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It is shown that for the injective factor of type III; with separable predual an
automorphism is pointwise inner if and only if it is the composition of an inner and
a modular automorphism.  © (994 Academic Press, Inc.

1. INTRODUCTION

If M is a von Neumann algebra an automorphism a of M is called
pointwise inner if for each normal state ¢ of M there is a unitary operator
u=1u(p) in M such that ¢ oo = ¢ o Ad(u), see [7]. It was shown in [7] that
if M is semifinite with separable predual then each pointwise inner
automorphism is inner. When M is a factor of type III,, 0< A< 1, with
separable predual we showed in {8] that pointwise inner automorphisms
were all compositions of inner automorphisms and extended modular
automorphisms. We conjectered that in the case of III,-factors they were
necessarily compositions of inner and modular automorphisms. In the pre-
sent paper we prove this conjecture for the injective I1I,-factor. Thus we
obtain a complete classification of all pointwise inner automorphisms of
injective factors with separable preduals. It turns out that this classification
coincides with that of Connes [3] and Kawahigashi et al. [10] of centrally
trivial automorphisms of injective factors, hence for such factors pointwise
inner automorphisms are the same as centrally trivial automorphisms.
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2. ALMOST PERIODIC STATES

Let M be a von Neumann algebra, and suppose ae Aut(M)—the
automorphism group of M—is pointwise inner. Let ¢ be a normal state
and let u be a unitary operator in M so that ¢ - a = u@u*. Replacing a by
oo Ad v we may assume @ -a = ¢. In particular « leaves the centralizer M,
of ¢ globally invariant. A crucial problem concerning « is whether «|,, is
inner. In [8] we showed this when M is a factor with separable predual
and ¢ is a lacunary faithful normal semifinite weight with infinite multi-
plicity, and we could thus accomplish the classification for III,-factors,
0 <4< 1.In the present section we show a[,,, is inner when ¢ is an almost
periodic state, where a faithful normal state is said to be almost periodic if
its modular operator 4, has a total set of eigenvectors [1, 3.7.1].

THEOREM 2.1. Let M be a von Neumann algebra with separable predual.
Suppose @ is a faithful normal almost periodic state on M. Let x be a
pointwise inner automorphism of M such that ¢ oo = @. Then the restriction
|y, to the centralizer of ¢ is an inner automorphism.

The proof of this proposition is divided into some lemmas. The first is
of purely topological character. We say a topological space S is a Cantor
set if S is homeomorphic with {0, 1}™.

LeMMa 2.2, Let I'c R be a countable group. Then there exists a Cantor
set S< R such that

i+ +8)=F  for vy, vl 7 #7,.

Proof. Put

A ={3 Y 1,477:1,€{0, 1} forall i}.

i=1

Then 4<{0,1] and Oe A, 1eA4. A is a Cantor set via the mapping
3314 > (1,)e{0,1}™. We assert that 4 —4 has no interior points.
Indeed,

A—A={3 > Si4i:sie{_1’0’1}}

i=1

={3 Y 54 5,€{0,1, 2}}— 1,

i=1
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using that 3Y*,4 ‘=1 Since (5;)2,>> 7,54 " is a one-to-one
function on {0, 1,2}V, 4 — 4 is homeomorphic to {0, 1, 2}", hence it is
totally disconnected, proving the assertion.

Let y,, y,€ I Then for a set S
1+ N (1 +S) =Ty, —7,¢5-85.

It therefore suffices to find a Cantor set S such that (S— S}~ (/'\{0})= .
Letyel, =I"nR,. Put

0,={icR, :y¢i {A—A)} =R, \y (4—A).

O, is open since 4 — A is closed, and dense since 4 — 4 has no interior
points. By Baire’s Category Theorem (), O, is dense in R. In particular
there is Aoe(),.,, O, Thus y¢i;'(4—A)forall yel',. Since 4~ 4 is
symmetric we find I'\{0} =7"_u I, does not intersect (., O,, hence
S=4,"'(4— A) satisfies the requirements of the lemma. |

LeEmMA 23. Let H be a Hilbert space and h,ke B(H), invertible
operators. Suppose be B(H) and A> 0 are such that bh = ikb, and Sp(h)
ASplk)=. Then 6=0.

Proof. Taking adjoints we have hb* = Ab*k. Thus b*bh = Ab*kb = hb*b,
so b*be {h}’, and similarly bb*e {k}'. Let b=v |b| be polar decomposi-
tion, and put v, =h(b*b+¢e1) ' for £>0. Then v=s. lim, , v, (strong
limit). Since

v.h=bh(b*b+e1) 2= jku,
we find, letting ¢ — 0,

vh = Akv.

Taking adjoints we have hv* = Jv*k, and as above v*ve {h}’, vv*e {k}"
Furthermore we have

v(v*vh)v* = vho* = Avo*k,

hence v is an isometry of v*v(H) onto vv*(H) carrying #|..,, onto
Ak| ppeisry. In particular,

Sp(hl pepiary) = A Sp(k'vr'iH))-

However, since v*ve {h}’, Sp(/] . s;) < Sp(h) and similarly for k. Since by
assumption Sp(h) N ASp(k)=J, v=0, and thus 5=0. |
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LEMMA 2.4. Let M be a von Neumann algebra with separable predual.
Suppose ¢ is a faithful normal almost periodic state. Let A be a maximal
Abelian subalgebra of M ,, and suppose o is a pointwise inner automorphism
of M such that @ oa= . Then there exists a unitary operator ue M, such
that o] , = Ad(u)| 4.

Proof. We let Sp,(6®) denote the set of ye R for which the spectral
subspace

M,={xeM|o?(x)=e*"x, te R}

is non-zero. By [1, Section 3.7], one easily gets that sp,(g?) is just the
logarithm of the discrete spectrum sp,(4,,) of the modular operator 4, so
in particular sp,(c¥) is countable. Since ¢ is almost periodic, the function

1> g(a?(a*)b), teR,

is almost periodic for all a,be M (cf. [1, Lemma 3.74]). Thus, if m
denotes the invariant mean on the almost periodic functions, the map

E(x)= fm o®(x)e " dm(t), xeM,

— o

defines a normal projection of M onto M,. In particular, £,=0 when
Y ¢5pa(a?).

Since an almost periodic function f on R is uniquely determined by its
“Fourier coefficients”
f0y={" fwemamo,  yeR,

- 00

it follows that two elements x, y e M coincide if and only if E(x)=E(y)
for all yesp,(a®).

Let by Lemma 22 SR be a Cantor set such that (S—S)n 1= {0},
where I is the countable group generated by Sp,(c®). Let ae 4, be a
generator for 4 with Sp(a)=S. This can be done since 4= L>(S, dy) for
some purely nonatomic measure u with supp(u)=S. Let h=e". Then & is
a generator for 4, and Sp(h) = ¢°.

Since « is pointwise inner there is a unitary operator u € M such that

u(hg)u* = (hg)oa~ ' =a(h)g.
Thus

u(hg) = (a(h) @)u.
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If xe M we thus have
@(xaf(u)h) = @(a? (x)uh)
= (h@)(o? (x)u)
= (a(h)p)(uo? (x))
= p(alh) us? (x))
= @(a(h) a7 (u)x).
Integrating with respect to dm we thus obtain
@(xE (u)h) = p(a(h) E,(u)x),  y€Spu(a®),
or, with u, = E (u),
u,(hg) = (a(h)p)u,,  y€Spy(o®).
Since u,e M,, ou,=e"u,¢, see [13] or [14, Lemma 1.6],
u,(hp) = (a(h)p)u, = e7alh) u, .
Since ¢ is faithful
uh=e"a(h)u,.

By hypothesis SN (y + §) = & for yeSp,(6°)\{0}, hence e®* ne’e® = .
Since e® = Sp(h) = Sp(a(h)) it follows from Lemma 2.3 that u, =0 for y #0.
Therefore E (u)=E (u,) for all yeSp,(o®). Hence u=u,e M,,. But then
for xe M,

@(a(h)x) = (ho lu*xu) = p(hu*xu) = @(uhu*x),

so that a(h)=uhu*, proving the lemma. [

Proof of Theorem 2.1. By [12] there exists a maximal Abelian sub-
algebra 4 of M, such that if G is the group generated by «|,,, and the
inner automorphisms of M, then if feG and f|,=id then f= Ad(v)
with v upitary in A. Apply Lemma 2.4 to 4 and choose a unitary ue M,
such that o ,=Ad(u){,. Then f=al,, -Ad(u*)eG, and f|,=id. Thus
B =Ad(v) with ve A4, hence af,,, = Ad(vu) is inner. [

3. THE INJECTIVE FACTOR OR TYPE III,

Recall that by [6] all injective factors of type III, with separable
preduals are isomorphic, so they can be identified.
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THEOREM 3.1. Let M be the injective factor of type 111, with separable
predual. Let o.€ Aut(M) and ¢ be a faithful normal state. Then x is pointwise
inner if and only if there are t € R and a unitary operator ve M such that

a=0?>Ad(v).

Before we prove the theorem we show a lemma which is probably well
known.

LEMMA 32. Let N and M be von Neumann algebras. Suppose t is a
Jfaithful normal finite trace on N and ¢ a faithful normal state on M. Then
the centralizer of 1 ® @ is given by

(NOM),5,=NOM,,.

Proof. For any normal faithful state w on a von Neumann algebra P we
let £,: P— M, normal conditional expectation of P onto the centralizer
M, for which w- E_ = . Let xe P. By [ 11, Section 2, Theorem 1.1], E,(x)

is the unique element of the o-weak closure of
convi{o?(x), 1e R}

which is containeld in M.
With the notation of the lemma, we have

ci®’=i,®a?
Hence it follows from the above that
Er®ga(x ® )') = x® E(p(y)

for all xe N and yve M. Thus (N® M), 4, is the o-weakly closed linear
span of

{(x®E,(»)| xeN, ye M}.

This proves the lemma. ||

In order to prove Theorem 3.1 we use the classification up to outer con-
jugacy of automorphisms of the injective factor M of type III, as given in
[15]. An automorphism « is called centrally trivial if the *-strong limit
lim,(e(x,) —x,)=0 for all bounded central sequences (x,) in M. For
o e Aut(M) the asymptotic period p,(a) of a is the smallest positive integer
p such that a” is centrally trivial. If no such p exists we put p (a)=0.

Let @ be a dominant weight on M (cf. [5, § II.1]). Since the flow of
weights of a III, -factor is trivial, it follows from [10, Theorem 1] that if
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p=p.a)>0, then a” = Ad(u)-o? for a unitary operator ue M, and a real
number ¢=t(a). The numbers p () and t(«) are easily seen to be outer
conjugacy invariants of o Moreover, by composing « by an inner
automorphism, we may assume that woa=ow. In this case, the identity
of = Ad(u)- 0 implies that a(u)=yu for a complex number y=ry(x)
satisfying y7=1 (cf. [1S5, § 2]). By [15, Theorem 2.1] the triple
(pola), t(2), y(a)) is a complete invariant for outer conjugacy of a.

Let R denote the hyperfinite factor of type II,, and let f € Aut(R). From
the work of Connes [4] the centrally trivial automorphisms of R are inner,
hence p= p, ()= po(e) is the outer period of a. Thus a”=Ad(u) for a
unitary operator ue R, and a(u)=yu with y?=1. By [2] and [4] po(a)
and y are complete invariants for outer conjugacy of a.

Proof of Theorem 3.1. Since R® M ~ M by the isomorphism of all
hyperfinite III,-factors with separable preduals, we can write

M=RRM,,

where M, =M. Let 1 be the trace state on R and let w be a dominant
weight on M. Then & =1 ® w is a dominant weight on M. By the above
classification of outer conjugacy classes of automorphisms of R and M, it
follows that automorphisms of M of the form

f®a?, B e Aut(R), teRR,

run through all outer conjugacy classes in Aut(M). The algebra M, admits
a normal, faithful, almost periodic sate s because it is isomorphic to a ten-
sor product of two Powers factors R, and R, for which log y/log u ¢ Q. By
Connes’ cocycle theorem for modular automorphisms ¢ = Ad(u,)< 6" for
a one-parameter family (u,), . of unitary operators in M. Hence also

BRa?, B e Aut(R), teR,

run through all outer conjugacy classes of Aut(AM). Since the property
“pointwise inner” is invariant under outer conjugacy, it suffices to prove
Theorem 3.1 for pointwise inner automorphisms of the form a=®s,
BeAut(R), teR. Clearly y =t ®y is an almost periodic state on M and
Weoa=y. Thus by Theorem 2.1 and Lemma 3.2, the restriction of « to
R® M, is inner; ie., @i is inner on R® M. Hence, by [9, Cor. 1.14],
p = Ad(u) for a unitary u € R. Therefore

a=0Yo Ad(u®1).
Thus by Connes’ cocycle theorem, « is of the form

a=ga?oAd(v),
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ve U(M), for any fixed normal faithful state ¢ on M. This completes the
proof. |

From the classification of pointwise inner automorphisms in [7, 8] and
of centrally trivial automorphisms in [10, 15], it follows that if M is an
injective factor with separable predual and not of type III,, then point-
wise inner and centrally trivial automorphisms are the same, see [10,
Remark 197]. In the III,-case this is also true by Theorem 3.1 and [10].
Thus we have

COROLLARY 3.3 Let M be an injective factor with separable predual, and
let a € Aut(M). Then o is pointwise inner if and only if o is centrally trivial.

REFERENCES

1. A. Connges, Une classification des facteurs de type 111, Ann. Sci. Ecole Norm. Sup. 6
(1973), 133-252.

2. A. Conngs, Outer conjugacy classes of automorphisms of factors, Ann. Sci. Ecole Norm.
Sup. 8 (1975), 383-419.

3. A. Connges, On the classification of von Neumann algebras and their automorphisms,
Symposia Math. 20 (1976), 435-478.

4. A. Connes, Periodic automorphisms of the hyperfinite factor of type II,, Acta Sci. Math.
39 (1977), 39-66.

5. A. Connes AND M. Takesakl, The flow of weights on factors of type I, Téhoku Math.
J. 29 (1977), 473-575.

6. U. HaaGeruUP, Connes bicentralizer theorem and the uniqueness of the injective factor of
type I11,, Acta Math. 158 (1987), 95-148.

7. U. HAAGERUP AND E. ST@RMER, Equivalence of normal states of von Neumann algebras
and the flow of weights, Adv. in Math. 83 (1990), 180-262.

8. U. Haagerup anDp E. ST@RMER, Pointwise inner automorphisms of von Neumann
algebras, with an appendix by C. Sutherland, J. Funct. Anal. 92 (1990}, 177-201.

9. R. KAaLLMAN, A generalization of free action, Duke Math. J. 36 (1969), 781-789.

10. Y. KawaHiGasHl, C. SUTHERLAND, AND M. TakEsaky, The structure of the automorphism
group of an injective factor and the cocycle conjugacy of discrete abelian group actions,
Acta Math. 169 (1992), 105-130.

11. J. Kovacs anp J. Szucs, Ergodic type theorems in von Neumann algebras, Acta Sci.
Math. Szeged 27 (1966), 233-246.

12. S. PoPa, Singular maximal abelian *-subalgebras in continuous von Neumann algebras,
J. Funct. Anal. 50 (1983), 151-166.

13. E. STORMER, Spectra of states and asymptotically abelian C*-algebras, Commun. Math.
Phys. 28 (1972), 279-294.

14. M. TakEesakl, The structure of a von Neumann algebra with a homogeneous periodic
state, Acta Math. 131 (1973), 79-122.

15. M. Takesakl, The structure of the automorphism group of an AFD factor, in “Operator
Algebras, Unitary Representations Enveloping Algebras and Invariant Theory,” Progress
in Mathematics, Vol. 92, pp. 1944, Birkhéduser, Basel, 1990.



