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Abstract A Bernstein-type inequality is obtained for the Jacobi polynomials
P

(α,β)
n (x), which is uniform for all degrees n ≥ 0, all real α,β ≥ 0, and all values

x ∈ [−1,1]. It provides uniform bounds on a complete set of matrix coefficients for
the irreducible representations of SU(2) with a decay of d−1/4 in the dimension d

of the representation. Moreover, it complements previous results of Krasikov on a
conjecture of Erdélyi, Magnus, and Nevai.
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1 Introduction

For α,β ∈ R, α,β > −1, and a nonnegative integer n, we denote by P
(α,β)
n the Ja-

cobi polynomial with the standard normalization. Recall that in terms of the Gauss
hypergeometric function,

P (α,β)
n (x) = Γ (n + α + 1)

Γ (α + 1)Γ (n + 1)
2F1

(
−n,n + α + β + 1;α + 1; 1 − x

2

)
.

Recall also that for a fixed pair (α,β), these functions are orthogonal polynomials on
[−1,1] for the weight function

w(α,β)(x) = (1 − x)α(1 + x)β
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with the explicit values

∫ 1

−1
P (α,β)

n (x)2w(α,β)(x) dx = 2α+β+1

2n + α + β + 1

Γ (n + α + 1)Γ (n + β + 1)

Γ (n + 1)Γ (n + α + β + 1)

(see [15], Eq. (4.3.3)).
For x ∈ [−1,1] and α,β ≥ 0, let

g(α,β)
n (x) =

(
Γ (n + 1)Γ (n + α + β + 1)

Γ (n + α + 1)Γ (n + β + 1)

)1/2(1 − x

2

)α/2(1 + x

2

)β/2

P (α,β)
n (x).

Then these functions are orthogonal on [−1,1] for the constant weight. Moreover,

1

2

∫ 1

−1
g(α,β)

n (x)2 dx = 1

2n + α + β + 1
. (1)

In suitable coordinates the functions g
(α,β)
n with arbitrary nonnegative integers α, β

and n comprise a natural and complete set of matrix coefficients for the irreducible
representations of SU(2) (see Sect. 2 below). The value 2n + α + β + 1 in (1) is
exactly the dimension of the corresponding irreducible representation.

We shall prove the following uniform upper bound.

Theorem 1.1 There exists a constant C > 0 such that

∣∣(1 − x2) 1
4 g(α,β)

n (x)
∣∣ ≤ C(2n + α + β + 1)−

1
4

for all x ∈ [−1,1], all α,β ≥ 0, and all nonnegative integers n.

We have not made a serious effort to find the best value of C, but at least our proof
shows that C < 12.

With standard normalization, the inequality in Theorem 1.1 amounts to the fol-
lowing uniform bound for the Jacobi polynomials:

(sin θ)α+ 1
2 (cos θ)β+ 1

2
∣∣P (α,β)

n (cos 2θ)
∣∣

≤ C√
2
(2n + α + β + 1)−

1
4

(
Γ (n + α + 1)Γ (n + β + 1)

Γ (n + 1)Γ (n + α + β + 1)

)1/2

(2)

for 0 ≤ θ ≤ π/2. The decay rate of 1/4 in Theorem 1.1 is optimal as α and β tend
to infinity, see Remark 4.4. However, if the pair (α,β) is fixed, then P

(α,β)
n (x) is

O(n−1/2) for each x �= ±1, cf. [15], Theorem 7.32.2. In particular, in Legendre’s
case α = β = 0 where P

(α,β)
n (x) specializes to the Legendre polynomial Pn(x), the

Bernstein inequality (refined by Antonov and Kholshevnikov)

(
1 − x2)1/4∣∣Pn(x)

∣∣ ≤ (4/π)1/2(2n + 1)−1/2, x ∈ [−1,1], (3)

is known to be sharp, see [15], Theorem 7.3.3, and [13]. We refer to [5] for a further
discussion of the sharpest constant in (2), with a subset of the current parameter range.
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It is of interest also to express our inequality in terms of the orthonormal polyno-
mials defined by

P̂ (α,β)
n (x) =

(
(2n + α + β + 1)Γ (n + 1)Γ (n + α + β + 1)

2α+β+1Γ (n + α + 1)Γ (n + β + 1)

)1/2

P (α,β)
n (x),

for which ∫ 1

−1
P̂ (α,β)

n (x)2w(α,β)(x) dx = 1.

Here our estimate reads
(
1 − x2) 1

4
√

wα,β(x)
∣∣P̂ (α,β)

n (x)
∣∣ ≤ C√

2
(2n + α + β + 1)

1
4

for all α,β ≥ 0 and all integers n ≥ 0, with the same constant C as before. The
following generalization of Bernstein’s inequality (3) was conjectured by Erdélyi,
Magnus, and Nevai [4]:

(
1 − x2) 1

4
√

wα,β(x)
∣∣P̂ (α,β)

n (x)
∣∣ ≤ C′(α + β + 2)1/4 (4)

for all α,β ≥ − 1
2 and all integers n ≥ 0, with a uniform constant C′ > 0. A stronger

form of the conjecture, in which the right-hand side of (4) is replaced by

C′′(α + β + 2)1/6
(

1 + α + β

n

)1/12

,

was recently established by Krasikov [10], but only in the parameter range α,β ≥
1+√

2
4 , n ≥ 6. Our estimate is valid for a more general range, but it does not have

the stronger form suggested by Krasikov, and it involves 2n + α + β rather than
α + β . Note however that by combining our results with those of [10], one can re-
move Krasikov’s restriction n ≥ 6 in the parameter range for the validity of (4). In a
range disjoint from that of [10], but overlapping with the range of the current paper,
inequality (4) was established for − 1

2 ≤ α,β ≤ 1
2 in [1] (see also [3] and [5]).

Estimate (2) implies a similar estimate for the ultrasperical (Gegenbauer) polyno-
mials C

(λ)
n (x), as these are directly related to the Jacobi polynomials P

(α,β)
n (x) with

α = β = λ − 1
2 . Previous to [10], this case had been considered in [11] and, as above,

(2) allows the removal of a restriction on the degree.
The proof of Theorem 1.1 is based on an expression for P

(α,β)
n (x) as a contour

integral, for which we can estimate the integrand by elementary analysis. The proof
is simpler when α and β are integers. In this case, which is treated in Sect. 3, the
contour is just a circle. The general case is the discussed in Sect. 5.

2 Motivation from representation theory

It is well known that the irreducible representations of SU(2) can be expressed by
Jacobi polynomials. In the physics literature it is customary to denote the correspond-
ing matrix representations as Wigner’s d-matrices. We recall a few details (see [17],
Sect. 38, [16], Chap. 3, or [9]). The irreducible representations πl of SU(2) are pa-
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rameterized by the nonnegative integers or half-integers l = 0, 1
2 ,1, . . . , where 2l + 1

is the corresponding dimension. The standard representation space for πl is the space
Pl of polynomials in two complex variables z1, z2, homogeneous of degree 2l, on
which the representation is given by[

πl

(
a b

c d

)
f

]
(z1, z2) = f (az1 + cz2, bz1 + dz2).

Let

kφ =
(

eiφ 0
0 e−iφ

)
and tθ =

(
cos θ − sin θ

sin θ cos θ

)

for φ, θ ∈ R. Then every element A ∈ SU(2) allows a decomposition of the form
A = kφtθ k−ψ . The monomials z

j

1zk
2 with j + k = 2l form a basis for Pl , and it is

convenient to use the notation

hl
p(z1, z2) = z

l−p

1 z
l+p

2 ,

where p = −l,−l + 1, . . . , l. Notice that these are weight vectors

πl(kφ)hl
p = e−i2pφhl

p (p = −1, . . . , l).

Choosing the inner product on Pl so that πl is unitary, the functions hl
p form an

orthogonal basis. We denote by ĥl
p the corresponding normalized basis vectors. For

A ∈ SU(2), the matrix elements

ml
pq(A) = 〈

πl(A)ĥl
q , ĥl

p

〉

with p,q = −l, . . . , l form the so-called Wigner’s d-matrix. Our result for the Jacobi
polynomials implies the following.

Theorem 2.1 Let C be the constant from Theorem 1.1. Then

| sin 2θ |1/2
∣∣ml

pq(kφtθ k−ψ)
∣∣ ≤ C(2l + 1)−1/4 (5)

for all φ, θ,ψ ∈ R, all l = 0, 1
2 ,1, . . . and all p,q = −l, . . . , l. Moreover, the expo-

nent 1/4 on the right-hand side is best possible.

Proof Explicitly the matrix elements are given as follows (see [9, 16, 17]). For p,q =
−l, . . . , l such that |q| ≤ p,

ml
pq(kφtθ k−ψ) = e−i2pφei2qψg(α,β)

n (cos 2θ),

where

α = p − q, β = p + q, n = l − p.

For other values of p and q , there are similar expressions, and in all cases one has∣∣ml
pq(kφtθ k−ψ)

∣∣ = ∣∣g(α,β)
n (cos 2θ)

∣∣,
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where α = |p − q|, β = |p + q|, and n = l − max{|p|, |q|}. Moreover,

dimπl = 2l + 1 = 2n + α + β + 1.

Thus (5) follows directly from Theorem 1.1. For the last statement of Theorem 2.1,
see Remark 4.4. �

Remark 2.2 For l integral, πl descends to a representation of SO(3), and the ma-
trix elements ml

p0 with q = 0 descend to spherical harmonic functions on S2 �
SO(3)/SO(2). With the common normalization from quantum mechanics, the spher-
ical harmonics Ym

l with −l ≤ m ≤ l satisfy

Ym
l (θ,φ) = ± (2l + 1)1/2

(4π)1/2
g

(α,α)
l−α (cos θ)eimφ,

where α = |m|. From Theorem 1.1 we obtain the uniform estimate

| sin θ |1/2
∣∣Ym

l (θ,φ)
∣∣ ≤ C

(4π)1/2
(2l + 1)1/4

for all θ,φ and all integers l,m with |m| ≤ l.

The Jacobi polynomials are also related to the harmonic analysis on the complex
spheres with respect to the action of the unitary group. The spherical functions for
the pair (U(q),U(q − 1)) are functions on the unit sphere in C

q , and in suitable
coordinates they can be expressed by means of the Jacobi functions P

(α,β)
n with α =

q − 2 (see [8, 14]). The direct motivation for the present paper was an application
of this observation for q = 2 to a study of Sp(2,R). In [7] the first author and de
Laat apply the uniform estimates of the present paper for the case α = 0, to show
that Sp(2,R) does not have the approximation property (AP) introduced by the first
author and Kraus in [6]. Earlier, Bernstein’s inequality (3) had been used in [12] to
prove that the group SL(3,R) does not have property (AP).

3 Integral parameters

The proof is based on the following integral expression, which is obtained by ap-
plying Cauchy’s formula to Rodrigues’ formula for P

(α,β)
n (x) (see [15], Eq. (4.3.1)):

(1 − x)α(1 + x)βP (α,β)
n (x) =

(
−1

2

)n

I (α,β)
n (x) (6)

for x ∈ (−1,1), where

I (α,β)
n (x) = 1

2πi

∫
γ (x)

(1 − z)n+α(1 + z)n+β

(z − x)n

dz

z − x
. (7)

Here γ (x) is any closed contour encircling x in the positive direction. We assume
in this section that α and β are integers ≥ 0. Without this assumption one would
have to request also that γ (x) does not enclose the points z = ±1. We shall take
γ (x) = C(x, r), the circle centered at x and with a radius r > 0 to be specified later.
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The case n = 0 will be treated separately in Lemma 4.3 below. Here we assume
that n ≥ 1 and let a = α/n and b = β/n. Then

I (α,β)
n (x) = 1

2πi

∫
C(x,r)

(
(1 − z)a+1(1 + z)b+1

z − x

)n
dz

z − x

= 1

2πi

∫
C(0,r)

(
(1 − x − s)a+1(1 + x + s)b+1

s

)n
ds

s
.

In order to select a suitable radius r , we look for the stationary points of the ex-
pression inside the parentheses, as a function of s. We let

ψ(s) = (a + 1) log(1 − x − s) + (b + 1) log(1 + x + s) − log s

for s ∈ C and analyze the derivative

ψ ′(s) = a + 1

s + x − 1
+ b + 1

s + x + 1
− 1

s
,

which is independent of the branch cut used for the complex logarithm. Now

ψ ′(s) = As2 + B(x)s + C(x)

(s + x − 1)(x + s + 1)s
,

where

A = a + b + 1, B(x) = (a + b)x + a − b, C(x) = 1 − x2.

The numerator is a second-order polynomial in s with the discriminant

�(x) = B(x)2 − 4AC(x)

= (a + b + 2)2x2 + 2
(
a2 − b2)x + (a − b)2 − 4(a + b + 1),

which coincides with the polynomial � defined in [2]. The polynomial �(x) has two
real roots

x+

x−

}
= b2 − a2 ± 4

√
(a + 1)(b + 1)(a + b + 1)

(a + b + 2)2
,

for which −1 ≤ x− < x+ ≤ 1. For x− < x < x+, we have �(x) < 0, and thus there
are two conjugate solutions s = s1, s2 to the equation As2 +B(x)s +C(x) = 0. They
are

s1, s2 = −B(x) ± i
√−�(x)

2A
.

Note that

|s1|2 = |s2|2 = s1s2 = C(x)

A
= 1 − x2

a + b + 1
.

Hence, if we choose the radius

r =
√

1 − x2

a + b + 1
, (8)
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then our contour C(0, r) will pass through the stationary points of ψ . We define r by
(8) for all x ∈ (−1,1) (also when �(x) ≥ 0).

We now find
∣∣I (α,β)

n (x)
∣∣ ≤ 1

2π

∫ 2π

0

∣∣(1 − x − reiθ
)1+a(1 + x + reiθ

)1+b
r−1

∣∣n dθ

and write ∣∣(1 − x − reiθ
)1+a(1 + x + reiθ

)1+b
r−1

∣∣ = ef (cos θ),

where

f (t) = a + 1

2
ln

(
r2 + (1 − x)2 − 2r(1 − x)t

)

+ b + 1

2
ln

(
r2 + (1 + x)2 + 2r(1 + x)t

) − ln(r) (9)

for t ∈ [−1,1]. Notice that we allow the possible value f (t) = −∞ at the end points
t = ±1. Let

t2 = r2 + (1 − x)2

2r(1 − x)
, t1 = − r2 + (1 + x)2

2r(1 + x)
. (10)

Then t1 ≤ −1 and 1 ≤ t2. It follows that

f (t) = a + 1

2
ln(t2 − t) + b + 1

2
ln(t − t1) + K, (11)

where

K = a + 1

2
ln(1 − x) + b + 1

2
ln(1 + x) + a + b

2
ln r + a + b + 2

2
ln 2 (12)

is independent of t . With (11) we can extend the domain of definition for f to
[t1, t2] ⊃ [−1,1]. For later reference, we note that from (10) and (8) it follows that

t1 = −(a + b + 2) − (a + b)x

2
√

a + b + 1
√

1 − x2
, t2 = (a + b + 2) − (a + b)x

2
√

a + b + 1
√

1 − x2
, (13)

and

t2 − t1 = a + b + 2√
a + b + 1

√
1 − x2

. (14)

We have ∣∣I (α,β)
n (x)

∣∣ ≤ 1

2π

∫ 2π

0
enf (cos θ) dθ.

From (11) we find

f ′(t) = − a + 1

2(t2 − t)
+ b + 1

2(t − t1)
= (a + b + 2)(t0 − t)

2(t2 − t)(t − t1)
, (15)

where t0 is the convex combination

t0 = (a + 1)t1 + (b + 1)t2

a + b + 2
= −a + b − (a + b)x

2
√

a + b + 1
√

1 − x2
∈ (t1, t2). (16)
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Moreover,

f ′′(t) = − a + 1

2(t2 − t)2
− b + 1

2(t − t1)2
< 0.

Hence, the function f (t) is concave and has a global maximum at t0. We thus obtain
the initial estimate

∣∣I (α,β)
n (x)

∣∣ ≤ 1

π

∫ π

0
enf (cos θ) dθ ≤ enf (t0). (17)

Since

t2 − t0 = (a + 1)(t2 − t1)

a + b + 2
, t0 − t1 = (b + 1)(t2 − t1)

a + b + 2
, (18)

we find

f (t0) = a + 1

2
ln

(a + 1)(t2 − t1)

a + b + 2
+ b + 1

2
ln

(b + 1)(t2 − t1)

a + b + 2
+ K,

and from (12) and (14) it then follows that

f (t0) = 1

2
ln

(
2a+b+2(a + 1)a+1(b + 1)b+1

(a + b + 1)a+b+1
(1 − x)a(1 + x)b

)
.

Thus,

enf (t0) ≤
(

2a+b+2(a + 1)a+1(b + 1)b+1

(a + b + 1)a+b+1
(1 − x)a(1 + x)b

)n/2

=
(

2a+b+2(a + 1)a+1(b + 1)b+1

(a + b + 1)a+b+1

)n/2

(1 − x)α/2(1 + x)β/2.

The inequality

Γ (n + 1)Γ (n + α + β + 1)

Γ (n + α + 1)Γ (n + β + 1)

(
(a + 1)a+1(b + 1)b+1

(a + b + 1)a+b+1

)n

≤
(

(n + 1)(n + α + β + 1)

(n + α + 1)(n + β + 1)

)1/2

(19)

will be shown in Lemma 4.1. Inserting (17) and (19) into our definition of g
(α,β)
n , we

obtain the initial bound

∣∣g(α,β)
n (x)

∣∣ ≤
(

(n + 1)(n + α + β + 1)

(n + α + 1)(n + β + 1)

)1/4

. (20)

In particular, since (n + 1)(n + α + β + 1) ≤ (n + α + 1)(n + β + 1), it follows that
|g(α,β)

n (x)| ≤ 1 (which could also be seen directly from the fact that g
(α,β)
n is a unitary

matrix coefficient of orthonormal vectors).
In order to improve the estimate, we need to replace the inequality f (t) ≤ f (t0)

by a stronger inequality. In Proposition 3.1 below we shall establish the inequality

f (t) ≤ f (t0) + D

1 + t2
0

f ′′(t0)(t − t0)
2 (21)
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for t ∈ [−1,1], with a suitable constant D > 0. Following the argument from before
and taking into account the second term in (21), we can then improve (17) with the
extra factor

1

π

∫ π

0
exp

(
nD

1 + t2
0

f ′′(t0)(cos θ − t0)
2
)

dθ

on the right-hand side.
For the estimation of the exponential integral, we use Lemma 3.6 below, which is

applicable since f ′′(t0) < 0. We let

u = t0

√
nD

1 + t2
0

∣∣f ′′(t0)
∣∣, v =

√
nD

1 + t2
0

∣∣f ′′(t0)
∣∣,

and observe that u2 + v2 = nD|f ′′(t0)|. We thus obtain

∣∣I (α,β)
n (x)

∣∣ ≤ 2enf (t0)
(
nD

∣∣f ′′(t0)
∣∣)−1/4

, (22)

and hence (20) has been improved to

∣∣g(α,β)
n (x)

∣∣ ≤
(

(n + 1)(n + α + β + 1)

(n + α + 1)(n + β + 1)

)1/4

2
(
nD

∣∣f ′′(t0)
∣∣)−1/4

.

From (15), (18), and (14) it follows that

f ′′(t0) = − a + b + 2

2(t0 − t1)(t2 − t0)
= − (a + b + 1)(a + b + 2)

2(a + 1)(b + 1)

(
1 − x2), (23)

and hence,

|f ′′(t0)| = (α + β + n)(α + β + 2n)

2(α + n)(β + n)

(
1 − x2).

Since

n + α + β + 1

(n + α + 1)(n + β + 1)
≤ n + α + β

(n + α)(n + β)

and

n + 1

n(2n + α + β)
≤ 3

2n + α + β + 1

for all n ≥ 1 and α,β ≥ 0, it finally follows that

∣∣g(α,β)
n (x)

∣∣ ≤ C′(α + β + 2n + 1)−1/4(1 − x2)−1/4
,

where C′ = 2 4
√

6/D = 2 4
√

168 < 8 with the value D = 1/28 from below. This com-
pletes the proof of Theorem 1.1 in the integral case (up to the cited results from
below).



236 U. Haagerup, H. Schlichtkrull

Proposition 3.1 Fix x ∈ [−1,1] and let f (t) and t0 be as above. Then

f (t) ≤ f (t0) + 1

28
(
1 + t2

0

)f ′′(t0)(t − t0)
2

for all t ∈ [−1,1].

Proof We begin the proof by a sequence of lemmas.

Lemma 3.2 The following relation holds:

(a + b)2 + 4(a + b + 1)t2
0 = 2a2

1 − x
+ 2b2

1 + x
. (24)

Proof Using (16), we obtain

4(a + b + 1)t2
0 = (a − b + (a + b)x)2

1 − x2
.

On the other hand,

2a2

1 − x
+ 2b2

1 + x
= 2(a2 + b2 + (a2 − b2)x)

1 − x2
.

Hence, (24) follows from the identity

(a + b)2(1 − x2) + (
a − b + (a + b)x

)2 = 2
(
a2 + b2 + (

a2 − b2)x)
,

which is straightforward. �

Lemma 3.3 We have

1 − x2 ≤ 16
(a + 1)(b + 1)

(a + b + 2)2

(
1 + t2

0

)

for all x ∈ [−1,1].

Proof Note first that if we replace the triple (a, b, x) by (b, a,−x), then t1, t0, t2 are
replaced by −t2,−t0,−t1, and hence the asserted inequality is unchanged. We may
thus assume that a ≤ b.

It follows from Lemma 3.2 that

(a + b)2 + 4(a + b + 1)t2
0 ≥ 2b2

1 + x

and therefore

1 + x ≥ 2b2

(a + b)2 + 4(a + b + 1)t2
0

.
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Hence,

1 − x ≤ 2 − 2b2

(a + b)2 + 4(a + b + 1)t2
0

= 2
a2 + 2ab + 4(a + b + 1)t2

0

(a + b)2 + 4(a + b + 1)t2
0

and

1 − x2 ≤ 2(1 − x) ≤ 4
a2 + 2ab + 4(a + b + 1)t2

0

(a + b)2 + 4(a + b + 1)t2
0

.

Since the right-hand side is an increasing function of t2
0 , we have for t2

0 ≤ 1 that

1 − x2 ≤ 4
a2 + 2ab + 4(a + b + 1)

(a + b)2 + 4(a + b + 1)
≤ 16

(a + 1)(b + 1)

(a + b + 2)2
,

where in the last step we used that a ≤ b implies a2 + 2ab ≤ 4ab. For t2
0 ≥ 1, we

obtain similarly

1 − x2 ≤ 4
(a2 + 2ab)t2

0 + 4(a + b + 1)t2
0

(a + b)2 + 4(a + b + 1)
≤ 16

(a + 1)(b + 1)

(a + b + 2)2
t2
0 .

This completes the proof of Lemma 3.3. �

Lemma 3.4 We have

t2 − t0 ≥ 1

4(1 + t2
0 )1/2

and t0 − t1 ≥ 1

4(1 + t2
0 )1/2

. (25)

Proof It follows from (14) and Lemma 3.3 that

t2 − t1 ≥ (a + b + 2)2

4
√

(a + 1)(b + 1)(a + b + 1)

(
1 + t2

0

)−1/2
,

and hence, by (18),

t2 − t0 ≥
√

a + 1(a + b + 2)

4
√

(b + 1)(a + b + 1)

(
1 + t2

0

)−1/2
.

Using (b+1)(a+b+1) ≤ (a+b+2)2 and
√

a + 1 ≥ 1, we obtain the first inequality
in (25). The second one is analogous. �

Lemma 3.5 We have

(u − t1)(t2 − u) ≤ 14
(
1 + t2

0

)
(t0 − t1)(t2 − t0) (26)

for all u ∈ [t1, t2] for which −1 ≤ u ≤ t0 or t0 ≤ u ≤ 1.
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Proof We first assume that a ≤ b. Then by (18)

u − t1 ≤ t2 − t1 = a + b + 2

b + 1
(t0 − t1) ≤ 2(t0 − t1). (27)

In order to estimate t2 − u, we first note that |u − t0| ≤ 1 + |t0| and hence,

t2 − u ≤ t2 − t0 + |t0 − u| ≤ t2 − t0 + 1 + |t0|.
By Lemma 3.4,

1 + |t0| ≤
√

2
(
1 + t2

0

)1/2 ≤ 4
√

2
(
1 + t2

0

)
(t2 − t0),

and hence,

t2 − u ≤ (1 + 4
√

2)
(
1 + t2

0

)
(t2 − t0) ≤ 7

(
1 + t2

0

)
(t2 − t0). (28)

Now (27) and (28) together imply (26). The proof for a ≥ b is analogous. �

We can now prove Proposition 3.1. Let t ∈ [−1,1]. It follows from (15), (26), and
(23) that

f ′(u)

u − t0
= − a + b + 2

2(u − t1)(t2 − u)

≤ − a + b + 2

28(1 + t2
0 )(t0 − t1)(t2 − t0)

= f ′′(t0)
14(1 + t2

0 )

for all u ∈ R between t and t0. Hence,

f (t) = f (t0) +
∫ t

t0

f ′(u) du

≤ f (t0) + f ′′(t0)
14(1 + t2

0 )

∫ t

t0

(u − t0) du = f (t0) + f ′′(t0)
28(1 + t2

0 )
(t − t0)

2. �

Lemma 3.6 Let u,v ∈ R with u2 + v2 > 0. Then

1

π

∫ π

0
e−(u+v cos s)2

ds ≤ 2(
u2 + v2

)1/4
. (29)

Proof We will show (29) with the slightly stronger bound
√

2√
max{|u|, |v|} .

The statement is invariant under the map (u, v) �→ (−u,−v) and, using the substitu-
tion s �→ π − s, also under v �→ −v. Hence, it is sufficient to show that

1

π

∫ π

0
e−(u−v cos s)2

ds ≤
√

2√
max{u,v}

for u ≥ 0, v ≥ 0.
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Suppose first 0 ≤ u ≤ v; then v �= 0. Let σ ∈ [0, π
2 ] be such that cosσ = u

v
. Then

u − v cos s = v(cosσ − cos s) = 2v sin

(
s + σ

2

)
sin

(
s − σ

2

)
.

Note that sin( s+σ
2 ) ≥ | sin( s−σ

2 )| because sin2( s+σ
2 )− sin2( s−σ

2 ) = sin s sinσ ≥ 0 for
s ∈ [0,π] and σ ∈ [0, π

2 ]. Using also that | sin t | ≥ 2
π
|t | for |t | ≤ π

2 , we have that

1

π

∫ π

0
e−(u−v cos s)2

ds = 1

π

∫ π

0
e−4v2 sin2( s+σ

2 ) sin2( s−σ
2 ) ds

≤ 1

π

∫ π

0
e−4v2π−4(s−σ)4

ds

≤ 1

π

∫ ∞

−∞
e−4v2π−4s4

ds ≤ 2√
2v

,

where we used that
∫ ∞

0 e−t4
dt = Γ ( 5

4 ) ≤ 1.
Suppose next that 0 ≤ v ≤ u ≤ 2v. Then u − v cos s ≥ v(1 − cos s) = 2v sin2( s

2 ).
Hence,

1

π

∫ π

0
e−(u−v cos s)2

ds ≤ 1

π

∫ π

0
e−4v2 sin4( s

2 ) ds

≤ 1

π

∫ π

0
e−4v2π−4s4

ds ≤ 1√
2v

≤ 1√
u

,

using again
∫ ∞

0 e−t4
dt ≤ 1.

Suppose finally that 0 ≤ 2v ≤ u. Then u − v cos s ≥ u
2 , and hence,

1

π

∫ π

0
e−(u−v cos s)2

ds ≤ e− u2
4 ≤ 1√

u
,

where we used that xe−x4 ≤ 1√
2

for all x ≥ 0. �

4 Some inequalities with gamma functions

In this section we prove some inequalities that were used in the preceding section.
We assume that α,β are real and nonnegative.

Lemma 4.1 Let n,α,β ≥ 0. Then

Γ (n + 1)Γ (n + α + β + 1)

Γ (n + α + 1)Γ (n + β + 1)

≤ nn(α + β + n)α+β+n

(α + n)α+n(β + n)β+n

(
(n + 1)(n + α + β + 1)

(n + α + 1)(n + β + 1)

)1/2

. (30)
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Proof We have, for x, y, z ≥ 0,

ln
Γ (x + 1)Γ (x + y + z + 1)

Γ (x + y + 1)Γ (x + z + 1)
=

∫ y

0

∫ z

0
(lnΓ )′′(x + s + t + 1) dt ds. (31)

We claim that

(lnΓ )′′(u + 1) ≤ 1

u
− 1

2(u + 1)2
(32)

for all u > 0. The asserted inequality (30) follows easily from (31) and (32).
In order to prove (32), we recall that

(lnΓ )′′(u + 1) =
∞∑

k=1

1

(u + k)2
=

∞∑
k=0

A(u + k),

where

A(u) = 1

(u + 1)2
.

For the other side of (32), we use the telescoping series

1

u
=

∞∑
k=0

B(u + k),
1

2(u + 1)2
=

∞∑
k=0

C(u + k),

where

B(u) = 1

u
− 1

u + 1
= 1

u(u + 1)

and

C(u) = 1

2(u + 1)2
− 1

2(u + 2)2
= 2u + 3

2(u + 1)2(u + 2)2
.

We observe that

C(u) ≤ 1

(u + 1)2(u + 2)

and, hence,

B(u) − C(u) ≥ 1

u(u + 1)
− 1

(u + 1)2(u + 2)
= u2 + 2u + 2

u(u + 1)2(u + 2)
≥ A(u).

We obtain (32) by termwise application of this inequality to the series. �

Lemma 4.2 For α,β ≥ 0,

Γ (α + β + 1)

Γ (α + 1)Γ (β + 1)
≤ (α + β + 1

2 )α+β+ 1
2 ( 1

2 )
1
2

(α + 1
2 )α+ 1

2 (β + 1
2 )β+ 1

2

.
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Proof Following the preceding proof, we deduce this inequality from

(lnΓ )′′(u + 1) ≤ 1

u + 1
2

.

The latter inequality is also seen as in the preceding proof, by using the telescoping
series

1

u + 1
2

=
∞∑

k=0

D(u + k),

where

D(u) = 1

u + 1
2

− 1

u + 3
2

= 1

(u + 1
2 )(u + 3

2 )
≥ 1

(u + 1)2
= A(u).

�

Lemma 4.3 Let α,β ≥ 0 and −1 ≤ x ≤ 1. Then

0 ≤ (
1 − x2)1/4

g
(α,β)

0 (x) ≤ (α + β + 1)−1/4.

Proof Since P
(α,β)

0 (x) = 1, we have g
(α,β)

0 (x) ≥ 0 and

(
1 − x2) 1

2 g
(α,β)

0 (x)2 = 2Γ (α + β + 1)

Γ (α + 1)Γ (β + 1)

(
1 − x

2

)α+ 1
2
(

1 + x

2

)β+ 1
2

.

For μ,ν ≥ 0, the function ϕ(x) = (1 − x)μ(1 + x)ν on [−1,1] satisfies

max
x∈[−1,1]

ϕ(x) = ϕ

(
ν − μ

ν + μ

)
= 2μ+νμμνν

(μ + ν)μ+ν
.

Hence, by Lemma 4.2,

max
x∈[−1,1]

(
1 − x2) 1

2 g
(α,β)

0 (x)2 = 2Γ (α + β + 1)

Γ (α + 1)Γ (β + 1)

(α + 1
2 )α+ 1

2 (β + 1
2 )β+ 1

2

(α + β + 1)α+β+1

≤ h(α + β)(α + β + 1)−1/2, (33)

where

h(t) = √
2

(
t + 1

2

t + 1

)t+ 1
2

.

Since

(logh)′(t) = 1

2(t + 1)
+ log

(
t + 1

2

t + 1

)
=

∫ t+1

t+ 1
2

(
1

t + 1
− 1

u

)
du ≤ 0,

it follows that h(t) ≤ h(0) = 1 for all t ≥ 0. This proves Lemma 4.3. �



242 U. Haagerup, H. Schlichtkrull

Remark 4.4 It follows from (33) and Stirling’s formula that

max
(
1 − x2)1/4|g(α,β)

0 (x)| ∼ (2/π)1/4(α + β + 1)−1/4

as α → ∞ and β → ∞. Hence, the decay rate 1/4 in Theorem 1.1 cannot be im-
proved. This was observed already in [4], p. 604.

In this connection it can be noted that for each l = 0, 1
2 ,1, . . . , the irreducible

representation πl of SU(2) will exhibit matrix coefficients in which the functions
g

(α,β)

0 for α + β = 2l occur (see Sect. 2). In particular, it follows that a positive
solution to the EMN-conjecture mentioned in the introduction will not significantly
improve the representation theoretic content of Theorem 1.1, discussed in Sect. 2.

5 The general case

In this section, n ∈ N0, and α,β are nonnegative real numbers. We have already
proved in Lemma 4.3 that

∣∣g(α,β)

0 (x)
∣∣ ≤ (α + β + 1)−1/4, x ∈ [−1,1], α,β ≥ 0,

so we can assume that n > 0. As in Sect. 3, we put a = α/n and b = β/n and use the
integral representation (6)–(7) of P

(α,β)
n (x), with a closed contour γ (x) encircling x

in the positive direction. In addition, we assume now that γ (x) does not intersect the
branch cuts ]−∞,−1] and [1,∞[. As before, we define r > 0 by (8) and consider
the circle C(x, r). For |x| < 1, we find

1 < x + r ⇔ x >
a + b

a + b + 2
,

and, consequently,

−1 > x − r ⇔ x < − a + b

a + b + 2
.

Hence, we can distinguish the following cases:

Case 1 a+b
a+b+2 < x < 1. Then 1 is inside, and −1 is outside C(x, r).

Case 2 |x| < a+b
a+b+2 . Both 1 and −1 are outside C(x, r).

Case 3 −1 < x < − a+b
a+b+2 . Here 1 is outside, and −1 is inside C(x, r).

By continuity it suffices to prove Theorem 1.1 in each of these three cases. As the
proof given in Sect. 3 is valid without modification in Case 2, we need only consider
the other two cases. Note that the integral

J (α,β)
n (x) := 1

2πi

∫
C(x,r)

(1 − z)n+α(1 + z)n+β

(z − x)n+1
dz

makes sense for all α,β ≥ 0, although the argument of the integrand may become
discontinuous at z = x + r or at z = x − r when these points belong to the branch
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cuts. As in Sect. 3, see (17),

∣∣J (α,β)
n (x)

∣∣ ≤ 1

π

∫ π

0
enf (cos θ) dθ,

where f is the function defined by (9). Note that f depends on a, b, and x. When
necessary, we denote it by f = fa,b,x .

Lemma 5.1 The integral (7) satisfies

I (α,β)
n (x) = J (α,β)

n (x) + R(α,β)
n (x), (34)

where |R(α,β)
n (x)| ≤ enf (1) in Case 1, R

(α,β)
n (x) = 0 in Case 2, and |R(α,β)

n (x)| ≤
enf (−1) in Case 3.

Proof Consider first Case 1 and note that

f (1) = ln
(
(r − 1 + x)a+1(r + 1 + x)b+1r−1).

We let the closed contour γ (x) follow C(x, r) except for a small arc around the
possible locus of discontinuity at x + r . Let δ > 0 be such that the removed arc
consist of points z1 + iz2 in the strip |z2| < δ. The end points below and above x + r

are joined to 1 ± iδ by line segments along the axis. Finally, 1 − iδ and 1 + iδ are
connected by a half circle crossing the axis to the left of z = 1.

In the limit δ → 0+, we obtain (34) with

R(α,β)
n (x) = − sin(π(n + α))

π

∫ x+r

1

(z − 1)n+α(1 + z)n+β

(z − x)n+1
dz

= (−1)n−1 sin(πα)

π

∫ r

1−x

(s + x − 1)n+α(1 + s + x)n+β

sn+1
ds.
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In particular, R
(α,β)
n (x) = 0 if α = 0, so that we may assume that α > 0. For x < 1

and 0 < s < r , we have s
r
(1 − x) ≤ 1 − x, and hence s + x − 1 ≤ s

r
(r + x − 1). It

follows that

(s + x − 1)n+α(1 + s + x)n+β

sn+1
≤ (r + x − 1)n+α(1 + r + x)n+βsα−1

rn+α

for 0 < 1 − x < s < r . Thus,

∣∣R(α,β)
n (x)

∣∣ ≤ | sin(πα)|
π

(r + x − 1)n+α(1 + r + x)n+β

rn+α

∫ r

0
sα−1 ds

= | sin(πα)|
πα

(r + x − 1)n+α(1 + r + x)n+β

rn
= | sin(πα)|

πα
enf (1),

completing the proof for Case 1.
Case 2 is trivial since 1 and −1 are both outside C(x, r). For the last case, we

observe that

I (α,β)
n (x) = (−1)nI (β,α)

n (−x)

and likewise

J (α,β)
n (x) = (−1)nJ (β,α)

n (−x).

Moreover, from (9) we see that fb,a,−x(t) = fa,b,x(−t). Now Case 3 follows easily
from Case 1. �

Lemma 5.2 Let t0 ∈ (t1, t2) be given by (16). Then

f (1) ≤ f (t0) + 1

140
f ′′(t0)

in Case 1, and likewise, in Case 3,

f (−1) ≤ f (t0) + 1

140
f ′′(t0).

Proof It follows from (16) that the derivative of t0 = t0(x) as a function of x is

−(a + b) + (b − a)x

2(a + b + 1)1/2(1 − x2)3/2
.

Since |b−a| ≤ a+b, it follows that t0 is a decreasing function of x ∈ (−1,1). Hence,
in Case 1,

t0(x) < t0

(
a + b

a + b + 2

)
= (b − a)(a + b + 2) − (a + b)2

4(a + b + 1)
≤ 1

2
,

where the last inequality follows from

(b − a)(a + b + 2) − (a + b)2 = −2a(a + b + 1) + 2b ≤ 2(a + b + 1).
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From Proposition 3.1 and (23) we have

f (1) ≤ f (t0) + (1 − t0)
2

28(1 + t0)2
f ′′(t0)

with f ′′(t0) < 0. Since t0 ≤ 1
2 , we find

4t2
0 − 10t0 + 4 = 4

(
t0 − 1

2

)
(t0 − 2) ≥ 0

and

(1 − t0)
2

1 + t2
0

− 1

5
= 4t2

0 − 10t0 + 4

5(1 + t2
0 )

≥ 0.

Hence,

f (1) ≤ f (t0) + 1

140
f ′′(t0),

as claimed. The proof in Case 3 follows by the observation at the end of the proof
of Lemma 5.1 since the t0 associated with the data b, a,−x is the negative of the t0
associated with a, b, x. �

We can now complete the proof of Theorem 1.1. As in (22), we find

∣∣J (α,β)
n (x)

∣∣ ≤ 1

π

∫ π

0
enf (cos θ) dθ ≤ C1e

nf (t0)
(
n
∣∣f ′′(t0)

∣∣)−1/4
,

where C1 = 2D−1/4 = 2 4
√

28. Since e−t ≤ 1√
2
t−1/4 for all t > 0, we obtain from

Lemmas 5.1 and 5.2 that

∣∣R(α,β)
n (x)

∣∣ ≤ C2e
nf (t0)

(
n
∣∣f ′′(t0)

∣∣)−1/4

with C2 = 1√
2

4
√

140 = 4
√

35. All together,

∣∣I (α,β)
n (x)

∣∣ ≤ C3e
nf (t0)

(
n
∣∣f ′′(t0)

∣∣)−1/4

with C3 = C1 + C2. Still proceeding as in Sect. 3 and using Lemma 4.1, we finally
get

∣∣g(α,β)
n (x)

∣∣ ≤ C3

(
(n + 1)(n + α + β + 1)

(n + α + 1)(n + β + 1)

)1/4(
n
∣∣f ′′(t0)

∣∣)−1/4

≤ C(1 + α + β + 2n)−1/4(1 − x2)−1/4

for C = 4
√

6C3. In particular, we find C < 12.
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