
March 29, 2012 10:50 WSPC/S0219-0257 102-IDAQPRT 1250003

Infinite Dimensional Analysis, Quantum Probability
and Related Topics
Vol. 15, No. 1 (2012) 1250003 (41 pages)
c© World Scientific Publishing Company
DOI: 10.1142/S0219025712500038

ASYMPTOTIC EXPANSIONS FOR THE
GAUSSIAN UNITARY ENSEMBLE

UFFE HAAGERUP

Department of Mathematical Sciences,
University of Copenhagen, Universitetsparken 5,

2100 Copenhagen Ø, Denmark
haagerup@math.ku.dk

STEEN THORBJØRNSEN

Department of Mathematical Sciences,
University of Aarhus, Ny Munkegade 118,

8000 Aarhus C, Denmark
steenth@imf.au.dk

Received 27 September 2010
Published 30 March 2012

Communicated by U. Franz

Let g : R → C be a C∞-function with all derivatives bounded and let trn denote the
normalized trace on the n × n matrices. In Ref. 3 Ercolani and McLaughlin established
asymptotic expansions of the mean value E{trn(g(Xn))} for a rather general class of
random matrices Xn, including the Gaussian Unitary Ensemble (GUE). Using an ana-
lytical approach, we provide in the present paper an alternative proof of this asymptotic
expansion in the GUE case. Specifically we derive for a GUE(n, 1

n
) random matrix Xn

that

E{trn(g(Xn))} =
1

2π

Z 2

−2
g(x)

p
4 − x2 dx +

kX
j=1

αj(g)

n2j
+ O(n−2k−2),

where k is an arbitrary positive integer. Considered as mappings of g, we determine
the coefficients αj(g), j ∈ N, as distributions (in the sense of L. Schwarts). We derive
a similar asymptotic expansion for the covariance Cov{Trn[f(Xn)], Trn[g(Xn)]}, where
f is a function of the same kind as g, and Trn = n trn. Special focus is drawn to the
case where g(x) = 1

λ−x
and f(x) = 1

µ−x
for λ, µ in C\R. In this case the mean and

covariance considered above correspond to, respectively, the one- and two-dimensional
Cauchy (or Stieltjes) transform of the GUE(n, 1

n
).
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1. Introduction

Since the groundbreaking Ref. 17 by Voiculescu, the asymptotics for families of
large, independent GUE random matrices has become an important tool in the
theory of operator algebras. In the paper [8] it was established that if X(n)

1 , . . . , X
(n)
r

are independent GUE(n, 1
n ) random matrices (see Definition 2.1 below), then with

probability one we have for any polynomial p in r non-commuting variables that

lim
n→∞ ‖p(X(n)

1 , . . . , X(n)
r )‖ = ‖p(x1, . . . , xr)‖, (1.1)

where {x1, . . . , xr} is a free semi-circular family of self-adjoint operators in a C∗-
probability space (A, τ) (see Ref. 18 for definitions), and where ‖·‖ denotes the oper-
ator norm. This result leads in particular to the fact that there are non-invertible
elements in the extension semi-group of the reduced C∗-algebra associated to the
free group on r generators (see Ref. 8).

A key step in the proof of (1.1) was to establish precise estimates of the expec-
tation and variance of trn[g(p(X(n)

1 , . . . , X
(n)
r ))], where trn denotes the normalized

trace, g is a C∞-function with compact support, and where we assume now that p
is a self-adjoint polynomial. In fact it was established in Refs. 8 and 6 that in this
setup we have the estimates:

E{trn[g(p(X(n)
1 , . . . , X(n)

r ))]} = τ [g(p(x1, . . . , xr))] +O(n−2), (1.2)

V{trn[g(p(X(n)
1 , . . . , X(n)

r ))]} = O(n−2). (1.3)

Furthermore, if the derivative g′ vanishes on the spectrum of the operator
p(x1, . . . , xr), then we actually have that

V{trn[g(p(X(n)
1 , . . . , X(n)

r ))]} = O(n−4).

If we assume instead that g is a polynomial, then the left-hand sides of (1.2) and
(1.3) may actually be expanded as polynomials in n−2. More precisely it was proved
in Ref. 16 that for any function w : {1, 2, . . . , p} → {1, 2, . . . , r} we have thata

E
{
trn

[
X

(n)
w(1)X

(n)
w(2) · · ·X(n)

w(p)

]}
=

∑
γ∈T (w)

n−2σ(γ), (1.4)

where T (w) is a certain class of permutations of {1, 2, . . . , p}, and σ(γ) ∈ N0 for all γ
in T (w) (see Refs. 16 or 12 for details). It was established furthermore in Ref. 12 that
for two functions w : {1, 2, . . . , p} → {1, 2, . . . , r} and v : {1, 2, . . . , q} → {1, 2, . . . , r}
we have that

E
{
trn

[
X

(n)
w(1)X

(n)
w(2) · · ·X(n)

w(p)

]
trn

[
X

(n)
v(1)X

(n)
v(2) · · ·X(n)

v(q)

]}
=

∑
γ∈T (w,v)

n−2σ(γ), (1.5)

where now T (w, v) is a certain class of permutations of {1, 2, . . . , p+ q} and again
σ(γ) ∈ N0 for all γ in T (w, v) (see Ref. 12 for details).

aWhen r = 1, formula (1.4) corresponds to the Harer–Zagier recursion formulas (see Ref. 7).
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In view of (1.4) and (1.5) it is natural to ask whether the left-hand sides of
(1.2) and (1.3) may in general be expanded as “power series” in n−2, when g is,
say, a compactly supported C∞-function. In the case r = 1, this question was
answered affirmatively by Ercolani and McLaughlin (see Theorem 1.4 in Ref. 3) for
a more general class of random matrices than the GUE. More precisely, Ercolani
and McLaughlin established for a single matrix Xn (from the considered class of
random matrices) and any C∞-function g with at most polynomial growth the
existence of a sequence (αj(g))j∈N0 of complex numbers, such that for any n in N

and k in N0,

E{trn(g(Xn))} =
k∑

j=0

αj(g)
n2j

+O(n−2k−2). (1.6)

Their proof is rather involved and is based on Riemann–Hilbert techniques devel-
oped by Deift, McLaughlin and co-authors. In this paper we provide an alternative
proof for (1.6) in the case where Xn is a GUE(n, 1

n ) random matrix. For techni-
cal ease, we only establish (1.6) for functions in the class C∞

b (R) consisting of all
C∞-functions g : R → C, such that all derivatives g(k), k ∈ N0, are bounded on R.
However, all (relevant) results of the present paper can easily be extended to all
C∞-functions with at most polynomial growth. For each j in N we show that the
coefficient αj(g) is explicitly given in the form:

αj(g) =
1
2π

∫ 2

−2

[T jg](x)
√

4 − x2dx

for a certain linear operator T :C∞
b (R) → C∞

b (R) (see Theorem 3.5 and Corol-
lary 3.6), and we describe αj explicitly as a distribution (in the sense of L. Schwarts)
in terms of Chebychev polynomials (cf. Corollary 4.6). The proof of (1.6) is based
on the fact, proved by Götze and Tikhomirov in Ref. 4, that the spectral density
hn of a GUE(n, 1

n ) random matrix satisfies the following third-order differential
equation:

1
n2
h′′′n (x) + (4 − x2)h′n(x) + xhn(x) = 0, (x ∈ R). (1.7)

In the special case where g(x) = 1
λ−x for some non-real complex number λ, the

integral
∫

R
g(x)hn(x)dx is the Cauchy (or Stieltjes) transformGn(λ) for the measure

hn(x)dx, and asymptotic expansions like (1.6) appeared already in Ref. 1 for a
rather general class of random matrices (including the GUE). In the GUE case, our
analytical approach leads to the following explicit expansion (see Sec. 4):

Gn(λ) = η0(λ) +
η1(λ)
n2

+
η2(λ)
n4

+ · · · + ηk(λ)
n2k

+O(n−2k−2), (1.8)

where

η0(λ) =
λ

2
− 1

2
(λ2 − 4)

1
2 , and ηj(λ) =

3j−1∑
r=2j

Cj,r(λ2 − 4)−r− 1
2 (j ∈ N).
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The constants Cj,r, 2j ≤ r ≤ 3j − 1, appearing above are positive numbers for
which we provide recursion formulas (see Proposition 4.5).

As for the “power series expansion” of (1.3), consider again for each n a single
GUE(n, 1

n ) random matrix. For any functions f, g from C∞
b (R), we establish in

Sec. 5 the existence of a sequence (βj(f, g))j∈N0 of complex numbers, such that for
any k in N0 and n in N,

Cov{Trn[f(Xn)],Trn[g(Xn)]} =
k∑

j=0

βj(f, g)
n2j

+O(n−2k−2), (1.9)

where Trn denotes the un-normalized trace on Mn(C), and where the covariance
Cov[Y, Z] of two complex-valued square integrable random variables is defined by

Cov{Y, Z} = E{(Y − E{Y })(Z − E{Z})}.
The proof of (1.9) is based on the following formula, essentially due to Pastur and
Scherbina (see Ref. 13):

Cov{Trn[f(Xn)],Trn[g(Xn)]}

=
∫

R2

(
f(x) − f(y)

x− y

)(
g(x) − g(y)
x− y

)
ρn(x, y)dxdy, (1.10)

where the kernel ρn is given by

ρn(x, y) =
n

4

[
ϕn

(√
n

2
x

)
ϕn−1

(√
n

2
y

)
− ϕn−1

(√
n

2
x

)
ϕn

(√
n

2
y

)]2

,

with ϕn the nth Hermite function (see formula (2.1) below). The essential step then
is to establish the formula (see Theorem 5.4):

ρn(x, y) =
1
4

[
h̃n(x)h̃n(y) − 4h′n(x)h′n(y) − 1

n2
h′′n(x)h′′n(y)

]
, ((x, y) ∈ R

2), (1.11)

where h̃n(x) = hn(x) − xh′n(x), and hn is as before the spectral density of
GUE(n, 1

n ). Using (1.10)–(1.11) and Fubini’s theorem, the expansion (1.9) may
be derived from (1.6).

In the particular case where

f(x) =
1

λ− x
, and g(x) =

1
µ− x

, (x ∈ R),

we obtain in Sec. 6 the following specific expansion for the two-dimensional Cauchy-
transform:

Cov{Trn[(λ111 −Xn)−1],Trn[(µ111 −Xn)−1]}

=
1

2(λ− µ)2

k∑
j=0

Γj(λ, µ)
n2j

+O(n−2k−2), (1.12)

where the coefficients Γj(λ, µ) are given explicitly in terms of the functions ηl

appearing in (1.8) (see Corollary 6.3). The leading term Γ0(λ,µ)
2(λ−µ)2 may also be
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identified as the integral∫
R2

(
(λ− x)−1 − (λ− y)−1

x− y

)(
(µ− x)−1 − (µ− y)−1

x− y

)
ρ(x, y)dxdy,

where ρ(x, y)dxdy is the weak limit of the measures ρn(x, y)dxdy as n → ∞
(cf. (1.10)). The limiting density ρ is explicitly given by

ρ(x, y) =
1

4π2

4 − xy√
4 − x2

√
4 − y2

1(−2,2)(x)1(−2,2)(y), (x, y ∈ R), (1.13)

and we provide a proof of this fact at the end of Sec. 5.
In Ref. 1 the authors derive for a rather general class of random matrices an

expansion for the two-dimensional Cauchy transform in the form:

Cov{Trn[(λ111 −Xn)−1],Trn[(µ111 −Xn)−1]} =
k∑

j=0

dj,n(λ, µ)n−j + o(n−k),

where the leading coefficient d0,n is given explicitly by

d0,n(λ, µ) =
1

2(λ− µ)2

(
λµ− a2

√
λ2 − a2

√
µ2 − a2

− 1

)
, (1.14)

with a the variance of the relevant limiting semi-circle distribution. In the GUE
setup considered in the present paper, a = 2, and in this case it is easily checked
that d0,n is identical to the leading coefficient Γ0(λ,µ)

2(λ−µ)2 in (1.12).
The density ρ given by (1.13) has previously appeared in Ref. 2. There the

author proves that if Xn is a GUE(n, 1
n ) random matrix, then for any polynomial

f , such that
∫ 2

−2 f(t)
√

4 − t2dt = 0, the random variable Trn(f(Xn)) converges, as
n → ∞, in distribution to the Gaussian distribution N(0, σ2), where the limiting
variance σ2 is given by

σ2 =
∫

[−2,2]×[−2,2]

(
f(x) − f(y)

x− y

)2

ρ(x, y)dxdy.

The density ρ has also been identified in the physics literature as the (leading term
for the) correlation function of the formal level density for the GUE (see Ref. 11
and references therein).

In a forthcoming paper (under preparation) we establish results similar to those
obtained in the present paper for random matrices of Wishart type.

2. Auxiliary Differential Equations

In this section we consider two differential equations, both of which play a crucial
role in the definition of the operator T introduced in Sec. 3. The former is a third-
order differential equation for the spectral density of the GUE. We start thus by
reviewing the GUE and its spectral distribution.
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Consider a random n× n matrix Y = (yij)1≤i,j≤n defined on some probability
space (Ω,F, P ). The distribution of Y is then the probability measure PY on the
set Mn(C) of n× n-matrices (equipped with Borel-σ-algebra) given by

PY (B) = P (Y ∈ B)

for any Borel-subset B of Mn(C).
Throughout the paper we focus exclusively on the Gaussian Unitary Ensemble

(GUE), which is the class of random matrices defined as follows:

Definition 2.1. Let n be a positive integer and σ2 a positive real number.
By GUE(n, σ2) we then denote the distribution of a random n × n matrix
X = (xij)1≤i,j≤n (defined on some probability space) satisfying the following four
conditions:

(i) For any i, j in {1, 2, . . . , n}, xij = xji.
(ii) The random variables xij , 1 ≤ i ≤ j ≤ n, are independent.
(iii) If 1 ≤ i < j ≤ n, then Re(xij), Im(xij) are i.i.d. with distribution N(0, 1

2σ
2).

(iv) For any i in {1, . . . , n}, xii is a real-valued random variable with distribution
N(0, σ2).

We recall now the specific form of the spectral distribution of a GUE random
matrix. Let ϕ0, ϕ1, ϕ2, . . . , be the sequence of Hermite functions, i.e.

ϕk(t) = (2kk!
√
π)−1/2Hk(t) exp(−t2/2), (2.1)

where H0, H1, H2, . . . , is the sequence of Hermite polynomials, i.e.

Hk(t) = (−1)k exp(t2)
[

dk

dtk
exp(−t2)

]
. (2.2)

Recall then (see e.g., Corollary 1.6 in Ref. 7) that the spectral distribution of a
random matrix X from GUE(n, 1

n ) has density

hn(t) =
1√
2n

n−1∑
k=1

ϕk

(√
n

2
t

)2

, (2.3)

with respect to Lebesgue measure. More precisely,

E{trn(g(X))} =
∫

R

g(t)hn(t)dt,

for any Borel function g :R → R, for which the integral on the right-hand side is
well-defined.
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Götze and Tikhomirov established the following third-order differential equation
for hn:

Proposition 2.2 ([4]). For each n in N, hn is a solution to the differential
equation:

1
n2
h′′′n (t) + (4 − t2)h′n(t) + thn(t) = 0, (t ∈ R).

Proof. See Lemma 2.1 in Ref. 4.

Via the differential equation in Proposition 2.2 and integration by parts, we
are led (see the proof of Theorem 3.5 below) to consider the following differential
equation:

(t2 − 4)f ′(t) + 3tf (t) = g(t), (2.4)

for suitable given C∞-functions g. The same differential equation was studied by
Götze and Tikhomorov in Lemma 3.1 in Ref. 5 for a different class of functions g
in connection with their Stein’s Method approach to Wigner’s semi-circle law.

Proposition 2.3. For any C∞-function g : R → C, the differential equation

(t2 − 4)f ′(t) + 3tf (t) = g(t), (t ∈ R), (2.5)

has unique C∞-solutions on (−∞, 2) and on (−2,∞). Furthermore, there is a
C∞-solution to (2.5) on all of R, if and only if g satisfies∫ 2

−2

g(t)
√

4 − t2dt = 0. (2.6)

Proof. We note first that by splitting f and g in their real and imaginary parts,
we may assume that they are both real-valued functions.

Uniqueness. By linearity it suffices to prove uniqueness in the case g = 0, i.e. that
0 is the only solution to the homogeneous equation:

(t2 − 4)f ′(t) + 3tf (t) = 0 (2.7)

on (−∞, 2) and on (−2,∞). By standard methods we can solve (2.7) on each of
the intervals (−∞,−2), (−2, 2) and (2,∞). We find thus that any solution to (2.7)
must satisfy that

f(t) =



c1(t2 − 4)−

3
2 , if t < −2,

c2(4 − t2)−
3
2 , if t ∈ (−2, 2),

c3(t2 − 4)−
3
2 , if t > 2,

for suitable constants c1, c2, c3 in R. Since a solution to (2.7) on (−∞, 2) is con-
tinuous at t = −2, it follows that for such a solution we must have c1 = c2 = 0.
Similarly, 0 is the only solution to (2.7) on (−2,∞).
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Existence. The existence part is divided into three steps.

Step 1. We start by finding the solution to (2.5) on (−2,∞). By standard methods,
it follows that the solution to (2.5) on (2,∞) is given by

fc(t) = (t2 − 4)−
3
2

∫ t

2

(s2 − 4)
1
2 g(s)ds+ c(t2 − 4)−

3
2 , (t ∈ (2,∞), c ∈ C),

whereas the solution to (2.5) on (−2, 2) is given by

fc(t) = (4 − t2)−
3
2

∫ 2

t

(4 − s2)
1
2 g(s)ds+ c(4 − t2)−

3
2 , (t ∈ (−2, 2), c ∈ C).

Now consider the function f : (−2,∞) → R given by

f(t) =




(4 − t2)−
3
2

∫ 2

t

(4 − s2)
1
2 g(s)ds, if t ∈ (−2, 2),

1
6
g(2), if t = 2,

(t2 − 4)−
3
2

∫ t

2

(s2 − 4)
1
2 g(s)ds, if t ∈ (2,∞).

(2.8)

We claim that f is a C∞-function on (−2,∞). Once this has been verified, f is
automatically a solution to (2.5) on all of (−2,∞) (by continuity at t = 2). To see
that f is a C∞-function on (−2,∞), it suffices to show that f is C∞ on (0,∞),
and for this we use the following change of variables:

y = t2 − 4, i.e. t =
√
y + 4, (t > 2, y > 0).

For y in (0,∞), we have

f(
√

4 + y) = y−
3
2

∫ √
4+y

2

(s2 − 4)
1
2 g(s)ds = y−

3
2

∫ y

0

u
1
2 · g(

√
u+ 4)

2
√
u+ 4

du.

Using then the change of variables

u = vy, v ∈ [0, 1],

we find that

f(
√

4 + y) = y−
3
2

∫ 1

0

v
1
2 y

1
2 · g(

√
4 + vy)

2
√

4 + vy
ydv =

∫ 1

0

v
1
2 · g(

√
4 + vy)

2
√

4 + vy
dv,

for any y in (0,∞). Now, consider the function

l(y) =
∫ 1

0

v
1
2 · g(

√
4 + vy)

2
√

4 + vy
dv,

which is well-defined on (−4,∞). By the usual theorem on differentiation under the
integral sign (see e.g., Theorem 11.5 in Ref. 15), it follows that l is a C∞-function
on (−4 + ε,K), for any positive numbers ε and K such that 0 < ε < K. Hence l is

1250003-8
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a C∞-function on all of (−4,∞). Note also that

l(0) =
1
6
g(2) = f(2).

Furthermore, by performing change of variables as above in the reversed order, we
find for any y in (−4, 0) that

l(y) = (−y)− 3
2

∫ 2

√
4+y

(4 − s2)
1
2 g(s)ds = f(

√
4 + y).

Hence, we have established that f(
√

4 + y) = l(y) for any y in (−4,∞). Since l is
a C∞-function on (−4,∞), and since f(t) = l(t2 − 4) for all t in (0,∞), it follows
that f ∈ C∞((0,∞)), as desired.

Step 2. Next, we find the solution to (2.5) on (−∞, 2). For this, consider the
differential equation:

(t2 − 4)ψ′(t) + 3tψ(t) = g(−t), (t ∈ (−2,∞)). (2.9)

From what we established in Step 1, it follows that (2.9) has a unique solution
ψ in C∞((−2,∞)). Then put

f1(t) = −ψ(−t), (t ∈ (−∞, 2)), (2.10)

and note that f1 ∈ C∞((−∞, 2)), which satisfies (2.5) on (−∞, 2).

Step 3. It remains to verify that the solutions f and f1, found in Steps 1 and 2
above, coincide on (−2, 2), if and only if Eq. (2.6) holds. With ψ as in Step 2, note
that ψ is given by the right-hand side of (2.8), if g(s) is replaced by g(−s). Thus,
for any t in (−2, 2), we have that

f(t) − f1(t) = f(t) + ψ(−t)

= (4 − t2)−
3
2

∫ 2

t

(4 − s2)
1
2 g(s)ds

+ (4 − t2)−
3
2

∫ 2

−t

(4 − s2)
1
2 g(−s)ds

= (4 − t2)−
3
2

∫ 2

t

(4 − s2)
1
2 g(s)ds

+ (4 − t2)−
3
2

∫ t

−2

(4 − s2)
1
2 g(s)ds

= (4 − t2)−
3
2

∫ 2

−2

(4 − s2)
1
2 g(s)ds,

from which the assertion follow readily.
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Proposition 2.4. For any C∞-function g : R → C, there is a unique C∞-function
f :R → C, such that

g(t) =
1
2π

∫ 2

−2

g(s)
√

4 − s2ds+ (t2 − 4)f ′(t) + 3tf (t), (t ∈ R). (2.11)

If g ∈ C∞
b (R), then f ∈ C∞

b (R) too.

Proof. Let g be a function from C∞(R), and consider the function

gc = g − 1
2π

∫ 2

−2

g(s)
√

4 − s2 ds.

Since
∫ 2

−2 gc(s)
√

4 − s2ds = 0, it follows immediately from Proposition 2.3 that
there is a unique C∞-solution f to (2.11). Moreover (cf. the proof of Proposi-
tion 2.3), f satisfies that

f(t) =




(t2 − 4)−
3
2

∫ t

2

(s2 − 4)
1
2 gc(s)ds, if t ∈ (2,∞),

−(t2 − 4)−
3
2

∫ |t|

2

(s2 − 4)
1
2 gc(−s)ds, if t ∈ (−∞,−2).

Assume now that g (and hence gc) is in C∞
b (R), and choose a number R in (0,∞),

such that |gc(t)| ≤ R for all t in R. Then, for any t in (2,∞), we find that

|f(t)| ≤ (t2 − 4)−
3
2R

∫ t

2

(s2)
1
2 ds =

1
2
R(t2 − 4)−

1
2 ,

and thus f is bounded on, say, (3,∞). It follows similarly that f is bounded on,
say, (−∞,−3). Hence, since f is continuous, f is bounded on all of R.

Taking first derivatives in (2.11), we note next that

(t2 − 4)f ′′(t) + 5tf ′(t) + 3f(t) = g′(t), (t ∈ R),

and by induction we find that in general

(t2 − 4)f (k+1)(t) + (2k + 3)tf (k)(t) + k(k + 2)f (k−1)(t) = g(k)(t), (k ∈ N, t ∈ R).

Thus, for t in R\{−2, 2},

f ′(t) =
−3tf (t)
t2 − 4

+
gc(t)
t2 − 4

, (2.12)

and

f (k+1)(t) =
−(2k + 3)tf (k)(t)

t2 − 4
− k(k + 2)f (k−1)(t)

t2 − 4
+
g(k)(t)
t2 − 4

, (k ∈ N). (2.13)
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Since f and gc are bounded, it follows from (2.12) that f ′ is bounded on, say,
R\[−3, 3] and hence on all of R. Continuing by induction, it follows similarly from
(2.13) that f (k) is bounded for all k in N.

3. Asymptotic Expansion for Expectations of Traces

In this section we establish the asymptotic expansion (1.6). We start by equipping
C∞

b (R) with a sequence of norms, which make it into a Fréchét space.

Definition 3.1. Consider the vector space C∞
b (R) of C∞-functions f : R → C,

satisfying that

∀ k ∈ N0 : sup
t∈R

∣∣∣∣ dk

dtk
f(t)

∣∣∣∣ <∞.

We introduce then a sequence ‖ · ‖(k) of norms on C∞
b (R) as follows:

‖g‖∞ = sup
x∈R

|g(x)|, (g ∈ C∞
b (R)),

and for any k in N0:

‖g‖(k) = max
j=0,...,k

‖g(j)‖∞, (g ∈ C∞
b (R)),

where g(j) denotes the jth derivative of g. Equipped with the sequence
(‖ · ‖(k))k∈N of norms, C∞

b (R) becomes a Fréchét space (see e.g., Theorem 1.37
and Remark 1.38(c) in Ref. 14).

The following lemma is well-known, but for the reader’s convenience we include
a proof.

Lemma 3.2. Consider C∞
b (R) as a Fréchét space as described in Definition 3.1.

Then a linear mapping L :C∞
b (R) → C∞

b (R) is continuous, if and only if the fol-
lowing condition is satisfied:

∀ k ∈ N ∃mk ∈ N ∃Ck > 0 ∀ g ∈ C∞
b (R) : ‖Lg‖(k) ≤ Ck‖g‖(mk). (3.1)

Proof. A sequence (gn) from C∞
b (R) converges to a function g in C∞

b (R) in the
described Fréchét topology, if and only if ‖gn − g‖(k) → 0 as n→ ∞ for any k in N.
Therefore condition (3.1) clearly implies continuity of L.

To establish the converse implication, note that by Theorem 1.37 in Ref. 11, a
neighborhood basis at 0 for C∞

b (R) is given by

Uk,ε = {h ∈ C∞
b (R) | ‖h‖(k) < ε}, (k ∈ N, ε > 0).

Thus, if L is continuous, there exists for any k in N an m in N and a positive δ,
such that L(Um,δ) ⊆ Uk,1. For any non-zero function g in C∞

b (R), we have that
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1
2δ‖g‖−1

(m)g ∈ Um,δ, and therefore

1
2
δ‖g‖−1

(m)‖Lg‖(k) < 1, i.e. ‖Lg‖(k) <
2
δ
‖g‖(m),

which establishes (3.1).

Remark 3.3. Appealing to Proposition 2.4, we may define a mapping S :
C∞

b (R) → C∞
b (R) by setting, for g in C∞

b (R), Sg = f , where f is the unique
solution to (2.11). By uniqueness, S is automatically a linear mapping. We define
next the linear mapping T :C∞

b (R) → C∞
b (R) by the formula:

Tg = (Sg)′′′, (g ∈ C∞
b (R)).

Proposition 3.4. The linear mappings S, T :C∞
b (R) → C∞

b (R) introduced in
Remark 3.3 are continuous when C∞

b (R) is viewed as a Fréchét space as described
in Definition 3.1.

Proof. Since differentiation is clearly a continuous mapping from C∞
b (R) into

itself, it follows immediately that T is continuous, if S is.
To prove that S is continuous, it suffices to show that the graph of S is closed in

C∞
b (R)×C∞

b (R) equipped with the product topology (cf. Theorem 2.15 in Ref. 14).
So let (gn) be a sequence of functions in C∞

b (R), such that (gn, Sgn) → (g, f) in
C∞

b (R) × C∞
b (R) for some functions f, g in C∞

b (R). In particular then,

gn → g, Sgn → f, and (Sgn)′ → f ′ uniformly on R as n→ ∞.

It follows that for any t in R,

g(t) = lim
n→∞ gn(t) = lim

n→∞

(
1
2π

∫ 2

−2

gn(s)
√

4 − s2ds

+(t2 − 4)(Sgn)′(t) + 3t(Sgn)(t)

)

=
1
2π

∫ 2

−2

g(s)
√

4 − s2ds+ (t2 − 4)f ′(t) + 3tf (t).

Therefore, by uniqueness of solutions to (2.11), Sg = f , and the graph of S is
closed.

Theorem 3.5. Consider the spectral density hn for GUE(n, 1
n ) and the linear oper-

ator T :C∞
b (R) → C∞

b (R) introduced in Remark 3.3. Then for any function g in
C∞

b (R) we have that∫
R

g(t)hn(t)dt =
1
2π

∫ 2

−2

g(t)
√

4 − t2dt+
1
n2

∫
R

Tg(t) · hn(t)dt.
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Proof. Consider a fixed function g from C∞
b (R), and then put f = Sg, where S is

the linear operator introduced in Remark 3.3. Recall that

g(t) =
1
2π

∫ 2

−2

g(s)
√

4 − s2ds+ (t2 − 4)f ′(t) + 3tf (t), (t ∈ R). (3.2)

By Proposition 2.2 and partial integration it follows that

0 =
∫

R

f(t)[n−2h′′′n (t) + (4 − t2)h′n(t) + thn(t)]dt

= −n−2

∫
R

f ′′′(t)hn(t)dt−
∫

R

d
dt

[f(t)(4 − t2)]hn(t)dt+
∫

R

tf(t)hn(t)dt

=
∫

R

[−n−2f ′′′(t) − (4 − t2)f ′(t) + 3tf (t)]hn(t)dt,

so that∫
R

[(t2 − 4)f ′(t) + 3tf (t)]hn(t)dt =
1
n2

∫
R

f ′′′(t)hn(t)dt =
1
n2

∫
R

Tg(t) · hn(t)dt.

Using (3.2) and the fact that hn(t)dt is a probability measure, we conclude that∫
R

g(t) · hn(t)dt =
1
2π

∫ 2

−2

g(t)
√

4 − t2dt+
∫

R

[(t2 − 4)f ′(t) + 3tf (t)]hn(t)dt

=
1
2π

∫ 2

−2

g(t)
√

4 − t2dt+
1
n2

∫
R

Tg(t) · hn(t)dt,

which is the desired expression.

As an easy corollary of Proposition 3.5, we may now derive (in the GUE case)
Ercolani’s and McLaughlin’s asymptotic expansion (see Theorem 1.4 in Ref. 3).

Corollary 3.6. Let T :C∞
b (R) → C∞

b (R) be the linear mapping introduced in
Remark 3.3. Then for any k in N and g in C∞

b (R), we have:∫
R

g(t)hn(t)dt =
1
2π

k−1∑
j=0

1
n2j

∫ 2

−2

[T jg](t)
√

4 − t2dt+
1
n2k

∫
R

[T kg](t) · hn(t)dt.

=
1
2π

k−1∑
j=0

1
n2j

∫ 2

−2

[T jg](t)
√

4 − t2dt+O(n−2k).

Proof. The first equality in the corollary follows immediately by successive appli-
cations of Theorem 3.5. To show the second one, it remains to establish that for
any k in N

sup
n∈N

∫
R

|[T kg](t)| · hn(t)dt <∞.

But this follows immediately from the fact that T kg is bounded, and the fact that
hn(t)dt is a probability measure for each n.
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4. Asymptotic Expansion for the Cauchy Transform

For a GUE(n, 1
n ) random matrix Xn, we consider now the Cauchy transform

given by

Gn(λ) = E{trn[(λ111n −Xn)−1]} =
∫

R

1
λ− t

hn(t)dt, (λ ∈ C\R).

Setting

gλ(t) = g(λ, t) =
1

λ− t
, (t ∈ R, λ ∈ C\R),

we have by the usual theorem on differentiation under the integral sign (for ana-
lytical functions) that Gn is analytical on C\R with derivatives

dk

dλk
Gn(λ) =

∫
R

(−1)kk!
(λ− t)k+1

hn(t)dt = (−1)k

∫
R

(
dk

dtk
gλ(t)

)
hn(t)dt, (4.1)

for any k in N and λ in C\R.

Lemma 4.1. The Cauchy transform Gn of a GUE(n, 1
n ) random matrix Xn sat-

isfies the following differential equation:

n−2 d3

dλ3
Gn(λ) + (4 − λ2)

d
dλ
Gn(λ) + λGn(λ) = 2, (4.2)

for all λ in C\R.

Proof. From Proposition 2.2 and partial integration we obtain for fixed λ in
C\R that

0 =
∫

R

gλ(t)[n−2h′′′n (t) + (4 − t2)h′n(t) + thn(t)]dt

=
∫

R

[−n−2g′′′λ (t) − (4 − t2)g′λ(t) + 3tgλ(t)]hn(t)dt. (4.3)

Note here that

(4 − t2)g′λ(t) =
4 − t2

(λ − t)2
=

4 − λ2

(λ− t)2
+

2λ
λ− t

− 1,

and that

3tgλ(t) =
3t

λ− t
=

3λ
λ− t

− 3.

Inserting this into (4.3) and using (4.1) and the fact that hn is a probability density,
we find that

0 = n−2 d3

dλ3
Gn(λ) + (4 − λ2)

d
dλ
Gn(λ) + λGn(λ) − 2,

as desired.
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For each fixed λ in C\R, we apply next Corollary 3.6 to the function gλ and
obtain for any k in N0 the expansion:

Gn(λ) =
∫

R

1
λ− t

hn(t)dt = η0(λ) +
η1(λ)
n2

+
η2(λ)
n4

+ · · · + ηk(λ)
n2k

+O(n−2k−2),

(4.4)

where ηj(λ) = 1
2π

∫ 2

−2[T
jgλ](t)

√
4 − t2dt for all j. To determine these coefficients

we shall insert the expansion (4.4) into the differential equation (4.2) in order to
obtain differential equations for the ηj ’s. To make this rigorous, we need first to
establish analyticity of the ηj ’s as functions of λ.

Lemma 4.2. (i) For any k in N0 the mapping λ 
→ T kgλ is analytical as a mapping
from C\R into the Fréchét space C∞

b (R), and

dj

dλj
T kgλ = T k

(
∂j

∂λj
g(λ, ·)

)
for any j in N.

(ii) For any k, n in N, consider the mappings ηk, Rk,n : C\R → C given by

ηk(λ) =
∫ 2

−2

[T kgλ](s)
√

4 − s2ds, (λ ∈ C\R), (4.5)

Rk,n(λ) =
∫

R

[T k+1gλ](s)hn(s)ds, (λ ∈ C\R). (4.6)

These mappings are analytical on C\R with derivatives:

dj

dλj
ηk(λ) =

∫ 2

−2

[
T k

(
∂j

∂λj
g(λ, ·)

)]
(s)

√
4 − s2ds, (λ ∈ C\R, j ∈ N),

dj

dλj
Rk,n(λ) =

∫
R

[
T k+1

(
∂j

∂λj
g(λ, ·)

)]
(s)hn(s)ds, (λ ∈ C\R, j ∈ N).

Proof. (i) By standard methods it follows that for any λ in C\R and l, j in N0,

lim
h→0

(
sup
t∈R

∣∣∣∣1h
(
∂l

∂tl
∂j

∂λj
g(λ+ h, t) − ∂l

∂tl
∂j

∂λj
g(λ, t)

)
− ∂l

∂tl
∂j+1

∂λj+1
g(λ, t)

∣∣∣∣
)

= 0.

(4.7)

When j = 0, formula (4.7) shows that the mapping F : C\R → C∞
b (R) given by

F (λ) = g(λ, ·), (λ ∈ C\R),

is analytical on C\R with derivative d
dλF (λ) = ∂

∂λg(λ, ·) (cf. Definition 3.30 in
Ref. 14). Using then (4.7) and induction on j, it follows that moreover

dj

dλj
F (λ) =

∂j

∂λj
g(λ, ·), (λ ∈ C\R)
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for all j in N. For each k in N the mapping T k :C∞
b (R) → C∞

b (R) is linear and
continuous (cf. Proposition 3.4), and it follows therefore immediately that the com-
posed mapping T k ◦F : C\R → C∞

b (R) is again analytical on C\R with derivatives

dj

dλj
T kg(λ, ·) =

dj

dλj
T k ◦ F (λ) = T k

(
∂j

∂λj
g(λ, ·)

)
for all j in N.

This establishes (i).

(ii) As an immediate consequence of (i), for each fixed s in R the mapping λ 
→
[T kg(λ, ·)](s) is analytical with derivatives

dj

dλj
[T kg(λ, ·)](s) =

[
T k ∂j

∂λj
g(λ, ·)

]
(s), (j ∈ N).

Note here that by Lemma 3.2∥∥∥∥T k ∂j

∂λj
g(λ, ·)

∥∥∥∥
∞

≤ C(k, 0)
∥∥∥∥ ∂j

∂λj
g(λ, ·)

∥∥∥∥
(m(k,0))

for suitable constants C(k, 0) in (0,∞) and m(k, 0) in N. Hence, for any closed ball
B inside C\R and any j in N we have that

sup
λ∈B

∥∥∥∥T k

(
∂j

∂λj
g(λ, ·)

)∥∥∥∥
∞

≤ C(k, 0) sup
λ∈B

∥∥∥∥ ∂j

∂λj
g(λ, ·)

∥∥∥∥
(m(k,0))

<∞.

It follows now by application of the usual theorem on differentiation under the
integral sign, that for any finite Borel-measure µ on R, the mapping λ 
→∫

R
[T kg(λ, ·)](s)µ(ds) is analytical on C\R with derivatives

dj

dλj

∫
R

[T kg(λ, ·)](s)µ(ds) =
∫

R

dj

dλj
[T kg(λ, ·)](s)µ(ds)

=
∫

R

[
T k

(
∂j

∂λj
g(λ, ·)

)]
(s)µ(ds).

In particular this implies (ii).

Lemma 4.3. Let Gn denote the Cauchy-transform of hn(x)dx, and consider for
each λ in C\R and k in N0 the asymptotic expansion:

Gn(λ) = η0(λ) +
η1(λ)
n2

+
η2(λ)
n4

+ · · · + ηk(λ)
n2k

+O(n−2k−2) (4.8)

given by Corollary 3.6. Then the coefficients ηj(λ) are analytical as functions of λ,
and they satisfy the following recursive system of differential equations:

(4 − λ2)η′0(λ) + λη0(λ) = 2,

(λ2 − 4)η′j(λ) − ληj(λ) = η′′′j−1(λ), (j ∈ N).
(4.9)
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Proof. For each j in N0 the coefficient ηj(λ) is given by (4.5) (cf. Corollary 3.6),
and hence Lemma 4.2 asserts that ηj is analytical on C\R. Recall also from Corol-
lary 3.6 that the O(n−2k−2) term in (4.8) has the form n−2k−2Rk,n(λ), where
Rk,n(λ) is given by (4.6) and is again an analytical function on C\R according to
Lemma 4.2. Inserting now (4.8) into the differential equation (4.2), we obtain for λ
in C\R that

2 = n−2G′′′
n (λ) + (4 − λ2)G′

n(λ) + λGn(λ)

= n−2


 k∑

j=0

n−2jη′′′j (λ) + n−2k−2R′′′
k,n(λ)


 + (4 − λ2)

·

 k∑

j=0

n−2jη′j(λ) + n−2k−2R′
k,n(λ)


 + λ


 k∑

j=0

n−2jηj(λ) + n−2k−2Rk,n(λ)




= [(4 − λ2)η′0(λ) + λη0(λ)] +
k∑

j=1

n−2j[η′′′j−1(λ) + (4 − λ2)η′j(λ) + ληj(λ)]

+n−2k−2[η′′′k (λ) + (4 − λ2)R′
k,n(λ) + λRk,n(λ)] + n−2k−4R′′′

k,n(λ). (4.10)

Using Lemma 4.2, we note here that for fixed k and λ we have for any l in N0 that

sup
n∈N

∣∣∣∣ dl

dλl
Rk,n(λ)

∣∣∣∣ = sup
n∈N

∣∣∣∣
∫

R

[
T k+1

(
∂l

∂λl
g(λ, ·)

)]
(s)hn(s)ds

∣∣∣∣
≤

∥∥∥∥T k+1

(
∂l

∂λl
g(λ, ·)

)∥∥∥∥
∞
<∞,

since T k+1( ∂l

∂λl g(λ, ·)) ∈ C∞
b (R). Thus, letting n→ ∞ in (4.10), it follows that

(4 − λ2)η′0(λ) + λη0(λ) = 2, (λ ∈ C\R).

and subsequently by multiplication with n2 that

0 =
k∑

j=1

n−2j+2[η′′′j−1(λ) + (4 − λ2)η′j(λ) + ληj(λ)]

+n−2k[η′′′k (λ) + (4 − λ2)R′
k,n(λ) + λRk,n(λ)] + n−2k−2R′′′

k,n(λ). (4.11)

Letting then n→ ∞ in (4.11), we find similarly (assuming k ≥ 1) that

η′′′0 (λ) + (4 − λ2)η′1(λ) + λη1(λ) = 0,

and subsequently that

0 =
k∑

j=2

n−2j+4[η′′′j−1(λ) + (4 − λ2)η′j(λ) + ληj(λ)]

+n−2k+2[η′′′k (λ) + (4 − λ2)R′
k,n(λ) + λRk,n(λ)] + n−2kR′′′

k,n(λ).
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Continuing like this (induction), we obtain (4.9) for any j in {1, 2, . . . , k}. Since k
can be chosen arbitrarily in N, we obtain the desired conclusion.

For any odd integer k we shall in the following use the conventions:

(λ2 − 4)
1
2 = λ

√
1 − 4

λ2
, and (λ2 − 4)

k
2 = ((λ2 − 4)

1
2 )k (4.12)

for any λ in the region

Ω := C\[−2, 2],

and where
√· denotes the usual main branch of the square root on C\(−∞, 0]. We

note in particular that

|(λ2 − 4)
1
2 | → ∞, as |λ| → ∞. (4.13)

Lemma 4.4. For any r in Z\{−3,−4} the complete solution to the differential
equation:

(λ2 − 4)
d
dλ
f(λ) − λf(λ) =

d3

dλ3
(λ2 − 4)−r− 1

2 , (λ ∈ Ω) (4.14)

is given by

f(λ) =
(r + 1)(2r + 1)(2r + 3)
(r + 3)(λ2 − 4)r+5/2

+
2(2r + 1)(2r + 3)(2r + 5)

(r + 4)(λ2 − 4)r+7/2
+ C(λ2 − 4)

1
2 , (4.15)

for all λ in Ω, and where C is an arbitrary complex constant.

Proof. By standard methods the complete solution to (4.14) is given by

f(λ) = (λ2 − 4)
1
2

∫
(λ2 − 4)−

3
2

d3

dλ3
(λ2 − 4)−r− 1

2 dλ, (λ ∈ Ω), (4.16)

where
∫
(λ2−4)−

3
2 d3

dλ3 (λ2−4)−r−1
2 dλ denotes the class of anti-derivatives (on Ω) to

the function (λ2 − 4)−
3
2 d3

dλ3 (λ2 − 4)−r− 1
2 . Note here that by a standard calculation,

(λ2 − 4)−
3
2

d3

dλ3
(λ2 − 4)−r− 1

2 =
−(2r + 1)(2r + 2)(2r + 3)λ

(λ2 − 4)r+4

− 4(2r + 1)(2r + 3)(2r + 5)λ
(λ2 − 4)r+5

.

Assuming that r /∈ {−3,−4}, we have (since Ω is connected) for k in {4, 5} that∫
λ(λ2 − 4)−r−kdλ =

−1
2(r + k − 1)

(λ2 − 4)−r−k+1 + C, (C ∈ C).
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We obtain thus that∫
(λ2 − 4)−

3
2

d3

dλ3
(λ2 − 4)−r− 1

2 dλ

=
(2r + 1)(2r + 2)(2r + 3)

2(r + 3)(λ2 − 4)r+3
+

4(2r + 1)(2r + 3)(2r + 5)
2(r + 4)(λ2 − 4)r+4

+ C

=
(r + 1)(2r + 1)(2r + 3)

(r + 3)(λ2 − 4)r+3
+

2(2r + 1)(2r + 3)(2r + 5)
(r + 4)(λ2 − 4)r+4

+ C,

where C is an arbitrary constant. Inserting this expression into (4.16), for-
mula (4.15) follows readily.

Proposition 4.5. Let Gn denote the Cauchy-transform of hn(x)dx, and consider
for each λ in C\R and k in N0 the asymptotic expansion:

Gn(λ) = η0(λ) +
η1(λ)
n2

+
η2(λ)
n4

+ · · · + ηk(λ)
n2k

+O(n−2k−2)

given by Corollary 3.6. Then for λ in C\R we have that

η0(λ) =
λ

2
− 1

2
(λ2 − 4)

1
2 , (4.17)

η1(λ) = (λ2 − 4)−
5
2 , (4.18)

and generally for j in N, ηj takes the form:

ηj(λ) =
3j−1∑
r=2j

Cj,r(λ2 − 4)−r− 1
2

for constants Cj,r, 2j ≤ r ≤ 3j − 1. Whenever j ≥ 1, these constants satisfy the
recursion formula:

Cj+1,r =
(2r − 3)(2r − 1)

r + 1
((r − 1)Cj,r−2

+ (4r − 10)Cj,r−3), (2j + 2 ≤ r ≤ 3j + 2), (4.19)

where for r in {2j + 2, 3j + 2} we adopt the conventions: Cj,2j−1 = 0 = Cj,3j .

Before proceeding to the proof of Proposition 4.5, we note that for any j in N0

and λ in C\R we have by Lemma 3.2 that

|ηj(λ)| ≤ ‖T jgλ‖∞ ≤ C(j, 0)‖gλ‖m(j,0),

for suitable constants C(j, 0) in (0,∞) and m(j, 0) in N (not depending on λ). In
particular it follows that

|ηj(ix)| → 0, as x→ ∞, x ∈ R. (4.20)
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Proof of Proposition 4.5. The function η0 is the Cauchy transform of the stan-
dard semi-circle distribution, which is well-known to equal the right-hand side of
(4.17) (see e.g., Ref. 18). Now, η′′′0 (λ) = − 1

2
d3

dλ3 (λ2−4)
1
2 , so by (4.9) and Lemma 4.4

(with r = −1), it follows that

η1(λ) = −1
2
(−2(λ2 − 4)1−

7
2 ) + C(λ2 − 4)

1
2 = (λ2 − 4)−

5
2 + C(λ2 − 4)

1
2 ,

for a suitable constant C in C. Comparing (4.20) and (4.13), it follows that we must
have C = 0, which establishes (4.18).

Proceeding by induction, assume that for some j in N we have established that

ηj(λ) =
3j−1∑
r=2j

Cj,r(λ2 − 4)−r− 1
2

for suitable constants C(j, r), r = 2j, 2j + 1, . . . , 3j − 1. Then by (4.9), Lemma 4.4
and linearity it follows that modulo a term of the form C(λ2 − 4)1/2 we have that

ηj+1(λ) =
3j−1∑
r=2j

Cj,r
(r + 1)(2r + 1)(2r + 3)

r + 3
(λ2 − 4)−r− 5

2

+
3j−1∑
r=2j

Cj,r
2(2r + 1)(2r + 3)(2r + 5)

r + 4
(λ2 − 4)−r− 7

2

=
3j+1∑

s=2j+2

Cj,s−2
(s− 1)(2s− 3)(2s− 1)

s+ 1
(λ2 − 4)−s− 1

2

+
3j+2∑

s=2j+3

Cj,s−3
2(2s− 5)(2s− 3)(2s− 1)

s+ 1
(λ2 − 4)−s− 1

2

= Cj,2j
(2j + 1)(4j + 1)(4j + 3)

2j + 3
(λ2 − 4)−2j−2− 1

2

+Cj,3j−1
2(6j − 1)(6j + 1)(6j + 3)

3j + 3
(λ2 − 4)−3j−2− 1

2

+
3j+1∑

s=2j+3

(2s− 3)(2s− 1)
s+ 1

[(s− 1)Cj,s−2

+ (4s− 10)Cj,s−3](λ2 − 4)−s− 1
2 .

As before (4.20) and (4.13) imply that the neglected term C(λ2 − 4) must vanish
anyway. The resulting expression in the calculation above has the form

3(j+1)−1∑
s=2(j+1)

Cj+1,s(λ2 − 4)−s− 1
2 ,
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where the constants Cj+1,s are immediately given by (4.19), whenever 2j + 3 ≤
s ≤ 3j + 1. Recalling the convention that Cj,2j−1 = 0 = Cj,3j , it is easy to check
that also when s = 2j + 2 or s = 3j + 2, formula (4.19) produces, respectively, the
coefficients to (λ2−4)−2j− 5

2 and (λ2−4)−3j− 5
2 appearing in the resulting expression

above.

Using the recursion formula (4.19), it follows easily that

η2(λ) = 21(λ2 − 4)−
9
2 + 105(λ2 − 4)−

11
2 ,

η3(λ) = 1485(λ2 − 4)−
13
2 + 18018(λ2 − 4)−

15
2 + 50050(λ2 − 4)−

17
2 .

We close this section by identifying the functionals g 
→ 1
2π

∫ 2

−2[T
jg](t)

√
4 − t2dt

as distributions (in the sense of L. Schwarts). Before stating the result, we recall
that the Chebychev polynomials T0, T1, T2, . . . of the first kind are the polynomials
on R determined by the relation:

Tk(cos θ) = cos(kθ), (θ ∈ [0, π], k ∈ N0). (4.21)

Corollary 4.6. For each j in N0 consider the mapping αj :C∞
b (R) → C given by

αj(g) =
1
2π

∫ 2

−2

[T jg](t)
√

4 − t2dt, (g ∈ C∞
b (R)),

where T :C∞
b (R) → C∞

b (R) is the linear mapping introduced in Theorem 3.5. Con-
sider in addition for each k in N0 the mapping Ek :C∞

b (R) → C given by

Ek(g) =
1
π

∫ 2

−2

g(k)(x)
Tk(x

2 )√
4 − x2

dx,

where T0, T1, T2, . . . are the Chebychev polynomials given by (4.21). Then for any
j in N,

αj =
3j−1∑
k=2j

Cj,k
k!

(2k)!
Ek, (4.22)

where Cj,2j , Cj,2j+1, . . . , Cj,3j−1 are the constants described in Proposition 4.5.

From Corollary 4.6 it follows in particular that αj (restricted to C∞
c (R)) is a

distribution supported on [−2, 2] (i.e. αj(ϕ) = 0 for any function ϕ from C∞
c (R)

such that supp(ϕ) ∩ [−2, 2] = ∅). In addition it follows from (4.22) that αj is a
distribution of order at most 3j − 1 (cf. Ref. 14, p. 156), and it is not hard to show
that in fact the order of αj equals 3j − 1.

Proof of Corollary 4.6. Let j in N be given and let Λj denote the right-hand
side of (4.22). Since both αj and Λj are supported on [−2, 2], it suffices to show
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that their Stieltjes transforms coincide, i.e. that

αj(gλ) = Λj(gλ), (λ ∈ C\R), (4.23)

where as before gλ(x) = 1
λ−x for all x in R. Since the mapping λ 
→ gλ is ana-

lytical from C\R into C∞
b (R) (cf. Lemma 4.2), and since the linear functionals

αj ,Λj :C∞
b (R) → C are continuous, the functions λ 
→ αj(gλ) and λ 
→ Λj(gλ) are

analytical on C\R. It suffices thus to establish (4.23) for λ in C\R such that |λ| > 2.
So consider in the following a fixed such λ. We know from Proposition 4.5 that

αj(gλ) = ηj(λ) =
3j−1∑
k=2j

Cj,k(λ2 − 4)−k− 1
2 ,

with (λ2 − 4)−k− 1
2 defined as in (4.12). It suffices thus to show that

Ek(gλ) =
(2k)!
k!

(λ2 − 4)−k− 1
2

for all k in N. So let k from N be given, and recall that gλ(x) = 1
λ

∑∞
�=0(

x
λ)� for all

x in [−2, 2]. Since
∫ 2

−2

|Tk( x
2 )|√

4−x2 dx <∞, and since the power series

∞∑
�=r

�(�− 1) · · · (�− r + 1)z�−r

converges uniformly on {z ∈ C | |z| ≤ 2
|λ|} for any r in N0, it follows that we may

change the order of differentiation, summation and integration in the following
calculation:

Ek(gλ) =
1
πλ

∫ 2

−2

[
dk

dxk

∞∑
�=0

(x
λ

)�
]

Tk(x
2 )√

4 − x2
dx

=
1
πλ

∫ 2

−2

[
λ−k

∞∑
�=k

�(�− 1) · · · (�− k + 1)
(x
λ

)�−k
]

Tk(x
2 )√

4 − x2
dx

=
∞∑

�=k

�!
(�− k)!

[
1
π

∫ 2

−2

x�−k Tk(x
2 )√

4 − x2
dx

]
λ−�−1.

Using the substitution x = 2 cos θ, θ ∈ (0, π), as well as (4.21) and Euler’s formula
for cos θ, it follows by a standard calculation that

1
π

∫ 2

−2

xp Tk(x
2 )√

4 − x2
dx =



(

p

(p− k)/2

)
, if p ∈ {k + 2m |m ∈ N0},

0, otherwise.
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We thus find that

Ek(gλ) =
∞∑

m=0

(2k + 2m)!
(k + 2m)!

(
k + 2m
m

)
λ−2m−2k−1 =

∞∑
m=0

(2k + 2m)!
m!(k +m)!

λ−2m−2k−1

=
(2k)!
k!

∞∑
m=0

4m

(
k +m− 1

2

m

)
λ−2m−2k−1

= λ−2k−1 (2k)!
k!

∞∑
m=0

(
k +m− 1

2

m

)(
4
λ2

)m

,

where the third equality results from a standard calculation on binomial coefficients.
Recall now that

(1 − z)−k− 1
2 =

∞∑
m=0

(
k +m− 1

2

m

)
zm, (z ∈ C, |z| < 1),

where the left-hand side is formally defined as (
√

1 − z)−2k−1, with
√· the usual

holomorphic branch of the square root on C\(−∞, 0]. We may thus conclude that

Ek(gλ) = λ−2k−1 (2k)!
k!

(
1 − 4

λ2

)−k− 1
2

=
(2k)!
k!

(
λ

√
1 − 4

λ2

)−2k−1

=
(2k)!
k!

(λ2 − 4)−k− 1
2 ,

where the last equality follows from (4.12). This completes the proof.

5. Asymptotic Expansion for Second-Order Statistics

In this section we shall establish asymptotic expansions, similar to Corollary 3.6, for
covariances in the form Cov{Trn[f(Xn)],Trn[g(Yn)]}, where f, g ∈ C∞

b (R), Xn is a
GUE(n, 1

n ) random matrix and Trn denotes the (un-normalized) trace on Mn(C).
For complex-valued random variables Y, Z with second moments (and defined

on the same probability space), we use the notation:

V{Y } = E{(Y − E{Y })2}, and Cov{Y, Z} = E{(Y − E{Y })(Z − E{Z})}.

Note in particular that V{Y } is generally not a positive number, and that Cov{Y, Z}
is truly linear in both Y and Z.

Lemma 5.1. Let σ be a positive number, and let XN be a GUE(n, σ2) random
matrix. For any function f from C∞

b (R) we then have that

V{Trn[f(Xn)]} =
1

4σ2

∫
R2

(f(x) − f(y))2ψn

(
x√
2σ2

,
y√
2σ2

)2

dxdy, (5.1)
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where the kernel ψn is given by

ψn(x, y) =
n−1∑
j=0

ϕj(x)ϕj(y) =
√
n

2
ϕn(x)ϕn−1(y) − ϕn−1(x)ϕn(y)

x− y
, (5.2)

and the ϕj ’s are the Hermite functions introduced in (2.1).

Proof. Formula (5.1) appears in the proof of [13, Lemma 3] with ψ given by the
first equality in (5.2). The second equality in (5.2) is equivalent to the Christoffel–
Darboux formula for the Hermite polynomials (see Ref. 9, p. 193 formula (11)).

Corollary 5.2. Let Xn be a GUE(n, 1
n ) random matrix.

(i) For any function f from C∞
b (R) we have that

V{Trn[f(X)]} =
∫

R2

(
f(x) − f(y)

x− y

)2

ρn(x, y)dxdy,

where the kernel ρn is given by

ρn(x, y) =
n

4

[
ϕn

(√
n

2
x

)
ϕn−1

(√
n

2
y

)
− ϕn−1

(√
n

2
x

)
ϕn

(√
n

2
y

)]2

. (5.3)

(ii) For any functions f and g from C∞
b (R) we have that

Cov{Trn[f(Xn)],Trn[g(Xn)]}

=
∫

R2

(
f(x) − f(y)

x− y

)(
g(x) − g(y)
x− y

)
ρn(x, y)dxdy.

Proof. (i) This follows from Lemma 5.1 by a straightforward calculation, setting
σ2 = 1

n in (5.1).

(ii) Using (i) on the functions f + g and f − g we find that

Cov{Trn[f(Xn)],Trn[g(Xn)]}

=
1
4
(V{Trn[f(Xn) + g(Xn)]} − V{Trn[f(Xn) − g(Xn)]})

=
1
4

∫
R2

((f + g)(x) − (f + g)(y))2 − ((f − g)(x) − (f − g)(y))2

(x− y)2

· ρn(x, y)dxdy

=
1
4

∫
R2

4f(x)g(x) + 4f(y)g(y) − 4f(x)g(y) − 4f(y)g(x)
(x− y)2

ρn(x, y)dxdy

=
∫

R2

(
f(x) − f(y)

x− y

)(
g(x) − g(y)
x− y

)
ρn(x, y)dxdy,

as desired.
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In order to establish the desired asymptotic expansion of Cov{Trn[f(Xn)],
Trn[g(Xn)]}, we are led by Corollary 5.2(ii) to study the asymptotic behavior, as
n → ∞, of the probability measures ρn(x, y)dxdy. As a first step, it is instructive
to note that ρn(x, y)dxdy converges weakly, as n→ ∞, to the probability measure
ρ(x, y)dxdy, where

ρ(x, y) =
1

4π2

4 − xy√
4 − x2

√
4 − y2

1(−2,2)(x)1(−2,2)(y). (5.4)

We shall give a short proof of this fact in Proposition 5.11 below. It implies in
particular that if (Xn) is a sequence of random matrices, such thatXn ∼ GUE(n, 1

n )
for all n, then

lim
n→∞Cov{Trn[f(Xn)],Trn[g(Xn)]}

=
∫

R2

(
f(x) − f(y)

x− y

)(
g(x) − g(y)
x− y

)
ρ(x, y)dxdy,

for all f, g ∈ C∞
b (R).

The key point in the approach given below is to express the density ρn in terms
of the spectral density hn of GUE(n, 1

n ) (see Proposition 5.4 below).

Lemma 5.3. Consider the functions ζn : R2 → R and βn : R → R given by

ζn(x, y) =
1
2
[ϕn(x)ϕn−1(y) − ϕn−1(x)ϕn(y)]2, ((x, y) ∈ R

2),

and

βn(x) =
n−1∑
j=0

ϕj(x)2, (x ∈ R),

with ϕ0, ϕ1, ϕ2, . . . the Hermite functions given in (2.1). We then have

ζn(x, y) = fn(x)fn(y) − gn(x)gn(y) − kn(x)kn(y), ((x, y) ∈ R
2),

where

fn(x) =
1
2
(ϕn(x)2 + ϕn−1(x)2) =

1
2n

(βn(x) − xβ′
n(x)), (5.5)

gn(x) =
1
2
(ϕn(x)2 − ϕn−1(x)2) =

1
4n
β′′

n(x), (5.6)

kn(x) = ϕn−1(x)ϕn(x) =
−1√
2n
β′

n(x), (5.7)

for all x in R.

Proof. Note first that with fn, gn and kn defined by the leftmost equalities in
(5.5)–(5.7) we have that

fn(x) + gn(x) = ϕn(x)2 and fn(x) − gn(x) = ϕn−1(x)2,
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for all x in R. Therefore,

ζn(x, y) =
1
2
[ϕn(x)ϕn−1(y) − ϕn−1(x)ϕn(y)]2

=
1
2
[(fn(x) + gn(x))(fn(y) − gn(y)) + (fn(x)

− gn(x))(fn(y) + gn(y)) − 2kn(x)kn(y)]

= fn(x)fn(y) − gn(x)gn(y) − kn(x)kn(y),

for any (x, y) in R2. It remains thus to establish the three rightmost equalities in
(5.5)–(5.7). For this we use the well-known formulas (cf. e.g., formulas (2.3)–(2.6)
in Ref. 7):

ϕ′
n(x) =

√
n

2
ϕn−1(x) −

√
n+ 1

2
ϕn+1(x), (5.8)

xϕn(x) =

√
n+ 1

2
ϕn+1(x) +

√
n

2
ϕn−1(x), (5.9)

d
dx

(
n−1∑
k=0

ϕk(x)2
)

= −
√

2nϕn(x)ϕn−1(x), (5.10)

which hold for all n in N0, when we adopt the convention: ϕ−1 ≡ 0.
The second equality in (5.7) is an immediate consequence of (5.10). Combining

(5.8) with (5.9), we note next that

ϕ′
n(x) = −xϕn(x) +

√
2nϕn−1(x) and ϕ′

n−1(x) = xϕn−1(x) −
√

2nϕn(x),

and therefore by (5.10)

β′′
n(x) = −

√
2n(ϕ′

n−1(x)ϕn(x) + ϕn−1(x)ϕ′
n(x))

= −
√

2n(xϕn−1(x)ϕn(x) −
√

2nϕn(x)2 − xϕn−1(x)ϕn(x) +
√

2nϕn−1(x)2)

= 2n(ϕn(x)2 − ϕn−1(x)2),

from which the second equality in (5.6) follows readily. Using once more (5.8) and
(5.9), we note finally that

xβ′
n(x) = 2

n−1∑
j=0

xϕj(x)ϕ′
j(x)

= 2
n−1∑
j=0

(√
j + 1

2
ϕj+1(x) +

√
j

2
ϕj−1(x)

)(√
j

2
ϕj−1(x) −

√
j + 1

2
ϕj+1(x)

)
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=
n−1∑
j=0

(ϕj−1(x)2 + (j − 1)ϕj−1(x)2 − (j + 1)ϕj+1(x)2)

=


n−2∑

j=0

ϕj(x)2


− (n− 1)ϕn−1(x)2 − nϕn(x)2,

and therefore

βn(x) − xβ′
n(x) = ϕn−1(x)2 + (n− 1)ϕn−1(x)2 + nϕn(x)2

= n(ϕn−1(x)2 + ϕn(x)2),

which establishes the second equality in (5.5).

Proposition 5.4. Let ρn be the kernel given by (5.3) and let hn be the spectral
density of a GUE(n, 1

n ) random matrix (cf. (2.3)). We then have

ρn(x, y) =
1
4

[
h̃n(x)h̃n(y) − 4h′n(x)h′n(y) − 1

n2
h′′n(x)h′′n(y)

]
, ((x, y) ∈ R

2),

(5.11)

where

h̃n(x) = hn(x) − xh′n(x), (x ∈ R).

Proof. With ζn, fn, gn, kn and βn as in Lemma 5.3 we have that

ρn(x, y) =
n

2
ζn

(√
n

2
x,

√
n

2
y

)

=
n

2

(
fn

(√
n

2
x

)
fn

(√
n

2
y

)
− gn

(√
n

2
x

)
gn

(√
n

2
y

)

− kn

(√
n

2
x

)
kn

(√
n

2
y

))
, (5.12)

and (cf. formula (2.3))

hn(x) =
1√
2n
βn

(√
n

2
x

)
. (5.13)

Combining (5.13) with the rightmost equalities in (5.5)–(5.7), we find that

fn

(√
n

2
x

)
=

1√
2n
h̃n(x), gn

(√
n

2
x

)
=

1√
2n

3
2
h′′n(x), and

kn

(√
n

2
x

)
= −

√
2
n
h′n(x),

and inserting these expressions into (5.12), formula (5.11) follows readily.
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By C∞
b (R2) we denote the vector space of infinitely often differentiable functions

f :R2 → C satisfying that

‖Dk
1D

l
2f‖∞ := sup

(x,y)∈R2
|Dk

1D
l
2f(x, y)| <∞,

for any k, l in N0. Here D1 and D2 denote, respectively, the partial derivatives of f
with respect to the first and the second variable.

Lemma 5.5. Assume that f ∈ C∞
b (R2) and consider the mapping ϕf : R → C∞

b (R)
given by

ϕf (x) = f(x, ·), (x ∈ R).

Then ϕf is infinitely often differentiable from R into C∞
b (R), and for any k in N

dk

dxk
ϕf (x) = [Dk

1f ](x, ·), (x ∈ R). (5.14)

Proof. By splitting f in its real and imaginary parts, we may assume that f is
real-valued. For any k in N the function Dk

1f is again an element of C∞
b (R2).

Therefore, by induction, it suffices to prove that ϕf is differentiable with derivative
given by (5.14) (in the case k = 1). For this we need to establish that∥∥∥∥ϕf (x+ h) − ϕf (x)

h
− [D1f ](x, ·)

∥∥∥∥
(m)

→ 0, as h→ 0,

for any m in N and any x in R. This amounts to showing that for fixed x in R and
l in N we have that

sup
y∈R

∣∣∣∣Dl
2f(x+ h, y) −Dl

2f(x, y)
h

−Dl
2D1f(x, y)

∣∣∣∣ → 0, as h→ 0.

For fixed y in R second-order Taylor expansion for the function [Dl
2f ](·, y)

yields that

Dl
2f(x+ h, y) −Dl

2f(x, y) = D1D
l
2f(x, y)h+

1
2
D2

1D
l
2f(ξ, y)h2,

for some real number ξ = ξ(x, y, h) between x+ h and x. Consequently,

sup
y∈R

∣∣∣∣Dl
2f(x+ h, y) −Dl

2f(x, y)
h

−Dl
2D1f(x, y)

∣∣∣∣
≤ h

2
‖D2

1D
l
2f‖∞ → 0, as h→ 0,

as desired.

Corollary 5.6. Let T be the linear mapping introduced in Remark 3.3, and let f
be a function from C∞

b (R2). We then have

(i) For any j in N0 the mapping

ψf :x 
→ T jf(x, ·) : R → C∞
b (R)
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is infinitely often differentiable with derivatives given by

dk

dxk
ψf (x) = T j([Dk

1f ](x, ·)). (5.15)

(ii) For any j in N0 the mapping υj :R → C given by

υj(x) =
1
2π

∫ 2

−2

[T jf(x, ·)](t)
√

4 − t2dt, (x ∈ R),

is a C∞
b (R)-function. Moreover, for any k in N

dk

dxk
υj(x) =

1
2π

∫ 2

−2

[T j([Dk
1 ]f(x, ·))](t)

√
4 − t2dt. (5.16)

Proof. (i) As in the proof of Lemma 5.5 it suffices to prove that ψf is differentiable
with derivative given by (5.15) (in the case k = 1). But this follows immediately
from Lemma 5.5, since ψf = T j ◦ ϕf , where T :C∞

b (R) → C∞
b (R) is a linear,

continuous mapping (cf. Proposition 3.4).

(ii) It suffices to prove that υj is bounded and differentiable with derivative given
by (5.16) (in the case k = 1). To prove that υj is differentiable with the prescribed
derivative, it suffices, in view of (i), to establish that the mapping

g 
→ 1
2π

∫ 2

−2

g(t)
√

4 − t2dt :C∞
b (R) → R

is linear and continuous. It is clearly linear, and since∣∣∣∣ 1
2π

∫ 2

−2

g(t)
√

4 − t2dt
∣∣∣∣ ≤ ‖g‖∞, (g ∈ C∞

b (R)),

it is also continuous. To see finally that υj is a bounded mapping, we note that
since T j :C∞

b (R) → C∞
b (R) is continuous, there are (cf. Lemma 3.2) constants C

from (0,∞) and m in N, such that

‖T jf(x, ·)‖∞ ≤ C max
l=1,...,m

‖Dl
2f(x, ·)‖∞ ≤ C max

l=1,...,m
‖Dl

2f‖∞,

for any x in R. Therefore,

sup
x∈R

|υj(x)| ≤ sup
x∈R

‖T jf(x, ·)‖∞ ≤ C max
l=1,...,m

‖Dl
2f‖∞ <∞,

since f ∈ C∞
b (R2).

Proposition 5.7. For any function f in C∞
b (R2) there exists a sequence

(βj(f))j∈N0 of complex numbers such that∫
R2
f(x, y)hn(x)hn(y)dxdy =

k∑
j=0

βj(f)
n2j

+O(n−2k−2),

for any k in N0.
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Proof. Let k in N0 be given. For fixed x in R the function f(x, ·) belongs to C∞
b (R)

and hence Corollary 3.6 asserts that
∫

R

f(x, y)hn(y)dy =
k∑

j=1

υj(x)
n2j

+
1

n2k+2

∫
R

[T k+1f(x, ·)](t)hn(t)dt, (5.17)

where the functions υj : R → R are given by

υj(x) =
1
2π

∫ 2

−2

[T jf(x, ·)](t)
√

4 − t2dt, (x ∈ R, j = 1, . . . , k).

As noted in the proof of Corollary 5.6, there exist constants C from (0,∞) and m
in N, such that

‖T k+1f(x, ·)‖∞ ≤ C max
l=1,...,m

‖Dl
2f‖∞, (x ∈ R).

Hence, since hn is a probability density,

Cf
k := sup

x∈R

∣∣∣∣
∫

R

[T k+1f(x, ·)](t)hn(t)dt
∣∣∣∣ ≤ C max

l=1,...,m
‖Dl

2f‖∞ <∞.

Using now Fubini’s theorem and (5.17) we find that∫
R2
f(x, y)hn(x)hn(y)dxdy =

∫
R

(∫
R

f(x, y)hn(y)dy
)
hn(x)dx

=
k∑

j=0

n−2j

∫
R

υj(x)hn(x)dx +O(n−2k−2), (5.18)

where the O(n−2k−2)-term is bounded by Cf
kn

−2k−2. According to Corollary 5.6(ii),
υj ∈ C∞

b (R) for each j in {0, 1, . . . , k}, and hence another application of Corol-
lary 3.6 yields that

∫
R

υj(x)hn(x)dx =
k−j∑
l=0

ξj
l (f)
n2l

+O(n−2k+2j−2),

for suitable complex numbers ξj
0(f), . . . , ξj

k−j(f). Inserting these expressions into
(5.18) we find that

∫
R2
f(x, y)hn(x)hn(y)dxdy =

k∑
j=0

(
k−j∑
l=0

ξj
l (f)

n2(l+j)
+O(n−2k−2)

)
+O(n−2k−2)

=
k∑

r=0

n−2r


 r∑

j=0

ξj
r−j(f)


 +O(n−2k−2).

Thus, setting βr(f) =
∑r

j=0 ξ
j
r−j(f), r = 0, 1, . . . , k, we have obtained the desired

expansion.
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For the proof of Theorem 5.9 below we need to extend the asymptotic expansion
in Proposition 5.7 to a larger class of functions than C∞

b (R2).

Proposition 5.8. Assume that f :R2 → C is infinitely often differentiable, and
polynomially bounded in the sense that

|f(x, y)| ≤ C(1 + x2 + y2)m, ((x, y) ∈ R
2),

for suitable constants C from (0,∞) and m in N0. Then there exists a sequence
(βj(f))j∈N0 of complex numbers, such that∫

R2
f(x, y)hn(x)hn(y)dxdy =

k∑
j=0

βj(f)
n2j

+O(n−2k−2),

for any k in N0.

Proof. We start by choosing a function ϕ from C∞
c (R2), satisfying that

• ϕ(x, y) ∈ [0, 1] for all (x, y) in R2.
• supp(f) ⊆ [−4, 4]× [−4, 4].
• ϕ ≡ 1 on [−3, 3]× [−3, 3].

We then write f = fϕ + f(1 − ϕ). Since fϕ ∈ C∞
c (R2) ⊆ C∞

b (R2), it follows
from Proposition 5.7 that there exists a sequence (βj(f))j∈N0 of complex numbers,
such that ∫

R2
f(x, y)ϕ(x, y)hn(x)hn(y)dxdy =

k∑
j=0

βj(f)
n2j

+O(n−2k−2),

for any k in N0. Therefore, it suffices to establish that∫
R2
f(x, y)(1 − ϕ(x, y))hn(x)hn(y)dxdy = O(n−2k−2),

for any k in N0. Note here that (1 − ϕ) ≡ 0 on [−3, 3]× [−3, 3], and that for some
positive constant C′ we have that

|f(x, y)(1 − ϕ(x, y))| ≤ C(1 + x2 + y2)m ≤ C′(x2m + y2m) ≤ C′x2my2m,

for all (x, y) outside [−3, 3]× [−3, 3]. Therefore,∫
R2
f(x, y)(1 − ϕ(x, y))hn(x)hn(y)dxdy

≤ C′
∫

R2\[−3,3]×[−3,3]

x2my2mhn(x)hn(y)dxdy

≤ 4C′
∫

R

∫ ∞

3

x2my2mhn(x)hn(y)dydx

= 4C′
(∫

R

x2mhn(x)dx
)(∫ ∞

3

y2mhn(y)dy
)
,

1250003-31



March 29, 2012 10:50 WSPC/S0219-0257 102-IDAQPRT 1250003

U. Haagerup & S. Thorbjørnsen

where the second estimate uses symmetry of the function (x, y) 
→
x2my2mhn(x)hn(y). By Wigner’s semi-circle law (for moments)

lim
n→∞

∫
R

x2mhn(x)dx =
1
2π

∫ 2

−2

x2m
√

4 − x2dx,

and therefore it now suffices to show that∫ ∞

3

y2mhn(y)dy = O(n−2k−2) for any k in N0. (5.19)

Recall here that hn is the spectral density of a GUE(n, 1
n ) random matrix Xn,

so that ∫ ∞

3

y2mhn(y)dy = E{trn[(Xn)2m1(3,∞)(Xn)]}

=
1
n

E




n∑
j=1

(
λ

(n)
j

)2m1(3,∞)

(
λ

(n)
j

) ,

where λ(n)
1 ≤ λ

(n)
2 ≤ · · · ≤ λ

(n)
n are the ordered (random) eigenvalues of Xn. Since

the function y 
→ y2m1(3,∞)(y) is non-decreasing on R, it follows that

1
n

n∑
j=1

(λ(n)
j )2m1(3,∞)(λ

(n)
j ) ≤ (λ(n)

n )2m1(3,∞)(λ(n)
n ) ≤ ‖Xn‖2m1(3,∞)(‖Xn‖).

Using (Ref. 6, Proposition 6.4) it thus follows that∫ ∞

3

y2mhn(y)dy ≤ E{‖Xn‖2m1(3,∞)(‖Xn‖)} ≤ γ(2m)ne−
n
2 ,

for a suitable positive constant γ(2m) (not depending on n). This clearly implies
(5.19), and the proof is completed.

Theorem 5.9. Let ρn be the kernel given by (5.3). Then for any function f in
C∞

b (R2) there exists a sequence (βj(f))j∈N0 of complex numbers such that∫
R2
f(x, y)ρn(x, y)dxdy =

k∑
j=0

βj(f)
n2j

+O(n−2k−2),

for any k in N0.

Proof. Using Proposition 5.4 we have that∫
R2
f(x, y)ρn(x, y)dxdy =

1
4

∫
R2
f(x, y)h̃n(x)h̃n(y)dxdy

−
∫

R2
f(x, y)h′n(x)h′n(y)dxdy

− 1
4n2

∫
R2
f(x, y)h′′n(x)h′′n(y)dxdy, (5.20)

1250003-32



March 29, 2012 10:50 WSPC/S0219-0257 102-IDAQPRT 1250003

Asymptotic Expansions for the Gaussian Unitary Ensemble

and it suffices then to establish asymptotic expansions of the type set out in the
theorem for each of the integrals appearing on the right-hand side.

By Fubini’s theorem and integration by parts, it follows that∫
R2
f(x, y)h′n(x)h′n(y)dxdy =

∫
R2

∂2

∂x∂y
f(x, y)hn(x)hn(y)dxdy, (5.21)

and since ∂2

∂x∂yf(x, y) ∈ C∞
b (R2), Proposition 5.7 yields an asymptotic expansion

of the desired kind for this integral. Similarly∫
R2
f(x, y)h′′n(x)h′′n(y)dxdy =

∫
R2

∂4

∂x2∂y2
f(x, y)hn(x)hn(y)dxdy, (5.22)

where ∂4

∂x2∂y2 f(x, y) ∈ C∞
b (R2), and another application of Proposition 5.7 yields

the desired asymptotic expansion. Finally, using again Fubini’s theorem and inte-
gration by parts,∫

R2
f(x, y)h̃n(x)h̃n(y)dxdy

=
∫

R2
f(x, y)(hn(x) − xh′n(x))(hn(y) − yh′n(y))dxdy

=
∫

R2
f(x, y)[hn(x)hn(y) − xh′n(x)hn(y) − yh′n(y)hn(x)

+ xyh′n(x)h′n(y)]dxdy

=
∫

R2

[
f(x, y) +

∂

∂x
(xf(x, y))

+
∂

∂y
(yf(x, y)) +

∂2

∂x∂y
(xyf(x, y))

]
hn(x)hn(y)dxdy

=
∫

R2

[
4f(x, y) + 2x

∂

∂x
f(x, y)

+ 2y
∂

∂y
f(x, y) + xy

∂2

∂x∂y
f(x, y)

]
hn(x)hn(y)dxdy. (5.23)

In the latter integral, the function inside the brackets is clearly a polynomially
bounded C∞-function on R2, and hence Proposition 5.8 provides an asymptotic
expansion of the desired kind. This completes the proof.

Corollary 5.10. For any functions f, g in C∞
b (R), there exists a sequence

(βj(f, g))j∈N of complex numbers, such that for any k in N0

Cov{Trn[f(Xn)],Trn[g(Xn)]} =
∫

R2

(
f(x) − f(y)

x− y

)(
g(x) − g(y)
x− y

)
ρn(x, y)dxdy

=
k∑

j=0

βj(f, g)
n2j

+O(n−2k−2). (5.24)
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Proof. The first equality in (5.24) was established in Proposition 5.2(ii). Appealing
then to Theorem 5.9, the existence of a sequence (βj(f, g))j∈N0 satisfying the second
equality will follow, if we establish that the function

∆f(x, y) =



f(x) − f(y)

x− y
, if x �= y,

f ′(x), if x = y,

belongs to C∞
b (R2) for any function f from C∞

b (R). But this follows from the
formula

∆f(x, y) =
∫ 1

0

f ′(sx+ (1 − s)y)ds, ((x, y) ∈ R
2),

which together with the usual theorem on differentiation under the integral sign
shows that ∆f is a C∞-function on R2 with derivatives given by

∂k+l

∂xk∂yl
∆f(x, y) =

∫ 1

0

f (k+l+1)(sx+ (1 − s)y)sk(1 − s)lds, ((x, y) ∈ R
2),

for any k, l in N0.

We close this section by giving a short proof of the previously mentioned fact
that the measures ρn(x, y)dxdy converge weakly to the measure ρ(x, y)dxdy given
by (5.4). As indicated at the end of the Introduction, this fact is well-known in the
physics literature (see Ref. 11 and references therein).

Proposition 5.11. For each n in N, let µn denote the measure on R2 with density
ρn with respect to Lebesgue measure on R2. Then µn is a probability measure on
R2, and µn converges weakly, as n → ∞, to the probability measure µ on R2 with
density

ρ(x, y) =
1

4π2

4 − xy√
4 − x2

√
4 − y2

1(−2,2)(x)1(−2,2)(y),

with respect to Lebesgue measure on R2.

Proof. We prove that

lim
n→∞

∫
R2

eizx+iwyρn(x, y)dxdy =
∫

R2
eizx+iwyρ(x, y)dxdy, (5.25)

for all z, w in R. Given such z and w, we apply formulas (5.20)–(5.23) to the case
where f(x, y) = eizx+iwy, and it follows that∫

R2
eizx+iwyρn(x, y)dxdy

=
1
4

∫
R2

eizx+iwy[h̃n(x)h̃n(y) − 4h′n(x)h′n(y) − n−2h′′n(x)h′′n(y)]dxdy
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=
1
4

∫
R2

[4 + 2izx+ 2iwy − zwxy + 4zw

−n−2z2w2]eizx+iwyhn(x)hn(y)dxdy

=
1
4

∫
R2

[(4 + 4zw − n−2z2w2) + 2izx+ 2iwy

− zwxy]eizx+iwyhn(x)hn(y)dxdy. (5.26)

In the case z = w = 0, it follows in particular that µn is indeed a probability mea-
sure, and hence, once (5.25) has been established, so is µ. By linearity the resulting
expression in (5.26) may be written as a linear combination of four integrals of ten-
sor products (a function of x times a function of y). Therefore, by Fubini’s theorem
and Wigner’s semi-circle law, it follows that

lim
n→∞

∫
R2

eizx+iwyρn(x, y)dxdy

=
1
4

∫
R2

[4 + 4zw + 2izx+ 2iwy − zwxy]eizx+iwyh∞(x)h∞(y)dxdy,

where h∞(x) = 1
2π

√
4 − x21[−2,2](x). For x in (−2, 2) it is easily seen that

h′∞(x) =
−x

2π
√

4 − x2
, and h̃∞(x) := h∞(x) − xh′∞(x) =

2
π
√

4 − x2
, (5.27)

so in particular h′∞ and h̃∞ are both L1-functions (with respect to Lebesgue mea-
sure). This enables us to perform the calculations in (5.26) in the reversed order
and with hn replaced by h∞. We may thus deduce that

lim
n→∞

∫
R2

eizx+iwyρn(x, y)dxdy

=
∫

(−2,2)×(−2,2)

eizx+iwy

[
1
4
h̃∞(x)h̃∞(y) − h′∞(x)h′∞(y)

]
dxdy. (5.28)

Finally it follows from (5.27) and a straightforward calculation that

1
4
h̃∞(x)h̃∞(y) − h′∞(x)h′∞(y) =

4 − xy

4π2
√

4 − x2
√

4 − y2
, (5.29)

for all x, y in (−2, 2). Combining (5.28) with (5.29), we have established (5.25).

6. Asymptotic Expansion for the Two-Dimensional
Cauchy Transform

In this section we study in greater detail the asymptotic expansion from
Corollary 5.10 in the case where f(x) = 1

λ−x and g(x) = 1
µ−x for λ, µ in C\R.
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In this setup we put

Gn(λ, µ) = Cov{Trn[(λ111 −Xn)−1],Trn[(µ111 −Xn)−1]},

where as before Xn is a GUE(n, 1
n ) random matrix.

Recall from Corollary 5.2, Proposition 5.11 that limn→∞Gn(λ, µ) = G(λ, µ) for
any λ, µ in C\R, where

G(λ, µ) =
∫

R2

(
(λ − x)−1 − (λ− y)−1

x− y

)(
(µ− x)−1 − (µ− y)−1

x− y

)
ρ(x, y)dxdy.

(6.1)

Lemma 6.1. Let Gn be the Cauchy transform of a GUE(n, 1
n ) random matrix.

Then for any λ in C\R we have that

G̃n(λ)2 − 4G′
n(λ)2 + 4G′

n(λ) − 1
n2
G′′

n(λ)2 = 0,

where G̃n(λ) = Gn(λ) − λG′
n(λ).

Proof. For λ in C\R we put

Kn(λ) = G̃n(λ)2 − 4G′
n(λ)2 + 4G′

n(λ) − 1
n2
G′′

n(λ)2.

Observing that G̃′
n(λ) = −λG′′

n(λ), it follows that for any λ in C\R

K ′
n(λ) = 2G̃n(λ)G̃′

n(λ) − 8G′
n(λ)G′′

n(λ) + 4G′′
n(λ) − 2

n2
G′′

n(λ)G′′′
n (λ)

= 2G′′
n(λ)

[
−λGn(λ) + λ2G′

n(λ) − 4G′
n(λ) + 2 − 1

n2
G′′′

n (λ)
]

= 2G′′
n(λ)

[
− 1
n2
G′′′

n (λ) + (λ2 − 4)G′
n(λ) − λGn(λ) + 2

]

= 0,

where the last equality follows from Lemma 4.1. We may thus conclude that Kn is
constant on each of the two connected components of C\R. However, for y in R we
have by dominated convergence that

|iyG′
n(iy)| =

∣∣∣∣y
∫

R

1
(iy − x)2

hn(x)dx
∣∣∣∣ ≤

∫
R

|y|
y2 + x2

hn(x)dx → 0,

as |y| → ∞, and similarly Gn(iy) → 0 and G′′
n(iy) → 0 as |y| → ∞. It thus

follows that Kn(iy) → 0, as |y| → ∞, y ∈ R, and hence we must have Kn ≡ 0, as
desired.
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Theorem 6.2. Let Xn be a GUE(n, 1
n ) random matrix, and consider for λ, µ in

C\R the two-dimensional Cauchy transform:

Gn(λ, µ) = Cov{Trn[(λ111 −Xn)−1],Trn[(µ111 −Xn)−1]}.

(i) If λ �= µ, we have that

Gn(λ, µ) =
−1

2(λ− µ)2
(G̃n(λ)G̃n(µ) − (2G′

n(λ) − 1)(2G′
n(µ) − 1)

+ 1 − 1
n2
G′′

n(λ)G′′
n(µ)),

where Gn(λ) is the Cauchy transform of Xn at λ, and where G̃n(λ) = Gn(λ)−
λG′

n(λ).
(ii) If λ = µ ∈ C\R we have that

V{Trn[(λ111 −Xn)−1]} = Gn(λ, λ) =
1
4
(λ2 − 4)G′′

n(λ)2 − 1
4n2

G′′′
n (λ)2,

with Gn(λ) as in (i).

Proof. (i) Assume that λ, µ ∈ C\R, and that λ �= µ. Using Corollary 5.2(ii) we
find that

Gn(λ, µ) =
∫

R2

(
(λ− x)−1 − (λ− y)−1

x− y

)(
(µ− x)−1 − (µ− y)−1

x− y

)
ρn(x, y)dxdy

=
∫

R2

1
(λ− x)(µ − x)(λ − y)(µ− y)

ρn(x, y)dxdx

=
1

(µ− λ)2

∫
R2

(
1

λ− x
− 1
µ− x

)(
1

λ− y
− 1
µ− y

)
ρn(x, y)dxdy.

Using now Proposition 5.4 and Fubini’s theorem, it follows that

Gn(λ, µ) =
1

4(µ− λ)2
((Hn(λ) −Hn(µ))2 − 4(In(λ) − In(µ))2

− 1
n2

(Jn(λ) − Jn(µ))2), (6.2)

where e.g.,

Hn(λ) =
∫

R

1
λ− x

h̃n(x)dx, In(λ) =
∫

R

1
λ− x

h′n(x)dx, and

Jn(λ) =
∫

R

1
λ− x

h′′n(x)dx.
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Note here that by partial integration and (4.1)∫
R

1
λ− x

h̃n(x)dx =
∫

R

1
λ− x

(hn(x) − xh′n(x))dx

= Gn(λ) −
∫

R

(
λ

λ− x
− 1

)
h′n(x)dx

= Gn(λ) + λ

∫
R

1
(λ− x)2

hn(x)dx = Gn(λ) − λG′
n(λ)

= G̃n(λ).

We find similarly that∫
R

1
λ− x

h′n(x)dx = G′
n(λ), and

∫
R

1
λ− x

h′′n(x)dx = G′′
n(λ).

Inserting these expressions into (6.2), it follows that

4(λ− µ)2G(λ, µ) = (G̃n(λ) − G̃n(µ))2 − 4(G′
n(λ) −G′

n(µ))2

− 1
n2

(G′′
n(λ) −G′′

n(µ))2

=
[
G̃n(λ)2 − 4G′

n(λ)2 − 1
n2
G′′

n(λ)2
]

+
[
G̃n(µ)2 − 4G′

n(µ)2 − 1
n2
G′′

n(µ)2
]

− 2G̃n(λ)G̃n(µ) + 8G′
n(λ)G′

n(µ) +
2
n2
G′′

n(λ)G′′
n(µ)

= − 4G′
n(λ) − 4G′

n(µ) − 2G̃n(λ)G̃n(µ)

+ 8G′
n(λ)G′

n(µ) +
2
n2
G′′

n(λ)G′′
n(µ),

where the last equality uses Lemma 6.1. We may thus conclude that

Gn(λ, µ) =
−1

2(λ− µ)2

(
G̃n(λ)G̃n(µ) + 2G′

n(λ) + 2G′
n(µ)

− 4G′
n(λ)G′

n(µ) − 1
n2
G′′

n(λ)G′′
n(µ)

)

=
−1

2(λ− µ)2

(
G̃n(λ)G̃n(µ) − (2G′

n(λ) − 1)

· (2G′
n(µ) − 1) + 1 − 1

n2
G′′

n(λ)G′′
n(µ)

)
,

which completes the proof of (i).
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(ii) Proceeding as in the proof of (i) we find by application of Proposition 5.4 that

4Gn(λ, λ) = 4
∫

R

1
(λ− x)2(λ− y)2

ρn(x, y)dxdy

=

(∫
R

h̃n(x)
(λ− x)2

dx

)2

− 4
(∫

R

h′n(x)
(λ− x)2

dx
)2

− 1
n2

(∫
R

h′′n(x)
(λ− x)2

dx
)2

.

(6.3)

By calculations similar to those in the proof of (i), we have here that∫
R

h̃n(x)
(λ− x)2

dx = λG′′
n(λ),

∫
R

h′n(x)
(λ− x)2

dx = −G′′
n(λ),

∫
R

h′′n(x)
(λ− x)2

dx = −G′′′
n (λ),

which inserted into (6.3) yields the formula in (ii).

Corollary 6.3. Consider the coefficients ηj , j ∈ N0, in the asymptotic expansion
of Gn(λ) (cf. Proposition 4.5), and adopt as before the notation η̃j(λ) = ηj(λ) −
λη′j(λ).

(i) For any distinct λ, µ from C\{0} and k in N0 we have the asymptotic expansion:

Gn(λ, µ) =
1

2(λ− µ)2

[
Γ0(λ, µ) +

Γ1(λ, µ)
n2

+
Γ2(λ, µ)
n4

+ · · ·

+
Γk(λ, µ)
n2k

+O(n−2k−2)
]
, (6.4)

where

Γ0(λ, µ) = (2η′0(λ) − 1)(2η′0(µ) − 1) − η̃0(λ)η̃0(µ) − 1,

and for l in {1, 2, . . . , k}

Γl(λ, µ) = 2η′l(λ)(2η′0(µ) − 1) + 2η′l(µ)(2η′0(λ) − 1) + 4
l−1∑
j=1

η′j(λ)η′l−j(µ)

+
l−1∑
j=0

η′′j (λ)η′′l−1−j(µ) −
l∑

j=0

η̃j(λ)η̃l−j(µ) (6.5)

(the third term on the right-hand side should be neglected, when l = 1).
(ii) For any λ in C\R and any k in N0 we have that

Gn(λ, λ) =
1
4

[
Υ0(λ) +

Υ1(λ)
n2

+
Υ2(λ)
n4

+ · · · + Υk(λ)
n2k

+O(n−2k−2)
]
,

where

Υ0(λ) = (λ2 − 4)η′′0 (λ)2,
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and for l in {1, 2, . . . , k}

Υl(λ) = (λ2 − 4)
l∑

j=0

η′′j (λ)η′′l−j(λ) −
l−1∑
j=0

η′′′j (λ)η′′′l−1−j(λ). (6.6)

Proof. From the asymptotic expansion of Gn(λ) (cf. Proposition 4.5) it follows
that

2G′
n(λ) − 1 = (2η′0(λ) − 1) +

2η′1(λ)
n2

+ · · · + 2η′k(λ)
n2k

+O(n−2k−2),

G′′
n(λ) = η′′0 (λ) +

η′′1 (λ)
n2

+ · · · + η′′k (λ)
n2k

+O(n−2k−2),

G̃n(λ) = η̃0(λ) +
η̃1(λ)
n2

+ · · · + η̃k(λ)
n2k

+O(n−2k−2),

where we also use that the derivatives of the remainder terms are controlled via
Lemma 4.2.

Inserting the above expressions (and the corresponding expressions for
2G′

n(µ) − 1, G′′
n(µ) and G̃n(µ)) into the formula in Theorem 6.2(i), it is straight-

forward to establish (i) by collecting the n−2l-terms for each l in {0, 1, . . . , k}. The
proof of (ii) follows similarly from Theorem 6.2(ii).

Remark 6.4. Using that η0(λ) = λ
2 − 1

2 (λ2 − 4)
1
2 (cf. Proposition 4.5) it follows

from Corollary 6.3(i) and a straightforward calculation that for distinct λ and µ

from C\R,

G(λ, µ) = lim
n→∞Gn(λ, µ) =

Γ0(λ, µ)
2(λ− µ)2

=
1

2(λ− µ)2

(
λµ− 4

(λ2 − 4)
1
2 (µ2 − 4)

1
2
− 1

)
, (6.7)

where G(λ, µ) was initially given by (6.1). If λ = µ, it follows similarly from
Corollary 6.3(ii) that

G(λ, λ) = lim
n→∞Gn(λ, λ) =

1
4
(λ2 − 4)η′′0 (λ)2 =

1
(λ2 − 4)2

,

which may also be obtained by letting λ tend to µ in (6.7).
Using also that η1(λ) = (λ2 − 4)−5/2, it follows from (6.5) and a rather tedious

calculation that

Γ1(λ, µ) =
(λ − µ)2

(λ2 − 4)
7
2 (µ2 − 4)

7
2
(5λµ5 + 4λ2µ4 + 4µ4 − 52λµ3 + 3λ3µ3

− 16µ2 + 4λ4µ2 − 52λ2µ2 + 208λµ+ 5λ5µ

− 52λ3µ− 16λ2 + 320 + 4λ4).
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Inserting this into (6.4) and letting λ tend to µ we obtain that

Υ1(λ) = 4(21λ2 + 20)(λ2 − 4)−5,

which is in accordance with (6.6).
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