Pointwise Inner Automorphisms of Injective Factors

UFFE HAAGERUP

Department of Mathematics and Computer Science, Odense University, Campusvej 55, DK-5230 Odense M, Denmark

AND

ERLING STØRMER

Department of Mathematics, University of Oslo, N-0316 Oslo 3, Norway

Communicated by A. Connes

Received March 15, 1991

It is shown that for the injective factor of type III₁ with separable predual an automorphism is pointwise inner if and only if it is the composition of an inner and a modular automorphism. © 1994 Academic Press, Inc.

1. Introduction

If M is a von Neumann algebra an automorphism α of M is called pointwise inner if for each normal state φ of M there is a unitary operator $u=u(\varphi)$ in M such that $\varphi\circ\alpha=\varphi\circ \mathrm{Ad}(u)$, see [7]. It was shown in [7] that if M is semifinite with separable predual then each pointwise inner automorphism is inner. When M is a factor of type III_{λ} , $0\leqslant \lambda<1$, with separable predual we showed in [8] that pointwise inner automorphisms were all compositions of inner automorphisms and extended modular automorphisms. We conjectered that in the case of III_1 -factors they were necessarily compositions of inner and modular automorphisms. In the present paper we prove this conjecture for the injective III_1 -factor. Thus we obtain a complete classification of all pointwise inner automorphisms of injective factors with separable preduals. It turns out that this classification coincides with that of Connes [3] and Kawahigashi et al. [10] of centrally trivial automorphisms of injective factors, hence for such factors pointwise inner automorphisms are the same as centrally trivial automorphisms.

2. Almost Periodic States

Let M be a von Neumann algebra, and suppose $\alpha \in \operatorname{Aut}(M)$ —the automorphism group of M—is pointwise inner. Let φ be a normal state and let u be a unitary operator in M so that $\varphi \circ \alpha = u\varphi u^*$. Replacing α by $\alpha \circ \operatorname{Ad} u$ we may assume $\varphi \circ \alpha = \varphi$. In particular α leaves the centralizer M_{φ} of φ globally invariant. A crucial problem concerning α is whether $\alpha|_{M_{\varphi}}$ is inner. In [8] we showed this when M is a factor with separable predual and φ is a lacunary faithful normal semifinite weight with infinite multiplicity, and we could thus accomplish the classification for $\operatorname{III}_{\lambda}$ -factors, $0 \leqslant \lambda < 1$. In the present section we show $\alpha|_{M_{\varphi}}$ is inner when φ is an almost periodic state, where a faithful normal state is said to be almost periodic if its modular operator Δ_{φ} has a total set of eigenvectors [1, 3.7.1].

Theorem 2.1. Let M be a von Neumann algebra with separable predual. Suppose φ is a faithful normal almost periodic state on M. Let α be a pointwise inner automorphism of M such that $\varphi \circ \alpha = \varphi$. Then the restriction $\alpha|_{M_{\alpha}}$ to the centralizer of φ is an inner automorphism.

The proof of this proposition is divided into some lemmas. The first is of purely topological character. We say a topological space S is a *Cantor set* if S is homeomorphic with $\{0, 1\}^{\mathbb{N}}$.

Lemma 2.2. Let $\Gamma \subset \mathbb{R}$ be a countable group. Then there exists a Cantor set $S \subset \mathbb{R}$ such that

$$(\gamma_1 + S) \cap (\gamma_2 + S) = \emptyset$$
 for $\gamma_1, \gamma_2 \in \Gamma, \gamma_1 \neq \gamma_2$.

Proof. Put

$$A = \left\{ 3 \sum_{i=1}^{\infty} t_i 4^{-i} : t_i \in \{0, 1\} \text{ for all } i \right\}.$$

Then $A \subset [0, 1]$ and $0 \in A$, $1 \in A$. A is a Cantor set via the mapping $3 \sum t_i 4^{-i} \to (t_i) \in \{0, 1\}^{\mathbb{N}}$. We assert that A - A has no interior points. Indeed,

$$A - A = \left\{ 3 \sum_{i=1}^{\infty} s_i 4^{-i} : s_i \in \{-1, 0, 1\} \right\}$$
$$= \left\{ 3 \sum_{i=1}^{\infty} s_i 4^{-i} : s_i \in \{0, 1, 2\} \right\} - 1,$$

using that $3\sum_{i=1}^{\infty} 4^{-i} = 1$. Since $(s_i)_{i=1}^{\infty} \to \sum_{i=0}^{\infty} s_i 4^{-i}$ is a one-to-one function on $\{0, 1, 2\}^{\mathbb{N}}$, A - A is homeomorphic to $\{0, 1, 2\}^{\mathbb{N}}$, hence it is totally disconnected, proving the assertion.

Let $\gamma_1, \gamma_2 \in \Gamma$. Then for a set S

$$(\gamma_1 + S) \cap (\gamma_2 + S) = \emptyset \Leftrightarrow \gamma_1 - \gamma_2 \notin S - S.$$

It therefore suffices to find a Cantor set S such that $(S-S) \cap (\Gamma \setminus \{0\}) = \emptyset$. Let $\gamma \in \Gamma_+ = \Gamma \cap \mathbb{R}_+$. Put

$$O_{\gamma} = \{\lambda \in \mathbb{R}_{+} : \gamma \notin \lambda^{-1}(A - A)\} = \mathbb{R}_{+} \setminus \gamma^{-1}(A - A).$$

 O_{γ} is open since A-A is closed, and dense since A-A has no interior points. By Baire's Category Theorem $\bigcap_{\gamma \in \Gamma_+} O_{\gamma}$ is dense in \mathbb{R} . In particular there is $\lambda_0 \in \bigcap_{\gamma \in \Gamma_+} O_{\gamma}$. Thus $\gamma \notin \lambda_0^{-1}(A-A)$ for all $\gamma \in \Gamma_+$. Since A-A is symmetric we find $\Gamma \setminus \{0\} = \Gamma_- \cup \Gamma_+$ does not intersect $\bigcap_{\gamma \in \Gamma_+} O_{\gamma}$, hence $S = \lambda_0^{-1}(A-A)$ satisfies the requirements of the lemma.

LEMMA 2.3. Let H be a Hilbert space and $h, k \in B(H)_+$ invertible operators. Suppose $b \in B(H)$ and $\lambda > 0$ are such that $bh = \lambda kb$, and $Sp(h) \cap \lambda Sp(k) = \emptyset$. Then b = 0.

Proof. Taking adjoints we have $hb^* = \lambda b^*k$. Thus $b^*bh = \lambda b^*kb = hb^*b$, so $b^*b \in \{h\}'$, and similarly $bb^* \in \{k\}'$. Let b = v |b| be polar decomposition, and put $v_{\varepsilon} = b(b^*b + \varepsilon 1)^{-1/2}$ for $\varepsilon > 0$. Then v = s. $\lim_{\varepsilon \to 0} v_{\varepsilon}$ (strong limit). Since

$$v_{\varepsilon}h = bh(b*b + \varepsilon 1)^{-1/2} = \lambda kv_{\varepsilon}$$

we find, letting $\varepsilon \to 0$,

$$vh = \lambda kv$$
.

Taking adjoints we have $hv^* = \lambda v^*k$, and as above $v^*v \in \{h\}'$, $vv^* \in \{k\}'$. Furthermore we have

$$v(v^*vh)v^* = vhv^* = \lambda vv^*k$$

hence v is an isometry of $v^*v(H)$ onto $vv^*(H)$ carrying $h|_{v^*v(H)}$ onto $\lambda k|_{vv^*(H)}$. In particular,

$$\operatorname{Sp}(h|_{v^*v(H)}) = \lambda \operatorname{Sp}(k|_{vv^*(H)}).$$

However, since $v^*v \in \{h\}'$, $\operatorname{Sp}(h|_{v^*v(H)}) \subset \operatorname{Sp}(h)$ and similarly for k. Since by assumption $\operatorname{Sp}(h) \cap \lambda \operatorname{Sp}(k) = \emptyset$, v = 0, and thus b = 0.

Lemma 2.4. Let M be a von Neumann algebra with separable predual. Suppose φ is a faithful normal almost periodic state. Let A be a maximal Abelian subalgebra of M_{φ} , and suppose α is a pointwise inner automorphism of M such that $\varphi \circ \alpha = \varphi$. Then there exists a unitary operator $u \in M_{\varphi}$ such that $\alpha|_A = \operatorname{Ad}(u)|_A$.

Proof. We let $\operatorname{Sp}_d(\sigma^{\varphi})$ denote the set of $\gamma \in \mathbb{R}$ for which the spectral subspace

$$M_{\gamma} = \{ x \in M \mid \sigma_{t}^{\varphi}(x) = e^{+it\gamma}x, t \in \mathbb{R} \}$$

is non-zero. By [1, Section 3.7], one easily gets that $\operatorname{sp}_d(\sigma^\varphi)$ is just the logarithm of the discrete spectrum $\operatorname{sp}_d(\Delta_\varphi)$ of the modular operator Δ_φ , so in particular $\operatorname{sp}_d(\sigma^\varphi)$ is countable. Since φ is almost periodic, the function

$$t \to \varphi(\sigma_t^{\varphi}(a^*)b), \qquad t \in \mathbb{R},$$

is almost periodic for all $a, b \in M$ (cf. [1, Lemma 3.7.4]). Thus, if m denotes the invariant mean on the almost periodic functions, the map

$$E_{\gamma}(x) = \int_{-\infty}^{\infty} \sigma_{t}^{\varphi}(x) e^{-it\gamma} dm(t), \qquad x \in M,$$

defines a normal projection of M onto M_{γ} . In particular, $E_{\gamma} = 0$ when $\gamma \notin \operatorname{sp}_d(\sigma^{\varphi})$.

Since an almost periodic function f on \mathbb{R} is uniquely determined by its "Fourier coefficients"

$$f(\gamma) = \int_{-\infty}^{\infty} f(t) e^{-it\gamma} dm(t), \qquad \gamma \in \mathbb{R},$$

it follows that two elements $x, y \in M$ coincide if and only if $E_{\gamma}(x) = E_{\gamma}(y)$ for all $\gamma \in \operatorname{sp}_d(\sigma^{\varphi})$.

Let by Lemma 2.2 $S \subset \mathbb{R}$ be a Cantor set such that $(S-S) \cap \Gamma = \{0\}$, where Γ is the countable group generated by $\operatorname{Sp}_d(\sigma^{\varphi})$. Let $a \in A_+$ be a generator for A with $\operatorname{Sp}(a) = S$. This can be done since $A \cong L^{\infty}(S, d\mu)$ for some purely nonatomic measure μ with $\operatorname{supp}(\mu) = S$. Let $h = e^a$. Then h is a generator for A, and $\operatorname{Sp}(h) = e^S$.

Since α is pointwise inner there is a unitary operator $u \in M$ such that

$$u(h\varphi)u^* = (h\varphi) \circ \alpha^{-1} = \alpha(h)\varphi.$$

Thus

$$u(h\varphi) = (\alpha(h) \varphi)u$$
.

If $x \in M$ we thus have

$$\varphi(x\sigma_{\iota}^{\varphi}(u)h) = \varphi(\sigma_{-\iota}^{\varphi}(x)uh)$$

$$= (h\varphi)(\sigma_{-\iota}^{\varphi}(x)u)$$

$$= (\alpha(h)\varphi)(u\sigma_{-\iota}^{\varphi}(x))$$

$$= \varphi(\alpha(h)u\sigma_{-\iota}^{\varphi}(x))$$

$$= \varphi(\alpha(h)\sigma_{-\iota}^{\varphi}(u)x).$$

Integrating with respect to dm we thus obtain

$$\varphi(xE_{\nu}(u)h) = \varphi(\alpha(h) E_{\nu}(u)x), \quad \gamma \in \operatorname{Sp}_{d}(\sigma^{\varphi}),$$

or, with $u_{\nu} = E_{\nu}(u)$,

$$u_{\gamma}(h\varphi) = (\alpha(h)\varphi)u_{\gamma}, \qquad \gamma \in \operatorname{Sp}_{d}(\sigma^{\varphi}).$$

Since $u_{\gamma} \in M_{\gamma}$, $\varphi u_{\gamma} = e^{\gamma} u_{\gamma} \varphi$, see [13] or [14, Lemma 1.6],

$$u_{\gamma}(h\varphi) = (\alpha(h)\varphi)u_{\gamma} = e^{\gamma}\alpha(h)u_{\gamma}\varphi.$$

Since φ is faithful

$$u_{\nu}h = e^{\gamma}\alpha(h)u_{\nu}$$
.

By hypothesis $S \cap (\gamma + S) = \emptyset$ for $\gamma \in \operatorname{Sp}_d(\sigma^{\varphi}) \setminus \{0\}$, hence $e^S \cap e^{\gamma} e^S = \emptyset$. Since $e^S = \operatorname{Sp}(h) = \operatorname{Sp}(\alpha(h))$ it follows from Lemma 2.3 that $u_{\gamma} = 0$ for $\gamma \neq 0$. Therefore $E_{\gamma}(u) = E_{\gamma}(u_0)$ for all $\gamma \in \operatorname{Sp}_d(\sigma^{\varphi})$. Hence $u = u_0 \in M_{\varphi}$. But then for $x \in M$,

$$\varphi(\alpha(h)x) = (h\varphi)(u^*xu) = \varphi(hu^*xu) = \varphi(uhu^*x),$$

so that $\alpha(h) = uhu^*$, proving the lemma.

Proof of Theorem 2.1. By [12] there exists a maximal Abelian subalgebra A of M_{φ} such that if G is the group generated by $\alpha|_{M_{\varphi}}$ and the inner automorphisms of M_{φ} , then if $\beta \in G$ and $\beta|_{A} = \mathrm{id}$ then $\beta = A\mathrm{d}(v)$ with v unitary in A. Apply Lemma 2.4 to A and choose a unitary $u \in M_{\varphi}$ such that $\alpha|_{A} = \mathrm{Ad}(u)|_{A}$. Then $\beta = \alpha|_{M_{\varphi}} \circ \mathrm{Ad}(u^{*}) \in G$, and $\beta|_{A} = \mathrm{id}$. Thus $\beta = \mathrm{Ad}(v)$ with $v \in A$, hence $\alpha|_{M_{\varphi}} = \mathrm{Ad}(vu)$ is inner.

3. THE INJECTIVE FACTOR OR TYPE III,

Recall that by [6] all injective factors of type III, with separable preduals are isomorphic, so they can be identified.

THEOREM 3.1. Let M be the injective factor of type III_1 with separable predual. Let $\alpha \in \mathrm{Aut}(M)$ and φ be a faithful normal state. Then α is pointwise inner if and only if there are $t \in \mathbb{R}$ and a unitary operator $v \in M$ such that

$$\alpha = \sigma_t^{\varphi} \circ Ad(v).$$

Before we prove the theorem we show a lemma which is probably well known.

LEMMA 3.2. Let N and M be von Neumann algebras. Suppose τ is a faithful normal finite trace on N and φ a faithful normal state on M. Then the centralizer of $\tau \otimes \varphi$ is given by

$$(N \otimes M)_{\tau \otimes \omega} = N \otimes M_{\omega}$$
.

Proof. For any normal faithful state ω on a von Neumann algebra P we let $E_{\omega}: P \to M_{\omega}$ normal conditional expectation of P onto the centralizer M_{ω} for which $\omega \circ E_{\omega} = \omega$. Let $x \in P$. By [11, Section 2, Theorem 1.1], $E_{\omega}(x)$ is the unique element of the σ -weak closure of

$$\operatorname{conv}\{\sigma_t^{\omega}(x), t \in \mathbb{R}\}\$$

which is contained in M_{ω} .

With the notation of the lemma, we have

$$\sigma_{\iota}^{\tau \otimes \varphi} = i_{N} \otimes \sigma_{\iota}^{\varphi}.$$

Hence it follows from the above that

$$E_{\tau \otimes \varphi}(x \otimes y) = x \otimes E_{\varphi}(y)$$

for all $x \in N$ and $y \in M$. Thus $(N \otimes M)_{\tau \otimes \varphi}$ is the σ -weakly closed linear span of

$$\{x \otimes E_{\varphi}(y) \mid x \in \mathbb{N}, y \in M\}.$$

This proves the lemma.

In order to prove Theorem 3.1 we use the classification up to outer conjugacy of automorphisms of the injective factor M of type III₁ as given in [15]. An automorphism α is called *centrally trivial* if the *-strong limit $\lim_n (\alpha(x_n) - x_n) = 0$ for all bounded central sequences (x_n) in M. For $\alpha \in \operatorname{Aut}(M)$ the asymptotic period $p_\alpha(\alpha)$ of α is the smallest positive integer p such that α^p is centrally trivial. If no such p exists we put $p_\alpha(\alpha) = 0$.

Let ω be a dominant weight on M (cf. [5, § II.1]). Since the flow of weights of a III₁-factor is trivial, it follows from [10, Theorem 1] that if

 $p = p_a(\alpha) > 0$, then $\alpha^p = \operatorname{Ad}(u) \circ \sigma_i^{\alpha}$ for a unitary operator $u \in M$, and a real number $t = t(\alpha)$. The numbers $p_a(\alpha)$ and $t(\alpha)$ are easily seen to be outer conjugacy invariants of α . Moreover, by composing α by an inner automorphism, we may assume that $\omega \circ \alpha = \omega$. In this case, the identity $\alpha^p = \operatorname{Ad}(u) \circ \sigma_i^{\omega}$ implies that $\alpha(u) = \gamma u$ for a complex number $\gamma = \gamma(\alpha)$ satisfying $\gamma^p = 1$ (cf. [15, § 2]). By [15, Theorem 2.1] the triple $(p_a(\alpha), t(\alpha), \gamma(\alpha))$ is a complete invariant for outer conjugacy of α .

Let R denote the hyperfinite factor of type II₁, and let $\beta \in \operatorname{Aut}(R)$. From the work of Connes [4] the centrally trivial automorphisms of R are inner, hence $p = p_a(\alpha) = p_0(\alpha)$ is the outer period of α . Thus $\alpha^p = \operatorname{Ad}(u)$ for a unitary operator $u \in R$, and $\alpha(u) = \gamma u$ with $\gamma^p = 1$. By [2] and [4] $p_0(\alpha)$ and γ are complete invariants for outer conjugacy of α .

Proof of Theorem 3.1. Since $R \otimes M \simeq M$ by the isomorphism of all hyperfinite III₁-factors with separable preduals, we can write

$$M = R \otimes M_1$$

where $M_1 \cong M$. Let τ be the trace state on R and let ω be a dominant weight on M_1 . Then $\bar{\omega} = \tau \otimes \omega$ is a dominant weight on M. By the above classification of outer conjugacy classes of automorphisms of R and M, it follows that automorphisms of M of the form

$$\beta \otimes \sigma_{t}^{\omega}$$
, $\beta \in \operatorname{Aut}(R)$, $t \in \mathbb{R}$,

run through all outer conjugacy classes in $\operatorname{Aut}(M)$. The algebra M_1 admits a normal, faithful, almost periodic sate ψ because it is isomorphic to a tensor product of two Powers factors R_{γ} and R_{μ} for which $\log \gamma/\log \mu \notin \mathbb{Q}$. By Connes' cocycle theorem for modular automorphisms $\sigma_{\ell}^{\psi} = \operatorname{Ad}(u_{\ell}) \circ \sigma_{\ell}^{\psi}$ for a one-parameter family $(u_{\ell})_{\ell \in \mathbb{R}}$ of unitary operators in M_1 . Hence also

$$\beta \otimes \sigma_t^{\psi}, \quad \beta \in \operatorname{Aut}(R), \quad t \in \mathbb{R},$$

run through all outer conjugacy classes of $\operatorname{Aut}(M)$. Since the property "pointwise inner" is invariant under outer conjugacy, it suffices to prove Theorem 3.1 for pointwise inner automorphisms of the form $\alpha = \beta \otimes \sigma_i^{\psi}$, $\beta \in \operatorname{Aut}(R)$, $t \in \mathbb{R}$. Clearly $\bar{\psi} = \tau \otimes \psi$ is an almost periodic state on M and $\bar{\psi} \circ \alpha = \bar{\psi}$. Thus by Theorem 2.1 and Lemma 3.2, the restriction of α to $R \otimes M_{\psi}$ is inner; i.e., $\beta \otimes i$ is inner on $R \otimes M_{\psi}$. Hence, by [9, Cor. 1.14], $\beta = \operatorname{Ad}(u)$ for a unitary $u \in R$. Therefore

$$\alpha = \sigma_{\iota}^{\tilde{\psi}} \circ \operatorname{Ad}(u \otimes 1).$$

Thus by Connes' cocycle theorem, α is of the form

$$\alpha = \sigma_{\cdot}^{\varphi} \circ Ad(v),$$

 $v \in U(M)$, for any fixed normal faithful state φ on M. This completes the proof.

From the classification of pointwise inner automorphisms in [7, 8] and of centrally trivial automorphisms in [10, 15], it follows that if M is an injective factor with separable predual and not of type III_1 , then pointwise inner and centrally trivial automorphisms are the same, see [10, Remark 19]. In the III_1 -case this is also true by Theorem 3.1 and [10]. Thus we have

COROLLARY 3.3 Let M be an injective factor with separable predual, and let $\alpha \in Aut(M)$. Then α is pointwise inner if and only if α is centrally trivial.

REFERENCES

- A. Connes, Une classification des facteurs de type III, Ann. Sci. École Norm. Sup. 6 (1973), 133-252.
- A. Connes, Outer conjugacy classes of automorphisms of factors, Ann. Sci. École Norm. Sup. 8 (1975), 383-419.
- 3. A. Connes, On the classification of von Neumann algebras and their automorphisms, Symposia Math. 20 (1976), 435-478.
- 4. A. Connes, Periodic automorphisms of the hyperfinite factor of type II₁, Acta Sci. Math. 39 (1977), 39-66.
- A. CONNES AND M. TAKESAKI, The flow of weights on factors of type III, Tôhoku Math. J. 29 (1977), 473-575.
- U. HAAGERUP, Connes bicentralizer theorem and the uniqueness of the injective factor of type III₁, Acta Math. 158 (1987), 95-148.
- 7. U. HAAGERUP AND E. STØRMER, Equivalence of normal states of von Neumann algebras and the flow of weights, Adv. in Math. 83 (1990), 180-262.
- 8. U. HAAGERUP AND E. STØRMER, Pointwise inner automorphisms of von Neumann algebras, with an appendix by C. Sutherland, J. Funct. Anal. 92 (1990), 177-201.
- 9. R. KALLMAN, A generalization of free action, Duke Math. J. 36 (1969), 781-789.
- Y. KAWAHIGASHI, C. SUTHERLAND, AND M. TAKESAKI, The structure of the automorphism group of an injective factor and the cocycle conjugacy of discrete abelian group actions, Acta Math. 169 (1992), 105-130.
- 11. J. KOVACS AND J. SZÜCS, Ergodic type theorems in von Neumann algebras, Acta Sci. Math. Szeged 27 (1966), 233-246.
- S. Popa, Singular maximal abelian *-subalgebras in continuous von Neumann algebras, J. Funct. Anal. 50 (1983), 151-166.
- E. STØRMER, Spectra of states and asymptotically abelian C*-algebras, Commun. Math. Phys. 28 (1972), 279-294.
- M. TAKESAKI, The structure of a von Neumann algebra with a homogeneous periodic state, Acta Math. 131 (1973), 79-122.
- 15. M. Takesaki, The structure of the automorphism group of an AFD factor, in "Operator Algebras, Unitary Representations Enveloping Algebras and Invariant Theory," Progress in Mathematics, Vol. 92, pp. 19-44, Birkhäuser, Basel, 1990.