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Let g:R — C be a C°°-function with all derivatives bounded and let tr,, denote the
normalized trace on the n X n matrices. In Ref. 3 Ercolani and McLaughlin established
asymptotic expansions of the mean value E{tr,(g(Xn))} for a rather general class of
random matrices Xy, including the Gaussian Unitary Ensemble (GUE). Using an ana-
lytical approach, we provide in the present paper an alternative proof of this asymptotic
expansion in the GUE case. Specifically we derive for a GUE(n, %) random matrix X,
that

1 a;
Bltra (006} = - [ a@Vi-atar+ Z 194 o),
where k is an arbitrary positive integer. Considered as mappings of g, we determine
the coefficients a(g), j € N, as distributions (in the sense of L. Schwarts). We derive
a similar asymptotic expansion for the covariance Cov{Try,[f(Xn)], Trn[g(Xn)]}, where
f is a function of the same kind as g, and Tr,, = ntr,. Special focus is drawn to the
case where g(z) = Asz and f(z) = ﬁ for A, p in C\R. In this case the mean and
covariance considered above correspond to, respectively, the one- and two-dimensional

Cauchy (or Stieltjes) transform of the GUE(n, %)
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1. Introduction

Since the groundbreaking Ref. 17 by Voiculescu, the asymptotics for families of
large, independent GUE random matrices has become an important tool in the
theory of operator algebras. In the paper [8] it was established that if X 1(”), Lxim
are independent GUE(n, 1) random matrices (see Definition 2.1 below), then with

probability one we have for any polynomial p in r non-commuting variables that

Tim [lp(x (", X)) = [lp(e )], (1.1)
where {z1,..., 2.} is a free semi-circular family of self-adjoint operators in a C*-

probability space (A, 7) (see Ref. 18 for definitions), and where ||-|| denotes the oper-
ator norm. This result leads in particular to the fact that there are non-invertible
elements in the extension semi-group of the reduced C*-algebra associated to the
free group on r generators (see Ref. 8).

A key step in the proof of (1.1) was to establish precise estimates of the expec-
tation and variance of tr, [g(p(Xl(n)7 cee Xrn)))], where tr,, denotes the normalized
trace, g is a C*°-function with compact support, and where we assume now that p
is a self-adjoint polynomial. In fact it was established in Refs. 8 and 6 that in this
setup we have the estimates:

E{tralg(p(X™, ... XN} = rlg(p(@r,. .. 2,))] +O(n~2),  (1.2)
V{tralg(p(X{™, ..., X))} = O(n2). (1.3)

Furthermore, if the derivative ¢’ vanishes on the spectrum of the operator
p(x1,...,x,), then we actually have that

V{tr[g(p(X™, ..., X))} = O(n™Y).

If we assume instead that g is a polynomial, then the left-hand sides of (1.2) and
(1.3) may actually be expanded as polynomials in n~2. More precisely it was proved
in Ref. 16 that for any function w:{1,2,...,p} — {1,2,...,7} we have that®

E{tr, [X00, x50 - x0T = > ), (1.4)
YET (w)

where T'(w) is a certain class of permutations of {1,2,...,p}, and o(v) € Ny for all v
in T'(w) (see Refs. 16 or 12 for details). It was established furthermore in Ref. 12 that
for two functions w:{1,2,...,p} = {1,2,...,r}and v:{1,2,...,¢} — {1,2,...,r}
we have that

E{trn [Xfuﬁ)xgz)z) ’ "Xl(ura)]trn [XSZ))Xi?ﬁ) o qu?q))]} = z(: )n—%('y), (1.5)
~yeT (w,v

where now T'(w,v) is a certain class of permutations of {1,2,...,p + ¢} and again
o(y) € No for all v in T'(w, v) (see Ref. 12 for details).

aWhen r = 1, formula (1.4) corresponds to the Harer—Zagier recursion formulas (see Ref. 7).
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Asymptotic Ezpansions for the Gaussian Unitary Ensemble

In view of (1.4) and (1.5) it is natural to ask whether the left-hand sides of
(1.2) and (1.3) may in general be expanded as “power series” in n~2, when g is,
say, a compactly supported C'°°-function. In the case r = 1, this question was
answered affirmatively by Ercolani and McLaughlin (see Theorem 1.4 in Ref. 3) for
a more general class of random matrices than the GUE. More precisely, Ercolani
and McLaughlin established for a single matrix X,, (from the considered class of
random matrices) and any C*°-function g with at most polynomial growth the
existence of a sequence (a;(g))jen, of complex numbers, such that for any n in N
and k in Np,

O‘;gf) +O(n—22), (1.6)

k
E{tr,(9(Xn))} = Z

Jj=0

Their proof is rather involved and is based on Riemann—Hilbert techniques devel-
oped by Deift, McLaughlin and co-authors. In this paper we provide an alternative
proof for (1.6) in the case where X,, is a GUE(n, ) random matrix. For techni-
cal ease, we only establish (1.6) for functions in the class Cy°(R) consisting of all
C>-functions g: R — C, such that all derivatives ¢*), k € Ny, are bounded on R.
However, all (relevant) results of the present paper can easily be extended to all
C*°-functions with at most polynomial growth. For each j in N we show that the
coefficient «j(g) is explicitly given in the form:

2
05(0) = 5= [ [Pialla)V/i— P
for a certain linear operator T:Cp°(R) — Cp°(R) (see Theorem 3.5 and Corol-
lary 3.6), and we describe a; explicitly as a distribution (in the sense of L. Schwarts)
in terms of Chebychev polynomials (cf. Corollary 4.6). The proof of (1.6) is based
on the fact, proved by Gotze and Tikhomirov in Ref. 4, that the spectral density
hy, of a GUE(n, L) random matrix satisfies the following third-order differential
equation:

%hﬁ’(w) + (4= 2 (2) + 2ha(z) = 0, (2 €R). (1.7)

In the special case where g(x) = ﬁ for some non-real complex number A, the
integral [, g(x)hy(x)dx is the Cauchy (or Stieltjes) transform G, (A) for the measure
hn(z)dz, and asymptotic expansions like (1.6) appeared already in Ref. 1 for a
rather general class of random matrices (including the GUE). In the GUE case, our
analytical approach leads to the following explicit expansion (see Sec. 4):

A A A
Gu(N) = mo(A) + ”171(2 )4 % +ot ”Zéj +0(n~22), (1.8)
where
A 1 3j—1
mA) =5 -5\ =43 and 9;(\) =) Cn(N¥—4)7F (JEN).
r=2j
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The constants Cj,, 25 < r < 35 — 1, appearing above are positive numbers for
which we provide recursion formulas (see Proposition 4.5).

As for the “power series expansion” of (1.3), consider again for each n a single
GUE(n, 1) random matrix. For any functions f,g from Cp°(R), we establish in
Sec. b the existence of a sequence (5;(f,g));jen, of complex numbers, such that for
any k in Ny and n in N,

k
ﬂ' f7 g _9k—
Cov{ Tea /(X)) Tralg(X)]} = 2 P 1 opn24-2) (19)
§=0
where Tr,, denotes the un-normalized trace on M, (C), and where the covariance
CovlY, Z] of two complex-valued square integrable random variables is defined by

Cov{Y, 2} = E{(Y - E{Y})(Z - E{Z})}.

The proof of (1.9) is based on the following formula, essentially due to Pastur and
Scherbina (see Ref. 13):

Cov{Try[f(Xn)], Trn[g(Xn)]}
_ f@) = fW\ (9@) 9@ e
= [ (DL (£020) oy, o)
where the kernel p,, is given by

e = (3o (B () ]

with ¢, the nth Hermite function (see formula (2.1) below). The essential step then
is to establish the formula (see Theorem 5.4):

) = § T (i) — ARG, ) = )| () € B, (111)

where hy,(z) = hn(z) — xh! (z), and h, is as before the spectral density of
GUE(n, 1). Using (1.10)-(1.11) and Fubini’s theorem, the expansion (1.9) may
be derived from (1.6).

In the particular case where

f(x)

we obtain in Sec. 6 the following specific expansion for the two-dimensional Cauchy-
transform:

1
g and g(x)—ma (z € R),

Cov{Tr,[(Al — X,,) '], Tr, [(4 — X)) "]}

SR SR O 70 N7) B
_2(/\—u)2j§ 2 T O( ), (1.12)

where the coefficients I';(\, ) are given explicitly in terms of the functions

appearing in (1.8) (see Corollary 6.3). The leading term 211‘}\(:\#’3)2 may also be
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Asymptotic Ezpansions for the Gaussian Unitary Ensemble
identified as the integral

[ (OO ()

where p(z,y)dzdy is the weak limit of the measures p,(x,y)dzdy as n — oo
(cf. (1.10)). The limiting density p is explicitly given by

1 4—ay 1
p(z,y) = \/——,132\/— (—2.2)(
and we provide a proof of this fact at the end of Sec. 5.

In Ref. 1 the authors derive for a rather general class of random matrices an
expansion for the two-dimensional Cauchy transform in the form:

2)l—22) (), (z,y €R), (1.13)

k
Cov{Tr,[(\l — X,,) '], Tr,, [(pul — Z O )n ™ 4 o(nF),
=0

where the leading coefficient dy ,, is given explicitly by

1 A\ — a?
do.n(A, 1) = 2\ — )2 (\/)\2 _52\/N2 — a2 - 1) ) (1.14)

with a the variance of the relevant limiting semi-circle distribution. In the GUE
setup considered in the present paper, a = 2, and in this case it is easily checked
that do,, is identical to the leading coefficient 211(‘1\(:\;;)2 in (1.12).

The density p given by (1.13) has previously appeared in Ref. 2. There the
author proves that if X,, is a GUE(n, 1) random matrix, then for any polynomial
f, such that f_22 F(t)V4 —t3dt = 0, the random variable Tr,, (f(X,)) converges, as
n — oo, in distribution to the Gaussian distribution N(0,02), where the limiting

variance o2 is given by

o? = M)z dzd
/[2,2]x[2,2]< r—y pla,y)dzdy.

The density p has also been identified in the physics literature as the (leading term
for the) correlation function of the formal level density for the GUE (see Ref. 11
and references therein).

In a forthcoming paper (under preparation) we establish results similar to those

obtained in the present paper for random matrices of Wishart type.

2. Auxiliary Differential Equations

In this section we consider two differential equations, both of which play a crucial
role in the definition of the operator T" introduced in Sec. 3. The former is a third-
order differential equation for the spectral density of the GUE. We start thus by
reviewing the GUE and its spectral distribution.
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Consider a random n x n matrix ¥ = (ysj)1<i j<n defined on some probability
space (2, F, P). The distribution of Y is then the probability measure Py on the
set M,,(C) of n x n-matrices (equipped with Borel-c-algebra) given by

Py(B) = P(Y € B)

for any Borel-subset B of M,,(C).
Throughout the paper we focus exclusively on the Gaussian Unitary Ensemble
(GUE), which is the class of random matrices defined as follows:

2 a positive real number.

Definition 2.1. Let n be a positive integer and o
By GUE(n,0?) we then denote the distribution of a random n x n matrix
X = (%ij)1<i,j<n (defined on some probability space) satisfying the following four

conditions:

(i) For any 4,7 in {1,2,...,n}, ;; = Ty;.
(ii) The random variables z;;, 1 < i < j < n, are independent.
(iii) If 1 <4 < j <mn, then Re(z;;), Im(z;;) are i.i.d. with distribution N(0, 152).
(iv) For any ¢ in {1,...,n}, a; is a real-valued random variable with distribution
N(0,0?).
We recall now the specific form of the spectral distribution of a GUE random
matrix. Let ¢g, 1, @2, ..., be the sequence of Hermite functions, i.e.
pr(t) = (2°kIVm) T2 Hi(t) exp(—°/2), (2.1)
where Hy, H1, Ho, ..., is the sequence of Hermite polynomials, i.e.
dk
Hi(0) = (1) exp(e)| Sz exn(—%) (22)

Recall then (see e.g., Corollary 1.6 in Ref. 7) that the spectral distribution of a
random matrix X from GUE(n, 2) has density

han(t) = \/%g@k<\/gt>27 (2.3)

with respect to Lebesgue measure. More precisely,

E{tr,(9(X))} = / o(O)hn (1)1,

for any Borel function ¢g:R — R, for which the integral on the right-hand side is
well-defined.
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Gotze and Tikhomirov established the following third-order differential equation
for hy,:

Proposition 2.2 ([4]). For each n in N, h, is a solution to the differential
equation:

1
th’(t) + (4 —tHR,(t) +tha(t) =0, (t€R).
Proof. See Lemma 2.1 in Ref. 4. O

Via the differential equation in Proposition 2.2 and integration by parts, we
are led (see the proof of Theorem 3.5 below) to consider the following differential
equation:

(t* —4)f'(t) + 3tf (t) = g(b), (2.4)

for suitable given C'*°-functions g. The same differential equation was studied by
Gotze and Tikhomorov in Lemma 3.1 in Ref. 5 for a different class of functions g
in connection with their Stein’s Method approach to Wigner’s semi-circle law.

Proposition 2.3. For any C°°-function g:R — C, the differential equation
(t = 4)f'(t) + 3t (t) = g(1), (t€R), (2.5)

has unique C*-solutions on (—o00,2) and on (—2,00). Furthermore, there is a
C-solution to (2.5) on all of R, if and only if g salisfies

/ * VI Bdi =0, (2.6)

Proof. We note first that by splitting f and ¢ in their real and imaginary parts,
we may assume that they are both real-valued functions.

Uniqueness. By linearity it suffices to prove uniqueness in the case g = 0, i.e. that
0 is the only solution to the homogeneous equation:

(t2 —4)f'(t) + 3tf(t) = 0 (2.7)

on (—00,2) and on (—2,00). By standard methods we can solve (2.7) on each of
the intervals (—oo, —2), (—2,2) and (2, 00). We find thus that any solution to (2.7)
must satisfy that

a(t2—4)"3, ift < -2,
f(t) = C2(4 - t2)_ ) if te (_2a2)7
cs(t2—4)"2, ift>2,

Njw

for suitable constants ci,cz,cs in R. Since a solution to (2.7) on (—o0,2) is con-
tinuous at t = —2, it follows that for such a solution we must have ¢; = ¢ = 0.
Similarly, 0 is the only solution to (2.7) on (—2, 00).
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Ezistence. The existence part is divided into three steps.

Step 1. We start by finding the solution to (2.5) on (—2, c0). By standard methods,
it follows that the solution to (2.5) on (2, 00) is given by

)= —4)2 /;(32 —4)3g(s)ds+c(t? —4)"3, (t€(2,00), c€C),
whereas the solution to (2.5) on (—2,2) is given by
ft)=(@4—t3)% /2(4 — s2)2g(s)ds+c(d—2)"2, (te(-2,2), ceC).
t
Now consider the function f:(—2,00) — R given by
(4—12)"2 [(4— s2)2g(s)ds, ifte (—2,2),

1(t) = 5902). if t =2, (2.8)

(t2—4)*%/2 (s2 —4)7g(s)ds, ifte (2,00).

We claim that f is a C°°-function on (—2,00). Once this has been verified, f is
automatically a solution to (2.5) on all of (—2,00) (by continuity at ¢t = 2). To see
that f is a C*°-function on (—2,00), it suffices to show that f is C* on (0, c0),
and for this we use the following change of variables:

y=t>—4, iet=+/y+4, (t>2y>0).

For y in (0, 00), we have

. [Viy s (Y U

D=

Using then the change of variables

w=vy, wveo,1],

Njw
W=

we find that
1 1
— _ 1 (VA4 vy) / 1 g(VA+vy)
4 = 2 —_— = d e 2 . 7(1
FVa+y) =y /Ovy 2 4—|—vyyv OU 2./4 + vy v

for any y in (0, 00). Now, consider the function

/1 v 9ty
o 2VEFfuoy
which is well-defined on (—4, 00). By the usual theorem on differentiation under the

integral sign (see e.g., Theorem 11.5 in Ref. 15), it follows that [ is a C'*°-function
on (—4 + ¢, K), for any positive numbers € and K such that 0 < e < K. Hence [ is

-
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Asymptotic Ezpansions for the Gaussian Unitary Ensemble

a C*°-function on all of (=4, c0). Note also that

1

10) = 59(2) = f(2).

Furthermore, by performing change of variables as above in the reversed order, we
find for any y in (—4,0) that

=

2
) = ()~ /mu — 2)}g(s)ds = (VAT D).

Hence, we have established that f(/4+y) = I(y) for any y in (—4, 00). Since [ is
a C>-function on (—4,00), and since f(t) = [(t* — 4) for all ¢ in (0, c0), it follows
that f € C*°((0,00)), as desired.

Step 2. Next, we find the solution to (2.5) on (—o0,2). For this, consider the
differential equation:

(2 = )0’ (8) + 3t(t) = g(~t), (t € (=2,00)). (2.9)

From what we established in Step 1, it follows that (2.9) has a unique solution
¥ in C*°((—2,00)). Then put

Nit) = =(=1), (¢ € (=00,2)), (2.10)
and note that f; € C*°((—o0,2)), which satisfies (2.5) on (—o0, 2).

Step 3. It remains to verify that the solutions f and f;, found in Steps 1 and 2
above, coincide on (—2,2), if and only if Eq. (2.6) holds. With ¢ as in Step 2, note
that 1 is given by the right-hand side of (2.8), if g(s) is replaced by g(—s). Thus,
for any ¢ in (—2,2), we have that

f@) = f(t) = f() + (=t

from which the assertion follow readily. |
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Proposition 2.4. For any C*°-function g:R — C, there is a unique C*°-function
f:R — C, such that

o(t) = ;ﬂ/ VA= S2ds + (2 — ) f'(8) + 3t(1), (teR).  (2.11)
If g € C3°(R), then f € C°(R) too.

Proof. Let g be a function from C*°(R), and consider the function

1 2
gczg—z—/ g(s)V4 — s2ds.
T™J_—2

Since f 5 Jc(s)V4 — s2ds = 0, it follows immediately from Proposition 2.3 that
there is a unique C*°-solution f to (2.11). Moreover (cf. the proof of Proposi-
tion 2.3), f satisfies that

(t2—4)~3 /2 (s — 4)7 g.(s)ds, if £ € (2,00),

1t )
—(t2—4)"32 /2 (s> —4)2g.(—s)ds, ifte (—oo,—2).

Assume now that g (and hence g.) is in Cp°(R), and choose a number R in (0, 00),
such that |g.(t)| < R for all ¢ in R. Then, for any ¢ in (2, 00), we find that

] < R/ SR -7,

and thus f is bounded on, say, (3,00). It follows similarly that f is bounded on,
say, (—o0, —3). Hence, since f is continuous, f is bounded on all of R.
Taking first derivatives in (2.11), we note next that

(12 =) f"(t) +51f'(t) +3f(t) = ¢'(1), (t€R),
and by induction we find that in general
(2 — 4) FEHD (@) + 2k 4+ 3)tf O (1) + k(k+2)f* V() = g™ (1), (keN,teR).

Thus, for ¢t in R\{-2,2},

ro - 2 g + 20 212
and
(*) (k1) (k)
rany (2/{:;3_)2” (1) kik +;){4 (t) 2 _(’2 (keN). (2.13)
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Since f and g. are bounded, it follows from (2.12) that f’ is bounded on, say,
R\[-3, 3] and hence on all of R. Continuing by induction, it follows similarly from
(2.13) that f*) is bounded for all k in N. m|

3. Asymptotic Expansion for Expectations of Traces
In this section we establish the asymptotic expansion (1.6). We start by equipping
Cp°(R) with a sequence of norms, which make it into a Fréchét space.
Definition 3.1. Consider the vector space Cp°(R) of C*°-functions f:R — C,
satisfying that
dk
Vk € Ng:sup|—-f(t)| < oc.
o [0 <o
We introduce then a sequence || - ||(x) of norms on C3°(R) as follows:
9]l = suplg(z)l, (g9 € CG;°(R)),
r€eR

and for any k in Ny:

gl = max, 199 ]|oo, (9 € C2(R)),

where ¢ denotes the jth derivative of ¢. Equipped with the sequence
(I - Il ey xen of norms, Cp°(R) becomes a Fréchét space (see e.g., Theorem 1.37
and Remark 1.38(c) in Ref. 14).

The following lemma is well-known, but for the reader’s convenience we include
a proof.

Lemma 3.2. Consider Ci°(R) as a Fréchét space as described in Definition 3.1.
Then a linear mapping L:Cg°(R) — Cp°(R) is continuous, if and only if the fol-
lowing condition is satisfied:

VkeN3Imp e NIC, > 0Vg e CPR): | Lgllny < Crllgllm)- (3.1)

Proof. A sequence (g,) from Cp°(R) converges to a function g in Cg°(R) in the
described Fréchét topology, if and only if ||g,, — g|(x) — 0 as n — oo for any &k in N.
Therefore condition (3.1) clearly implies continuity of L.

To establish the converse implication, note that by Theorem 1.37 in Ref. 11, a
neighborhood basis at 0 for C;°(R) is given by

Uge = {h € C°(R) [[|Al|x) <€}, (k€N,e>0).

Thus, if L is continuous, there exists for any & in N an m in N and a positive 9,
such that L(Up, 5) C Ug,. For any non-zero function g in Cg°(R), we have that
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1 —1
55“g||(m)g € Up,5, and therefore

1 -1 . 2
F0Mgllm I Lallry <1, Le gl < 5llgllom),

which establishes (3.1). m|

Remark 3.3. Appealing to Proposition 2.4, we may define a mapping S:
CP(R) — C°(R) by setting, for g in Cp°(R), Sg = f, where f is the unique
solution to (2.11). By uniqueness, S is automatically a linear mapping. We define
next the linear mapping T': Cy°(R) — C3°(R) by the formula:

Tg=(Sg)", (g9€C(R)).

Proposition 3.4. The linear mappings S,T:Cp°(R) — Cp°(R) introduced in
Remark 3.3 are continuous when Cg°(R) is viewed as a Fréchét space as described
in Definition 3.1.

Proof. Since differentiation is clearly a continuous mapping from Cp°(R) into
itself, it follows immediately that 7" is continuous, if S is.

To prove that S is continuous, it suffices to show that the graph of S is closed in
C°(R) x C¢°(R) equipped with the product topology (cf. Theorem 2.15 in Ref. 14).
So let (gn) be a sequence of functions in Cy°(R), such that (g, Sgn) — (g, f) in
C°(R) x Cp°(R) for some functions f, g in Cy°(R). In particular then,

gn— g, Sgn— f, and (Sg,) — f' uniformly on R as n — co.

It follows that for any ¢ in R,

g(t) = lim g,(t) = lim (2i /_2gn(3)\/4—52d5

n— 00 n—0o0 vie

+(t* = 4)(Sgn)' () + 3t(59n)(t)>

1 2
:% .

g(s)V/4 — s2ds + (12 — 4) f/(t) + 3tf(2).

Therefore, by uniqueness of solutions to (2.11), Sg = f, and the graph of S is
closed. O

Theorem 3.5. Consider the spectral density h,, for GUE(n, %) and the linear oper-

ator T:C°(R) — C°(R) introduced in Remark 3.3. Then for any function g in
C°(R) we have that

/Rg(t)hn(t)dt - %/_zg(t)\ﬁl—t?dt—i— %/RTg(t)-hn(t)dt.
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Proof. Consider a fixed function g from C;°(R), and then put f = Sg, where S is
the linear operator introduced in Remark 3.3. Recall that

o) = = / g(S)VI—2ds + (12 — ) (1) + 31 (1), (£ € R). (3.2)

:% »

By Proposition 2.2 and partial integration it follows that

0= / FORZR (@) + (4 — ). () + the (H)]dt
R
-2 " d 2
== [ ronaa— [ SO6= @+ [ ren o

= [=n72 0 = =70 + 3ttt
so that
/[(t2 —4)f'(t) + 3tf ()] hn(t)dt = " (th,(t)dt = LQ / Tyg(t) - h,(t)dt.
R n® Jr
Using (3.2) and the fact that h,(¢)d¢ is a probability measure, we conclude that

1

/g(t)-hn(t)dt: : / g(t)\/4—t2dt+/[(t2—4)f’(t)+3tf(t)}hn(t)dt
R T™J—2 R

1

712 R

12 1
= — / g(t)vV4— t2dt + — / Tyg(t) - hn(t)dt,
2 _9 n R
which is the desired expression. O

As an easy corollary of Proposition 3.5, we may now derive (in the GUE case)
Ercolani’s and McLaughlin’s asymptotic expansion (see Theorem 1.4 in Ref. 3).

Corollary 3.6. Let T:Cp°(R) — Cp°(R) be the linear mapping introduced in
Remark 3.3. Then for any k in N and g in Cg°(R), we have:

=S . 1 .
/Rg(t)hn(t)dt = %jzoﬁ/z[T gl(t)V4 — 2dt + W/R[T g](t) - hy, (¢)dt.

k—1 2
1 1 .
Jj=0 N

Proof. The first equality in the corollary follows immediately by successive appli-
cations of Theorem 3.5. To show the second one, it remains to establish that for
any k in N

sup/R [[T*g] ()| - hp(t)dt < oco.

neN
But this follows immediately from the fact that T%g is bounded, and the fact that
h,(t)dt is a probability measure for each n. O
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4. Asymptotic Expansion for the Cauchy Transform
For a GUE(n,1) random matrix X,, we consider now the Cauchy transform
given by
1
Gn(N) = E{trn (AL, — Xn) ']} = / o ha(t)dt, (A€ C\R).
B A —

Setting

gr(t) = g(\t) = (te R, A e C\R),

A—t’
we have by the usual theorem on differentiation under the integral sign (for ana-
lytical functions) that G,, is analytical on C\R with derivatives

k Nk k
G0 = [ i =1t [ (frn®) @ @)

for any k in N and A in C\R.

Lemma 4.1. The Cauchy transform G, of a GUE(n, %) random matriz X, sat-
isfies the following differential equation:

=8 - La ) AG ) =2 (4.2)
e o =S '

for all X in C\R.

Proof. From Proposition 2.2 and partial integration we obtain for fixed A in
C\R that

0= /g,\(t)[n’zhg/(t) + (4 — t3)RL (t) + thy,(t)]dt
R

- / 26 () — (4 — 2)g} (£) + Btga(B)]hm (1), (4.3)

Note here that

4 —t2 4— )22 2\
4 —tHgh(t) = = -1
( )g)\() ()\_t)g (A—t)Q +)\—t )

and that
3t 3A
tgr(t) = —— = —— — 3.

Stga(t) = ~— =1 3
Inserting this into (4.3) and using (4.1) and the fact that h,, is a probability density,
we find that

d

—_ J— 2 —_ —
S0+ (4= X2 ZGa(d) + AGa (V) ~ 2,

as desired. 0O
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For each fixed A in C\R, we apply next Corollary 3.6 to the function g) and
obtain for any k in Ny the expansion:

1k (A) —2k—2
A 10) ,
/)\—t =mo(N) + n2 n4 ot n2k +0(n )
(4.4)
where 7;(\) = 5 fEQ[Tjg,\](t)\/4 — t2dt for all j. To determine these coefficients
we shall insert the expansion (4.4) into the differential equation (4.2) in order to

obtain differential equations for the n;’s. To make this rigorous, we need first to
establish analyticity of the 7;’s as functions of A.

Lemma 4.2. (i) For any k in Ny the mapping X — T*gy is analytical as a mapping
from C\R into the Fréchét space Cg°(R), and

d k _ k 8] . .
d/\JT =T (8)\j (A, )) for any j in N.

(ii) For any k,n in N, consider the mappings i, Ri n: C\R — C given by

ne(\) = /_ [Mal)Vi—Pds. (e TIR) (4.5)
Rin(\) = /R [T 1g,](s)hn(s)ds, (A € C\R). (4.6)

These mappings are analytical on C\R with derivatives:

o= [ [ (o ) Vi san wecw sem,

dA ON

St = [ [0 (Zoa0)| @aonas, e e

Proof. (i) By standard methods it follows that for any A in C\R and [, j in Ny,

ol oI ol 9 gl i+l
(G0 100~ g a3 900) — g gm0 ) =0
(4.7)

lim ( sup
h—0\ teR

When j = 0, formula (4.7) shows that the mapping F': C\R — Cy°(R) given by

is analytical on C\R with derivative ZF(\) = Zg(\,-) (cf. Definition 3.30 in
Ref. 14). Using then (4.7) and induction on j, it follows that moreover
d o

i FO) = 555900), (A€ C\R)
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for all j in N. For each k in N the mapping T%:Cg°(R) — C°(R) is linear and
continuous (cf. Proposition 3.4), and it follows therefore immediately that the com-
posed mapping 7% o F': C\R — C;°(R) is again analytical on C\R with derivatives

o7
ON

47

o9 kg()\,~):d—.TkoF(/\) Tk<

(N, )) for all j in N.

This establishes (i).

(ii) As an immediate consequence of (i), for each fixed s in R the mapping A —
[T*g(),-)](s) is analytical with derivatives

ST = | 50000 (). (e

Note here that by Lemma 3.2

HTk o7 o7

I

Y ()\7-)Hm C(k, 0)‘

H (m(k,0))

for suitable constants C'(k,0) in (0, 00) and m(k,0) in N. Hence, for any closed ball
B inside C\R and any j in N we have that

Tk < C(k,0)
(8)\] )H ) sup

It follows now by application of the usual theorem on differentiation under the
integral sign, that for any finite Borel-measure p on R, the mapping A\ —
Je[Tkg(X, )](s)u(ds) is analytical on C\R with derivatives

o7

sup 8)\3

AeB

(A, )H < 0.
(m(k,0))

e [ ) = [ g e

= [ (0] puta)

In particular this implies (ii). O

Lemma 4.3. Let G,, denote the Cauchy-transform of hy,(x)dx, and consider for
each \ in C\R and k in Ny the asymptotic expansion:

Gn(N) :nO(A)+M+M+-~+”Z§2)

o — +0(n=2k2) (4.8)

given by Corollary 3.6. Then the coefficients n;(\) are analytical as functions of A,
and they satisfy the following recursive system of differential equations:

(4= X)mp(A) + Ao (A) = 2,

(4.9)
(X2 =i (A) = A (N) =071 (N),  (j €N).
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Proof. For each j in Ny the coefficient 7;()) is given by (4.5) (cf. Corollary 3.6),
and hence Lemma 4.2 asserts that 7; is analytical on C\R. Recall also from Corol-
lary 3.6 that the O(n=2%72) term in (4.8) has the form n=2*=2R, ,()\), where
Ry n(N) is given by (4.6) and is again an analytical function on C\R according to
Lemma 4.2. Inserting now (4.8) into the differential equation (4.2), we obtain for A
in C\R that

= 072G (A) + (4= A)GL(A) + AGn(N)

Zn—Qg /// _Qk_QR;cl,/n(/\) + (4 _ /\2)

k k
Do ) + TR ()| A Dm0 (0) + 0T Ry (V)

= [(4 = X)mH(N\) + Ano(A)] + Z n”H [0 (A) + (4= A)nf(A) + A (V)]

+n 2 (V) + (4 - A?)Rk,n@) + ARk (N +n AR, (). (4.10)

sup

Using Lemma 4.2, we note here that for fixed k£ and A we have for any [ in Ny that
Ry n(A )‘ = sup
neN

ddAll neN /R|:Tk+l (aa—;zg(k-)ﬂ (8)hn(s)ds
< [ (o0 9)| <o

since T’“*l(a)\,g( -)) € Cp°(R). Thus, letting n — oo in (4.10), it follows that
(4= X)mp(A) + Amo(A) =2, (A€ C\R).

and subsequently by multiplication with n? that
k .
0= n "2 () + (4= A0 (A) + Ay ()]

+n 2 (A) + (4= N)Rj (A + ARk (N + 07 2 2R (V). (4.11)
Letting then n — oo in (4.11), we find similarly (assuming k > 1) that
15" (A) + (4 = A2 (A) + M (A) =0,
and subsequently that
k
0= M () + (4= A)nj(A) + Ay ()]
+n 72 (A) 4 (4 = AR (N) + AR (V] + 02 RY ().
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Continuing like this (induction), we obtain (4.9) for any j in {1,2,...,k}. Since k
can be chosen arbitrarily in N, we obtain the desired conclusion. O

For any odd integer k we shall in the following use the conventions:

(A2—4)%:A,/1—%, and (A2 —4)% = (A2 —4)2) (4.12)

for any A in the region
Q:=C\[-2,2],

and where /- denotes the usual main branch of the square root on C\(—o0,0]. We
note in particular that

(A2 —4)%| = 00, as |\ — oo. (4.13)

Lemma 4.4. For any r in Z\{—3,—4} the complete solution to the differential
equation:

d3

= w(v —4)7E (AeQ) (4.14)

(2~ 4) 5 FO) = AT

s given by

(r+1D@2r+1)2r+3) 202r+1)(2r+3)2r+5)

(r + 3)(\2 — 4)r+5/2 (r+ A (02— )72 + O —4)7, (4.15)

) =

for all X in Q, and where C' is an arbitrary complex constant.

Proof. By standard methods the complete solution to (4.14) is given by

5 d3
dA3

FN) = (A2 —4)7""3d), (A€ Q), (4.16)

A
>
[ V]
|
S
N~—
l\Jh—'
—
>
[\
|
S
N~—
|
[S][9)

where [(\?— 4)~3 % (A2 —4)~"=2d\ denotes the class of anti-derivatives (on £2) to
the function (A2 —4)~% 2 (A2 —4)~"~3_ Note here that by a standard calculation,

d
& ey _ —(@2r+1)(2r +2)(2r + 3)A
()‘2 - 4) d/\3 ()‘2 - 4) - ()\2 o 4)r+4
42r+1)(2r+3)(2r+5)A
B (A2 — 4)r+5

Assuming that r ¢ {—3, —4}, we have (since Q is connected) for k in {4,5} that

/)\()\2 —4)7m kN = N . (A2 -4yl (Ce0).

r+k—1)
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We obtain thus that

2 -2 d3 2 \—-r—1
(A2 —4)"5 = (A2 — 4)"""2d)

an
@2+ 1)@2r+2)(2r+3) | 4(2r+1)(2r 4+ 3)(2r +5)

= R4 T arrape—ay ¢
C(r+D@r+1)(2r +3)  2(2r +1)(2r +3)(2r +5) o

T T3 4y e 4y O

where C' is an arbitrary constant. Inserting this expression into (4.16), for-
mula (4.15) follows readily. m|

Proposition 4.5. Let G,, denote the Cauchy-transform of h,(z)dx, and consider
for each X in C\R and k in Ny the asymptotic expansion:

m(A)

772()\) 77k()\) + O(n72k72)

Gn(N) =) + T By B

given by Corollary 3.6. Then for A in C\R we have that
(A2 —4)2, (4.17)
m) =\ —4)75, (4.18)

and generally for j in N, n; takes the form:

3j—1

() =Y Ci(\2—4)73

r=2j
for constants Cj ., 2j < r < 3j — 1. Whenever j > 1, these constants satisfy the
recursion formula:
(2r —3)(2r —1)
r+1
+ (4r —10)Cjr—3), (2j+2<7r<3j+2), (4.19)

Cj+17r = ((’I‘ - 1)Cj,r_2
where for r in {25 + 2,35 + 2} we adopt the conventions: Cj2j—1 = 0= Cj3;.

Before proceeding to the proof of Proposition 4.5, we note that for any j in Ny
and A in C\R we have by Lemma 3.2 that

;N < 1T gxllco < C (G, 0)l9Allm(5.0)

for suitable constants C(j,0) in (0,00) and m(j,0) in N (not depending on A). In
particular it follows that

In;(iz)] =0, asx— o0, z€R. (4.20)
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Proof of Proposition 4.5. The function 7 is the Cauchy transform of the stan-
dard semi-circle distribution, which is well-known to equal the right-hand side of
(4.17) (sce e.g., Ref. 18). Now, 7'(\) = —1 45(X2 —4)7, 50 by (4.9) and Lemma 4.4
(with r = —1), it follows that

M) =~ (20 — ) E) $ OO~ a)F = (2 —4)E 4 02 ),

for a suitable constant C' in C. Comparing (4.20) and (4.13), it follows that we must
have C' = 0, which establishes (4.18).
Proceeding by induction, assume that for some j in N we have established that

3j—1

=) Ci(N—4)"

r=2j

for suitable constants C(j,7), r = 24,25+ 1,...,3j — 1. Then by (4.9), Lemma 4.4
and linearity it follows that modulo a term of the form C'(A\? — 4)*/? we have that

3j—1
(r+1)@2r+1)2r+3), ., es
nj+1(A ZCJT 3 (A2 —4)7"3
r=2j
3j—1
2(2r +1)(2r +3)(2r +5) |5 U ¢
+ > Cis — (2 -4y
r=2j
3j+1
—1)(2s—3)(2s — 1
Z Clooms (s )(2s i’)( S )()\2_4)757%
s=2j+42 s+
35+2
—-5)(25s—3)(2s—1), 4 1
+ZCJ83 (A2 —4)75"3
gyt 3 s+ 1
27+ DA+ D +3) \0 \—2j-2-1
. A2 4)"2
3,27 2j + 3 ( ) ?
2(6j —1)(65 +1)(6j +3) /15 —3j-2-1
. A2 — 4)737
+CJ73J 1 3]_|_3 ( ) 2
3j+1
(2s —3 1)
+ > —[(3—1)63,8,2
o213 s+1

+ (45 — 10)Cj 3] (A2 —4) 7573,
As before (4.20) and (4.13) imply that the neglected term C(\? — 4) must vanish
anyway. The resulting expression in the calculation above has the form

3(j+1)—1

Yo N4

s=2(j+1)
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where the constants Cjy1 s are immediately given by (4.19), whenever 2j + 3 <
s < 35 + 1. Recalling the convention that Cj2;—1 = 0 = C} 35, it is easy to check
that also when s = 2j + 2 or s = 3j + 2, formula (4.19) produces, respectively, the
coefficients to (A\2—4)~2~% and (\2—4)~%~3 appearing in the resulting expression

above. O

Using the recursion formula (4.19), it follows easily that

m(X) = 21(\ —4)7F +105(\> —4)~ 7,
n3(X) = 1485(A* —4)7 % + 18018(\> —4)~ % +50050(\* — 4)~ 7.

We close this section by identifying the functionals g — - _22[Tj g](t)vV4 — t2dt
as distributions (in the sense of L. Schwarts). Before stating the result, we recall
that the Chebychev polynomials Ty, 71,15, . .. of the first kind are the polynomials

on R determined by the relation:
Ty (cosf) = cos(kf), (0 €[0,7], k € Ny). (4.21)

Corollary 4.6. For each j in Ny consider the mapping o : Cg°(R) — C given by
12 o
05(9) = 5= [ [TV Eat, (g€ CR(R),
-2

where T : C°(R) — Cp°(R) is the linear mapping introduced in Theorem 3.5. Con-
sider in addition for each k in Ny the mapping Ej : Cs°(R) — C given by

Ex(g) = %/_29(’“)(%)4TT]€(_§12

where Ty, T1,Ts, ... are the Chebychev polynomials given by (4.21). Then for any
7 i N,

dax,

3j—1 X
a; = Z Cj,kmEk, (4.22)
k=2j
where Cjoj,Cj2j4+1,.-.,Cj3j—1 are the constants described in Proposition 4.5.

From Corollary 4.6 it follows in particular that a; (restricted to C°(R)) is a
distribution supported on [—2,2] (i.e. @j(¢) = 0 for any function ¢ from C°(R)
such that supp(¢) N [—2,2] = 0). In addition it follows from (4.22) that «; is a
distribution of order at most 35 — 1 (cf. Ref. 14, p. 156), and it is not hard to show
that in fact the order of a; equals 35 — 1.

Proof of Corollary 4.6. Let j in N be given and let A; denote the right-hand
side of (4.22). Since both a; and A; are supported on [—2,2], it suffices to show
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that their Stieltjes transforms coincide, i.e. that

aj(gn) = Aj(grn), (A € C\R), (4.23)

where as before gx(z) = 1= for all z in R. Since the mapping A — g is ana-
lytical from C\R into Cy°(R) (cf. Lemma 4.2), and since the linear functionals
a;,\j: Cp°(R) — C are continuous, the functions A — «a;(gx) and A — A;(gy) are
analytical on C\R. It suffices thus to establish (4.23) for A in C\R such that |\ > 2.
So consider in the following a fixed such A\. We know from Proposition 4.5 that

3j—1

a;(gx) =n;(A ZCJ’“)‘ —4)"

k=2j
with (A2 — 4)7%~2 defined as in (4.12). It suffices thus to show that

Bi(gn) = B (2 - gy i

for all k in N. So let k from N be given, and recall that gx(z) = + ;2 (£)* for all
x in [—2,2]. Since fEQ %dx < 00, and since the power series

if(ﬂ—l)-n(ﬁ—r—f—l)zé’
l=r

converges uniformly on {z € C||z| < |2T\} for any r in Ny, it follows that we may
change the order of differentiation, summation and integration in the following
calculation:

b & ;M Ti(%)
Ek(gA)ZW)\/ [dxk 74_x2dx
I T el s =kl Ti(3)
_a/i Zw—l (0 - k+1)(/\> =2

AL

0 2 T (Z
xefkik(z) dx
2.7 '7r LY Viee

:k

~

Using the substitution x = 2cosf, 0 € (0,7), as well as (4.21) and Euler’s formula
for cos#, it follows by a standard calculation that

l 2 Tk( ) <(p _pk)/2), ifpe {k+2m|m€N0},

P

v e

0, otherwise.
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We thus find that

(2k +2m)! (k+2m — 2k +2m)! o _op_
Ek(g)\): ( ))\2 2k—1 Z( ))\2 2k—1

(k+2m)! = ml(k+m)!

S ()

where the third equality results from a standard calculation on binomial coefficients.
Recall now that

[N

> 1
(-9t = 3 (PR Gee bl<),

m=0

where the left-hand side is formally defined as (v/1 — z)72*~!  with ,/* the usual
holomorphic branch of the square root on C\(—o0,0]. We may thus conclude that

it T _emr( T\
Ep(gy) = A2 11220 (1 = =20 /1- =
k(gr) ! ( )\2> k! \2
(2k)! a1
= T()\z — 4) k z,
where the last equality follows from (4.12). This completes the proof. O

5. Asymptotic Expansion for Second-Order Statistics

In this section we shall establish asymptotic expansions, similar to Corollary 3.6, for
covariances in the form Cov{Tr,[f(X,)], Tr,[9(Y)]}, where f,g € C3°(R), X,, is a
GUE(n, 1) random matrix and Tr,, denotes the (un-normalized) trace on M, (C).

For complex-valued random variables Y, Z with second moments (and defined
on the same probability space), we use the notation:

V{Y} =E{(Y —E{Y})?}, and Cov{Y,Z}=E{(Y -E{Y})(Z-E{Z})}.

Note in particular that V{Y} is generally not a positive number, and that Cov{Y, Z}
is truly linear in both Y and Z.

Lemma 5.1. Let o be a positive number, and let Xy be a GUE(n,o?) random
matriz. For any function f from Cp°(R) we then have that

VI = 15 [ @) L) deds. ()
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where the kernel v, is given by

y) = i: @i (x)p;(y) = \/g%%(xml(w - ‘pn*l(x)%(y), (5.2)
=0

r—=y

and the @;’s are the Hermite functions introduced in (2.1).

Proof. Formula (5.1) appears in the proof of [13, Lemma 3] with ¢ given by the
first equality in (5.2). The second equality in (5.2) is equivalent to the Christoffel-
Darboux formula for the Hermite polynomials (see Ref. 9, p. 193 formula (11)).

O

Corollary 5.2. Let X,, be a GUE(n, L) random matriz.

(i) For any function f from Cg°(R) we have that

(f(w)—f

2
v o) = [ (F2Z) o asay,

where the kernel p, is given by

pul,y) = %{w(\/% o <\/§y) - <\/gx) on (\/%r (5.3)

(ii) For any functions f and g from Cp°(R) we have that
Cov{Tr,[f(Xn)], Trn[ (X))}

() ()

Proof. (i) This follows from Lemma 5.1 by a straightforward calculation, setting
02 =1L in (5.1).

n

(ii) Using (i) on the functions f + g and f — g we find that
Cov{Trn[f(Xn)], Trn[g(Xn)]}
= VTR0 + 9(Xa)]} = V(T f(X0) — (X))

1/ (f+9)@) - (f+9)®)* = ((f —9)=@) = (f —9)®)*
4 Jpre (x—y)?

“pn(,y)dzdy

_ 1 [ Af@)g(@) +4f(y)g(y) — 4f(2)g(y) — 4f(w)g(x) =~ o
B f@)=fW)\ (9=) —g(y)
_/Ra< x—y )( z—y )pn(x’y)dxdy’
as desired. O

1250003-24



Asymptotic Ezpansions for the Gaussian Unitary Ensemble

In order to establish the desired asymptotic expansion of Cov{Tr,[f(X,)],
Tr, [9(X,)]}, we are led by Corollary 5.2(ii) to study the asymptotic behavior, as
n — oo, of the probability measures p,(x,y)dzdy. As a first step, it is instructive
to note that p,(z,y)dzdy converges weakly, as n — 0o, to the probability measure
p(z,y)dzdy, where

(2.) = g1 (@)1 20 (W)
px?y - 471_2 m\/m (72,2) x (72,2) y .
We shall give a short proof of this fact in Proposition 5.11 below. It implies in

particular that if (X,,) is a sequence of random matrices, such that X,, ~ GUE(n, )
for all n, then

(5.4)

lim Cov{Tr,[f(Xy)], Trn[g(Xn)]}

n—oo

_ /Rz <f(x; - ;(y)> (g(xi - ;(y)) oo,

for all f,g € Cy°(R).
The key point in the approach given below is to express the density p,, in terms
of the spectral density h,, of GUE(n, 1) (see Proposition 5.4 below).

Lemma 5.3. Consider the functions ¢, :R? — R and 3, :R — R given by

(@) = %[wn(w)wnfl(y) — u-1(@)en @), ((w,y) €R?),

and
n—1
Bu(@) =D ¢(2)*, (v €R),
§=0

with @o, @1, 2, ... the Hermite functions given in (2.1). We then have
Cnl(@,y) = ful(@) fa(y) = 9n(@)gn(y) — kn(2)ka(y), ((z.y) € R?),

where
Fal) = 3 (on@) + oua(0)) = 5-(0ul@) ~20(@),  (55)
9n(@) = 5 (on(@)? ~ pu1(2)?) = 7-1(2), (56)
k(o) = pucs(2)on@) = =i (o) (5.7

for all x in R.

Proof. Note first that with f,, g, and k, defined by the leftmost equalities in
(5.5)—(5.7) we have that

(@) + gn(2) = pn(2)* and  fo(@) = gn(z) = en1(2)?,
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for all z in R. Therefore,

2

G, y) = slen(x)on—1(y) — Pn-1(x)en(y)]

[(fn(2) 4+ gn(2))(fn(y) = gn(y)) + (fu(2)

= [n(@) fn(y) = 9n(@)gn (y) — kn(2)kn(y),

N = DN =

for any (z,y) in R?. It remains thus to establish the three rightmost equalities in
(5.5)—(5.7). For this we use the well-known formulas (cf. e.g., formulas (2.3)-(2.6)

in Ref. 7):
n n+1
= §</7n—1($) - D) Ony1(z), (5.8)
/n+ 1
xgpn @n+1 \/7Spn 1 (5~9)

% (i ‘/’k(x)2> = V20, (2)pn-1(z), (5.10)
k=0

which hold for all n in Ny, when we adopt the convention: ¢_; = 0.
The second equality in (5.7) is an immediate consequence of (5.10). Combining
(5.8) with (5.9), we note next that

P (@) = —zpn(x) + V2npn_1(z) and ¢} (z) = zon_1(z) = V2nen(z),
and therefore by (5.10)

Br(x) = =V2n(er, 1 (@)on (@) + on1 ()¢, ()
= —\/ﬁ(x@n_l(x)gon(x) - m‘ﬂn(x)2 - xgpn_l(x)gon(x) + m‘/’n—l(x)z)
= 2n(pn(2)? = pn_1(x)?),

from which the second equality in (5.6) follows readily. Using once more (5.8) and
(5.9), we note finally that

n—1
L) =2 wpi(e)¢(x)
j=0

—2Z<\/”T oo \/gsojl(x)) (@wﬂx)—@w(x))
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= S (@) + G — Dy (@) — G+ Dy (@)
=0

— [T 0i@?| - (- Dpnar(@)? - npni@),
=0

and therefore
Bu(x) — 26, () = pn_1(2)> + (n = Dpn_1(2)? + npn(z)?
= n(pn—1(2)? + pn(2)?),

which establishes the second equality in (5.5). |

Proposition 5.4. Let p, be the kernel given by (5.3) and let h,, be the spectral
density of a GUE(n, L) random matriz (cf. (2.3)). We then have

1~

pul,) = 7 [Fn (@)on0) = AR (@R (0) = @) | () € B,

(5.11)

where

hn(z) = hp(z) — xh! (2), (x € R).

Proof. With (., fn, 9n, kn and 3, as in Lemma 5.3 we have that

() (D
A (ER(5)

and (cf. formula (2.3))
hn(2) = \/%ﬂn (\/gx) . (5.13)

Combining (5.13) with the rightmost equalities in (5.5)-(5.7), we find that

fn<\/gx)=\/%ﬁn(x), gn< gx>=\/§1n%h;;(x), and

kn< gx) - —\/gh’n(x),

and inserting these expressions into (5.12), formula (5.11) follows readily. m|
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By Cp°(R?) we denote the vector space of infinitely often differentiable functions
f:R? — C satisfying that
IDYDy flloe :=  sup |DYDyf(x,y)| < oo,
(z,y)ER?
for any k,[ in Ny. Here Dy and Dy denote, respectively, the partial derivatives of f
with respect to the first and the second variable.

Lemma 5.5. Assume that f € C;°(R?) and consider the mapping o5 :R — C°(R)
given by

@f(x) :f(xv)a (Z‘ER)
Then @y is infinitely often differentiable from R into Cp°(R), and for any k in N

dk
Proof. By splitting f in its real and imaginary parts, we may assume that f is
real-valued. For any k in N the function D¥f is again an element of C°(R?).
Therefore, by induction, it suffices to prove that ¢y is differentiable with derivative
given by (5.14) (in the case k = 1). For this we need to establish that

—0, ash—0,
(m)
for any m in N and any x in R. This amounts to showing that for fixed z in R and
[ in N we have that
Dyf(z +h,y) — Dyf(x,y)
h

” of(@+ hf)L —ps(x) D f(, )”

sup —Déle(x,y)‘ —0, ash—0.

yeR

For fixed y in R second-order Taylor expansion for the function [D}f](-,%)
yields that

DLf (e + h,y) — D f(e,y) = DiDb (e, y)h + 5 DIDF(E )R,

for some real number £ = £(x,y, h) between x + h and . Consequently,

sup Db f(x+h,y) — Db f(x,y)
yeR h

h
< IDiDsflloe — 0, as h—0,
as desired. O

Corollary 5.6. Let T be the linear mapping introduced in Remark 3.3, and let f
be a function from Cg°(R?). We then have

(i) For any j in No the mapping
by TIf(z,) R — C(R)
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1s infinitely often differentiable with derivatives given by

ar -
o Vr(@) =T((D1 f(z, ). (5.15)

(ii) For any j in No the mapping v; :R — C given by
1 2
v;(z) = 2—/ [Tif (x,)](t)V4 — t2dt, (z €R),
™
is a Cp°(R)-function. Moreover, for any k in N

%W(x) x / (19 ([D¥]£ (2, )] (£) VA — £2dl. (5.16)

2

Proof. (i) Asin the proof of Lemma 5.5 it suffices to prove that s is differentiable
with derivative given by (5.15) (in the case k = 1). But this follows immediately
from Lemma 5.5, since ¢y = T7 o ¢y, where T:C°(R) — C;°(R) is a linear,
continuous mapping (cf. Proposition 3.4).

(ii) It suffices to prove that v; is bounded and differentiable with derivative given
by (5.16) (in the case k = 1). To prove that v; is differentiable with the prescribed
derivative, it suffices, in view of (i), to establish that the mapping

g»—>—/ HvV4—t2dt: C° (R

2

is linear and continuous. It is clearly linear, and since

’%/_ﬁﬁwﬁl—t?dt‘ <llglloes (g9 € C3°(R)),

it is also continuous. To see finally that v; is a bounded mapping, we note that
since T7: Cg°(R) — C3°(R) is continuous, there are (cf. Lemma 3.2) constants C
from (0, 00) and m in N, such that

|77 f (@, oo < € max [ID}f(2,)]loo < C' max D} fl|oc,

for any z in R. Therefore,

sup [v; ()| < sup [|Tf(z,) oo <C max [[Dyf]loc < o0,
z€eR TER 1=1,....m
since f € C°(R?). O

Proposition 5.7. For any function f in C{°(R?) there emists a sequence
(Bi(f))jen, of complex numbers such that

k

/R2 f(x,y)hn(x)hy, (y)dedy = Z % + O(nfzkfz),

=0

for any k in Ny.
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Proof. Let k in Ny be given. For fixed x in R the function f(z,-) belongs to Cp°(R)
and hence Corollary 3.6 asserts that

/Rf(x,y) Zi:

where the functions v;:R — R are given by

2
Uj(x):i/ [T9f(x,)](t)V4 —t2dt, (z€R, j=1,... k).

2w

+ i [ om0, 617)

As noted in the proof of Corollary 5.6, there exist constants C from (0, c0) and m
in N, such that

ITf @ Moo < C max 1D fllc, (@ € B).

.....

Hence, since h,, is a probability density,

C,{ = sup
z€R

fr st oa] <€ ax 1547 < o
i =1,...,m

Using now Fubini’s theorem and (5.17) we find that

[ £ aha@ha) dxdy—/(/fxy )h (2)dz
—Zn 2]/ ho(2)de + O(n-22),  (5.18)

where the O(n~2¥~2)-term is bounded by C/n~2*=2. According to Corollary 5.6(ii),
v;j € Cp°(R) for each j in {0,1,...,k}, and hence another application of Corol-
lary 3.6 yields that

J
/vj(x)hn(x)dx: & (QJ;) 4 O(n~ 222y
® =0 "
for suitable complex numbers 56 f),-.. ,§i_ j( f). Inserting these expressions into

(5.18) we find that

E
<

Thus, setting 5,-(f) = Z; 0 fJ (f), r=0,1,...,k, we have obtained the desired
expansion. O

1250003-30



Asymptotic Ezpansions for the Gaussian Unitary Ensemble

For the proof of Theorem 5.9 below we need to extend the asymptotic expansion
in Proposition 5.7 to a larger class of functions than C5°(R?).

Proposition 5.8. Assume that f:R?> — C is infinitely often differentiable, and
polynomially bounded in the sense that

[f(zy)] < CA+a®+9*)", ((x,y) € R?),

for suitable constants C' from (0,00) and m in No. Then there exists a sequence
(Bi(f))jen, of complex numbers, such that

k
f(x,y)hn(x)hy, (y)dedy = Z &2{) + O(nfzkfz),
§=0

R2 n

for any k in Ny.

Proof. We start by choosing a function ¢ from C°(R?), satisfying that

o p(x,y) €10,1] for all (z,y) in R%
o supp(f) C [-4,4] x [-4,4].
e p=1on[-3,3] x[-3,3].

We then write f = fo + f(1 — ¢). Since fip € C(R?) C C°(R?), it follows
from Proposition 5.7 that there exists a sequence (5;(f));en, of complex numbers,
such that

k
F@,y)p(@, y)hn ()hn (y)dady = &2{) +O(n22),
=0

R2 n

for any k in Ny. Therefore, it suffices to establish that

/]R2 F (@, y) (1 = oz, y) ha ()b (y)dady = O(n~2672),

for any k in Ny. Note here that (1 — ¢) =0 on [—3,3] x [-3, 3], and that for some
positive constant C’ we have that

[f(2,9) (1 = p(@,y)| <O +a” +y*)™ < C'(@™" +y™) < C'a"y™™,
for all (z,y) outside [—3, 3] x [—3, 3]. Therefore,

[, £@9)(0 = ) () )y
< C// 292" b, (2) i (y)dady
R2\[-3,3]x[—3,3]

< ac’ / / 222 () b () dy
R J3

= 4C’ ( /]R xzmhn(x)dx) ( /3 h y2mhn(y)dy) :
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where the second estimate wuses symmetry of the function (z,y) —
22 y?" b, (2)hy (y). By Wigner’s semi-circle law (for moments)

1 2

lim [ 2*™h,(z)ds = — ¥4 — x2da,
n—oo [p o2 9
and therefore it now suffices to show that
/ Y hy,(y)dy = O(n=272)  for any k in Nj. (5.19)
3

Recall here that h,, is the spectral density of a GUE(n, 1) random matrix X,
so that

/3 P (y)dy = E{tra(X0)™ L5000 (X))

n

1 (n)y2m (n)
= E]E Z (/\j ) 1(3,00)(/\3' ) )
=1
where )\gn) < )\é") <. < )\%n) are the ordered (random) eigenvalues of X,,. Since

the function y — y2m1(3m) (y) is non-decreasing on R, it follows that

]. i n m n n m n m
=AM 3,00 (A7) < P 15,000 AL) < 1 XlP™ 13,00 (1 X ).
j=1

Using (Ref. 6, Proposition 6.4) it thus follows that

0

/ 52" R (9)dy < B Xnl2™ L5 00y (1 X )} < 7(2m)me%,
3

for a suitable positive constant «(2m) (not depending on n). This clearly implies
(5.19), and the proof is completed. m|

Theorem 5.9. Let p, be the kernel given by (5.3). Then for any function f in
Cp°(R?) there exists a sequence (B5(f))jen, of complex numbers such that

k
/]R2 f(xay)ﬂn(l",y)dxdy = Z ﬂ;(z‘{) + O(TL_Qk_Q)’
7=0

for any k in Ny.
Proof. Using Proposition 5.4 we have that

[5G patenty = 1 [ fGeg)ia@)in()asdy
R2 R2

- [ b @b, (dady

—ﬁ /R f @b (@)h(y)dady, — (5.20)
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and it suffices then to establish asymptotic expansions of the type set out in the
theorem for each of the integrals appearing on the right-hand side.
By Fubini’s theorem and integration by parts, it follows that
2

. f(x,y)h, (2)h;, (y)dzdy = f (@, y)hn(x)hn (y)dady, (5.21)

rz 0x0y

and since % f(z,y) € C°(R?), Proposition 5.7 yields an asymptotic expansion
of the desired kind for this integral. Similarly

1 1 84
| s@ai@ioaty = [ o e phu@ha @y, 622

where %};yg f(z,y) € C°(R?), and another application of Proposition 5.7 yields
the desired asymptotic expansion. Finally, using again Fubini’s theorem and inte-
gration by parts,

|, £ )b ()dady
= [ 1) o) = 2t @) () = 9 1))l

= | f@y)hn(@)hn(y) — zhi (@) hn(y) — yhi, () ha(2)

R2
+ayhy, (2)h, (y)]dedy
0
= [ [f@n + gotosen)

Al + g ) o))y

o0
= /]Rz [4f(x,y) +2wa—xf(x,y)
2
0xdy

In the latter integral, the function inside the brackets is clearly a polynomially
bounded C'*°-function on R?, and hence Proposition 5.8 provides an asymptotic
expansion of the desired kind. This completes the proof. O

2 f(e) o f(x,y>]hn<x>hn<y>dxdy. (5.23)

Corollary 5.10. For any functions f,g in C;°(R), there exists a sequence
(Bi(f,9))jen of complex numbers, such that for any k in Ny

Cor (10, ()1 T g6} = [ (FL=L00) (2029003 oy

r—=y r—=y

k
_ Zﬂj(f7g) +O(n72k72). (524)
=0

n2J
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Proof. The first equality in (5.24) was established in Proposition 5.2(ii). Appealing
then to Theorem 5.9, the existence of a sequence (5;(f, g));en, satisfying the second
equality will follow, if we establish that the function

f) )
N —y o feFy
(), if x =1y,

belongs to Cp°(R?) for any function f from Cp°(R). But this follows from the
formula

Af(z,y) = / sz +(1-s)y)ds, ((z.y) € R?),

which together with the usual theorem on differentiation under the integral sign
shows that Af is a C°°-function on R? with derivatives given by

) = [ s (= )19, (@) € B
8xk(9yl 7y - o y 9 7y 9

for any k, [ in Nj. O

We close this section by giving a short proof of the previously mentioned fact
that the measures p, (x,y)dedy converge weakly to the measure p(z,y)dzdy given
by (5.4). As indicated at the end of the Introduction, this fact is well-known in the
physics literature (see Ref. 11 and references therein).

Proposition 5.11. For each n in N, let p1,, denote the measure on R? with density
pn with respect to Lebesgue measure on R?. Then ., is a probability measure on
R2, and p, converges weakly, as n — oo, to the probability measure jn on R? with
density
1 4—zy
= — 1 1 ,
P(967il/) A2 m\/m ( 2,2)(!17) ( 2,2)(y)

with respect to Lebesque measure on R2.

Proof. We prove that

lim [ =Wy, (2, y)dady = / e p(, y)dady, (5.25)

n—oo RQ ]R2

for all z,w in R. Given such z and w, we apply formulas (5.20)-(5.23) to the case
where f(z,y) = e** %Y and it follows that

/ Ty (@, y)dady
R

1

=1 /]R2 =Y () hy (y) — 4R, (2) R (y) — n” 2R (z)R (y)]dzdy
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1
=1 / [4 + 2izx + 2wy — zway + dzw
R2

—n 222w WY, (1) Ry, (y)dzdy

1
=7 / [(4 4 42w — n~22%w?) + 2izx + 2wy
R2

— zwxyle= YL, (2)h, (y)dzdy. (5.26)

In the case z = w = 0, it follows in particular that u, is indeed a probability mea-
sure, and hence, once (5.25) has been established, so is p. By linearity the resulting
expression in (5.26) may be written as a linear combination of four integrals of ten-
sor products (a function of  times a function of y). Therefore, by Fubini’s theorem
and Wigner’s semi-circle law, it follows that

izz+iwy

lim e
n—oo [po

pn(z,y)dody

1 N
=7 /2 [4+ 4zw + 2izx + 2iwy — zwry|e* TV h o (2)heo (y)dzdy,
R

where hoo () = s=v/4 — 221{_5 o1(2). For = in (—2,2) it is easily seen that
27 [ I }

x ~ 2

W (2) = ————\ and  hoo(2) = hoo(z) — 2h_ (2) = ———,
o) = (x) = hoo(a) — oh () = — g
so in particular hl_ and heoo are both L'-functions (with respect to Lebesgue mea-
sure). This enables us to perform the calculations in (5.26) in the reversed order
and with h,, replaced by heo. We may thus deduce that

(5.27)

izeHiwy

lim e pn(z,y)dady

n—oo [po
o1 -
:/ Y | 2 (@) hoo (y) — Bl ()l (y) | dzdy.  (5.28)
(—2,2)x(~2,2) 4
Finally it follows from (5.27) and a straightforward calculation that
B 4—ay
Am2/A =22\ /4 — 2’

for all ,y in (—2,2). Combining (5.28) with (5.29), we have established (5.25).
O

Zhoo(x)ﬁoo(y) — i (2)h (y)

(5.29)

6. Asymptotic Expansion for the Two-Dimensional

Cauchy Transform
In this section we study in greater detail the asymptotic expansion from
Corollary 5.10 in the case where f(z) = 2= and g(z) = — for A, u in C\R.
n—x
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In this setup we put
Gn()\, H) = COV{Trn[(/\l - Xn)_l]a Trn[(ﬂl - Xn)_l]}a

where as before X, is a GUE(n, 1) random matrix.
Recall from Corollary 5.2, Proposition 5.11 that lim,, oo Gy (A, ) = G(A, p) for
any A, ¢ in C\R, where

GOwp) = /R2 ((A - x)‘; = ;A - y)‘1> ((u — x)_; - ;u - y)‘1> o, y)dady.
(6.1)

Lemma 6.1. Let G, be the Cauchy transform of a GUE(n, %) random matrizx.
Then for any A in C\R we have that

GV = 4G, (A + 4G, (N) = = GLV? =0,
where G (\) = Gp(N) — AGL(N).
Proof. For A in C\R we put
K () = Gu(M)? — 4G" (A2 + 4G () — %GZ(/\)Q.
Observing that G/ (\) = —AG”(\), it follows that for any X in C\R
K (A) = 2GR (NG, (A) = 8GL (NG (V) + 4G () — %G%(A)G’l(k)

1
[—/\Gn(/\) + A2G () — 4G () + 2 — FG;{’(A)}
1
=2G"(N) {_EG”()\) + (A2 = 4G (N) = AGn(N) + 2]
where the last equality follows from Lemma 4.1. We may thus conclude that K, is

constant on each of the two connected components of C\R. However, for y in R we
have by dominated convergence that

1
liyG (iy)| = |y ———shn(z)dz| < 2|y| 5hn(z)dz — 0,
r (iy — ) RY T

as |y| — oo, and similarly G,,(iy) — 0 and G/ (iy) — 0 as |y| — oo. It thus
follows that K, (iy) — 0, as |y| — oo, y € R, and hence we must have K,, = 0, as
desired. 0O
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Theorem 6.2. Let X,, be a GUE(n, %) random matriz, and consider for A\, u in
C\R the two-dimensional Cauchy transform:

G\ ) = Cov{Tr,[(Al — X,,) 7Y, Tra[(pl — X))

(1) If A # p, we have that

CaO0it) = 55— (CuN)n) — (26 (N) — 1)(2C () — 1)

(A —p)?
1
F1- GG,
where Gy () is the Cauchy transform of X, at \, and where Gp(X) = Gp(\) —
AGL (V).
(ii) If A = p € C\R we have that

VT [0~ X)) = Ga(0,2) = 17 — GLO) — 15 GU O,
with G (X) as in (1).

Proof. (i) Assume that A\, € C\R, and that A\ # p. Using Corollary 5.2(ii) we

find that
G"(’\’“):/Rz<(/\_x);:g(;\ y)1)<(u—w);:;u—y)1) o)y
1

- / =) (i —2) (A=) (i —y)

:m/Rz()\—x_M—gg)()\_y_'u_y)Pn(JS,y)dxdy.

Using now Proposition 5.4 and Fubini’s theorem, it follows that

pn (2, y)dadz

G o) = oy () = 1) = 41,(0) = T (1)
= N = n())?) (62
where e.g.,
Ha()) = /]R . ! (), () = /R . ! —H,()dz, and
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Note here that by partial integration and (4.1)

/R)\ixﬁn(x)dx:/R)\ix(hn(x)—xh;(x))dx

:Gn(A)—A<Aix —1) B (2)dz

A (@)dr = Gu(X) — AG ()

We find similarly that

/ ! hl(z)de = G, (\), and / ! h!(z)dz = Gl (N).
R R A

— T — T

Inserting these expressions into (6.2), it follows that

A=)’ GA\ ) = (Gu(N) = Ga(w)* = 4G, (N) = G (w)?
1
- (G — Gl
~ 1
=[G - acov - ey
- 1
Gl = 162 - 2]
- ~ 2
= 2Ga(N)Ga(p) +8GL (NG (1) + — G (NG (1)
= — 4G, (\) — 4G, (1) = 2G (NG (p)
F8GLNG () + S CLNGA ()
where the last equality uses Lemma 6.1. We may thus conclude that
—1

Gulh ) = 55— (énu)én () + 2GL(N) + 2, (1)

4G (NG () — %G;;@)G::(m)

-1 _ ~ ,
= m (Gn()‘)Gn(.U) - (2Gn()\) -1)

1
2G40 - )+ 1~ GLNG W),
which completes the proof of (i).
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(ii) Proceeding as in the proof of (i) we find by application of Proposition 5.4 that

4G (A A) = 4 /R mpn(x,y)dxdy
() o ) (] e
(6.3)

By calculations similar to those in the proof of (i), we have here that

ﬁn(x) o " h’;z(x) o
/R()\_x)zdx—/\Gn()\), /R()\_x)de— (),

h// (x)
n d — _G/// )\ ,
| e = —a o)
which inserted into (6.3) yields the formula in (ii). |
Corollary 6.3. Consider the coefficients n;, j € Ny, in the asymptotic expansion

of G,(X) (cf. Proposition 4.5), and adopt as before the notation 7;(\) = n;(A) —
A1 (A).

(i) For any distinct A, p from C\{0} and k in Ny we have the asymptotic expansion:
Fl()‘7u) FQ()H/J)

kalz‘l;u) + O(n—Qk—Q):| , (64)

where

Lo(A, 1) = (215(N) — 1)(2np (1) — 1) — il (M)l (1) — 1,
and for 1 in {1,2,...,k}

-1
Ty(A, 1) = 20 (M) (2m6 () — 1) + 2m () (2m(A) — 1) + 42 (M- (1)

1-1 1
0 Oy (1) = D i\ () (6.5)
j=0 j=0
(the third term on the right-hand side should be neglected, when | = 1).
(ii) For any X\ in C\R and any k in Nog we have that
1 Ti(A)  To(A Tr(A
) Ta) T

Gn()\,/\):Z[TO()\)+ e

+ O(n72k72) ,
where

To(A) = (A = 4)i5 (V)?,
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and forlin {1,2,...,k}

"

Tl()‘): 771 1—j5

Z 77///

7 (0m”( (A (6.6)

Proof. From the asymptotic expansion of G, (\) (cf. Proposition 4.5) it follows
that

26,0 1 = (2npn) — 1) + LN g 2R o2y
an =g+ BN o KO | o)
C~YYn(/\) = 7?0(/\) + % N LA A nk(/\) + O( —2k’—2)7

where we also use that the derivatives of the remainder terms are controlled via
Lemma 4.2.

Inserting the above expressions (and the corresponding expressions for
2G" (1) — 1,G" () and G, (p)) into the formula in Theorem 6.2(i), it is straight-
forward to establish (i) by collecting the n~2?!-terms for each [ in {0,1,...,k}. The
proof of (ii) follows similarly from Theorem 6.2(ii). |

Remark 6.4. Using that no(\) = % (A — 4)% (cf. Proposition 4.5) it follows
from Corollary 6.3(i) and a straightforward calculation that for distinct A and p
from C\R,

GO\ p) = lim Gu(Ap) = H
— 1 A — 4 -
2w (W —4)F (2 — 4)% 1)’ (6.7)

where G(\, ) was initially given by (6.1

). If A = p, it follows similarly from

Corollary 6.3(ii) that

1

G\ A) = lim Gu(\\) = %(V —4)ng (A)? = o2 a2’

n—oo

which may also be obtained by letting A tend to p in (6.7).
Using also that 71 (\) = (A2 — 4)7%/2 it follows from (6.5) and a rather tedious
calculation that
(A—n)?
ENHEENE
520212 + 208\ + 5\

Ty(\p) = (5A® + ANt 4 dp® — 522> + 333

(A2
— 1607 + X p? —

— 5203 — 162 + 320 + 4\%).
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Inserting this into (6.4) and letting A tend to p we obtain that

T1(A) = 4(212% +20)(\2 — 4)7,

which is in accordance with (6.6).
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