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Abstract: In this paper we give new and purely analytical proofs of a number of classical results 
on the asymptotic behavior of large random matrices of complex Wigner type (the GUE-case) 
or of complex Wishart type: Wigner's semi-circle law, the Harer-Zagier recursion formula, the 
Marchenko-Pastur law, the Geman-Silverstein results on the largest and smallest eigenvalues 
and other related results. Our approach is based on the derivation of explicit formulae for the 
moment generating functions for random matrices of the two considered types. 
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I n t r o d u c t i o n  
Random Matrices has been an important  tool in statistics since 1928 and in physics since 
1955 start ing with the pioneering works of Wishart  [Wis] and Wigner [Wigl]. In the 
last 12 years random matrices have also played a key role in operator  algebra theory and 
free probabil i ty theory start ing with Voiculescu's random matr ix  model for a free semi- 
circular system (cf. [Vo]). Many results on eigenvalue distributions for random matrices 
are obtained by complicated combinatorial methods, and the purpose of this paper is 
to give more easily accessible proofs, by analytic methods, for those results on random 
matrices, which are of most interest to people working in operator algebra theory and free 
probabil i ty theory. 

We will s tudy two classes of random matrices. The first class is the Caussian unitary 
ensemble (GUE) (cf. [Meh, Ch.5]), and the second class is the complex Wishart  ensemble, 
which is also called the Laguerre ensemble (cf. [Go], [Kh] and [Fo]). Our new approach is 
based on the derivation of an explicit formula for the moment generating function: 

s  (Tr(exp(sZ))), 
where Z is either a GUE random matr ix  or a complex Wishart  matrix.  These two formulas 
are then used to reprove classical results on the asymptotic behavior of the eigenvalue 
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distribution of Z. In particular, we shall study the asymptotic behavior of the largest 
and smallest eigenvalues of Z in those two cases. The above mentioned explicit formulas 
also give a new proof of the Harer-Zagier recursion formula for the moments E(Tr(ZP)), 
p = 1, 2 , . . . ,  in the GUE case, and we derive a similar recursion formula for the moments 
in the complex Wishart case. 

A preliminary version of this paper was distributed as a preprint in 1998, and the methods 
and results of that  paper were used in our paper [HT] from 1999 on applications of random 
matrices to K-theory for exact C*-algebras. 
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P r e l i m i n a r i e s  and  s t a t e m e n t  o f  resu l t s  

The first class of random matrices studied in this paper is the class of complex selfadjoint 
a n random matrices A = ( ij)i,j=l, for which 

a n (ii)i=l,  (v~Re(tij)i<j, (v~Imaij)i<j 
form a set of n 2 independent real Gaussian distributed random variables all with mean 

1 value 0 and variance a 2. We denote this class of random matrices SGRM(n, a2). If a 2 = 
one gets the Gaussian unitary ensemble (GUE) from Mehta's book (cf. [Meh, Sect.5]) and 
the value a2 = ! gives the normalization used in Voiculescu's random matrix paper [Vo]. 
In [Meh, Section 5], it is proved that  the "mean density" of the eigenvalues of a random 
matrix A from the class SGRM(n, ½) is given by 

! (0.1) 
k=O 

where P0, ~1, P2,. .  • is the sequence of Hermite functions. In Section 2 we derive from 
(0.1) that  for d in SGRM(n, or2): 

0-252 
E(Tr,[exp(sA)]) = n .  exp( -5 -  ) • ¢(1 - n, 2; -a2s2) ,  (0.2) 

where Tr~ is the usual unnormalized trace on M~(C), and (b is the confluent hyper- 
geometric function (cf. formula (2.9) in Section 2). From (0.2), we obtain a simple proof 
of Wigner's Semi-circle Law in the sense of "convergence in moments",  i.e., for a sequence 
(X~) of random matrices, such that  Xn e SGRM(n, ~) for all n, 

lim N(tr,~[Xg]) = - z 2 d z ,  ( p  ~ N), (O.3) 
n--+oo 
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where tr~ = ~Tr~ is the normalized trace on M~(C). 

In Section 3, we apply (0.2) to show, that  if (X~) is a sequence of random matrices, 
defined on the same probability space, and such that  X~ E SGRM(n, ~) for all n, then 

l i ra  .~max(Xn(Cd)) = 2, for almost all w, (0.4) 

lim /~min(Zn(Cd)) ~--- --2, for  a l m o s t  al l  o3, (0.5) 
n--+oc 

where Amax (X~ (w)) and Amin (X,  (w)) denote the largest and smallest eigenvalues of X ,  (w), 
for each w in the underlying probability space Ft. This result was proved by combinatorial 
methods for a much larger class of random matrices by Bai and Yin in [BY1] in 1988. 
Only random matrices with real entries are considered in [BY1], but the proofs also work 
in the complex case with only minor modifications (cf. [Ba, Thm. 2.12]). In Section 4 
we apply (0.2) to give a new proof of a recursion formula due to Harer and Zagier, [HZ], 
namely the numbers 

C(p, n) = E(Trn[A2P]), p = 0, 1, 2 , . . .  

for A in SGRM(n, 1) satisfies 

C(p  "~ 1, Tt) --~ n"  4~.+_~ . C(p,  Tt) -~- '(4p2-1) • C(p  - 1, n) (0.6) p+2 p+2 ' 

In Sections 5-8 we consider random matrices of the form B*B where B is in the class 
GRM(m, n, a 2) consisting of all m x n random matrices of the form B = (bjk)j,k where 
{bjk [ 1 < j <_ m, 1 < k < n} is a set of mn independent, complex Gaussian random 
variables, each with density 7r-la -2 exp(-Iz]2/a2),  z c C. The distribution of B*B is 
known as the complex Wishart distribution or the Laguerre ensemble (cf. [Go], [Kh] and 
[Fo]). In analogy with (0.1), the "mean density" of the eigenvalues of B*B in the case 
o 2 = 1 is given by 

1 ~ ~ n - n ( X ) 2  (0.7) 

k=0 

where the sequence of functions (~)k~0 can be expressed in terms of the Laguerre poly- 
nomials L~(x): 

~ ( x )  = [ ~ x  ~ exp( -x) ]  ½L~(x). (0.8) 

From (0.7) and (0.8) we derive in Section 6 the following two formulas: 

If m > n, B e GRM(m, n, 1), and s C 12 such that  Re(s) < n, 

n 2 = ~ , - , F ( k - m , k - n ,  1;s)  
E(Trn[exp(sB*B)]) z - ,  -(1- - ' ~  ~ -~ i - -hg  ' (0.9) 

k=l " 
F(1 - m, 1 - n, 2; s 2) 

E(Tr,[B*Bexp(sB*B)]) = mn ( l _ s ) m + ,  , (0.10) 

where F(a, b, c; z) is the hyper-geometric function (cf. formula (6.8) in Section 6). 

In Section 6, we use (0.10) to give a new proof of the following result originally due to 
Marchenko and Pastur IMP]: 
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Let (Y~) be a sequence of random matrices, such that for all n, Yn E GRM(m(n), n, ~), 

where m(n) > n. Then, if limn-~o¢ m(n___A) = c, the mean distribution of the eigenvalues of 
n 

Y*Yn converges in moments to the probability measure #c on [0, oc[ with density 

d~o(x) _ V/(x - a)(b - ~) • l[a,b] (X),  (0 .11)  
dx 2 7r x 

where a = (v ~ -  1) 2 and b = ( v ~ +  1) 2. Specificly, 

// lira E(tr~[(Y~*Y,0"]) = x" d#c(x), (p ¢ N). (0.12) 

Since Marchenko and Pastur's proof from 1967, many other proofs of (0.12) have been 
given both for the real and complex Wishart case (cf. [Wa], [GSJ, [Jo], [Ba] and [OP D. 

In Section 7 we use (0.9) to prove that if (Y~)~=I is a sequence of random matrices defined 
on the same probability space, such that Y~ E GRM(m(n), n, ~) and re(n) > n for all 

n E N, then if lim~-+oo ~ = c, one has 

limocAmax(Yn*Yn) = (V~+ 1) 2, almost surely, (0.13) 

lim Ami.(Y*Y,) = ( v ~ -  1) 2, almost surely. (0.14) 
n--~CO 

Again, this is not a new result. (0.13) was proved in 1980 by Geman [Gem] and (0.14) was 
proved in 1985 by Silverstein [Si]. Only the real Wishart case is considered in [Gem] and 
[Si], but the proofs can easily be generalized to the complex case. Moreover, (0.13) and 
(0.14) can be extended to a much larger class of random matrices (cf. [BY2] and [Ba]). 

Finally, in Section 8, we use (0.10) combined with the differential equation for the hyper- 
geometric function, to derive a recursion formula for the numbers: 

D(p, m, n) = E(Tr,[(B*B)P]), (B e GRM(m, n, 1), p e N), 

analogous to (0.6), namely 

D(p + 1, m, n) = (ep+l)(m+~). D(p, m, n) + (P-1)(P~-(m-~)2) • D(p - 1, m, n). (0.15) 
p + 2  p + 2  

It would be interesting to know the counterparts of the explicit formulas (0.2), (0.6), 
(0.9), (0.10) and (0.15), for random matrices with real or symplectic Gaussian entries. 
The real and symplectic counterparts of the density (0.1) are computed in Mehta's book 
[Meh, Chap.6 and 7], and the real and symplectie counterpart of (0.7) can be found in 
Forrester's book manuscript [Fo, Chap.5]. However, the formulas for these densities are 
much more complicated than in the complex case. 

1 Selfadjoint Gauss ian R a n d o m  Matrices  

1.1 Def ini t ion.  By SGRM(n, G 2) we denote the class of n x n complex random matrices 
a n A = ( jk)j,k=l, where ajk = ajk, j , k  = 1 , . . . , n  and 

ajj, (vr2Reajk)j<k, (v~Imajk)j<k, (1.1) 
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is a family of n 2 independent identically distributed real Gaussian random variables with 
mean value 0 and variance cr 2 (on the same probability space (f~, 5 r ,  P)) .  [] 

The density of a Gaussian random variable with mean value 0 and variance a 2 is given 
by ~ 1 ( ~ )  

(27ra ) -~exp  - 2 7  . 

n For a selfadjoint matrix H = (hjk)j,k=x 

Trn(H2) = E h2j + 2 E Ihj k12. 
j j<k 

Therefore, the distribution # of a random matrix A E SGRM(n, ~) (considered as a 
probability distribution on M~(C)~) is given by 

d#(H) = ci exp (-&Trn(H2)~ dH, (1.2) 
\ z, ~a / 

where dH is the Lebesgue measure on M~(C)~: 

dH=~Idhjj rI  dae(hjk)dlm(h3k) (1.3) 
j = l  l<_j<k<n 

and 

For a selfadjoint matrix H C M~(C)sa we let ~I(H) _< A2(H) < -- .  _< An(H) denote the 
ordered list of eigenvalues. Put  

a = { ( A I , . . . , A . )  e R " I AI _< A~ < . -  < ~ .}  

and let ~]: M~(C)sa --+ A denote the map 

~(H) = (AI (H) , . . . ,  An(H)), H e M~(C)s~. 

Then the image measure ~7(d#) of the measure d#, given by (1.2), is equal to 

1 A 2 dA1 "dAn ~(@)  = c~ I ]  (A, - Ak) 2 exp -~ -b~  k " 
l<j<k<_n 

for (A1,. . . ,  A~) E A, where c2 > 0 is a new normalization constant: 

j = l  

(cf. [Meh, Chap.5] or [De, Sect. 5.3]). Hence, after averaging over all permutations of 
(A1,. . . ,  An), we get that  for any symmetric Borel function ~: Si n --+ C one has 

fi,~ ~(AI(H) , . . . ,A~(H))  d#(H)= f ~(_~)g(_~) d A l "  .dA~ (1.4) 
(c)~a d ~  
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where _A -- ()u, . . . ,  An) and 

g(Ai, . . . ,An)= -Ak) 2 e x p ( - ~ l  ~j=~ (1.5) 
• j<k 

provided the integrals on both sides of (1.4) are defined. The marginal density h corre- 
sponding to (1.5): 

f~,-1 g(A, A2,...,A,) dA2...dAn, (A e R), (1.6) h(A) 

can be computed explicitly. For c ~2 = ½, one gets by [Meh, Formulas 5.1.2 and 5.2.16] 
that h is equal to ~=19~k(x) 2, where (Fk)k~0 is the sequence of Hermite functions: 

pk(x) = (2kk,~)i/~Hk(x) exp( -~) ,  (k 6 No), (1.7) 

and H0, HI, H2,..., are the Hermite polynomials: 

d k 
(~xk exp(-x2)), (k e No), (1.8) Hk(X) (-1)k exp(x2) • 

(cf. [HTF, Vol. 2, p.193, formula (7)]). Hence, by a simple scaling argument, one gets 
that for general a 2 > 0, 

~l--1 

h(A) -  I .,, 2 

k=O 

From the above, one easily gets: 

1.2 Proposit ion.  Let f :  R -+ R be a Borel function, and let a ~ f(a) be the map from 
M,(C)~ into itseff, obtained by the usual function calculus for selfadjoint operators on 
Hilbert space. Consider furthermore the [unction h given by (1.9). Then for any element 
A ofSGRM(n, a2), we have that 

E(Trn[f(A)]) = n j f  f(A)h(A) dA, (1.10) 

provided that the integral on the right hand side of (1.10) is well-defined (i.e., f >_ 0 or 
fR [f(A)th(A) dA < oo). 

Proof. Assume first that f > 0. Since 

Try[f (A)] = f(AI(A)) + . . .  + f(A~(d)), 

is a symmetric function of the eigenvalues A~(A),..., An(A), it follows from (1.4) that 

f~, n A E(Tr,[f(A)]) = (E~=xf( J)) '  g(A~, • .., An) dA1.., dAn. 
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Using then that g is invariant under permutations of A1,..., An, it follows that 

E(Trn[f(d)]) = n . . ~  I(A1) - g(AI,.. . ,  An) dA1 "'" dan 

= n ]~ f(A)h(A) dA, 

which proves that (1.10) holds whenever f > 0. For general, complex-valued Borel func- 
tions f ,  satisfying that f~ If(A)[h(A) dA < oo, (1.10) follows then from the positive case, 
and the standard decomposition: 

f = (Re f)  + - (Re f ) -  + i((Imf) + - (Ira f ) - ) .  m 

1.3 Remark .  Let A E SGRM(n, cr2), and let AI(A) _< . . .  _< An(A) be the ordered 
eigenvalues of A considered as random variables on the underlying probability space f~. 
Let, further, v~ be the probability distribution (on R) of Ak(A), k = 1 , . . . ,  n. Then 

1 n 

k = l  

For that reason, h(A) is called the "mean density" of the eigenvalue distribution of A. 
[] 

2 The moment generating function for GUE random 
matrices 

IfA e SGRM(n,  a2), then 1-Z-A SGRM(n, 1 ~/~ E ~), which is the Gaussian, unitary ensemble 
(GUE) in [Meh, Chapter 5]. Hence, up to a scaling factor, SGRM(n, a z) is the same as 
the GUE-case. In this section we will prove formula (0.2) (cf. Theorem 2.5 below) and 
use it to give a new proof of the Wigner semi-circle law in the GUE-case. We start by 
quoting a classical result from probability theory: 

2.1 Proposi t ion .  Let #, #1, p2, #3, . •., be probability measures on ]~, and consider the 
corresponding distribution functions: 

F ( x ) = , ( ] - ~ , x ] ) ,  r n ( x ) = , n ( ] - ~ , x ] ) ,  ( x e ~ ,  n e N ) .  

Let Co(JR) and Cb(~ ) denote the set of continuous functions on 1~ that vanish at -4-oo, 
respectively the set of continuous, bounded functions on ]~. 

Then the following conditions are equivalent: 

(i) limn-~oo Fn(x) = F(x)  for all points x of I~ in which F is continuous. 

(ii) Vf C C0(I~) : l imn-~ f~ f d#n = f~ f d#. 
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(iii) Vf e Cb(R) : limn--~oo f~ f d#n = fR f d#. 

(iv) Yt e R: lim.--~oo f~exp(itx) dp~(x) = f~exp(itx) d#(z). 

Proof. Cf. [Fe, Chapter VIII: Criterion 1,Theorem 1,Theorem 2 and Chapter XV: Theo- 
rem 2]. • 

2.2 Definition. Let Prob(lR) denote the set of probability measures on ~. Follow- 
ing standard notation, we say that a sequence (#~)~--1 in Prob(N) converges weakly to 
# E Prob(~) if the above equivalent conditions (i)-(iv) hold. Moreover, we say that #~ 
converges to # in moments, if #,  and # have moments of all orders, i.e., 

L [x]vd#(x)<°c' and L ]x[pd#~(x)<°c' (p, n E N )  

and the following holds 

lim [ x p d#n(x) = f x p dtt(x), (p E N). [] 
n-->oo j ~  JR 

In general convergence in moments does not imply weak convergence or visa versa. How- 
ever, if # is uniquely determined by its moments, then pn ~ # in moments implies that 
#,  --+ # weakly (cf. [Bre, Thin. 8.48]). In particular this holds if the limit measure # has 
compact support. 

oo k c~ Let (Hk)k=o and (~)k=O denote the sequences of Hermite polynomials and Hermite func- 
tions given by (1.8) and (1.7). Then Ho, H1,... satisfy the orthogonality relations 

f { x/~2kk[, k = g  (2.1) Hk(x)He(x)e-X~dx = O, k ¢ g 
oo 

(cf. [HTF, Vol.2, p.164 and p.193 formula (4)]). Hence 

f { 1, k = /  (2.2) ~k(x)~e(x)dx  = o, k # e 

2 . 3  Lemma. Let (~)  denote the sequence of Hermite functions given by (1.7). We then 
have 

g~(x) - ,~2@1(x), (2.3) 

~9',~(x) = X/~9 ,_ l (x) -  ~ (2.4) V - ' ~ g n + l ( X ) '  (n e ~ ,  

n--1 
d ) : (n N). (2.5) 

k=O 

Proof. The equations (2.3) and (2.4) follow from (1.7) and the elementary formulas 

x Y . ( x )  = 1 ~Hn+ 1 -~ TtHn_l(X), (2.6) 

H~(z) = 2ng,_l(x), (2.7) 
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(cf. [HTF, Vol. 2, p. 193, formulas (10) and (14)]). Moreover, (2.5) is easily derived from 
(2.3) and (2.4). • 

For any non-negative integer n, and any complex number w, we apply the notation 

1, if n = 0, (2.8) 
(w)n= w ( w + l ) ( w + 2 ) . . . ( w + n - 1 ) ,  i f n e N .  

Recall then, that the confluent hyper-geometric function (a, c, x) ~-+ ~(a, c; x) is defined 
by the expression: 

(a)~x n a x a(a + 1) x 2 
~(a, X) ~=o (c)nn~ - 1 + c-1 + c(c + 1) -2- + " ' '  (2.9) Cl 

for a, c, x in C, such that c ~ Z \ N (cf. [HTF, Vol. 1, p.248]). Note, in particular, that 
if a E Z \ N, then x ~-+ O(a, c; x) is a polynomial in x of degree - a ,  for any permitted c. 

2.4 L e m m a .  For any s in C and k in No, 

82 82 exp(sx)~k(x) 2 dz = exp(T)4)(-k , 1 ; - y )  

k 
= e x p ( ~ _ l E k ( k _ l ) . . . ( k + l _ j ) { s 2 ~ j  (2.10) 

j=0 ' 

and for s in C and n in N, 

~ exp(sx) ( .-1 Ek=0 ~k(X) 2) dx 

= n .  exp(~)(b(1 - n, 2 ; - ~ )  (2.11) 
rL--1 

8 2 n. exp(~-)E (n- 1 ) ( n -  2) . . .  ( n -  j) (s2~j 
j :o j!(j  ~ ~! \-2 ] " 

Proof. For l, m in No and s in R, we have that 

f~ 1 f~ exp(sx)cfll(X)~m(X) dx - ( 2 1 + m l ! m l T r ) l / 2  exp(sx- x2)gl(x)gm(x) dx. (2.12) 

B y  the substitution y = x - ~, the integral on the right hand side of (2.12) becomes 

exp(~)fR exp(-y2)Ht(Y + 2)Hm(y + 2) dy. (2.13) 

Note here, that by (1.8) we have for a in R and k in No, 

d k [ 
Hk(x + a) = (--1) k exp((x + a)2) • (~xk exp(-(x + a)2)) 

dk-j 
(-1) k exp(x 2 + 2ax) E exp(-x2)) = (d~/-:7 exp (-2ax)), 

j=0 
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which can be reduced to 
k 

Hk(X÷a)=E(~)(2a)k-JHj(x ). (2.14) 
j=0 

It follows thus that the quantity in (2.13) equals 

which by the orthogonality relations (2.1) can be reduced to 

min{/,m} 

j=0 

Altogether, we have shown that for m, l in No and s in II{, 

min{/,m} ( i ) ( 7 ) ( 8 " ~ l + m - 2 j  exp(sz)  (x) m(x) e x -  exp( ) J! (2.1a) 

But since both sides of (2.15) are analytic functions of s 6 C, the formula (2.15) holds 
for all s in C. 

Putting now 1 = m = k, and substituting j by k - j,  (2.15) becomes 

f exp(sx)~k(x) 2 dx - exp(~)  k k ,  E ( k - J ) '  (~) 2(8-~-~2jkv~] 
j=o 
k 

= e x p ( . ~ ) E k ( k -  1) . . .  (k + 1 - j )  (s2~J 
j=0 (j!)2 \~ - ]  , 

and this proves (2.10). 

The formula (2.11) is trivial in the case s = 0, because of the orthogonality relations (2.2). 
If s E C \ {0}, then by (2.5) and partial integration, we get that 

~ exp(sx) n-~ x 2 =--~exp(sx)~n(x)~n_l(X)dx. 

Using now (2.15) in the case l = n, m = n - 1, we get, after substituting j by n - 1 - j,  
that 

V~ exp(~)n-1  . ,  n 
~-2nfexp(sx)g~n(x)~°n-l( x ) s  JR dx-  ~(n=~) ' l  E ( n - l j : o  - , ) ' ( j q - 1 )  ( n - j  1 ) (  8 '~2J+ 1 V  ~ ]  

, ,=, ~-~ (n - l)(n- 2)... (n - j) { s2~ j 
= n e x P ( T ) 2 - '  f i ( j  -7- J.g \ 2 ]  ' 

j=o 

and (2.11) follows. • 
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2.5 Theorem.  (i) For any dement A of SGRM(n ,a  2) and any s in C, we have that 

ff282 Z(Tr.[exp(sd)] )  = n .  e x p ( - T ) .  ~(1 - n, 2;-~2s~) (2.16) 

(ii) Let (Xn) be a sequence of random matrices, such that Xn E SGRM(n, ~) for all n in 
N. Then for any s in C, we have that 

= exp(sx) 4,/~- x~ dx, (2.17) lira E(tr~[exp(sXn)]) ~ 2 

and the convergence is uniform on compact subsets of C. 

Pro@ Prom (1.9) and Proposition 1.2 we have 

1 f ~  n-1 
E(Trn[exp(sA)]) - nGx/'2 exp(sA) E ~k (7-~)2dA. (2.18) 

oo k = 0  

in (2.18). This proves (i). By Hence (2.16) follows from (2.11) by substituting x = ~-~ 
application of (i), it follows then, that for X~ from SGRM(n, ~) and s in C, we have that 

- -  2 82" E(tr.[exp(sX.)]) exp(~) .  ~(1 n, ; - 7 )  

. , = . ~ = ~ ( n - 1 ) ( n - 2 ) . . . ( n - j ) ( s 2 ) J  (2.19) 
= e x P { ~ ) L  7 G  ~7 i~. , 7 ,  " 

j=0 

By Lebesgue's Theorem on Dominated Convergence, it follows thus that 

lira E(tr=[exp(sXn)]) = y~.  s=~ 
~-+oo 2=o j ! ( j  + 1)!" 

The even moments of the standard semi-circular distribution are: 

- x 2 d x  = ~ - ~  , ( p  e No), 

and the odd moments vanish. Hence, using the power series expansion of exp(sx), we find 
that 

e x p ( s x ) ~  x 2 dx = = 
2 j=0 (2j)!(j + 1) = j ! ( j  + 1)!" 

Therefore, 

1; = exp(sx)x/4 - x 2 dz, lira E(tr~[exp(sX~)]) ~ z 

Note next, that by (2.19), we have that 

[E(tr~[exp(sXn)]) ] _< ~-'~ ]sl2J 
j=o j ! ( j  + 1)]' 

(s ~ C), 

(s C C). (2.20) 
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so the functions s ~ E(trn[exp(sXn)]), (n C N), are uniformly bounded on any fixed 
bounded subset of C. Hence by a standard application of Cauchy's Integral Formula and 
Lebesgue's theorem on Dominated Convergence, it follows that  the convergence in (2.20) 
is uniform on compact subsets of C. • 

Wigner's semi-circle law for the GUE-case (cf. [Wigl], [Wig2] and [Meh, Chap.5]) is now 
a simple consequence of Theorem 2.5. We formulate it both in the sense of convergence 
in moments and in the sense of weak convergence (cf. Definition 2.2): 

2.6 Coro l la ry .  (cf. [Wigl], [Wig21, [Meh]) Let (Xn) be a sequence of random matrices, 
such that Xn C SGRM(n, ¼) for all n. We then have 

(i) For any p in N, 1/7, lim E(tr~[X~]) = x / 4 -  x 2 dz. (2.21) 

(ii) For every continuous bounded function f :  R -+ C., 

,/2 limN(trn[f(X~)]) = ~7 2f(z)~/4- x~ dz. 

Proof. Let h~(,~) denote the function h(~) in (1.9) for the special case c~ 2 = ! By 
n "  

Proposition 1.2 and Theorem 2.5(ii), 

r [ lira exp(sx)h~(x)dx = ~ exp(sx) 4x~ -Z- x 2 dx 
n--+oo JR 2 

for all s E C and the convergence is uniform in s on compact subsets of C. Hence, by 
Cauchy's integral formulas, we have 

dP 
lira 7 ~ ( f e x p ( s x ) h ~ ( x )  dz) dP ( ! f2  dx) ,  ,~--~ as~ , JR = dsP ~,~J_~ exp(s.) 4gg7~- ~ 

for all s in C. Putt ing s = O, it follows that  

lim E(tr~[XP]) = lira x'hn(x) dx = - x  2 dx, 
~-'+OO n-'+OO 

which proves (i). Putt ing s = it in Lemma 2.5(ii), it follows that  for any t in N, 

[ ,f_2 lim -- exp(i tx)h,(x)  dz e x p ( i t x ) ~  x 2 dx. (2.22) 
2 

Hence by Proposition 2.1, 

aL l i ra E( t r : [ f (X , ) ] )  = f (x)h~(x) dx = ~ f ( x ) f f 4 -  x 2 dx, 
2 

for any continuous bounded function f on 1R, and this proves (ii). I 

2.7 R e m a r k .  Arnold's strengthening of Wigner's Semi-circle Law to a result about al- 
most sure convergence of the empirical distributions of the eigenvalues (of. [Ar]), will be 
taken up in Section 3 (see Proposition 3.6). A very good survey of the history of Wigner's 
Semi-circle Law is given by Olson and Uppuluri in [OU]. [] 
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3 Almost  Sure Convergence of the Largest and Smal- 
lest Eigenvalues in the  G U E  case 

Bai and Yin proved in [BY1] that for a large class of selfadjoint random matrices for which 
Wigner's semi-circle law holds, one also gets that the largest (resp. smallest) eigenvalue 
converges almost surely to 2 (resp. -2)  as n --+ oc. In [BY1] only random matrices with 
real entries are considered, but the proof can easily be extended to the complex case 
(cf. [Ba, Thin. 2.12]). In this section we will give a simple proof of Bai's and Yin's result 
in the special case of GUE random matrices, based on Theorem 2.5 (cf. Theorem 3.1 
below). 

Thanks to results of Tracy and Widom ([TW1], [TW2]), one now has much more precise 
information on the asymptotic behavior of the largest (and smallest) eigenvalue in the 
GUE ease, as well as in the corresponding real and symplectic cases (GUE and GSE). 
These results, however, lie outside the scope of the present paper. 

3.1 Theorem.  (c£ [BY1] and [Ba D Let (X~) be a sequence of random matrices, defined 
on the same probability space (f~, .~, P), and such that X~ E SGRM(n, 1), for each n 
in •. For each ~ in a and ~ in N, let ~m=(Xn(~)) and ~mi.(Z,(~)) denote the largest 
respectively the smallest eigenvalue of X~(w). We then have 

lim )~max(Xn) = 2, almost surely, (3.1) 
~--+00 

and 
l i ra  /~min(Xn) : - 2 ,  almost surely. (3.2) 

For the proof of Theorem 3.1, we need some lemmas: 

3.2 Lemma.  (Borel-CanteUi) Let F1, F2, F3,..., be a sequence of measurable subsets 
of~,  and assume that ~n~=l P(~ \ Fn) < oo. Then P(Fn eventually) = 1, where 

(Fn eventually)= 0 N Fm, 
nEN m>n 

i.e., for almost all w in ~, w E Fn eventually as n -+ oc. 

Proof. Cf. [Bre, Lemma 3.14]. • 

3.3 Lemma.  Let (Xn) be a sequence of random matrices, defined on the same probability 
space (f~, .~, P), and such that X~ E SGRM(n, ¼) for all n in N. We then have, 

limsupAmax(X~) _ 2, almost surely, (3.3) 

and 
liminfAmin(Xn) > -2,  almost surely. (3.4) 

n--~oc 
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Proof. By (2.19), we have for any n in N, that 

t 2 ~ ( n -  1 ) ( n -  2 ) . . . ( n -  j )  ( t 2 ) j  
E(Trn[exp(tXn)])  = n .  exp(Tn)E  ~ i ) ) !  - - , n ,  

j=0 
c~ t2 j 

<  .exp@V' - - -  

- ~=oj!(j + 1)! 
F oo t j 1 2  

It follows thus, that 

E(Tr~[exp(tXn)]) <__ n .  exp(~ + 2t), (t e N+). (3.5) 

Note here, that since all eigenvalues of exp(tX~) are positive, we have that 

Trn[exp(tX~)] _> Amax(exp(tX~)) = exp(tAma~(X~)), 

and hence by (3.5) and integration, 

]E(exp(tAmax(Xn))) <_ n" exp(~n -t- 2t), (t e ~+). (3.6) 

It follows thus, that for any e in ]0, ee[, 

P(~max(Xn) >_ 2 + ~) = P (  exp(tAmax(Xn) - t(2 + ¢)) > 1) 

< E(exp(tAm x(X ) - t(2 + 

_< exp(-t(2 q- e))E( exp(tAmax(Xn))), 

and hence by (3.6), 

P(,kmax(Xn) >_ 2 + e) <_ n . exp(~n - et), (t e N+ ). (3.7) 

As a function of t E Re, the right hand side of (3.7) attains its minimum when t = he. 
For this value of t, (3.7) becomes, 

- - h E  2 P(Amax(Xn) >_ 2 + e) <_ n .  exp(--5- ). 

Hence by the Borel-Cantelli Lemma (Lemma 3.2), 

lira sup Ama~(X~) _< 2 + e, almost surely. 
n - - + O ~  

Since this holds for arbitrary positive e, we have proved (3.3). We note finally that 
(3.4) follows from (3.3), since the sequence (-X~) of random matrices also satisfies that 
-X~ E SGRM(n, ¼) for all n. ,, 

To complete the proof of Theorem 3. i, we shall need an "almost sure convergence version" 
of Wigner's semi-circle law. This strengthened version of the semi-circle law was proved 
by Arnold in [Ar]. Arnold's result is proved for real symmetric random matrices, with 
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rather general conditions on the entries. His proof is combinatorial and can easily be 
generalized to the complex case. For convenience of the reader, we include below a short 
proof of Arnold's result in the GUE case (cf. Proposition 3.6 below). The proof relies 
on the following lemma, due to Pisier (cf. [Pi, Theorem 4.7]), which is related to the 
"concentration of measure phenomenon" (cf. [Mi]). 

([Pi]) Le t  GN,~ denote the Gaussian distribution on R ~ with densi ty  

da~,~(~) _ (2~)_~/~ ex.(_ ~!~ 
dx ~ 'k  20  .2 )'  

3.4 L e m m a .  

(3.8) 

where Ilxll is the Euclidean norm of  z .  Furthermore, let  F:  N N ~ R be a function that  

satisfies the Lipschitz  condition 

IF(x) - F(y)l ~ c l l x -  yll, (x, y e RN), (3.9) 

for some posi t ive constant  c. Then for any posit ive number  t, we have that  

K t  2 GN,~({x  ~ R N I I F ( x ) -  E(F)[ > t}) _< 2exp(-~-r~) ,  

where •(F) = f ~  F(x) da~,~(x), and K ~--~-~. 

Proof. For a = 1, this is proved in [Pi, Theorem 4.7], and the general case follows easily 
from this case, by using that GN,~ is the range measure of GN,~ under the mapping 
x ~-+ ax:  R N ~ R N, and that  the composed function x ~ F ( a z ) ,  satisfies a Lipschitz 
condition with constant ca. • 

The following result is also well-known: 

3.5 L e m m a .  Let  f : R --+ N be a function that satisfies the Lipschitz  condition 

I f (s )  - f ( t ) l  <_ cls - t[, (s, t E N). (3.10) 

Then for any n in N, and all matrices A, B in M~(C)sa, we have that  

I l l (A)  - f(B)lIHs =cl lA - BHHS, 

where I]' I[HS is the Hi lber t -Schmidt  norm, i.e., IICIIHs = Tr.(C2) 1/2, for alJ C in M~(C)sa. 

Proof. The proof can be extracted from the proof of [Co, Proposition 1.1]: Note first that  
we may write, 

A = E A i E i ,  B =  #iFi, 
i=1  i=1 

where ~1, - . . ,  An and #1 , . . . ,  #~ are the eigenvalues of A and B respectively, and where 
E1 . . . ,  En and F1 , . . . ,  Fn are two families of mutually orthogonal one-dimensional pro- 
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jections (adding up to 1~). Using then that Tr~(EiFj) > 0 for all i , j ,  we find that 

Hf(A) - f(B)[[~ s = Trn(f(A) ~) + Tr~(f(S)  2) - 2Trn( f (A) f (B) )  

= E (f(Ai) - f (# / ) )2 .  Tr~(EiFj) 
i , j= l  

< c 2 . - Wr (E F ) 

i , j= i  

= £[IA - g]l~s. ,, 

3.6 P ropos i t i on .  (cf. [Ar]) Let (X~) be a sequence of random matrices, defined on the 
same probability space (~, ~ ,  P), and such that X~ E SGRM(n, ~), for each n in N. 
For each w in ~, let #~,~ denote the empirical distribution of  the ordered eigenvalues 
Al(X~(w)) _< A~(X~(w)) _<... <_ An(Xn(w)), of X~(w), i.e., with the usual Dirac measure 
notation, 

n 

1 5 
= (3.11) 

i=1 

Then for almost all w in f~, #~,~ converges weakly to the standard semi-circular distribution 
1 7, with density x ~+ ~ v / 4  - x 2 1[-2,2](x). 

Hence, for any interval I in ]~, and almost all w in ~, we have that 

lirnoo ( ~ .  card(sp[Xn(w)] A I ) )  = 7(1). 

Proof. Note first that for any f in Co(R), we have that 

Jr(z) trn 

for all w in ~. Hence by Proposition 2.1, it suffices to show, that for almost all w in ~, 
we have that 

lim tr~ [f(Xn(w))] = / f  dr, for all f in C0(N). (3.12) 
n--~OO J~ 

By separability of the Banach space C0(~), it is enough to check that (3.12) holds almost 
surely for each fixed f in C0(N) or for each fixed f in some dense subset of Co(R). 
In the following we shall use, as such a dense subset, CI(N), i.e., the set of continuous 
differentiable functions on ~ with compact support. So consider a function f from C~ (~), 
and put 

F(A) = trn [f(A)], (X E Mn(C)sa). 

Then for any A, B in M~(C)sa, we have that 

I F ( A ) -  f ( B ) l  _< ~[Tr~ If(A)] - T r n  [f(B)]l  < ~ ] l f ( A ) -  f(B)llHS, 

and since f is Lipschitz with constant c = sup~ee If~(x)] < oc, it follows then by 
Lemma 3.5, that 

IS(A) - F(B)I  <_ -~IIA - BIIHs, (A, B E M~(C)~). (3.13) 
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The linear bijection (I): M~(C)sa --+ R n2 , given by 

e2(A) = ((aii)l<i<_~, (v~Re(aij))l<i<j<_n, (x/2Im(aij))1<i<j<~), (A = (aij) e Mn(C)~a), 

maps the distribution on Mn(C)sa of an element of SGRM(n, ~) (cf. Definition 1.1) onto 
the joint distribution of n 2 independent, identically distributed random variables with 
distribution N(0, 1), i.e., the distribution G ~ - 1 / 2  on R ~: with density 

dG,~2,,~-i/2(x) / n "~-'~2/2 , n,~l12~ 
dx - (~-~) e x p [ - - - ~ - ) ,  (x C R=2). 

Moreover, the Euclidean norm on R ~2 corresponds, via the mapping ~, to the Hilbert- 
Schmidt norm on M~(C)s~. Hence by (3.13) and Lemma 3.4, we get for any positive t, 
that  

/ n 2 K t  2 \ P ( { w  e ~ ] JF(X~(w)) - E(F(X~))I > t}) < e x p ( - ~ ) ,  

where K = 2 f t .  Hence by the Borel-Cantelli Lemma, it follows that  

[tr~ [f(X~(w))] - E(tr~[f(Xn)])[ <_ t, eventually, 

for almost all w. Since t > 0 was arbitrary, we get by Corollary 2.6 that  

~-~¢¢ = f(x)x/4 - x 2 dz, l im trn[f(Xu(w))] = lim E(trn[f(X~)]) ~ 2 

for almost all w. The last assertion in the proposition follows by Proposition 2.10) and 
Definition 2.2. This completes the proof. • 

Proof of Theorem 3.1. By Lemma 3.3, we have that  

limsupAma~(Xu(w)) < 2, for almost all w in fL 
n--~OO 

On the other hand, given any positive c, it follows from Proposition 3.6, that  

card(sp[X,(w)] N [2 - e, c~[) --4 oc, as n --4 co, for almost all w in ~, 

and hence that  

liminfAma~(X~(w)) k 2 - c, for almost all w in ~. 
n - + O O  

Since this is true for any positive c, it follows that  (3.1) holds, and (3.2) follows from (3.1) 
by considering the sequence ( -X~) .  • 

4 The Harer-Zagier Recursion Formula 

In [HZ, Section 4, Proposition 11, Harer and Zagier considered the numbers: 

C(p, n) = 2-~/~7r -~/~ /M~ Tr~(A 2') exp(-½Trn(A2)) dA, (n E N,p e No), 
(c)~ 
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where dA = l-L"=1 daii l-Ii<j d(Re(a~,j) ) d(Im(ai,j) ). 

Comparing with Section 1, it follows, that if A E SGRM(n, 1), then for all p in No, 

C(p, n) = E ( ~ [ A V ] ) .  

Hater and Zagier proved that 

=  j(p) p+l-2j, e N), 
j = l  

where the coefficients ej(p) satisfy the following recursion formula: 

(p + 2)ej(p + 1) = (4/) + 2)cj(p) + p(4p 2 - 1)ej_l(p - 1), 

(cf. [HZ, p. 460, line 3], with (n, g) substituted by (iv + 1, j)). 

Below we give a new proof of the above recursion formula, based on Theorem 2.5 and the 
differential equation for the confluent hyper-geometrie function x ~-+ @(a, c; x). Another 
treatment of this result of Harer and Zagier can be found in [Meh, pp. 117-120]. 

4.1 Theorem.  Let A be an element of SGRM(n, 1), and define 

C(p, n) = E(Tr,[AZP]), (p e No). (4.1) 

Then C(O, n) = n, C(1, n) = n 2, and for fixed n in 5I, the numbers C(p, n) satisfy the 
recursion formula: 

C(p + 1, n) = n .  4p+2. C(p, n) + p(4p'-1) n), (p > p+2 ~ .  C(p - 1, 1). (4.2) 

Proof. Let a, c be complex numbers, such that c ~t Z \ N. Then the confluent hyper- 
geometric function 

a x a(a+l)  x 2 a(a+l)(a-{-2)  x 3 
X ~ (I)(a,  e; x )  ~-- 1 -{- c 1  -~ c(c+l) -2- "~- c(c+1)(c+2) ~.v ~- ' " ' , ( x  E C ) ,  

is an entire function, and y = (I)(a, e; x) satisfies the differential equation 

d2 y ~xx X~x 2 + (c - x) - ay = 0, (4.3) 

(cf. [HTF, Vol. 1, p.248, formula (2)]). By (2.16) in Lemma 2.5, we have, for any A in 
SGRM(n, 1), that 

E(Tr,[exp(sA)]) = n .  exp(~) • ~(1 - n, 2; -s2), (s e C). 

Since d and - m  have the same distribution, E(Tr,[dZq-1]) = 0, for any q in N, and 
consequently 

c~ 82 p 
E(Tr,[exp(sA)]) = ~ (-~p).TE(Tr,[AZP]). 
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It follows thus, that c(p,n) is the coefficient to x p in the power series expansion of the 
function 

an(x) = n .  exP(2 ) • ¢(1 - n, 2; - x ) .  

By (4.3) the function pn(x) = q~(1 - n, 2; - x ) ,  satisfies the differential equation 

zpT~(x) + (2 + x ) L ( ~ )  - (~ - 1)p,(~) = 0, 

which implies that o-~(x) = n .  exp(~) • pn(x), satisfies the differential equation 

~o"(~) + 2 < ( ~ )  - ( }  + n ) ~ . ( x )  = 0. (4.4) 

We know that cr,~ has the power series expansion: 

¢~(x) = avz p, where a v = (2p)! ' (p e N). (4.5) 
p=0 

Inserting (4.5) in (4.4), we find that 

1 (p + 1)@ + 2)ap+l - nap - ~ap-1 = O, (p >_ 1), (4.6) 

and that 
2~t - n~0 = 0. (4.7) 

Inserting then C(p,n) = ~ in (4.6), we obtain (4.2). Moreover, it is clear that 
(2p)!  , 

C(0, n) = Trn(l~) = n, and thus, by (4.7), C(1, n) = 2al = nao = n 2. • 

4.2 Corol la ry .  ([HZ]) With C(p, n) as introduced in (4.1)~ we have that 

C(p,~) = ~ ( p ) n  '+~-~j, (p ~ N0,~ ~ ~), (4.s) 
j=0 

where the coett~cients cj(p), j , p  ~ No, are determined by the conditions 

ej(p) = O, whenever j > [~t]+l, (4.9) 

co(~) = 1 [2p~ ~ , ~ , ,  (p e N0), (4.~0) 

~ j ( p + l )  = 4 - a ~ . e j ( p ) + ~ . e j _ ~ ( p - 1 ) ,  (p, j e N )  (4.11) p+2 p+2 

Proof. It is immediate from (4.2) of Theorem 4.1, that for fixed p, C(p, n) is a polynomial 
in n of degree p +  1 and without constant term. Moreover, it follows from (4.2), that only 
np+l np-1, np-3, etc., have non-zero coefficients in this polynomial. Therefore C(p, n) is 
of the form set out in (4.8) for suitable coefficients 

~j(p), p > 0 ,  0 < j  < [~]. 

Inserting (4.8) in (4.2), and applying the convention (4.9), we obtain (4.11), and also that 

:0(p + 1) = ~ .  ~0(;), (p > 1). 0.12) p+2 
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Clearly, ~0(0) = c0(1) = 1, and thus by induction on (4.12), we obtain (4.10). 

From Theorem 4.1 or Corollary 4.2, one gets, that for any A in SGRM(n, 1), 

~(Tr~[A2])  : n 2, 

~(Wr~[A4]) : 2~ 3 + n, 

E(Tr~[A°])  : 5n 4 + 10~ ~, 

E(Tr~[AS]) = 14n 5 + 70n a + 21n, 

E(Tr~[AI°])  = 4 2 n  6 + 420n 4 + 483n 2, 

etc. (see [HZ, p. 459] for a list of the numbers ~ j ( p ) ,  p < 12) .  If, as in Sections 2 and 3, 
we replace the A above by an element X of SGRM(n, 1), and Trn by trn, then we have 
to divide the above numbers by n p+I. Hence for X in SGRM(n, ¼), we have 

E(tr~[X2]) = 1, 

E(trn[X4]) = 2 +  ~ ,  

E(trnfX°])  = 5 + 5 ,  

E(trn[XS]) = 1 4 + ~ + ~ ,  
483 E(trn[Xl°l) ---- 42+  ~ + ~- ,  

etc. Note that the constant term in E(trn[X2P]) is 

~i22x2"x/4 1 [2p~ • - -  x e dx, co(p) = ~ p j  

in concordance with Wigner's semi-circle law. 

5 Rectangular Gaussian Random Matrices and the 
Complex Wishart Distribution 

5.1 Def ini t ion.  Let m, n E N and a > 0. We denote by G R M ( m , n , a  2) the class of 
m × n random matrices 

B = (bjk)l<j<m,l<k<n (5.1) 

for which the entries are m n  independent complex-valued random variables, such that the 
distribution of each bjk has density 

! exp(_[~22),  z E C  (5.2) 
7rG 2 

with respect to the Lebesgue measure d(Re z)d(Im z) on C. [] 

Note that B C GRM(m, n, a2) if and only if (Re bjk)j,k, (Ira bjk)jk form a family of 2mn 
independent real Gaussian random variables, each with mean value 0 and variance }(r 2. 
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5.2 Def in i t ion .  If /3 E GRM(m, n, 1), then the distribution of the selfadjoint n × n 
random matrix B*B is called the complex Wishart distribution with parameters (m, n). 

[] 

The complex Wishart distribution was first studied by Goodman and Khalid in [Go] and 
[Kh]. 

5.3 P r o p o s i t i o n .  ([Go],[Kh]) Let B C GRM(m, n, 1). For m >_ n the distribution d , ( S )  
o£ S = B* B is given by 

&,(S) = ca(det S) "~-n exp(-Tr~(S))  dS (5.3) 

for S E Mn(C)+ (the positive cone in Mn(C)), where c3 > 0 is a normalization constant, 
depending on m and n, and 

j=l j<k 

Moreover, the joint  distribution of  the ordered eigenvalues A~(S) < A2(S) < .-.  < An(S) 
of  S is given by 

C4I~(,~j--  Ak) 2 ,~j exp ( -  ~ / ~ j )  d,~l.. .d)~ n 
j<~ j=l j=l 

On 

(5.5) 

where c4 > 0 is again a normalization constant depending on m and n. 

Put ]R+ = [0, oc[. Assume m > n and let g : ]I{~_ --+ R denote the function 

C4 n 
g(A_) =- ~.(Aj - A k ) 2 ( H A j )  m-n exp ( - Aj) (5.6) 

j=l j=l 

where _~ = (A1,.. . ,  An) and c4 is as described above. Then, by averaging over all per- 
mutations of (Ab . . . ,  An), we get, as in Section 1, that for any symmetric Borel function 
~: ] ~  -+ C, 

f (5.7) 
(c)+ JR 

The marginal density h corresponding to (5.6), 

h(A) = f g(A, A2,--., ,~) dA2"" dan (5.s) 
JR ~-~ 
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can be computed explicitly. This is done in [Bro]. In analogy with (1.9), one gets 

Vt--1 
h(A) = 1 v-~ m_n,A, ~ 

- 2 _ ~  ( ) ,  n 
j=0 

(5.9) 

where 
[ k, x~exp(_x)] l /~ .L~(x) ,  (k E N0), (5.10) ~ ( z )  = Lr(k+~+l) 

and (L~)keNo is the sequence of generalized Laguerre polynomials of order a, i.e., 

d k 
L~(x) = (k ! ) - l x -~exp(x ) .~xk (X~+"exp( -x ) )  , (k • No). (5.11) 

5.4 P r o p o s i t i o n .  Let B be an element of GRM(m,n ,  1), let ~ ,  a • ]0, oo[, k • No, be 
the functions introduced in (5.10), and let f :  [0, oc[ --+ R be a Bore1 function. 

(i) If  m > n, we have that 

oo n - 1  r a - - n  2 
E(Tr~[f(B*B)]) = f(x)[)-~j :0~ k (x ) ]  dx, 

whenever the integral on the right hand side is well-defined. 

(ii) I f  m < n, we have that 

fo ~ Iv "~-I ~-m(z~2] E(Tr~[f(B*B)]) = ( n -  m)f(O) + f (x )  [z..,~:0 ~k , , j dx, 

whenever the integral on the right hand side is well-defined. 

Proof. (i) The proof of (i) can be copied from the proof of Proposition 1.2, using (5.5)- 
(5.9) instead of (1.4)-(1.9). 

(ii) Assume that m < n, and note that B* E GRM(n,m, 1). I f T  E Mm,n(C), then T*T 
and TT* have the same list of non-zero eigenvalues counted with multiplicity, and hence 
T*T must have n - m more zeroes in its list of eigenvalues than TT* has. Combining 
these facts with (i), we obtain (ii). • 

5.5 R e m a r k .  The real, complex and symplectic Wishart distribution has been exten- 
sively studied in the literature (see f.inst. [Wis], [Go], [Kh], [Ja], [ABJ], [HSS], and [LM]). 
Due to the connection to Laguerre polynomials, the complex Wishart distribution is also 
called the Laguerre ensemble. The book manuscript of Forrester [Fo] gives a self-contained 
treatment of all the results quoted in this section. The orthogonalization procedure which 
is used to derive (5.9) from (5.6) is also described in details in Deift's book [De, Section 
5.4]. [] 
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6 T h e  M o m e n t  G e n e r a t i n g  F u n c t i o n  for  t h e  C o m p l e x  

W i s h a r t  D i s t r i b u t i o n  

In this section we prove the formulas (0.9) and (0.10) (cf. Theorem 6.4 below). Moreover, 
we apply the second of these two formulas to give a new proof of Marchenko's and Pastur 's  
result [MP] on the limit distribution of the eigenvalues of B'B,  when m = re(n), and 
lirn~oo m(n)/n = c > 0 (cf. Corollary 6.8 below). As in Section 5, for any real number a 
in ] - 1, co[, we denote by (L~)keNo the sequence of Laguerre polynomials of order a,  i.e., 

d k (xk+a 
L~(x) = (k!)-lx -~ exp(x)~-~x k e x p ( - x ) ) ,  (k e No, x > 0), (6.1) 

and by (~k)ke~0 the sequence of functions given by 

( k! X a ~ ( x )  = ~ exp(-x))l/2L~(x), (x > 0). (6.2) 

The Laguerre polynomials satisfy the orthogonality relations: 

fo ~ = ~ r_(~+~), L~(x)L~(x). x~ exp ( -x )  dx (0, 
i f j  = k, 

(6.3) 
i f j C k ,  

(cf. [HTF, Vol. 2, p.188, formula (2)]), which implies that  the sequence of functions 
(~)ke~0 is an orthonormal sequence in the Hilbert space L2([0, cx~[, dx), i.e., 

/o 
f 
]1 ,  i f j  = k, 

~(x)~p~(x) dx = ~0, i f j  ~ k. 

6.1 L e m m a .  For any n in No, we have that 

n - 1  

d ( x E ~ ] ( x ) 2  ) = X / ~ +  a) • ~ _ l ( X ) ~ ( x ) ,  (x >0 ) .  (6.4) 
j=O 

Proof. For each n in N, we define 

j! ~ 2 0). p,(x) = Z ~(j+o+I)Lj (x), (x > 
j=O 

Using [HTF, Volume 2, p.188, formula (7)], we have here that  

p,~(x) = lim ~ J! L °t° ~L ~r-~ y ~  r(j+~+l) j ~t) j ~x) 
j=0 

= lira n! (L~_l(Y)L,~(x) - L~(y)L~_l(x)) 
y~ (y - x). r(n + ~) 

(6.5) 
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Therefore, it follows that 

p= (x) - ~  ((L~_I) (x)L~ (x) - (L~)'(x)L~_ 1 (x)), 

and hence that 

(6.6) 

n! a t! O~ p" (x) = ~ ((L~_I) (x)Ln (x) - (L,~)"(x)L~_ 1 (x)). (6.7) 

By [HTF, Volume 2, p.188, formula (10)], we have that 

X ot ,' x(L~_l)"(x ) + (a + 1 - )(L~_,) (x) = - ( n  - 1)L~_I(z ), 

x(L~)"(x) + (a + 1 - x)(L~)'(x) = -nL~(x) .  

Combining these two formulas with (6.6) and (6.7), we find that 

n! xp" (x) + (a + 1 - x)p~ (x) = ~ ( - (n - 1) L~_ 1 (x)L~ (x) + nn~ (x)L~_ 1 (x)) 

n! a a X = r(~+,)n~_l(x)L~().  

It follows now, that 

r~--I 

j=0 

= (~£(~ )  + (a + 1 - ~)p~(~))x ° exp(-~)  

= ~ L , ~ _ I ( X ) L X ( x ) x  a exp( -x )  
1/2 

_ ~ / r ( ~ + ~ ) r ( n + ~ + l ) ~  ~ (~,~(~.~ 

: V / ~ - O ~ ) '  ~na l(X)(flna(X), 

which is the desired formula. 

In order to state the next lemma, we need to introduce the hyper-geometric function F, 
which is given by the equation (cf. [HTF, Vol. 1, p.56, formula (2)]), 

r(a,  b, e; z) = ~ (a)°(b-----2)~ z~, (6.8) 
~=o (c)~n! 

with the notation introduced in (2.8). We note that F(a, b, c; z) is well-defined whenever 
c ¢ Z \ N a n d  Iz[ < 1. If e i t h e r - a  C No o r - b  C No, then F(a,b,c;z) becomes a 
polynomial in z, and is thus well-defined for all z in C. 

6.2 L e m m a .  Consider a in ] - 1, ec[ and j, k in No. Then for any complex number s, 
such that s # 0 and Re(s) < 1, we have that 

~ o  °°  s j + k  ~(x)~v~(x) exp(sx) dx = 7(a, j, k) . (1 - 8) a+j+k+l " F ( - j ,  - k ,  a + 1; s-2), (6.9) 

where 
(-1)J+k (P(c~ + j + l)F(a + k + l) ) U2 

7(a, j ,  k) - F(a  + 1) j!k! (6.10) 



Random Matrices with Complex Gaussian Entries 317 

Proof. The formula (6.9) can be extracted from the paper [Ma] by Mayr, but for the 
readers convenience, we include an elementary proof. Both sides of the equality (6.9) are 
analytic functions of s e {z E C I Re(z) < 1}, so it suffices to check (6.9) for all s in 
] - oo, 1[ \ {0}. By (6.2), we have that 

o°°qo](x)v~(x) exp(sx) dx 

= \r(j+~+l)r(k+~+l)] Yo n~(x)n~(x)x~ e x p ( ( s -  1)x) dx (6.11) 

j,k, ~I/~ fo ~° p(j+a+l)rik+a+l) ] 1 = ~ L ] ( ~ ) L ~ ( i ~ _ ~ ) y " e x p ( - y  ) dy, 

where, in the last equality, we applied the substitution y = 1@,' We note here, that by 
[HTF, Volume 2, p.192, formula (40)], we have for any positive number A, that 

k 

r~0 (6.12) 
k 

By application of this formula and the orthogonality relation (6.3) for the Laguerre poly- 
nomials, we obtain that 

fo ~L~(x )L~(x )x  ~ exp((s - 1)x) dx 

min{j.k} (~-I- +_:)( 1 ~2r ~J+k-2rF(o~+r 1, 1 + --(1 S) a+l E : ) ( :  ( 1 -  1 
- , = o  " \ 1 - - - 7 ~ ]  1 - s /  7 .  

(__8)j+ k min{j,k} 

- (l__s)~+j+k+l E 
r=O 

(_s)j+k minlz~} 

- -  (1 -- 8) ~+ j+k+ l  E 
r=0 

- \ k - r /  r! 1 ) (_s )_2 ,  

r ( j+a+ 1)r(k+~+l) s_2, 
( j -  r ) ! ( k -  r ) ! r ! P ( a + r  + 1) 

(6.13) 
We note here that 

j!k!C(~ + 1) ( - j ) , ( -k) ,  
(j - r ) ! ( k -  r)!r!F(a + r  + 1) 

and hence it follows that 

fo ~ n ] ( x ) n ~ ( x ) x  ~ - 1)x) exp((s dz 

r ( j  + c~ + 1)r(k + a + 1). ( - s p  +k 
j !k ! r (~  + 1). (1 - s),+j+k+l 

Combining (6.11) and (6.14), we obtain (6.9). • 

(a + 1),r! ' 

• F ( - j ,  - k ,  a + 1; s -2 ) .  
(6.14) 
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6.3 L e m m a .  Assume  that  a E ] - 1, oo[, and that  n C N, k E No. Then for any complex 
number s such that  Re(s) < 1, we have that 

o ~ ~ ( x )  2exp(sx) dx = 

co n - 1  

: 

j=O 

F ( - k  - a, - k ,  1; s 2) 
( 1  - s) ~+2k+1 (6.15) 

n(n  + a) F(1 - n - a, 1 - n, 2; s 2) 
(1 - (6.16) 

Proof. By continuity, it suffices to prove (6.15) and (6.16) for all s in C \ {0}, for which 
Re(s) < 1. Before doing so, we observe that for j, k in No such that j _< k, we have that 

F ( - j , - k , a  + 1;s -2) -- ( - J ) , ( - k ) ,  8_2, 

J j !k!F(a + 1) s_2r 
= E ( j _ r ) ! ( ~ : ~ ( - £ + r + l )  • 

r = 0  

Replacing now r by j - r in the summation, it follows that 

J j!k!P(c~ + 1) _ 
F ( - j , - k , a  + 1;s -2) = E r ! ( k - j  + r ) ! ( j -  r ) ! F ( c ~ + j -  r + 1) 82~ 23 

r = 0  

k!P(~ + 1) @ ( - J ) r (  -ce - J)r s 2 r - 2 j .  

= ( k - j ) ! p ( e + j + l ) 2 - - , r = 0  r~.(1--+-£----)~ 
Hence for j, k in No such that j _< k, we have that 

k!F(a + 1) . F ( - j  - a, - j ,  1 + k - j;  s 2) (6.17) 
F ( - j ,  - k ,  ce + 1; s -2) = (k - j ) ! r ( a  + j + 1) s2~ 

Returning now to the proof of (6.15) and (6.16), we note that by Lemma 6.2 and (6.17), 
we have that 

f0 ~ r ( a  + k + 1) • s 2k 
~ ( x )  2 exp(sx) dx = k!C(c~ + 1). (1 - s) ~+2k+~ " F ( - k ,  - k ,  a + 1; s -2) 

_ F ( - k  - a ,  - k ,  1; s 2) 

(1  - s )  ~+2a+1  ' 

which proves (6.15). Regarding (6.16), we get by partial integration, Lemma 6.1, Lemma 6.2 
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and (6.17), that  

oc n - 1  f ( Z ~ ( x ) 2 ) x e x p ( s x )  dx 
J 0 j = 0  

n - 1  

-1~0°° d ( E ) s ~xx x (p~(x) 2 exp(sx) dx 
j = 0  

// _ - ~ / n ( 2  + ~) ~ _ ~ ( x ) ~ ( ~ )  e~p(s~) d~ 
8 

_- -~ /~ (~  + ~) .  ~(~, ~ - 1, ~).  s ~-1 . p ( _ ~  + 1, -~ ,  ~ + 1; s -~) 
s(1 - s) ~+2n 

- V/-~-n + a ) '  7(a,  n - 1, n). S 2 n - l "  ~!" r(o~ --F 1) F ( - n  - a + 1 , - n  + 1, 2; s 2) 

s(1 - s )o+~ • r (~  + ~) s2n-~ 

= - v / n ( n +  a ) . ' y ( a , n -  1 , n ) . n ! .  r ( a +  1) .  F ( 1 -  n -  a,  1 -  n, 2;s2). 
(1 - s)o+~., r (~  + ,~) 

(6.18) 
Recall here from (6.10), that  

-1  ( r ( ~ + ~ ) r ( ~ + n +  in 
~ ( ~ ' ~ -  1 ' ~ ) -  r ( ~ +  1) ~-T)~.,- 1)) 

and inserting this in (6.18), we obtain (6.16). • 

6.4 T h e o r e m .  Assume that m,n E N and that B E GRM(m,n ,  1). 
complex number s, such that Re(s) < 1, we have that 

F(1 - m, 1 - n, 2; s 2) 
E(Tr~[B*B exp(sB*B)]) = m . n .  (1 - s) m+~ ' 

- r ( ~  + n) 
- F ( a  + 1)n! V / ~  + c~), 

Then for any 

(6.19) 

and that 

E(Trn[exp(sB*B)]) 

E(Tr~[exp(sB*B)]) 

n 2 ~ - ~ F ( k - m , k - n ,  1;s ) 
= z_~ ~ : : ~ r - z ~  , ir ,~ >_ ~, (6.2o) 

k = l  " 

m 2 ~ - ~ F ( k - m , k - n ,  1;s ) 
= ( n - , ~ ) + ~  ~ f : - ; j ~ r - ~  , i f , ~ < ~  (6.21) 

k = l  

Proof. To prove (6.19), assume first that  m > n. Then by Proposition 5.4(i), we have 

that n-1 
Lc~ m-n 2 

E(Tr,~[B'Bexp(sB*B)]) = ( E ~ k  (x) )xexp(sx) dx, 
k=O 

and hence (6.19) follows from (6.16) in Lemma 6.3. The case m < n is proved similarly 
by application of Proposition 5.4(ii) instead of Proposition 5.4(i). 
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To prove (6.20), assume that  m _> n, and note then that by Proposition 5.40) and (6.15) 
in Lemma 6.3, 

oo n - 1  

E(Trn[exp(sB*B)]) = ~o k (x) exp(sx) dx 
k=O 

n - 1  ~ -  2 
V ,  ~ ( - k - : ~ + n , - < l ; s  ) 

= ~ ( 1  - s) m-~+2k+~ " 
k = 0  

Replacing then k by n - k in this summation, we obtain (6.20). 

We note finally that  (6.21) is proved the same way as (6.20), by application Proposi- 
tion 5.4(ii) instead of Proposition 5.40). ,, 

6.5 Def in i t ion .  For c in ]0, cc[, we denote by #c, the measure on [0, ~ [  given by the 
equation 

Pc = max{1 - c, 0}50 + V/(x - a)(b - x) 2~x • l[~,b](z) • dx, 

where a = (v ~ - 1) 2 and b = (v/~+ 1) 2. It is not hard to check that  

bv/(x-a)(b-x)-2-~x d x = { l '  i f c > l , c ,  i f c - < l ,  

and this implies that  Pc is a probability measure for all e in ]0, oo[. 

The measure #~ is called the Marchenko-Pastur distribution (cf. IMP] and fOP]). It is 
also known as the free analog of the Poisson distribution with parameter c (cf. [VDN]). 

[ ]  

6.6 L e m m a .  Assume that c C ]0, oc[, and let (m(n) )n be a sequence of positive integers, 
m n) such that lin~_~o~ ( = c. Consider furthermore a sequence (Y~) of random matrices, 

such that for a11 n i ;  N, Y~ e GRM(m(n),  n, ~). We then have 

(i) For any s in C and n in N, such that n > Re(s), we have that 

(ii) For any complex number s, we have that 

lim E(tr~[Y~*Y~ exp(sY~Y~)]) = :c exp(sz) d#c(x), (6.22) 
n,--~ OO 

and the convergence is uniform on compact subsets of C. 

Proof. For each n in N, put B~ -- v~Yn, and note that  B= C GRM(m(n),  n, 1). If s E C 
and n E N such that  n > Re(s), then by Theorem 6.4, we have that  

E([trn[Y*Y~exp(sYn*Y~)][) <_ E(tr~[Y*Y~exp(Re(s)Y*Yn)]) 

e x  R e  s , _<   (Tro[.:Bo P( Bo'o/I) < 
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which proves (i). Regarding (ii), Theorem 6.4 yields furthermore (still under the assump- 
tion that n > Re(s)), that 

Here, 

E( trn[Y*Y~ exp(sYSY~)]) = ~E(Trn[B* Bn exp( ~ B*Bn)]) 

re(n), r (1  - re(n), 1 - n, 2; ~ )  
n .  (1 - s)m(n)+n 

for all j, n. 
follows that 

° ° 1  ( r n ( n 2 ) . - 1 ) ( n - 1 ) s 2 j j  n 2 ~ '  
F(1 - rn(n), 1 - n, 2; ~ )  = .~o j--- ~ 

with the convention that v ,  (~) = 0, whenever j > k, (j, k • No). Since limn-~o¢ m(~)n = C, it 
follows that for each fixed j in N, 

lim l _ _ l _ _ ( m ( n ) - l ) ( n - l ) s  2j - (cs2) j 
~-~¢ j + 1 \  j j ] n  2j j !( j  + 1)!' 

have that Moreover, with 7 := sup~EN ~ < OC, we 

1 ( m ( n ) - l ) ( n : l ~ s  2j]<_ (7s2) j 
\ j j ] n2Jl j!(j + 1)!' 

Hence by Lebesgue's Theorem on Dominated Convergence (for series), it 

l i m F ( 1  - m(n),l  - n, 2; ~ )  ~=oj!(j + 1)!' 

and moreover 

(cIsl P 
IF(1 - re(n), 1 - n, 2; ~) l  -< ~=0j U ' ' : [ ' :  + 1)[ -< exp(~/ls[2)' 

(s • C), (6.23) 

(8 • c). (6.24) 

A standard application of Cauchy's Integral Formula and Lebesgue's Theorem on Domi- 
nated Convergence (using (6.24)) now shows that the convergence in (6.23) actually holds 
uniformly on compact subsets of C. 

Recalling next that l i n ~ ( 1  - ~)n = exp(-s)  for any complex number s, it follows that 

l ira(1 _8~.)m(n)+, = exp(--(c + 1)s), (s • C). (6.25) 

Using then that 

8)m(,)+n < ( 1 -  181)(~+1), I(1 - ~ _ ~-, _< exp((7 + I)H), (s E C), 

it follows as before, that (6.25) holds uniformly on compact subsets of C. 
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Taken together, we have verified that, 

lira E(trn[Y;Yn exp(sY*Yn)]) = cexp((c + 1 ) s ) ~  . , ( - ~ ] ~ , ,  (s e C), (6.26) 
n - + o o  j = O  J"  kY )" 

and that the convergence is uniform on compact subsets of C. 

It remains thus to show that 

. oo  oo  ( C ~ 2 , ~ j  

xexp(sx) d#c(x) = cexp((c + 1)s)V" ~ ° ) -  , (s 6 C). (6.27) 
~=o J!(J + 1)! 

Note for this, that for any c in ]0, oc[, 

f0 ~ 1 ff+1+~ xexp(sx )  dp~(x) = ~J~+1-2~ exp(sx)v/4c  - (x - c - 1) 2 dx, 

since, in the case where c < 1, the mass at 0 for #~ does not contribute to the integral. 
Applying then the substitution x = c + 1 + v~y, we get that 

f0 °° cexp((c + 1)s) f 2  ~ / 4 - y 2 e x p ( s v ~ y ) d y ,  (6.28) x exp(sx) dp~(x) -- 2~ 2 

and here, as we saw in the proof of Theorem 2.5, 

I/2 ~-~ t2j 
V/4 _ y2 exp(ty) dy = (t E C). (6.29) 

2 j=o j ! ( j  + 1)!' 

Combining (6.28) and (6.29), we obtain (6.27). = 

6.7 Theorem.  Assume that c C ]0, eo[ and let (m(n) ) ,  be a sequence of  positive integers, 
such that lim~-~oo re(n) - -  C. Consider furthermore a sequence (Y~) of random matrices, 

n 

satisfying that Yn 6 GRM(m(n) ,  n, ¼) for all n. Then for any s in C and n in N, such 
that n > Re(s), 

 (rtroEexp(s< o)J 0 < 
and moreover 

f? l imE(tr~[exp(sY~Y~)])  = exp(sx) d#c(X), (s 6 C), (6.30) 

with uniform convergence on compact subsets of C. 

Proof. Since exp(u) <_ 1 + uexp(u), for any u in [0, oo[, the first statement of (i) follows 
immediately from Lemma 6.6. 
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Consider next an element Y of GRM(m, n, ~), and put B = v/-~Y E GRM(m, n, 1). Then 
by Proposition 5.4, we have that 

E(tr~[f(Y*Y)]) 
= ~E(Tr,[f(}B*B)]) 

f f ° ° ( y ~ - i  m-~ nx ~ x dx (6.31) k=0~k ( ) ) f (  ) , if r e > n ,  

1 -- w)f(0) + k=0 Pk ( n x ) ) f ( x )  dx, i f m  < n, 

for any Borel function f : [0, oc[ ~ C, for which the integrals on the right hand side make 
sense. 

From this formula, it follows easily that s ~ E(trn[exp(sY*Y)]), is an analytic function 
in the half-plane {s e C I Re(s) < n}, and that 

dE(trn[exp(sY*Y)]) = E(tr,[Y*Y exp(sY*r)]), (Re(s) < n). (6.32) 

Now for each n in N, define 

f , (s)  = E(tr,[exp(sY:Yn)]), (Re(s) < n), 

where (Y~) is as set out in the theorem. Define furthermore, 

f(s)  = exp(sx) dp~(x), (s e C). 

Since #c has compact support, f is an entire function, and moreover 

/ ' ( s )  = xexp( sx )  e . c (x ) ,  (s e c) .  

It follows thus by (6.32) and Lemma 6.6, that 

L'(s) as n 0o, (s • c ) ,  (6.33) 

with uniform convergence on compact subsets of C. Now for fixed s in C, we may choose a 
smooth path 7: [0, 1] ~ C, such that '?'(0) = 0 and 3'(1) = s. Then since f~(0) = 1 = f(0) 
for all n, it follows that 

f~(s) - f (s)  = f (,t;(z) - f ( z ) )  dz, 

whenever n > Re(s). Combining this fact with (6.33), it follows readily that f~(s) --+ f(s)  
for all s in C, and that the convergence is uniform on compact subsets of C. This completes 
the proof of Theorem 6.7. • 

Marchenko and Pastur's limit result from IMP] in the complex Wishart case is now an 
immediate consequence of Theorem 6.7: 
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6.8 Coro l la ry .  (cf IMP], [Wa], [GS], [Jo], [Ba], [OP].) Assume that c E ]0, oo[ and 
let (m(n) )~ be a sequence of positive integers such that l im~_~ ~(~) = c. Consider, 
furthermore, a sequence (Y~) of random matrices satisfying that Yn C GRM(m(n) ,  n, ~) 
for ali n C N. Then 

(i) For any positive integer p, 

/7 lim E(tr~[(Y~Y~);]) = x v dpc(x). (6.34) 
n --F (2,O 

(ii) For any bounded continuous function f :  [0, oo[--4 C, 

/7 lim E(tr~[f(Y~Y~)])= f (x)  d#c(z). (6.35) 
~--F ~ 

Pro@ (i) follows from Theorem 6.7 by repeating the arguments given in the proof of 
Corollary 2.6. (ii) follows by using (6.30) in the case s = it, t E 1R, as well as the 
implication (iv) ~ (iii) in Proposition 2.1. • 

6.9 R e m a r k .  In [OP, Proposition 1.1], Oravecz and Petz showed that  

x p d ~ ( x ) = F  _ k kP-1 

by solving a reeursion formula for the moments of #~. It is also possible to derive this 
formula directly: For p in N, the point-mass at 0 for #~ (if c < 1), does not contribute to 
the integral on the left hand side of (6.36), and hence 

f0 °° 1 f~+l+2v~ x p dpc(x) = 2,~j~+,_2v ~ v/4c - (x - c - 1)2X p-I dx. 

Applying now the substitution x = c +  1 + 2v/ceos 0, 0 E [0, re], we get that  

x p d#e(x)  = s i n 2 O  • ( c - ~  1 -it- 2 v ~ c o s  0)  p - 1  dO 
do  

_ c s i n 2 0 . ( c + l + 2 v ~ c o s O )  p-1 dO. - -~  
~r 

Consider next the functions, 

gv(O) = (1 + x/~ei°) p'I,  h(O) = eiOgp(O), and k(O) = e-iOgp(O), (0 • [0,7r]). 

Using then the formula: sin20 = ½(1 - cos 28), we find that  

x v d#c(x) = ~ Re(1 - e~2°). Ig~(0)f dO 
7r (6.3r) g ~r 7¢ 

= ). 



Random Matrices with Complex Gaussian Entries 325 

By the binomial formula and Parseval's formula, we have here that 

lj~Tr ~ p--1Q 1)2 
Ig(0)l = dO = ~ p - d ,  75 "= J 

and that 

,,,,,, =,:  (i ' , )C+,) ,  
where we have put (P--I') = ( , ; 1 )  = 0. A simple computation shows that 

1, j ) -  ( :  11)(~;11)  p ( j +  ' _ 

Now (6.36) follows by combining (6.37)-(6.38), and substituting j by j - 1. 

(6.38) 

7 Almost Sure Convergence of the Largest and Smal- 
lest Eigenvalues in the Complex Wishart case 

In the paper [Gem] from 1980, Geman studied a sequence (T~) of random matrices, such 
that for all n in N, Tn is an re(n) x n random matrix, satisfying that the entries ÷(n) ~jk , 

1 <<_ j <_ m(n ) ,  1 < k < n, are independent, identically distributed, real valued random 
variables, with mean 0 and variance 1. Under the assumption that liran_,~ m(~) ~ C, 
and some extra conditions on the growth of the higher order moments of the entries ÷(n) ~jk , 

Geman proved that 

lim 1 t n_~ Amax(~T~T~) = (v~+  1) 2, almost surely, (7.1) 

where 1 t 1 T t T  Amax(nT~Tn) denotes the largest eigenvalue of ~ ~ n. Under the additional as- 

sumptions that T~ is Gaussian for all n, (i.e., ÷(~) ~ N(0, 1) for all j, k, n), and that ~jk 

m(n)  > n for all n, Silverstein proved in 1985, that 

lira 1 t =-~  Amin(~T~T~) = ( v ~ -  1) 2, almost surely, (7.2) 

where 1 t Amin(~T~Tn) denotes the smallest eigenvalue of !TtT,, n ~ (cf. [Si]). Both Geman's and 
Silverstein's conditions have later been relaxed to the condition that the entries of Tn have 

(~)4 (cf. [YBK] and [BY2]). This condition is also finite fourth moment, i.e., E([tjk ] ) < c¢ 
necessary for (7.1) (cf. [BSY]). 

The above quoted papers consider only real random matrices, but it is not hard to gen- 
eralize the proofs to the complex case (cf. [Ba D. In this section we give a new proof of 
(7.1) and (7.2) in the complex Wishart case, by taking a different route, namely by ap- 
plying the explicit formula for E(Tr~[exp(B*B~)]), B • GRM(m, n, 1), that we obtained 
in Section 6. This route is similar to the one taken in Section 3. 
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7.1 T h e o r e m .  Let c be a strictly positive number, and let (m(n) )~ be a sequence of 
positive integers, such that lim~_+~ "~(~) = c. Consider furthermore a sequence (Y~) of 
random matrices, defined on the same probability space (ft, yr, p) ,  and such that Yn E 
GRM(m(n) ,  n, ~), for all n. We then have 

lim /~max(Y*Yn) = (V/~ -}- 1) 2, almost surely, 
~ -+ 00 

(7.3) 

and 

l i r a  ~min(Y~Yn)  = f ~ (~¢1~- 
1) 2 , 

,~--+oo (0 ,  
i fc  > 1, 

almost surely. (7.4) 
i fc  <_ 1, 

We start  by proving two lemmas: 

7.2 L e m m a .  Consider an element B of GRM(m, n, 1). We then have 

(i) For any t in [0, ½], 

E(Tr~[exp(tB*B)]) <_ n exp ((v/-m + v~)2t  + (m + n)t2), (7.5) 

(ii) I f  m >_ n and t >_ O, then 

E(Tr~[exp(-tB*B)]) <_ nexp  ( - (x/m - v/-n)2t + (m + n)t2). (7.6) 

Proof. (i) Assume first tha t  m _> n. Then by (6.20) in Theorem 6.4, we have that  

E(Tr~[exp(tB*B)]) = ~ F (m  - k, n - k, 1; t 2) 
k = l  (1 t) ~+m*l-2k ' (t e ] - oe, 1[). 

For k in {1, 2 , . . . ,  n}, we have here tha t  

j=O 

_< ~ (m - k)~(n - k)Jt2 j 
j=o (j!)2 

j=o J! 

and thus we obtain the estimate 

(7.7) 

F ( m - k , n - k ,  1;t 2) < _ e x p ( 2 v / ( m - k ) ( n - k ) [ t [ ) ,  ( kE  { 1 , 2 , . . . , n } ) .  (7.8) 

For t in [0, 1[ and k in N, we have also that  (1 - t) 2k-1 _< 1, and hence by (7.7) and (7.8), 
we get the est imate 

e x p ( 2 ~ t )  n exp (2 vrm--nt) 
E(Tr~[exp(tB*B)]) -< ~ O ~ t ~  - - ~  = (1 - t) m+~ ' (t E [0,1 D. (7.9) 

k = l  
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Regarding the denominator of the fraction on the right hand side of (7.9), note that  for 
t in [0, ½], we have that  

- l o g ( 1  - t )  = ~--~. tn << t-4- ½(t 2 + t  3 -4-t44 - . .  .) <_ t + t  2, 
n : l  

and hence that  (1 - t) -1 <__ exp(t + t2). Inserting this inequality in (7.9), we obtain (7.5), 
in the case where m ___ n. 

If, conversely, m < n, then by application of (6.21) in Theorem 6.4, we get as above, that  
for t in [0, 1 [, 

E(Trn[exp(tB* B)]) < (n - m) + 
( l - t )  m+n - ( l - t )  "~+~ 

Estimating then the denominator as above, it follows that  (7.5) holds for all t in [0, ½]. 

(ii) Assume that  m > n, and note then that  for k in {1, 2 , . . . ,  n}, we have that  

x / ( , ~  - k ) ( n  - k) < v ~ -  k. 

Combining this inequality with (7.7) and (7.8), we get for t in [0, oo[, that  

~, F ( ~  - k, n - k, 1; t 2) 
E(Trn[exp(-tB* B)]) 2_, ~=~ -~-~ ~7-) z~+~-~ 

1 

- k = l  

< 
(1 + t) "~+" \ k=l 

Here, (1 + t) exp ( - t )  < 1 for all t in [0, c¢[, and hence we see that  

n exp(2v/-m--~t) 
E(Tr~[exp(-tB*B)]) < (1 + t) m+~ ' (t ¢ [0, co D. (7.10) 

Regarding the denominator of the fraction on the right hand side of (7.10), we note that  
for any t in [0, c¢[, we have by Taylor's formula with remainder term, 

t2 t 3 
log(1 + t) = t - 7 + 3(-5-~(t))~, 

t2 for some number ~(t) in [0, t[. It follows thus that  log(1 + t) > t - 5-, and hence that  
(1 + t) -1 <_ e x p ( - t  + t2), for any t in [0, oc[. Combining this fact with (7.10), we obtain 
(7.6). " 

7.3 L e m m a .  Let c, (m(n))n and (Yn) be as set out in Theorem 7.1. We then have 

(i) For almost all w in ~, 

limsupAmax(Y*(w)Y,(w)) _< (x/~+ 1) 2. (7.11) 
n--}OO 
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(ii) If c > 1, then t'or almost all w in f~, 

limioonfAmin(Y•(w)Yn(w)) >_ (v/-c- 1) 2. (7.12) 

~(") and B. v~Y. e GRM(.~(n), n, 1). By Proof. For each n i n  N, we put c~ = n ' = 
Lemma 7.2, we have then that 

E(Trn[exp(tY:Y~)]) < n exp ( (v /~  + 1)2t + { (c~ + 1)t2), (t e [0, 2]), (7.13) 

and that 

E(Tr,[exp(-tY:Yn)]) <_ nexp ( - (x/7~- 1)2t + ¼(cn + 1)t2), (t e [0, ooD, (7.14) 

Since all the eigenvalues of exp(+tY*Y,) are positive, we have here for any t in [0, oo[, 
that 

Trn[exp(tY;(w)rn(w) )] > Amax( exp(tr:(w)Yn(w) ) ) (7.15) 

= e x p  ( t~max(Yn(w)Yn(b3))) ,  (co e ~ ) ,  

and that 

Trn[exp(-tY*(w)Yn(w))] > Am~x( exp(-tY*(w)Yn(w))) (7.16) 

= exp ( - t~rnin(Y*(w)Yn(w))), (w e ~t). 

For fixed n in Bt, t in ]0, 9] and e in ]0, 1[, we get now by (7.15) and (7.13), 

P(Am,x(Y*Y~) >_ (v/-~ + 1) 2 + e )  : P ( e x p  [tAmax(Y:Yn) - t(x/~n + 1) 2 -  re] >_ 1) 

E(exp  [tAmax(Y*Yn)- t(v~n + 1) 2 -  re]) _< 

< exp[-t(v~7 + 1) 2 - te]E(Tr=[exp(tYnY~)]) 
1 6  1) t2 ) .  _< nexp ( -  te + ~( ~ + 

For fixed n in N and e in ]0, oo[, the function t ~+ - te  + ¼(c~ + 1)t 2, attains its minimum 
at to - ~(~-~+i) E ]0, 9]" With this value of t, the above inequality becomes 

1 1)to 2) n e x  . . . .  2 ,  P(Ama~(Y*Y~) _> ( ~ +  1)2+e) <_ nexp ( -  toe + a(c~ + = P [ ~ ) .  

Since cn --+ c as n --+ oo, the sequence (c~) is bounded, and thus it follows that 

EP(Amax(Y*Y~)  > (~/~n + 1)2 + e) _< nexP[4(c~+l))2, < oo. 
n-----1 n=l 

Hence the Borel-Cantelli lemma yields, that on a set with probability one, we have that 

Amax(Y*Y~) _< (v /~  + 1) 2 + e, eventually, 
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and consequently that  

limsupAmax(Y;Yn) ~_ l imsup [(yrC~n + 1) 2 + c] = (v/'C + 1) 2 + c. 
n - - ~ o o  ~ - + o o  

Taken together, we have verified that for any e in ]0, oo[, we have that  

P(limsupAmax(Y:Y~) ~_ (V~ + 1) 2 + e )  = 1, 
\ n - - ~ o o  ] 

and this proves (7.11). The proof of (7.12) can be carried out in exactly the same way, 
using (7.16) and (7.14) instead of (7.15) respectively (7.13). We leave the details to the 
reader. • 

To conclude the proof of Theorem 7.1, we must, as in Geman's  paper [Gem], rely on 
Wachteffs result from [Wa] on almost sure convergence of the empirical distribution of 
the eigenvalues to the measure #c. As mentioned in the beginning of Section 6, the 
random matrices considered by Wachter have real valued (but not necessarily Gaussian) 
entries. His method works also for random matrices with complex valued entries, but in 
the following we shall give a short proof for the case of complex Gaussian random matrices, 
based on the "concentration of measures phenomenon" in the form of Lemma 3.4. 

7.4 P r o p o s i t i o n .  (c£ [Wa]) Let c, (m(n) )~ and (Y~) be as in Theorem 7.1, and t'or all n in 
N and w in f~, let p~,~ denote the empirical distribution of the eigenvalues of Y* (w)Y~(w), 
i.e., 

where, as usual, AI(Yn(w)Y~(w)) <_ . . .  <_ )~(Y~(w)Y~(w)) are the ordered eigenvalues of 
We then have 

(i) For almost all w in ~, #,,~, converges weakly to the measure Pc introduced in Defini- 
tion 6.5. 

(ii) On a set with probaNlity 1, we have for any interval I in JR, that 

a i m  card [sp(Y;Y ) n I ] )  =  o(I) 

Proof. Note first that  (ii) follows from (i), Proposition 2.1 and Definition 2.2. 

To prove (i), it suffices, as in the proof of Proposition 3.6, to show that  for every fixed 
function f from C~ (R), we have that  

/? lim tr~[f(Y~Y~) l = f d#c, almost surely. 
n ' +  OO 

So let such an f be given, and define 9: R -+ C by the equation: g(z) = f(x2), (x 6 R). 
Then g 6 C~ (N), so in particular g is Lipschitz with constant 

e = sup Ig'(x)l < 
x G ~  
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Consider furthermore fixed m, n in N, 
Mm+n(C) by the equations 

By Lemrr/a 3.5 it follows then that 

Note here that 

so that 

f ( A A *  ' 

Hence, it follows from (7.17) that 

and for A, B in Mm,,~(C), 

flg(ii) - g(t))ltHs _ clrSi - &Ills. 

0) 0) 
AA* ' B B *  " 

.%). 

define A and B in 

(7.17) 

l i f (A*A)  • 2 • 2 - f ( B  B)Ilrts + IIf(AA*) - <_ - IIA* - B*ll~s ). f(BB)I[HS c=([IA B l l ~ s +  

Since [[A* - B'Ills = ][A - Bilks, the above inequality implies that 

][f(A*d) - f(B*B)[IHS < cv/2[IA - B[[ns, 

and hence, by the Cauchy-Schwarz inequality, that 

[trn[f(A*A)] - trn[f(B*B)][ <_ CV/~[[A - B[[HS. 

It follows thus, that the function F: Mm,n(C) -+ N, given by 

F ( A )  = tr~[f(A*A)],  (d  e M,~,n(C)), (7.18) 

satisfies the Lipschitz condition 

IF(A) - F(B)] _< cV/~]]A - S][HS, (A, B e M.~,n(C)). (7.19) 

The linear bijeetion ~: Mm,~(C) -+ N2.~n, given by 

¢(A) = (Re(Ajk),Im(Ajk))l<j<r., (A C Mm,n(C)), 
l<k<n 

transforms the distribution on Mm,~(C) of an element of GRM(m, n, ~) onto the joint 
distribution of 2ran independent, identically N(0, ~)-distributed random variables, i.e., 
the distribution G 1 on R 2ran with density 

2mn,( 2n )- 

dG2,~,(2~ )_ ½ (x) 
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w.r.t. Lebesque measure on R 2"~n. Moreover, the Hilbert-Schmidt norm on Mm,n(C) corre- 
sponds to the Euclidean norm on R 2ran via the mapping ~. Combining these observations 
with Lemma 3.4 (in the case a 2 = ~-~) and (7.19), it follows that  with (Yn) as set out in 
the proposition, we have for any n in N and t from ]0, col, that  

P(JF(Y,~) - E(F(Y~))J > t) < 2 e x p ( - ~ ) ,  

where K = 2 ~ .  It follows thus by application of the Borel-Cantelli lemma, that  

lim IF(Y~) - E(F(Y~)) I = 0, almost surely. 
~--+oo 

Using then (7.18) and Corollary 6.8(ii), we get that  

lira tr~[f(YgY~)] = f d#c, almost surely, 

as desired. • 

Proof of Theorem 7.1. By Lemma 7.3, we only need to show, that  for any c from ]0, oc[, 
we have that  

linm~f Am~(Y$Yn ) >__ (v'~ + 1) 2, almost surely, (7.20) 

  mos su o,  lim sup Amin (YSYn) < 
n - ~  - i f  c ~ 1,  

By Proposition 7.4, it follows, that  for any strictly positive c and almost all w from fl, 
the numbers of eigenvalues of Y~(w)Y,(w) in the intervals [(x/~ + 1) 2 - e, (x/~ + 1) 2] and 
[(v ~ - 1) 2, (v  ~ - 1) 2 + el, both tend to oo, as n ~ oc. This proves (7.20) and, when 
c k 1, also (7.21). If c < 1, then re(n) < n eventually, and this implies that  eventually, 0 
is an eigenvalue for Y*(w)Y,(w), for any w in ~. Hence we conclude that  (7.21) holds in 
this case too. ,, 

8 A R e c u r s i o n  F o r m u l a  for  t h e  M o m e n t s  o f  t h e  c o m -  

p l e x  W i s h a r t  d i s t r i b u t i o n  

In [HSS], Hanlon, Stanley and Stembridge used representation theory of the Lie group 
U(n) to compute the moments E(Trn[(B*B)P]) of B ' B ,  when B e GRM(m, n, 1). They 
derived the following formula (cf. [HSS, Theorem 2.5]): 

P [,~ + p - j ] p [ n  + p - j ]p  1 j-1 (p • N), (s.1) E(Tr~[(B*B)'])  = ~ - ~ ( - 1 )  (p - j)](j - 1)[ ' 
j = l  

where we apply the notation: [alp = a(a - 1)- . .  (a - p +  1), (a • C,p • No). 

By application of the results of Section 6, we can derive another explicit formula for the 
moments of B'B:  
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8.1 P r o p o s i t i o n .  Let rn, n be positive integers, and let B be an element of GRM(m, n, 1). 
Then for any p in N, we have that 

[ ' 1  1 1 ) ( n - 1 ) ( r n + n + p - 2 j - 2 ) .  (8.2) 
E(Trn[(B*B)']) =rnn(p-X)!  j~=o ~+--l ( r n ;  j p - 2 j - 1  

Proof. In Section 6, we saw that that for any complex number s, such that Re(s) < 1, we 
have the formula 

E(Trn[B*B exp(sB*B)]) = m.  n.  F(1 - m, 1 - n, 2; s 2) (8.3) 
(1  - s )  m + ~  

(cf. formula (6.19)). Hence, by Taylor series expansion, for any s in C, such that Is[ < 1, 
we have that 

~-~ E(Tr~[(B*B)P]) • s p-1 = m . n .  r ( 1  - m, 1 - n, 2; s 2) (8.4) 
(p - 1)1 (1 - s) m+n ' 

Formula (8.2) now follows by multiplying the two power series 

and 

k sk' 
k=0 

and comparing terms in (8.4). .. 

We prove next a recursion formula for the moments of B'B,  similar to the Harer-Zagier 
recursion formula, treated in Section 4. 

8.2 T h e o r e m .  Let m, n be positive integers, let B be an dement of GRM(m, n, 1), and 
for p in No, define 

D(p, m, n) = E(Tr~[(B*B)P]). (8.5) 

Then D(O, m, n) = n, D(1, m, n) = ran, and for fixed m, n, the numbers D(p, m, n) satisfy 
the recursion formula 

D(p + 1, m, n) = (2p+l)(m+n) . D(p, m, n) + (P-1)(P2-(m-~)2) • D(p - 1, m, n), (p e 1~. 
p+2 p+2 

(8.6) 

Proof. Recall from Section 6, that the hyper-geometric function F is defined by the 
formula 

(a)k(b)~ k F(a,b,c;x) = E 
k=o (~)kk! ~ "  
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for a ,b , c , x  in C, such that c ~ Z \ N 0 ,  and lxl < 1. For fixed a,b,c, the function 
u(x)  = F(a,  b, c; x), is a solution to the differential equation 

" d2u 1" x) du 
x ( 1 -  x)~x2 + ( c -  (a + b +  ) --~x - a b u = O ,  

(cf. [HTF, Vol. 1, p.56, formula (1)]). In particular, if a = 1 - n, b = 1 - m and c = 2, 
then u satisfies the differential equation 

" d2u 3)x" du x ( 1 -  x)-~ffx2 + (2 + (rn + n -  )~x - (m - 1 ) ( n - 1 ) u  = O. (8.7) 

Define now, for these a, b, c, 

v(t) = u(t  2) = F(1 - m, 1 - n, 2; t2), (Itl < 1). 

Then (8.7) implies that v satisfies the differential equation 

" d2v ~t  2) -4(m-1)(n-1) tv=O,  ( I t l<l) .  (8.8) 

Define next 

v(t) F(1 - m, 1 - n, 2; t 2) 1). 
w(t) -- (1 - t) m+n - (1 - t)m+= ' (Itl < 

A tedious, but straightforward computation, then shows that w satisfies the differential 
equation 

_od2 w ~ t  t (1  - t2) + (3 - + n ) t  - 5t  2) 
(8.9) 

- (3(m + n) + 4t - (m - n)2t)w = 0, (Itl < 1). 

0 o  
Introduce now the power series expansion w(t) = ~p=0 ap tp, of w(t) .  Inserting this 
expansion in (8.9), one finds (after some reductions), that  the coefficients ap satisfy the 
formulas 

n o = l ,  and a l = m + n ,  (8.10) 

p(p + 2)ap - (2p + 1)(m + n)av_l  - (p2 _ (m - n)2)ap_2 = O, (p >_ 2). (8.11) 

On the other hand, inserting the power series expansion of w(t) in (8.4), yields the formula 

D(p, m, n) = E(Tr,[(B*B);]) --- mn(p  - 1)!ap_l, (p e N). (8.12) 

Combining this formula with (8.11), it follows that (8.6) holds, whenever p _> 2. Regarding 
the case p -- 1, it follows from (8.10) and (8.12), that 0(1,  m, n) -- ran, 0(2,  m, n) = 
m n ( m  + n), and hence (8.6) holds in this case too. It remains to note that 0(0 ,  m, n) = 
E(mrn[1,]) = n. ,, 
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The recursion formula (8.6) is much more efficient than (8.1) and (8.2) to generate tables 
of the moments of B*B.  For an element B of GRM(m, n, 1), we get 

E(Tr~[B*B]) = mn 
E(Trn[(B*B)2]) = m2n + m n  2 

E(Tr~[(B*B)3]) = (m3n + arn2n ~ + m n  3) + rnn 

E(%[(B*B)4 ] )  = (~n4n + 6,~3~ 2 + 6,~2~ 3 + m ~  ~) + ( S m ~  + 5m~ ~) 

E(Tr~[(B*B)~]) = ( m ~  + 1 0 , ~  ~ + 20m~n ~ + 1 0 m ~  ~ + m~) 
+ (15m3n + 40m2n 2 + 15ran 3) + 8mn.  

For p < 4, these moments were also computed in [HSS, p.172] by application of (8.1). 
Note that only terms of homogeneous degree p + 1 - 2j, j E {0, 1, 2,..  ' ,  [~2 ]}, appear 
in the above formulas. This is a general fact, which can easily be proved by Theorem 8.2 
and induction. If we replace the B from GRM(m, n, 1) considered above by an element 
Y from GRM(m, n, ~), and Trn by try, then we have to divide the right hand sides of the 
above formulas by n p+I. Thus with c = ~, we obtain the formulas 

E(trn[Y*Y]) = c 

E(tr,[(Y*Y)2]) = c 2 + c  

E(tr~[(Y*Y)3]) = (c 3 + 3c 2 + c) + cn-? 

E(tr~[(Y*Y)4]) = (c 4 + 6c 3 + 6c 2 + c) + (5c 2 + 5c)n -2 

E(tr~[(Y*Y)5]) = (c 5 + 10c 4 + 20c 3 + 10c 2 + c) 

+ (15c 3 + 40c 2 + 15c)n -2 + 8cn -4. 

In general E(tr~[(Y*Y)P]) is a polynomial of degree [ ~ ]  in n -2, for fixed c. By Theo- 
rem 8.2, the constant term 7(P, c) in this polynomial, satisfies the recursion formula 

7(P + 1, c) = (2p+1)(c+1) . , . /(p, c)  - (p-1)(c-1)' ,+2 ,+~ • ~ ( p -  1, c), (p e N), 

and moreover, 7(0, c) = 1, 7(1, c) = c. As was proved in [OP], for any c in ]0, oc[, the 
solution to this difference equation is exactly the sequence of moments of the free Poisson 
distribution #c with parameter c, i.e., 

~.oo 1P (Pk)( P )Ok , (pE 1~), 
~(p, c) = xp d#c(x)  = ; ~  k - 1 

k = l  

(ef. [OP, Formula (1.2) and Proposition 1.1]). Thus, if Y~ E GRM(m(n), n, 1), for all n 

in N, and "~("____1) _+ c, as n -+ oo, then we have that n 

f 0  ° 
l ira E(tr~[(Y*Y)P]) = 7(P, c) = x p d#c(x),  

in concordance with Corollary 6.8(i). 
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