\ell} \frac{1}{\alpha_j}.$$

Since $f(s) = O(|s|^{-(k+2)})$ as $|s| \to \infty$, we have

$$\lim_{R \to \infty} \int_{\partial B(0,R)} f(s) \, ds = 0.$$

Hence, by the residue Theorem, $\operatorname{Res}(f;0) + \sum_{j=1}^{k} \operatorname{Res}(f;\alpha_j) = 0$, giving

$$\sum_{j=1}^{k} \frac{\gamma_j}{\alpha_j} = \sum_{j=1}^{k} \alpha_j^{-1}.$$
 (4.14)

Thus, by (4.13), we get

$$\sum_{n=0}^{\infty} s_{k,n}(kz)^{nk} = -\frac{1}{k} \sum_{i=1}^{k} \alpha_i(z)^{-1} = -\frac{1}{k} \sum_{i=1}^{k} \rho(ze^{i\frac{2\pi i}{k}})^{-1}.$$
 (4.15)

By (3.5), $\rho(z)^{-1} = \frac{1}{z} - \sum_{m=0}^{\infty} \frac{m^m}{(m+1)!} z^m$ whenever $0 < |z| < \frac{1}{e}$. Hence

$$\sum_{j=1}^{k} \rho(ze^{i\frac{2\pi j}{k}})^{-1} = -k \sum_{k \mid m} \frac{m^m}{(m+1)!} z^m = -k \sum_{n=0}^{\infty} \frac{(nk)^{nk}}{(nk+1)!} z^{nk}.$$
 (4.16)

So by comparing the terms in (4.15) and (4.16), we get $s_{kn} = \frac{n^{nk}}{(nk+1)!}$ as desired.

5. Proof of Theorem **2.8** for $k \ge 2$

Lemma 5.1. Put $\Omega_k = \{z \in \mathbb{C} \mid z^k \notin [e^{-k}, \infty)\}$ and define $\alpha_j(z)$, $\gamma_j(z)$, j = 1, ..., k by (4.4) and (4.5) for all $z \in \Omega_k$. Then for every $x \in \mathbb{R}$, the function

$$M_{x}(z) = \sum_{j=1}^{k} \gamma_{j}(z)e^{k\alpha_{j}(z)x}$$

$$(5.1)$$

is analytic in Ω_k and for every $t \in [\frac{1}{e}, \infty)$, the following two limits exist:

$$M_x^+(t) = \lim_{\substack{z \to t \\ \text{Im } z > 0}} M_x(z), \quad M_x^-(t) = \lim_{\substack{z \to t \\ \text{Im } z < 0}} M_x(z).$$

Let $a_j(t)$ and $c_j(t)$ for $t > \frac{1}{e}$ and j = 0, ..., k be as in Theorem 2.8. Then for $t > \frac{1}{e}$,

$$\operatorname{Im} M_{x}^{+}(t) = \frac{\operatorname{Im} \rho^{+}(t)}{k|\rho^{+}(t)|^{2}} \sum_{i=0}^{k} c_{i}(t) e^{ka_{i}(t)x}.$$
 (5.2)

Proof. Since $\rho: \mathbb{C}\setminus [\frac{1}{e}, \infty) \to \mathbb{C}$ is one-to-one and analytic, it is clear, that M_x is defined and analytic on Ω_k . Moreover for $t \ge \frac{1}{e}$,

$$\lim_{\substack{z \to t \\ \text{Im } z > 0}} \alpha_j(z) = \begin{cases} \rho(te^{i\frac{2\pi j}{k}}), & j = 1, \dots, k - 1, \\ \rho^+(t), & j = k, \end{cases}$$

$$= \begin{cases} a_j(t), & j = 1, \dots, k - 1, \\ a_0(t), & j = k, \end{cases}$$

and similarly

$$\lim_{\substack{z \to t \\ m \ z < 0}} \alpha_j(z) = a_j(t), \quad j = 1, \dots, k.$$

Moreover

$$\lim_{\substack{z \to t \\ \operatorname{Im} z > 0}} \gamma_j(z) = \begin{cases} \prod_{\substack{0 \leqslant \ell \leqslant k - 1 \\ \ell \neq j}} \frac{a_\ell(t)}{a_\ell(t) - a_j(t)}, & j = 1, \dots, k - 1, \\ \prod_{\substack{0 \leqslant \ell \leqslant k - 1 \\ \ell \neq 0}} \frac{a_\ell(t)}{a_\ell(t) - a_j(t)}, & j = k, \end{cases}$$

$$\lim_{\substack{z \to t \\ \operatorname{Im} z < 0}} \gamma_j(z) = \prod_{\substack{1 \leqslant \ell \leqslant k \\ \ell \neq j}} \frac{a_\ell(t)}{a_\ell(t) - a_j(t)}, & j = 1, \dots, k.$$

Hence the two limits $M_x^+(t)$ and $M_x^-(t)$ are well defined and by relabeling the kth term to be the 0th term in case of $M_x^+(t)$ one gets:

$$M_{\lambda}^{+}(t) = \sum_{j=0}^{k-1} \left(\prod_{\substack{0 \le \ell \le k-1 \\ \ell \ne j}} \frac{a_{\ell}(t)}{a_{\ell}(t) - a_{j}(t)} \right) e^{ka_{j}(t)x}, \tag{5.3}$$

$$M_{\lambda}^{-}(t) = \sum_{j=1}^{k} \left(\prod_{\substack{1 \le \ell \le k \\ \ell \ne j}} \frac{a_{\ell}(t)}{a_{\ell}(t) - a_{j}(t)} \right) e^{ka_{j}(t)x}.$$
 (5.4)

It is clear, that $M_{\scriptscriptstyle X}(\bar{z}) = \overline{M_{\scriptscriptstyle X}(z)}, \, z \in \Omega_k$. Therefore, $M_{\scriptscriptstyle \lambda}^-(t) = \overline{M_{\scriptscriptstyle \lambda}^+(t)}$ and

Im
$$M_{\lambda}^{+}(t) = \frac{1}{2i}(M_{\lambda}^{+}(t) - M_{\lambda}^{-}(t)).$$

Hence for $t > \frac{1}{e}$,

Im
$$M_{\lambda}^{+}(t) = \sum_{j=0}^{k} b_{j}(t)e^{ka_{j}(t)x},$$

where

$$b_0(t) = \frac{1}{2i} \prod_{1 \le \ell \le k-1} \frac{a_{\ell}(t)}{a_{\ell}(t) - a_0(t)},$$

$$b_j(t) = \frac{1}{2i} \left(\frac{a_0(t)}{a_0(t) - a_j(t)} - \frac{a_k(t)}{a_k(t) - a_j(t)} \right) \prod_{\substack{1 \le \ell \le k-1 \\ \ell \ne j}} \frac{a_{\ell}(t)}{a_{\ell}(t) - a_0(t)},$$

$$b_k(t) = -\frac{1}{2i} \prod_{\substack{1 \le \ell \le k-1 \\ 1 \le \ell \le k-1}} \frac{a_{\ell}(t)}{a_{\ell}(t) - a_k(t)}.$$

Using (2.15) and the identity

$$\frac{a_0(t)}{a_0(t) - a_i(t)} - \frac{a_k(t)}{a_k(t) - a_i(t)} = \frac{a_j(t)(a_k(t) - a_0(t))}{(a_0(t) - a_i(t))(a_k(t) - a_i(t))},$$

one observes that for all $j \in \{0, 1, ..., k\}$

$$b_j(t) = \frac{1}{2i} \frac{a_0(t) - a_k(t)}{k a_0(t) a_k(t)} c_j(t) = \frac{\operatorname{Im} \rho^+(t)}{k |\rho^+(t)|^2} c_j(t).$$

This proves (5.2).

We next prove results analogous to Lemmas 3.3 and 3.4 for $k \ge 2$.

Lemma 5.2. For every $x \in [0, 1]$, there is a unique probability measure v_x on $[0, e^k]$, such that

$$\int_{0}^{e^{k}} u^{n} dv_{x}(u) = k^{nk} P_{k,n}(x), \quad n \in \mathbb{N}_{0}.$$
 (5.5)

For $\lambda \in \mathbb{C} \setminus [0, e^k]$, the Cauchy transform of v_x is given by

$$G_{x}(\lambda) = \frac{1}{\lambda} \sum_{i=1}^{k} \gamma_{j}(\lambda^{-\frac{1}{k}}) e^{k\alpha_{j}(\lambda^{-\frac{1}{k}})x}$$

$$(5.6)$$

where α_j, γ_j are given by (4.4) and (4.5) and $\lambda^{-1/k}$ is the principal value of $(\sqrt[k]{\lambda})^{-1}$. Moreover, the restriction of v_x to $(0, e^k]$ is absolutely continuous with respect to Lebesgue measure, and its density is given by

$$\frac{dv_x(u)}{du} = \frac{u^{\frac{1}{k}-1}\varphi(u^{1/k})}{k} \sum_{i=0}^k c_i(u^{-1/k})e^{ka_i(u^{-1/k})x}$$
(5.7)

for $u \in (0, e^k)$.

Proof. By Theorem 2.5

$$k^{nk}P_{k,n}(x) = E_{\mathscr{D}}(k^{nk}((T^k)^*T^k)^n)(x) = E_{\mathscr{D}}(S_k^{nk})(x), \quad x \in [0,1].$$

Moreover $\sigma(S_k^k) = \sigma(S_k)^k = [0, e^k]$ by (2.10). Hence the existence and uniqueness of v_x can be proved exactly as in Lemma 3.3. From Proposition 4.2, we get that for $|\lambda| > e^k$, the Stieltjes transform $G_x(\lambda)$ of v_x is given by

$$G_{x}(\lambda) = \frac{1}{\lambda} \sum_{n=1}^{\infty} \lambda^{-n} k^{nk} P_{k,n}(x) = \frac{1}{\lambda} \sum_{i=1}^{k} \gamma_{j}(\lambda^{-\frac{1}{k}}) e^{k\alpha_{j}(\lambda^{-\frac{1}{k}})x}.$$

Let $M_x(z)$, $z \in \Omega_k$ and $M_x^+(t)$, $M_x^-(t)$, $t \ge 1/e$ be as in Lemma 5.1. Then it is easy to see that the function

$$\widetilde{M}_{\scriptscriptstyle X}(z) = \left\{egin{array}{ll} M_{\scriptscriptstyle X}(z), & z \in \Omega_K, \ M_{\scriptscriptstyle X}^-(z), & z \in [1/e, \infty) \end{array}
ight.$$

is a continuous function on the set

$$\left\{ x + iy \mid x \geqslant 0, \frac{-1}{ke} \leqslant y \leqslant 0 \right\}.$$

Hence, by applying the inverse Stieltjes transform, we get that the restriction of v_x to $(0, e^k]$ is absolutely continuous with respect to the Lebesgue measure with density

$$h_{x}(u) = -\frac{1}{\pi} \lim_{v \to 0^{+}} \operatorname{Im}(G_{x}(u+iv)) = -\frac{1}{\pi u} \lim_{\substack{z \to u^{-1/k} \\ \operatorname{Im} z < 0}} \left(\operatorname{Im} \sum_{j=1}^{k} \gamma_{j}(z) e^{k\alpha_{j}(z)x} \right)$$
$$= -\frac{1}{\pi u} \operatorname{Im} M_{x}^{-}(u^{-1/k}) = \frac{1}{\pi u} \operatorname{Im} M_{x}^{+}(u^{-1/k}).$$

Hence, by Lemma 5.1 we get that for $u \in (0, e^k)$,

$$h_x(u) = \frac{1}{\pi u} \frac{\operatorname{Im}(\rho^+(u^{-1/k}))}{k |\rho^+(u^{-1/k})|^2} \sum_{i=0}^k c_i(u^{-1/k}) e^{ka_i(u^{-1/k})x}.$$

By (3.11),

$$\varphi(y) = \frac{1}{\pi y} \frac{\text{Im}(\rho^+(1/y))}{|\rho^+(1/y)|^2}, \quad 0 < y < e.$$

Hence

$$h_{x}(u) = \frac{u^{\frac{1}{k}-1}\varphi(u^{1/k})}{k} \sum_{j=0}^{k} c_{j}(u^{-1/k})e^{ka_{j}(u^{-1/k})x}. \qquad \Box$$
 (5.8)

Remark 5.3. In order to derive Theorem 2.8 from Lemma 5.2, we will have to prove $v_x(\{0\}) = 0$ for almost all $x \in [0, 1]$ with respect to Lebesgue measure. This is done in the proof of Lemma 5.4 below. Actually it can be proved that $v_x(\{0\}) = 0$ for all x > 0. This can be obtained from the formula

$$v_{x}(\{0\}) = \lim_{\lambda \to 0^{-}} \lambda G_{x}(\lambda)$$

(cf. proof of Lemma 3.4) together with the following asymptotic formula for $\rho(z)$ for large values of |z|:

$$\rho(z) = -\log(-z) + \log(\log(-z)) + O\bigg(\frac{\log(\log|z|))}{\log|z|}\bigg),$$

where $\log(-z)$ is the principal value of the logarithm. The latter formula can be obtained from [2, pp. 347–350] using (2.11).

Lemma 5.4. Let $v = \mu_{D_0, S_k^k}$ be the measure on $[0, 1] \times [0, e^k]$ defined in (2.4). Then v is absolutely continuous with respect to the Lebesgue measure, and its density is given by

$$\frac{dv(x,u)}{dx\,du} = h_x(u), \quad x \in (0,1), \quad u \in (0,e^k),$$

where $h_x(u)$ is given by (5.8).

Proof. For $m, n \in \mathbb{N}_0$ we have from Lemma 5.2 and Theorem 2.5 that

$$\int \int_{[0,1]\times[0,e^k]} x^m u^n \, dv(x,u) = \operatorname{tr}(D_0^m S_k^{kn}) = \operatorname{tr}(D_0^m E_{\mathscr{D}}(S_k^{kn}))
= \int_0^t x^m (k^{nk} P_{k,n}(x)) \, dx
= \int_0^1 x^m \left(\int_e^{e^k} u^n \, dv_x(u) \right) dx.$$
(5.9)

Put $g(x) = v_x(\{0\})$, $x \in [0, 1]$. From the definition of v_x it is clear that $x \to v_x$ is a w^* -continuous function from [0, 1] to $Prob([0, e^k])$, i.e.

$$x \to \int_0^{e^k} f(u) \, dv_x(u), \quad x \in [0, 1]$$

is continuous for all $f \in C([0, e^k])$. Put for $j \in \mathbb{N}$,

$$f_j(u) = \begin{cases} j, & 0 \leqslant u \leqslant 1/j, \\ 0, & u > 1/j. \end{cases}$$

Then $g(x) = \lim_{j \to \infty} (\int_0^{e^k} f_j(u) \, dv_x(u))$, and hence g is a Borel function on [0,1]. Putting now m = 0 in (5.9) we get

$$\operatorname{tr}(S_k^{kn}) = \int_0^1 \left(\int_0^{e^k} u^n h_x(u) \, du \right) dx, \quad n = 1, 2, \dots$$
 (5.10)

and for n = 0 we get

$$1 = \int_0^1 g(x) \, dx + \int_0^1 \left(\int_0^{e^k} h_x(u) \, du \right) dx. \tag{5.11}$$

Let $\lambda \in \text{Prob}([0, e^k])$ be the distribution of S_k^k . Then

$$\int_0^{e^k} u^n \, d\lambda(u) = \operatorname{tr}(S_k^{kn})$$

so by (5.10) and (5.11), $\lambda(\{0\}) = \int_0^1 g(x) \, dx$ and λ is absolutely continuous on $(0, e^k]$ with respect to Lebesgue measure, with density $u \to \int_0^1 h_x(u) \, dx$, $u \in (0, e^k)$. However by (2.9) S_k^k and $(T^*T)^k$ have the same moments. Thus S_k^k and $(T^*T)^k$ have the same distribution measure. By ([4, Section 8]), $\ker(T^*T) = \ker(T) = \{0\}$. Hence $\lambda(\{0\}) = 0$, which implies that g(x) = 0 for almost all $x \in [0, 1]$. Thus, using (5.9), we have for all $m, n \in \mathbb{N}_0$

$$\int_{[0,1]\times[0,e^k]} x^m u^n \, dv(x,u) = \int_0^1 x^m \left(\int_0^{e^k} u^n h_x(u) \, du \right) dx.$$

Hence by Stone–Weierstrass Theorem, v is absolutely continuous with respect to two-dimensional Lebesgue measure, and

$$\frac{dv(x,u)}{dx\,du} = h_x(u), \quad x \in (0,1), \quad u \in (0,e^k). \quad \Box$$

Proof of Theorem 2.8 for $k \ge 2$. Let f, g be bounded Borel functions on [0, 1] and [0, e] respectively, and put

$$g_1(u) = g(u^{1/k}), \quad u \in [0, e^k].$$

By Lemma 5.4,

$$\operatorname{tr}(f(D_0)g(S_k)) = \operatorname{tr}(f(D_0)g_1(S_k^k)) = \int \int_{[0,1]\times[0,e^k]} f(x)g_1(u)h_x(u) \, dx \, du$$
$$= \int \int_{[0,1]\times[0,e^k]} f(x)g(y)h_x(y^k)ky^{k-1} \, dx \, dy,$$

where the last equality is obtained by substituting $u = y^k$, $y \in [0, e]$. Hence the measure μ_{D_0, S_k} is absolutely continuous with respect to the two-dimensional

Lebesgue measure, and by (5.8) the density is given by

$$h_x(y^k)ky^{k-1} = \varphi(y) \sum_{j=0}^{\infty} c_j \left(\frac{1}{y}\right) e^{ka_j(\frac{1}{y})x}$$

for $x \in (0,1), y \in (0,e)$.

6. Proof of Theorem 2.8 \Rightarrow Theorem 2.2

Lemma 6.1. Let $k \in \mathbb{N}$ and let $a_0, ..., a_k$ be distinct numbers in $\mathbb{C} \setminus \{0\}$ and put

$$b_j = \prod_{\substack{\ell=0\\\ell\neq j}}^k \frac{a_\ell}{a_\ell - a_j}.$$

Then

$$\sum_{i=0}^{k} b_{i} a_{j}^{p} = 0 \quad p = 1, 2, \dots, k,$$
(6.1)

$$\sum_{j=0}^{k} b_j = 1, \tag{6.2}$$

$$\sum_{j=0}^{k} b_j a_j^{-1} = \sum_{j=0}^{k} a_j^{-1}, \tag{6.3}$$

$$\sum_{j=0}^{k} b_j a_j^{-2} = \sum_{0 \le i \le j \le k} (a_i a_j)^{-1}.$$
 (6.4)

Proof. By applying Lemma 4.1 to the k+1 numbers $a_0, ..., a_k$, we get (6.1) and (6.2). Moreover, (6.3) follows from the residue calculus argument in Remark 4.3 (cf. (4.14)), and (6.4) follows by a similar argument. Indeed, letting g be the rational function

$$g(s) = \frac{1}{s^3} \prod_{\ell=0}^k \left(\frac{a_\ell}{a_\ell - s} \right), \quad s \in \mathbb{C} \setminus \{0, a_0, \dots, a_k\},$$

we have $\operatorname{Res}(g; a_j) = -\frac{1}{a_j^2} \prod_{\ell \neq j} \frac{a_\ell}{a_\ell - a_j} = -b_j a_j^{-2}$ and $\operatorname{Res}(g; 0)$ is the coefficient of s^2 in the power-series expansion of

$$s^{3}g(s) = \prod_{\ell=0}^{k} \left(1 - \frac{s}{a_{\ell}}\right)^{-1} = \prod_{\ell=0}^{k} \left(1 + \frac{s}{a_{\ell}} + \frac{s^{2}}{a_{\ell}^{2}} + \cdots\right).$$

Hence $\operatorname{Res}(g;0) = \sum_{0 \le i \le j \le k} (a_i a_j)^{-1}$. Since $g(s) = O(|s|^{-(k+4)})$ as $|s| \to \infty$, as in Remark 4.3 we get

$$Res(g; 0) + \sum_{j=0}^{k} Res(g; a_j) = 0.$$

This proves (6.4). \square

Lemma 6.2. Let $k \in \mathbb{N}$ be fixed and let $a_j(t)$, $c_j(t)$ for $t \in (\frac{1}{e}, \infty)$ and j = 0, ..., k be defined as in (2.14) and (2.15). Put

$$H(x,t) = \sum_{j=0}^{k} c_j(t)e^{ka_j(t)x}, \quad x \in \mathbf{R}, \quad t > 1/e,$$
(6.5)

$$m(t) = -\frac{1}{k} \sum_{j=0}^{k} a_j(t)^{-1}, \tag{6.6}$$

$$v(t) = \frac{1}{k^2} \sum_{j=0}^{k} a_j(t)^{-2}.$$
 (6.7)

Then

$$\int_{0}^{1} H(x,t) \, dx = 1. \tag{6.8}$$

Moreover, if $k \ge 2$, then

$$\int_{0}^{1} x H(x, t) dx = m(t)$$
 (6.9)

and if $k \ge 3$, then

$$\int_0^1 x^2 H(x,t) \, dx = m(t)^2 + v(t). \tag{6.10}$$

Proof. For a fixed $t \in (\frac{1}{e}, \infty)$, we will apply Lemma 6.1 to the numbers $a_j(t)$, j = 0, ..., k and

$$b_j(t) = \prod_{\ell \neq j} \frac{a_{\ell}(t)}{a_{\ell}(t) - a_j(t)}.$$
(6.11)

Note that by (2.15)

$$c_j(t) = -ka_j(t)b_j(t). (6.12)$$

Since t is fixed, we will drop the t in $a_j(t)$, $b_j(t)$ and $c_j(t)$ in the rest of this proof. We have

$$\int_0^1 H(x,t) dx = \sum_{j=0}^k \frac{c_j}{ka_j} (e^{ka_j} - 1) = \sum_{j=0}^k b_j (1 - e^{ka_j}).$$
 (6.13)

Recall that

$$\begin{cases} a_0 = \rho^+(t), \\ a_j = \rho(te^{i\frac{2\pi j}{k}}), \quad 1 \leq j \leq n, \\ a_k = \rho^-(t), \end{cases}$$

where $t \in (\frac{1}{e}, \infty)$. Since $\rho(z)e^{-\rho(z)} = z$ for $z \in \mathbb{C} \setminus [\frac{1}{e}, \infty)$ we get in the limit $z \to t$ with Im z > 0, respectively Im z < 0, that also

$$\rho^+(t)e^{-\rho^+(t)} = \rho^-(t)e^{-\rho^-(t)} = t.$$

Hence

$$(a_j e^{-a_j})^k = \left(t e^{i\frac{2\pi j}{k}}\right)^k = t^k, \quad j = 0, \dots, k,$$

which shows

$$e^{ka_j} = \left(\frac{a_j}{t}\right)^k, \quad j = 0, \dots, k.$$
 (6.14)

Hence by (6.13), (6.1) and (6.2) we get

$$\int_0^1 H(x,t) dx = \sum_{i=0}^k b_i - \frac{1}{t^k} \sum_{i=0}^k b_i a_j^k = 1,$$

which proves (6.8). Moreover,

$$\int_0^1 x H(x,t) \, dx = \sum_{j=0}^k \left(-k a_j b_j \right) \left[x \frac{e^{k a_j x}}{k a_j} - \frac{e^{k a_j x}}{\left(k a_j \right)^2} \right]_0^1.$$

Using (6.14), (6.1) and (6.3) we get

$$\int_0^1 x H(x,t) \, dx = -\frac{1}{t^k} \sum_{i=0}^k b_i a_j^k + \frac{1}{kt^k} \sum_{i=0}^k b_i a_j^{k-1} - \frac{1}{k} \sum_{i=0}^k \frac{b_i}{a_i} = -\frac{1}{k} \sum_{i=0}^k \frac{1}{a_i} = m(t)$$

provided $k \ge 2$. This proves (6.9). Similarly

$$\int_{0}^{1} x^{2} H(x,t) dx = \sum_{j=0}^{k} (-ka_{j}b_{j}) \left[x^{2} \frac{e^{ka_{j}x}}{ka_{j}} 2x \frac{e^{ka_{j}x}}{(ka_{j})^{2}} + 2 \frac{e^{ka_{j}x}}{(ka_{j})^{3}} \right]_{0}^{1}$$

$$= -\frac{1}{t^{k}} \sum_{j=0}^{k} b_{j}a_{j}^{k} + \frac{2}{kt^{k}} \sum_{j=0}^{k} b_{j}a_{k}^{k-1} - \frac{2}{k^{2}t^{k}} \sum_{j=0}^{k} b_{j}a_{j}^{k-2} + \frac{2}{k^{2}} \sum_{j=0}^{k} \frac{b_{j}}{a_{j}^{2}}.$$

Hence by (6.1) and (6.4), we get for $k \ge 3$

$$\int_0^1 x^2 H(x,t) \, dx = \frac{2}{k^2} \sum_{0 \le i \le j \le k} (a_i a_j)^{-1} = \frac{1}{k^2} \left(\left(\sum_{j=0}^k a_j^{-1} \right)^2 + \sum_{j=0}^k a_j^{-2} \right)$$
$$= m(t)^2 + v(t). \qquad \Box$$

The functions H, m, v, a_j, c_j in Lemma 5.2 depend on $k \in \mathbb{N}$. Therefore we will in the rest of this section rename them $H_k, m_k, v_k, a_{kj}, c_{kj}$. Let $F(y) = \int_0^y \varphi(u) du, y \in [0, e]$ as in Proposition 2.1. Since φ is the density of a probability measure on [0, e], we have

$$0 \le F(y) \le 1, \quad y \in [0, e].$$
 (6.15)

Lemma 6.3. For $t \in (\frac{1}{e}, \infty)$,

$$\lim_{k \to \infty} m_k(t) = F\left(\frac{1}{t}\right),\tag{6.16}$$

$$\lim_{k \to \infty} v_k(t) = 0. \tag{6.17}$$

Proof.

$$m_k(t) = -\frac{1}{k} \sum_{j=0}^k a_{kj}(t)^{-1} = -\frac{1}{k} \left(\sum_{j=0}^k f\left(\frac{j}{k}\right) \right),$$

where $f:[0,1] \rightarrow \mathbb{C}$ is the continuous function

$$f(u) = \begin{cases} \rho^{+}(t)^{-1}, & u = 0, \\ \rho(te^{i2\pi u})^{-1}, & 0 < u < 1, \\ \rho^{-}(t)^{-1}, & u = 1. \end{cases}$$

Hence

$$\lim_{k \to \infty} m_k(t) = -\int_0^1 f(u) \, du = -\frac{1}{2\pi} \int_0^{2\pi} \frac{1}{\rho(te^{i\theta})} d\theta = -\frac{1}{2\pi i} \int_{\partial B(0,t)} \frac{1}{z\rho(z)} dz. \quad (6.18)$$

To evaluate the RHS of (6.18) we apply the residue theorem to compute the integral of $(z\rho(z))^{-1}$ along the closed path C_{ϵ} , $0 < \epsilon < \frac{1}{e}$, which is drawn in Fig. 1.

Since $\rho(z) \neq 0$ when $z \neq 0$ we have

$$\frac{1}{2\pi i} \int_{C_{\epsilon}} \frac{dz}{z\rho(z)} = \operatorname{Res}\left(\frac{1}{z\rho(z)}; 0\right)$$

and by (3.5), $\operatorname{Res}(\frac{1}{z\rho(z)},0) = -1$. Thus, taking the limit $\epsilon \to 0^+$, we get

$$\frac{1}{2\pi i} \left(\int_{1/e}^{t} \frac{dt}{t\rho^{+}(t)} + \int_{\partial B(0,t)} \frac{dz}{z\rho(z)} + \int_{t}^{1/e} \frac{dt}{t\rho^{-}(t)} \right) = -1.$$

Since $\rho^-(t) = \overline{\rho^+(t)}$, we get by (3.11)

$$\begin{split} &\frac{1}{2\pi i} \int_{\partial B(0,t)} \frac{dz}{z\rho(z)} \\ &= -1 - \frac{1}{\pi} \int_{1/e}^{t} \frac{1}{s} \operatorname{Im}\left(\frac{1}{\rho^{+}(s)}\right) ds = -1 + \frac{1}{\pi} \int_{1/e}^{t} \frac{\operatorname{Im} \rho^{+}(s)}{s|\rho^{+}(s)|^{2}} ds \\ &= -1 + \int_{1/e}^{t} \frac{1}{s^{2}} \varphi\left(\frac{1}{s}\right) ds = -1 + \int_{1/e}^{e} \varphi(u) du \\ &= -1 + F(1) - F(1/t) = -F(1/t). \end{split}$$

Hence (6.16) follows from (6.18). In the same way we get

$$v_k(t) = \frac{1}{k^2} \sum_{i=0}^k f\left(\frac{j}{k}\right)^2.$$

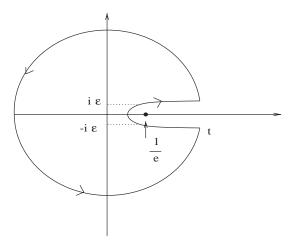


Fig. 1. The contour C_{ε} .

Hence

$$\lim_{k\to\infty} kv_k(t) = \int_0^1 f(u)^2 du,$$

so in particular

$$\lim_{k\to\infty} v_k(t) = 0. \qquad \Box$$

Proof of Theorem 2.2. By Lemma 2.4, Theorem 2.8 and (6.5),

$$||D_0 - F(S_k)||_2^2 = \int \int_{[0,1] \times [0,e]} |x - F(y)|^2 \varphi(y) H_k(x, \frac{1}{y}) dx dy.$$

Moreover by (6.8)–(6.10) we have for $y \in (0, e)$ and $k \ge 3$,

$$\int_0^1 (x - F(y))^2 H_k\left(x, \frac{1}{y}\right) dx = \left(v_k\left(\frac{1}{y}\right) + m_k\left(\frac{1}{y}\right)^2\right) - 2m_k\left(\frac{1}{y}\right) F(y) + F(y)^2$$
$$= \left(m_k\left(\frac{1}{y}\right) - F(y)\right)^2 + v_k\left(\frac{1}{y}\right).$$

Hence for $k \ge 3$

$$||D_0 - F(S_k)||_2^2 = \int_0^e \left(\left(m_k \left(\frac{1}{y} \right) - F(y) \right)^2 + v_k \left(\frac{1}{y} \right) \right) \varphi(y) \, dy.$$

Since $\varphi(y)H_k(x,\frac{1}{y})$ is a continuous density function for the probability measure $\mu_{D_0S_k}$ on $(0,1)\times(0,e)$, and since $\varphi(y)>0$, 0< y< e, we have $H_k(x,t)\geqslant 0$ for all $x\in(0,1)$ and $t\in(\frac{1}{e},\infty)$. Thus by (6.8)–(6.10), $m_k(t)$ and $v_k(t)$ are the mean and variance of a probability measure on (0,1). In particular $0\leqslant m_k(t)\leqslant 1$ and $0\leqslant v_k(t)\leqslant 1$ for all t>1/e. Hence by (6.16), (6.17) and Lebesgue's dominated convergence theorem

$$\lim_{k \to \infty} ||D_0 - F(S_k)||_2^2 = 0.$$

Hence $D_0 \in W^*(T)$. For 0 < t < 1, the subspace $\mathscr{H}_t = 1_{[0,t]}(D_0)\mathscr{H}$ is clearly T-invariant, and since $D_0 \in W^*(T)$, \mathscr{H}_t is affiliated with $W^*(T)$. \square

7. Hyperinvariant subspaces for T

In this section, we prove Theorem 2.9. The proof relies on the following four results. Lemma 7.2 is probably well known, but we include a proof for convenience.

Lemma 7.1. For every $k \in \mathbb{N}$, $||T^k|| = (\frac{e}{k})^{k/2}$.

Proof. By (2.10),
$$||T^k||^2 = ||(T^*)^k T^k|| = k^{-k}||S^k|| = (\frac{e}{L})^k$$
. \square

Lemma 7.2. Let $(S_{\lambda})_{\lambda \in \Lambda}$ be a bounded net of selfadjoint operators on a Hilbert space \mathscr{H} which converges in strong operator topology to the selfadjoint operator $S \in \mathscr{B}(\mathscr{H})$, and let $\sigma_p(S)$ denote the set of eigenvalues of S. Then for all $t \in \mathbb{R} \setminus \sigma_p(S)$, we have

$$\lim_{\lambda \in A} 1_{(-\infty, t]}(S_{\lambda}) = 1_{(-\infty, t]}(S), \tag{7.1}$$

where the limit is in strong operator topology.

Proof. There is a compact interval [a,b] such that $\sigma(S_{\lambda}) \subseteq [a,b]$ for all λ and $\sigma(S) \subseteq [a,b]$. Therefore, given a continuous function $\phi: \mathbf{R} \to \mathbf{R}$, approximating by polynomials we get

$$\lim_{\lambda \in A} \phi(S_{\lambda}) = \phi(S),$$

in strong operator topology. Let $t \in \mathbf{R}$, let $\varepsilon > 0$ and choose a continuous function $\phi : \mathbf{R} \to \mathbf{R}$ such that $0 \le \phi \le 1$, $\phi(x) = 1$ for $x \le t - \varepsilon$ and $\phi(x) = 0$ for $x \ge t$. Then for every $\xi \in \mathcal{H}$

$$\langle 1_{(-\infty,t-\varepsilon]}(S)\xi,\xi\rangle \leqslant \langle \phi(S)\xi,\xi\rangle = \lim_{\lambda \in \Lambda} \langle \phi(S_{\lambda})\xi,\xi\rangle \leqslant \liminf_{\lambda \in \Lambda} \langle 1_{(-\infty,t]}(S_{\lambda})\xi,\xi\rangle.$$

Hence taking the limit as ε^+ , we get

$$\langle 1_{(-\infty,t)}(S)\xi,\xi\rangle \leqslant \liminf_{\substack{\lambda \in A}} \langle 1_{(-\infty,t]}(S_{\lambda})\xi,\xi\rangle.$$
 (7.2)

Similarly, by using a continuous function $\psi : \mathbf{R} \to \mathbf{R}$ satisfying $\psi(x) = 1$ for $x \le t$ and $\psi(x) = 0$ for $x \ge t + \varepsilon$, we get

$$\langle 1_{(-\infty,t]}(S)\xi,\xi\rangle \geqslant \limsup_{\lambda\in\Lambda} \langle 1_{(-\infty,t]}(S_{\lambda})\xi,\xi\rangle.$$
 (7.3)

If $t \notin \sigma_p(S)$, then $1_{(-\infty,t]}(S) = 1_{(-\infty,t]}(S)$, and thus by (7.2) and (7.3), we have

$$\lim_{\lambda \in A} 1_{(-\infty,t]}(S_{\lambda}) = 1_{(-\infty,t]}(S), \tag{7.4}$$

with convergence in weak operator topology. However, the weak and strong operator topologies coincide on the set of projections in $\mathcal{B}(\mathcal{H})$. Hence we have convergence (7.1) in strong operator topology, as desired. \square

Proposition 7.3. Let $F: [0, e] \rightarrow [0, 1]$ be the increasing function defined in Proposition 2.1 and fix $t \in [0, 1]$. Let

$$\mathcal{L}_t = \left\{ \xi \in \mathcal{H} \mid \exists \xi_k \in \mathcal{H}, \lim_{k \to \infty} ||\xi_k - \xi|| = 0, \quad \limsup_{k \to \infty} \left(\frac{k}{e} ||T^k \xi_k||^{2/k} \right) \leqslant t \right\}.$$

Then $\mathcal{L}_t = \mathcal{H}_{F(et)}$.

Proof. For t = 1, we have by Lemma 7.1 that $\mathcal{L}_1 = \mathcal{H} = \mathcal{H}_1 = \mathcal{H}_{F(e)}$. Assume now $0 \le t < 1$, and let $\xi \in \mathcal{H}_{F(et)} = 1_{[0,F(et)]}(D_0)\mathcal{H} = 1_{[0,et]}(F(D_0))\mathcal{H}$. Since $\sigma_p(D_0) = \emptyset$ and since F is one-to-one, we also have $\sigma_p(F(D_0)) = \emptyset$. Hence, by Theorem 2.8 and Lemma 7.2,

$$\lim_{k \to \infty} 1_{[0,et]}(S_k)\xi = 1_{[0,et]}(F(D_0))\xi = \xi.$$

Let $\xi_k = 1_{[0,et]}(S_k)\xi$. Then as we just showed, $\lim_{k\to\infty} ||\xi - \xi_k|| = 0$. Moreover, since $(T^*)^k T^k = k^{-k} S_k^k$, we have

$$||T^{k}\xi_{k}||^{2} = k^{-k} \langle S_{k}^{k}\xi_{k}, \xi_{k} \rangle \leqslant k^{-k}(et)^{k}||\xi_{k}||^{2} \leqslant \left(\frac{et}{k}\right)^{k}||\xi||^{2}.$$

Hence $\limsup_{k\to\infty} \frac{k}{e} ||T^k \xi_k||^{2/k} \le t$, which proves $\mathscr{H}_{F(et)} \subseteq \mathscr{L}_t$. To prove the reverse inclusion, let $\xi \in \mathscr{L}_t$ and choose $\xi_k \in \mathscr{H}$ such that

$$\lim_{k \to \infty} ||\xi_k - \xi|| = 0, \qquad \limsup_{k \to \infty} \left(\frac{k}{e} ||T^k \xi_k||^{2/k} \right) \leqslant t. \tag{7.5}$$

By (2.10), $\sigma(S_k) = [0, e]$. Let E_k be the spectral measure of S_k and let

$$\gamma_k(B) = \langle E_k(B)\xi_k, \xi_k \rangle$$

for every Borel set $B \subseteq [0, e]$. Then γ_k is a finite Borel measure on [0, e] of total mass $\gamma_k([0, e]) = ||\xi_k||^2$ and for all bounded Borel functions $f : [0, e] \to \mathbb{C}$, we have

$$\langle f(S_k)\xi_k, \xi_k \rangle = \int_0^e f d\gamma_k.$$
 (7.6)

In particular,

$$\langle S_k^k \xi_k, \xi_k \rangle = \int_0^e x^k d\gamma_k(x).$$

Let $0 < \varepsilon < 1 - t$. By (7.5), there exists $k_0 \in \mathbb{N}$ such that $\frac{k}{e} ||T^k \xi_k||^{2/k} \le t + \frac{\varepsilon}{2}$ for all $k \ge k_0$. Thus,

$$\int_0^e x^k d\gamma_k(x) = \langle S_k^k \xi_k, \xi_k \rangle = k^k ||T^k \xi_k||^2 \leqslant \left(e \left(t + \frac{\varepsilon}{2} \right) \right)^k \quad (k \geqslant k_0).$$

Since $\left(\frac{x}{e(t+\varepsilon)}\right)^k \ge 1$ for $x \in [e(t+\varepsilon), e]$, we have

$$\gamma_k([e(t+\varepsilon),e]) \leqslant \int_0^e \left(\frac{x}{e(t+\varepsilon)}\right)^k d\gamma_k(x) \leqslant \left(\frac{t+\frac{\varepsilon}{2}}{t+\varepsilon}\right)^k ||\xi_k||^2.$$

Hence, by (7.6),

$$||1_{(e(t+\varepsilon),\infty)}(S_k)\xi_k||^2 = \langle 1_{(e(t+\varepsilon),\infty)}(S_k)\xi_k, \xi_k \rangle \leqslant \left(\frac{t+\frac{\varepsilon}{2}}{t+\varepsilon}\right)^k ||\xi_k||^2,$$

which tends to zero as $k \to \infty$. Since $||\xi_k - \xi|| \to 0$ as $k \to \infty$, we get

$$\lim_{k\to\infty} ||1_{(e(t+\varepsilon),\infty)}(S_k)\xi|| = 0,$$

which is equivalent to

$$\lim_{k\to\infty} 1_{[0,e(t+\varepsilon)]}(S_k)\xi = \xi.$$

Hence, by Theorem 2.8 and Lemma 7.2,

$$1_{[0,F(e(t+\varepsilon))]}(D_0)\xi = 1_{[0,e(t+\varepsilon)]}(F(D_0))\xi = \xi,$$

i.e. $\xi \in \mathcal{H}_{F(e(t+\varepsilon))}$ for all $\varepsilon \in (0, 1-t)$. Since

$$\mathscr{H}_{F(et)} = \bigcap_{s \in (F(et),1)} \mathscr{H}_s,$$

it follows that $\mathcal{L}_t \subseteq \mathcal{H}_{F(et)}$, which completes the proof of the proposition. \square

Lemma 7.4. Let $t \in (0,1)$ and define $(a_n)_{n=1}^{\infty}$ recursively by

$$a_1 = F(et), (7.7)$$

$$a_{n+1} = a_n F\left(\frac{et}{a_n}\right). \tag{7.8}$$

Then $(a_n)_{n=1}^{\infty}$ is a strictly decreasing sequence in [0,1] and $\lim_{n\to\infty} a_n = t$.

Proof. The function $x \mapsto F(ex)$ is a strictly increasing, continuous bijection of [0,1] onto itself. By definition, the restriction of F to (0,e) is differentiable with continuous derivative

$$F'(x) = \phi(x), \quad x \in (0, e),$$

where ϕ is uniquely determined by

$$\phi\left(\frac{\sin v}{v}\exp(v\cot v)\right) = \frac{1}{\pi}\sin v\exp(-v\cot v).$$

As observed in the proof of [4, Theorem 8.9], the map $v \mapsto \frac{\sin v}{v} \exp(v \cot v)$ is a strictly decreasing bijection from $(0, \pi)$ onto (0, e). Moreover,

$$\frac{d}{dv}(\sin v \exp(-v \cot v)) = \frac{v}{\sin v} \exp(-v \cot v) > 0$$

for $v \in (0, \pi)$. Hence ϕ is a strictly decreasing function on (0, e), which implies that F is strictly convex on [0, e]. Hence

$$F(ex) > (1 - x)F(0) + xF(e) = x, \quad x \in (0, 1).$$
(7.9)

With $t \in (0,1)$ and with $(a_n)_{n=1}^{\infty}$ defined by (7.7) and (7.8), from (7.9) we have $a_1 = F(et) \in (t,1)$. If $a \in (t,1)$ and if $a' = aF(\frac{et}{a})$, then clearly a' < a. Moreover, by (7.9),

$$a' = aF\left(\frac{et}{a}\right) > a \cdot \frac{t}{a} = t.$$

Hence $(a_n)_{n=1}^{\infty}$ is a strictly decreasing sequence in (t, 1) and therefore converges. Let $a_{\infty} = \lim_{n \to \infty} a_n$. Then by the continuity of F on [0, e], we have

$$a_{\infty} = a_{\infty} F\left(\frac{et}{a_{\infty}}\right).$$

Hence $F(\frac{et}{a_{\infty}}) = 1$, which implies $a_{\infty} = t$. \square

Proof of Theorem 2.9. Let $T = \mathcal{UT}(X, \lambda)$ be constructed using [4, Section 4], as described in the introduction. For $t \in [0, 1]$, let

$$\mathcal{K}_{t} = \left\{ \xi \in \mathcal{H} \mid \lim_{n \to \infty} \sup \left(\frac{k}{e} ||T^{k} \xi||^{2/k} \right) \leqslant t \right\}. \tag{7.10}$$

We will show

$$\mathscr{H}_t \subseteq \mathscr{K}_t \subseteq \mathscr{H}_{F(et)}, \quad t \in [0, 1]. \tag{7.11}$$

The second inclusion in (7.11) follows immediately from Proposition 7.3. The first inclusion is trivial for t = 0, so we can assume t > 0. Letting $P_t = 1_{[0,t]}(D_0)$ be the projection onto \mathcal{H}_t , from [4, Lemma 4.10] we have

$$T_{t} \stackrel{\text{def}}{=} \frac{1}{\sqrt{t}} T \upharpoonright_{\mathcal{H}_{t}} = P_{t} T P_{t} = \mathscr{U} \mathscr{T} \left(\frac{1}{\sqrt{t}} P_{t} X P_{t}, \lambda_{t} \right), \tag{7.12}$$

where $\lambda_t: L^{\infty}[0,1] \to P_t L(\mathbf{F}_2) P_t$ is the injective, normal *-homomorphism given by $\lambda_t(f) = \lambda(f_t)$, where

$$f_t(s) = \begin{cases} f(s/t) & \text{if } s \in [0, t], \\ 0 & \text{if } s \in (t, 1]. \end{cases}$$

Therefore, T_t is itself a DT(δ_0 , 1)-operator in $(P_t \mathcal{M} P_t, t^{-1} \tau \upharpoonright_{P_t \mathcal{M} P_t})$. Hence, by Lemma 7.1 applied to T_t , we have, for all $\xi \in \mathcal{H}_t$,

$$||T^k \xi|| = t^{k/2} ||T_t^k \xi|| \le \left(\frac{te}{k}\right)^{k/2} ||\xi||.$$

Therefore, $\limsup_{k\to\infty} (\frac{k}{e}||T^k\xi||^{2/k}) \le t$ and $\xi \in \mathcal{K}_t$. This completes the proof of (7.11).

From (7.11), we have in particular $\mathscr{K}_0 = \mathscr{H}_0 = \{0\}$ and $\mathscr{K}_1 = \mathscr{H}_1 = \mathscr{H}$. Let $t \in (0,1)$ and let $(a_n)_{n=1}^{\infty}$ be the sequence defined by Lemma 7.4. We will prove by induction on n that $\mathscr{K}_t \subseteq \mathscr{H}_{a_n}$. By (7.11), $\mathscr{K}_t \subseteq \mathscr{H}_{a_1}$. Let $n \in \mathbb{N}$ and assume $\mathscr{K}_t \subseteq \mathscr{H}_{a_n}$. Then

$$\mathcal{K}_{t} = \left\{ \xi \in \mathcal{H}_{a_{n}} \mid \limsup_{k \to \infty} \left(\frac{k}{e} ||T^{k} \xi||^{2/k} \right) \leq t \right\}$$
 (7.13)

$$= \left\{ \xi \in \mathcal{H}_{a_n} \mid \limsup_{k \to \infty} \left(\frac{k}{e} ||T_{a_n}^k \xi||^{2/k} \right) \leq \frac{t}{a_n} \right\}. \tag{7.14}$$

But the space (7.14) is the analogue of \mathcal{K}_{t/a_n} for the operator T_{a_n} . By (7.11) applied to the operator T_{a_n} , we have that \mathcal{K}_t is contained in the analogue of $\mathcal{H}_{F(et/a_n)}$ for T_{a_n} . Using (7.12) (with a_n instead of t), we see that this latter space is

$$\lambda_{a_n}(1_{[0,F(et/a_n)]})\mathscr{H}_{a_n} = \lambda(1_{[0,a_nF(et/a_n)]})\mathscr{H}_{a_n} = \lambda(1_{[0,a_{n+1}]})\mathscr{H}_{a_n} = \mathscr{H}_{a_{n+1}}.$$

Thus $\mathcal{H}_t \subseteq \mathcal{H}_{a_{n+1}}$ and the induction argument is complete.

Now applying Lemma 7.4, we get $\mathcal{K}_t \subseteq \bigcap_{n=1}^{\infty} \mathcal{H}_{a_n} = \mathcal{H}_t$, as desired. \square

Appendix A. \mathscr{D} -Gaussianity of T, T^*

The operator T was defined in [4] as the limit in *-moments of upper triangular Gaussian random matrices, and it was shown in [4] that T can be constructed as $T=\mathscr{UT}(X,\lambda)$ in a von Neumann algebra \mathscr{M} equipped with a normal, faithful, tracial state τ , from a semicircular element $X\in\mathscr{M}$ with $\tau(X)=0$ and $\tau(X^2)=1$ and an injective, unital, normal *-homomorphism $\lambda:L^\infty[0,1]\to\mathscr{M}$ such that $\{X\}$ and $\lambda(L^\infty[0,1])$ are free with respect to τ and $\tau\circ\lambda(f)=\int_0^1f(t)\,dt$. (See the description in the introduction and [4, Section 4].) Let $\mathscr{D}=\lambda(L^\infty[0,1])$ and let $E_{\mathscr{D}}:\mathscr{M}\to\mathscr{D}$ be the τ -preserving conditional expectation onto \mathscr{D} .

In [6], it was asserted that T is a generalized circular element with respect to $E_{\mathcal{D}}$ and with a particular variance. It is the purpose of this appendix to provide a proof.

Lemma A.1. Let $f \in L^{\infty}[0,1]$. Then

$$E_{\mathscr{D}}(T\lambda(f)T^*) = \lambda(g), \tag{A.1}$$

$$E_{\mathscr{D}}(T^*\lambda(f)T) = \lambda(h), \tag{A.2}$$

$$E_{\mathscr{D}}(T\lambda(f)T) = 0, (A.3)$$

$$E_{\mathscr{D}}(T^*\lambda(f)T^*) = 0, (A.4)$$

where

$$g(x) = \int_{x}^{1} f(t) dt, \quad h(x) = \int_{0}^{x} f(t) dt.$$
 (A.5)

Moreover,

$$E_{\mathscr{D}}(T) = 0. \tag{A.6}$$

Proof. From [4, Section 4], $\lim_{n\to\infty} ||T-T_n|| = 0$, where

$$T_n = \sum_{j=1}^{2^n-1} p\left[\frac{j-1}{2^n}, \frac{j}{2^n}\right] Xp\left[\frac{j}{2^n}, 1\right]$$

and $p[a,b] = \lambda(1_{[a,b]})$. Therefore,

$$\lim_{n\to\infty} ||E_{\mathscr{D}}(T\lambda(f)T^*) - E_{\mathscr{D}}(T_n\lambda(f)T_n^*)|| = 0.$$

We have

$$E_{\mathscr{D}}(T_n\lambda(f)T_n^*) = \sum_{j=1}^{2^n-1} p\left[\frac{j-1}{2^n}, \frac{j}{2^n}\right] E_{\mathscr{D}}\left(Xp\left[\frac{j}{2^n}, 1\right]\lambda(f)X\right).$$

Fixing *n* and letting $a = \int_{j/2^n}^1 f(t) dt$, we have

$$Xp\left[\frac{j}{2^n},1\right]\lambda(f)X = X\left(p\left[\frac{j}{2^n},1\right]\lambda(f) - a\right)X + a(X^2 - 1) + a,$$

and from this we see that $E_{\mathscr{D}}(Xp[\frac{j}{2^n},1]\lambda(f)X)$ is the constant $\int_{j/2^n}^1 f(t) dt$. Therefore, we get $E_{\mathscr{D}}(T_n\lambda(f)T_n^*) = \lambda(g_n)$, where

$$g_n(x) = \begin{cases} \int_{j/2^n}^1 f(t) dt & \text{if } \frac{j-1}{2^n} \leqslant x \leqslant \frac{j}{2^n}, \ j \in \{1, \dots, 2^n - 1\}, \\ 0 & \text{if } \frac{2^n - 1}{2^n} \leqslant x \leqslant 1. \end{cases}$$

Letting $n \to \infty$, we obtain (A.1) with g as in (A.5). Eqs. (A.2)–(A.4) and (A.6) are obtained similarly.

Comparing Sniady's definition of a generalized circular element (with respect to \mathcal{D}) in [6] with Speicher's algorithm for passing from \mathcal{D} -cummulants to \mathcal{D} -moments in [7, Sections 2.1 and 3.2], we see that an operator $S \in L(\mathbf{F}_2)$ is generalized circular if and only if all \mathcal{D} -cummulants of order $k \neq 2$ for the pair (S, S^*) vanish. Hence S is generalized circular if and only if the pair (S, S^*) is \mathcal{D} -Gaussian in the sense of [7, Definition 4.2.3]. Thus, in order to prove that T has the properties used in [6], it suffices to prove the following.

Proposition A.2. The distribution of the pair T, T^* with respect to $E_{\mathscr{D}}$ is a \mathscr{D} -Gaussian distribution with covariance matrix determined by (A.1)–(A.6).

Proof. Take $X_1, X_2, ... \in \mathcal{M}$, each a (0, 1)-semicircular element such that

$$\mathscr{D}, (\{X_j\})_{j=1}^{\infty}$$

is a free family of sets of random variables. Then the family

$$(W^*(\mathcal{D} \cup \{X_i\}))_{i=1}^{\infty}$$

of *-subalgebras of \mathcal{M} is free (over \mathcal{D}) with respect to $E_{\mathcal{D}}$. Let $T_j = \mathcal{UT}(X_j, \lambda)$. Then each T_j has \mathcal{D} -valued *-distribution (with respect to $E_{\mathcal{D}}$) the same as T. Therefore, by Speicher's \mathcal{D} -valued free central limit theorem [7, Theorem 4.2.4], the \mathcal{D} -valued *-distribution of $\frac{T_1+\cdots+T_n}{\sqrt{n}}$ converges as $n\to\infty$ to a \mathcal{D} -Gaussian *-distribution with the correct covariance. However, $\frac{X_1+\cdots+X_n}{\sqrt{n}}$ is a (0,1)-semicircular element that is free from \mathcal{D} , and

$$\frac{T_1+\cdots+T_n}{\sqrt{n}}=\mathscr{U}\mathscr{T}\bigg(\frac{X_1+\cdots+X_n}{\sqrt{n}},\lambda\bigg).$$

Thus $\frac{T_1+\cdots+T_n}{\sqrt{n}}$ itself has the same \mathscr{D} -valued *-distribution as T. \square

References

- [1] A. Connes, Classification of injective factors, Ann. of Math. 104 (1976) 73–115.
- [2] R.M. Corless, G.H. Gonnet, D.E.G. Hare, D.J. Jeffrey, D.E. Knuth, On the Lambert W function, Adv. Comput. Math. 5 (1996) 329–359.
- [3] K. Dykema, U. Haagerup, Invariant subspaces of Voiculescu's circular operator, Geom. Funct. Anal. 11 (2001) 693–741.
- [4] K. Dykema, U. Haagerup, DT-operators and decomposability of Voiculescu's circular operator, Amer. J. Math. (to appear).

- [5] P. Śniady, Inequality for Voiculescu's free entropy in terms of Brown measure, Internat. Math. Res. Notices, 2003, 51–64.
- [6] P. Śniady, Multinomial identities arising from the free probability, J. Combin. Theory A 101 (2003) 1–19.
- [7] R. Speicher, Combinatorial theory of the free product with amalgamation and operator-valued free probability theory, Mem. Amer. Math. Soc. 132 (627) (1998) x + 88.
- [8] R. Stanley, Enumerative Combinatorics, Vol. 2, Cambridge University Press, Cambridge, 1999.