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Introduction. Let u: A B be a bounded linear operator between two C*-
algebras A, B. The following result was proved in [PI-I.

THEOREM 0.1. There is a numerical constant K1 such that for all finite sequences
x xn in A we have

max { I1( u(x)*u(x))x/ , I1( u(x)u(x,)*)x/ I1)

K, Ilull max{ II(xx,)X/ll., II(x,x)X/ll.}.

A simpler proof was given in [H1]. More recently, another alternate proof
appeared in [LPP]. In this paper we give a sequence of generalizations of this
inequality.
The above inequality (0.1)1 appears as the case of"degree one" in this sequence.

The next case of degree 2 seems particularly interesting, and so we now formulate
it explicitly.

Let us assume that A c B(H) (embedded as a C*-subalgebra) for some Hilbert
space H, and similarly that B c B(K). Let (ao) be an n x n matrix of elements of A.
We define

[(ao)]2 max { II(a)ll.ta, II(a)ll.t, ii(0.0.0,x/ I1, I1( a’a*l/20-, Ila}.

Then we have the following result:
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890 HAAGERUP AND PISIER

THEOREM 0.2.
in M.(A) we have

There is a numerical constant K2 such that for all n and for all (aij)

(0.1)2 [(u(ao))]tz < Kz [lull [(ao)].

We recall in passing the following identities for ao A and at A:

sup {
and

II(a’a,)X/2llA sup{l (y,, a,xo)l, Xo H, y, H, ]lxol] < 1, Ily, 2 < 1}.

We will denote

(0.2) max {11( a.*,a,)l/2[[

More generally, let us explain the general case of "degree k" of our main result. Let
k > 1. Let n be a fixed integer. We will denote ln] {1, 2 n}. Let {aslJ In]k }
be a family of elements of A indexed by [n-Ik. Let us denote by Pk the set of all the
2k subsets (including the void set) of { 1, 2, k}.

For any c { 1, k} we denote by c the complement of cz and by

r: En] --, [n]

the canonical projection, i.e.

V J (j ,j) In]k, x(J) (Ji)i"

For any cz with :# 0 and c :/: 0 we define

(0.3) II(aa)ll sup { J [hi

where the supremum runs over all families

{x, ll En]"} and {y,,,Im [n]")

of elements of H such that IIxll 2 and Ilyll 2 1. There is an alternate
description: we can identify In]k with In]c x In] so that J In]k is identified with
(i, j) with ro(J), j rc(J). Then II(aa)ll is nothing but the norm of the matrix
(aij) acting from 12([n], H) into 12(In]c, H). For 0, this definition extends
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naturally to

II(a)ll sup { (aaXo, Ya)
In]

where the supremum runs over all Xo e H, yj H such that Ilxoll 1 and
Ilyall 2 < 1. Similarly, for a {1, k} we set

We then define

(0.4) [(as)], max { II(a)ll}.
atPu

We can now state one of our main results.

THEOREM O.k. For each k > 1, there is a constant Kk such that, for any bounded
linear operatoru: A - B,for anyn > 1,andfor anyfamily {aalJ l-nJk } in A, we have

(0.1)k [(u(aa))]:k < Kllull [(aa)]:k.

Moreover, we have Kk < 2(3k/2)-1.

The proof is essentially in Section 1. (It is completed in Section 2.)
We now reformulate this result in a fashion which emphasizes the connection

with the notion of complete boundedness for which we refer to [Pa].
Let A c B(H) be a C*-algebra embedded as a C*-subalgebra. (H is a Hilbert

space.) We denote as usual by Mn the set of all n x n complex matrices (equipped
with the norm of the space B(I.)) and by M.(A) the space M. (R) A equipped with
its natural C*-norm, induced by B(lz(H)). More generally, let S c B(Cf) be any
closed linear subspace of B(cg). ()rg is a Hilbert space.) We call S an "operator
space".
We denote by S (R) A the completion of the linear space S (R) A equipped with the

norm induced by B(eg ()2 H). (Here g ()2 H denotes the Hilbert space tensor
product of g and H.) We will repeatedly use the following fact. (For a proof see
Lemma 1.5 in [DCH].) Let K be an arbitrary Hilbert space. Whenever u: S B(K)
is completely bounded, the mapI (R) u: A (R) S ---} A (R) B(K) is bounded and we have

(0.5)

Clearly, S (R) A is again an operator space embedded into B(rg (R)2 H).
For example, we will need to consider a particular embedding of the Euclidean

space l into M. M. as follows. (We equip M. M. with the norm II(x, y)ll
max { Ilxll, Ilyll }, for which it clearly is an operator space embedded--say, into M2.
in a block diagonal way.) We denote by E. the subspace of M. M, formed by all
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the elements of the form

with x l, x, e C. Let (co) be the usual basis of M,. We denote by

i eil ( eli

the natural basis of E. (so that the above element can be written as x6). As a
Banach space, E, is clearly isometric to l. More precisely, for any C*-algebra A
and for any al, a, in A, we have (this known fact is easy to check)

(0.6) IlY’. 6, (R) a, ll.(R)a max{ll(Z a.*, a,)’/zll, II(Z a,a*, )’/ll}

or equivalently,

[(a)],),

in the preceding notation.
Let us denote by E,k the tensor product

E. (R)"’(R) E, (k times).

Then Theorem O.k implies (and is actually equivalent to) the following.

PROPOSITION O.k. For any u: A B

This proposition is proved in Section 1. In Section 2 we extend (0.6) and compute
the norm ofan element ofE,k (R) A for k > 1 to deduce Theorem 0.k from Proposition
O.k.

In Section 3, we develop the viewpoint of [LPP] which dualizes inequalities such
as (0.1) or (0.1)k to compute (an equivalent of) the norm of certain random series
with coefficients in a noncommutative L-space. Let (ej)jN be an i.i.d, sequence
of random variables each distributed uniformly over the unimodular complex
numbers. (Such variables are sometimes called Steinhaus variables.) Let A, be a
noncommutative L-space. Roughly, while [LPP] treats the case of A,-valued
random variables which depend linearly on the sequence (ej), we can treat variables
which depend bilinearly or multilinearly in the variables (ej). For a precise statement
see Theorem 3.6 below.
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It might be useful for some readers to emphasize that the variables (e) can be
replaced by independent choices of signs, or more importantly, by i.i.d. Gaussian
variables. All our results remain true in this setting, but with different numerical
constants; this follows from the fact (due to N. Tomczak-Jaegermann) that A, is of
cotype 2, see e.g. [P3, p. 36] for more details. We also would like to draw the reader’s
attention to Kwapiefi’s paper I-K! which contains "decoupling inequalities" quite
relevant to the situation considered in Theorem 3.6 below. Using [K-I, one can
deduce from (3.1) below some "nondecoupled" inequalities. For instance, we can
find an equivalent of integrals of the form <<x011a, dP where x0 A,
and (e) >1 is an i.i.d, sequence of symmetric + 1-valued random variables on a
probability space (f, P), and similarly in the multilinear case. We will not spell out
the details.
The results of the first three sections of this paper rely heavily on the following

factorization result proved in Section 1" The identity map IE, on the operator space
E. has a completely bounded factorization through the von Neumann algebra
VN(F.) associated with the left regular representation of the free group with n
generators; i.e. there are wn: E. .4 VN(F) and v" VN(F) .4 E such that

In Section 4, we show that for any sequence offactorizations le, vw. (n 1, 2,...)
of the identity maps Ie. through injective von Neumann algebras we have

Combining these two facts about the factorization of Ie, with Voiculescu’s recent
result (i-VII) that the algebra of all n x n matrices over VN(Foo) is isomorphic (as
avon Neumann algebra) to VN(Foo), we show at the end of Section 4 that the von
Neumann algebra VN(F) is not a complemented subspace of B(H) for any n > 2.
(For very recent results on similar questions, see [P4, CS].) We also include several
general remarks about the relation between the existence of a completely bounded
linear projection from B(H) onto a subspace S and that of a bounded linear projec-
tion from B(/2)() B(H) onto B(/2)t) S. For instance, if S is weak-, closed and if
B(/2) (R) S denotes the weak-, closure of B(/2) (R) S in B(12 (R) H), we show that there
is a bounded linear projection from B(12 (R) H) onto B(/2) (R) S if and only if there is
a completely bounded one from B(H) onto S.

Finally, we compare the space En with the linear span S ofa free system ofrandom
variables {x,..., x} in a C*-probability space (A, tp) in the sense of Voiculescu
IV1, 2]. In particular, in the case ofa semicircular (or circular) system in Voiculescu’s
sense, we show that there is an isomorphism u from E onto the operator space S
such that
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1. Operators between C*-algebras. We will use repeatedly the following fact
which has been known to the first author for some time. The main point ((1.2) below)
is a refinement of one of the inequalities of [H2-1. (We remind the reader that we
denote simply by C(F.)(R) A the minimal or spatial tensor product which is often
denoted by C(F.) (min A.)

PROPOSITION 1.1. Let F, denote the free group on n generators gl, g,, and let
C(F,) be the reduced C*-algebra of F,, i.e. the C*-algebra generated by the left regular
representation 2: F. B(12(F.)). Then

(1) for any C*-algebra A and for any set (ao)o s of elements of A indexed by a

finite subset S of F.,

(1.1) 2(g) (R) a
CT(F,,) (R)A

1/2 1/2

(2) for any C*-algebra A and for any set (ag) G of elements of A indexed by a
subset S of { g 1, g,, g- g21 },

(1.2) (g) (R) ao
geS C’(e,,) (R)A

max { 1/2 1/2

Proof. (1) Let (6o)0 be the standard basis of 12(Fn). We may assume that
A B(K) for some Hilbert space K. Since the min-tensor product coincides with
the Spatial tensor product, we have for all unit vectors e K

II 2(g) (R) aollcz(oa (2(9) (R) ao)(fe (R) )
geS

E

Taking the supremum over all unit vectors K, we get

C(Fn) (R)A

1/2
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The same argument applied to the norm of (2(9) @ ag)* 2(g-x) ( a’ gives

2(0) (R) aa

This proves (1). Note that the statement (1) actually holds in C’(F)(R) A for any
discrete group F.

(2) Consider first the ease S {Or, O., O, O-t} We can write F. as a
disjoint union:

where

set of reduced words starting with a positive power of 9i,

r’- set of reduced words starting with a negative power of O.

Let eo, e, and e- denote the orthogonal projection of 12(F,) onto the subspaces
Cfe,/Z(Fi+), and/Z(Fi-) respectively. Then these projections are pairwise orthogonal
and

eo+ e: + eT =Its,e.).
i=1 i=1

For any O G and for any generator O, the length of the reduced word for OO is
either

Igol=lol+l or 1OOl-1ol-1.

The first case exactly occurs when 0i0 starts with an element of F1+, and the second
case when starts with an element of F-. Hence for all 0 e G,

2(0,)6 et 2(g,)6

e.+, 2(0,)6 + 2(o,)e:6 (all cases).

Therefore

2(g) e{2(03 + 2(g)ei-,
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and by taking adjoints

,(g-X) e- 2(g-1) + 2(g-1)e.

Set

u.+i e- 2(9-1)}v.+i ,(g-l)e-
1,..., n

and, for simplicity of notation, set also g.+i g-l, 1, n. Then

2(g) u + v, i=1,...,2n.

Since ’=1 (e; + e;-) eo, we have

2n 2n

y’. u,u.*, E v.*, v, 1-eo < 1.
i=1 i=1

So

and

For elements cl,..., cm, dl, dm of a C*-algebra B, one easily has that, cidi
i=1

1/2 1/2

Hence, with b/l, U2n Vl, /)2n as above, and al, a2n . A,

c*(v.) (R)A
(ui (R) 1)(1 (R)

i=1

i=1

1/2

and similarly

(1 (R) ai)(vi (R) 1)
i=l C*r(Fn) (R)A

VVi
i=1

1/2
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so altogether

271

i=1

2n 2n

u(R)a, + v(R)a
i=1 i=1

1/2

aia
i=1

1/2

max { aai
i=1

1/2 1/2

This proves (2) in the case S {gl, g,, g-l, g-X }, and the remaining cases
follow from this by setting some of the ao’s equal to 0. I

Remark. The preceding statement remains true (with the obvious modifications)
for the free group on infinitely many generators. See also Proposition 4.9 below for
a generalization of (1.1) and (1.2).

Remark 1.2. The proof of (2) is an illustration of the following general principle.
Let T, T, be operators on a Hilbert space H and let c be a constant. The
following properties are essentially equivalent:

(i)c For any C*-algebra A and any set (ai) ..<71 in A, we have

lie T, (R) a, < c max{ll(E a.*, a,)’Pll, II(E a,a*, )mll}

(ii)c There are operators u, v in B(H) such that T u + v and

More precisely, we have (ii) (i) and (i)c =:" (ii)2c The implication (ii) (i) follows
as above from the triangle inequality. To prove the converse, note that (i)c equiva-
lently means that the operator u: E, B(H) which maps fit to T satisfies IlullCb < 1.
By the extension property of cb maps (cf. [Pa, p. 100]) there is an extension
: M?1 M?1 B(H) such that (6i) T and Ilall  1. Letting ui (el 0) and
v (0 e), we obtain a decomposition satisfying (ii)2. This shows that (i)
implies (ii)2.

PROPOSITION 1.3. Let E?1 c M?1 q) M?1 be the operator space

. C)
Cl, C C



898 HAAGERUP AND PISIER

Then there are linear mappings

w" E. C’(F.) and v: C(F.) E.

such that

vw IE. and Ilvll Ilwllc 2.

Similarly, for the yon Neumann algebra VN(F.) generated by 2, there are linear
mappings

wl" E. VN(F.) and v" VN(F.) E.

such that

In particular, E. is cb-isomorphic to a cb-complemented subspace of C(F.) (resp. of
VN(F.)).

Proof. Let (3t, 6.) be the basis of E. determined by

c,,, 0
i=1

c 0

C.

for c, c. e C. Define w: E. C(F.) by

W (,o, c,,,) ,-,
and v" C(&) E. by

v(x) (2(o)*x)6

where z is the trace on C(F.) given by

(y) (y6,, 6,), y ct(&). (Cf. [KR, p. 433].)

For any set al,..., a. of n elements in a C*-algebra A,

(w(R) Ia)(= 6(R)ai)= = 2(#i) (R) a.
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Since

ei (R) ai
i=1

aia
i=l

it follows from Theorem 1.1(2) that IIw (R) I11 2. Hence Ilwllcb 2. Since

z(2(g)*2(h))
g =/: h,

we get for any finite subset S c F, and scalars (co)o s

0eS i=l
(gi S)

and hence

(g S)

Let S S {gx,..., g,}. Then

6i (R) a(gi)
i=1
gieS

., a(g)*a(g)
1/2

o’ a(g)a(g)*
1/2

os a(g)*a(g) a(g)a(g)*
1/2

which by Theorem 1.1 (1) is smaller than or equal to

899

2(g) (R) a(g)
geS C*r(Fn) (R)A

Hence IIv (R) IAII and thus Ilvllc 1. Therefore

v IIc w IIc 2
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and by construction vw Iv,,,. This implies that w is a cb-isomorphism of E onto
its range

w(E.) span{2(O,)li 1, n}

and

Moreover, P wv is a completely bounded projection of C’(F.) onto w(E.) and
[[PI[ < 2. The proof with VN(E.) in the place of C(F.) is easy since v admits an
extension vl: VN(F.) E. with Ilvlllcb < 1. We leave the details to the reader, m
LEMMA 1.4 ([P1, H1, LPP]). Let u: A B be a bounded linear operator between

two C*-aloebras A and B. Then for every n N

Proof. The statement of the lemma is equivalent to: For all ax,..., a. A

(1.3) max{ll u(a,)*u(a,)ll, lie u(a,)u(a,)*ll} 21lull z max{ll a’a, ll, lie a,a*ll}.

This is essentially [P1] (see also [H1, LPP]). However in order to get the constant
2 in (1.3), one has to modify the proof of [H 1, Cot. 3.4] slightly:

Let T: A H be a bounded linear operator from the C*-algebra A with values
in a Hilbert space. By [H1, Thm. 3.2],

(1.4)

We can assume that B
_
B(K) for some Hilbert space K. By the above inequality

(1.4) we get for any K that

Clearly, (1.4) also holds for conjugate linear maps, and so

Thus

max{llZ u(a,)*u(a,)ll, IIZ u(a,)u(a,)*ll} Ilull(llZ a’a,ll + I1 aatll)

which implies (1.3).
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THEOREM 1.5. Let u" A-} B be a bounded linear operator between two
C*-algebras A and B. Then for every k, n N,

IIl. (R) ul[. (R)A.. (R) < 2(3/2)k-1 [lull.

Proof. The theorem’ is proved by induction on k. By Lemma 1.4 the theorem
holds for k 1. Assume next that the theorem is true for a particular k N. Let

w: E C{(Fn) and v" C’(Fn) E

be as in Proposition 1.2 and let u: A B be a linear map between two C*-algebras
A and B. Clearly

(1.5) Iv.. (R) u (v (R) u)(w (R) IA)

where

IIv (R) ull II(v (R) I)(Ie. (R) u)ll

< Ilvllc IIIe. (R) ull

< ,fllull Ilvllc

by Lemma 1.4. Moreover, v (R) u maps the C*-algebra C{(F,)(R) A into the C*-
algebra M(B) M(B), and so by the induction hypothesis

Ie (R) v (R) ull < 2(3/2)k-1 IIv (R) ull < 2(3/2)-1/2 Ilull v

On the other hand, by (0.5)

Now by (1.5)

IIIe. (R) w (R)/All III (R)A (R) wll < Ilwllc.

.t:.,., (R) u (.te. (R) v (R) u)(.t, (R) w (R) &).

Thus, by Proposition 1.3

III.+’ (R) ull < 2(3/2)k-1/2 Ilull Ilvll Ilwll
3/2)k+ 1/2 U

2(3/2)(k+1)-1 Ilull.

Hence Theorem 1.5 follows by induction on k.
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2. Description of E,. In this section, we will identify the norm in the space
Enk (R) A with the norm previously introduced in (0.3) and (0.4) as [

PROPOSITION 2.1. Let A be any C*-algebra. Let n > 1, k > 1, and let {aslJ [_n]k }
be elements of A. Then

(2.1) [(as)]{k) 6s (R) as
J ctn]k E (R)A

where,/f J (Jl, Jk), we denote

The proof below is easy, but the notation is a bit painful. Using Proposition 2.1,
we can complete the proof of the results announced in the introduction.

Proof of Theorem O.k. Consider an operator u" A B between C*-algebras. By
Theorem 1.5 we have for all (as) in A

Taking (2.1) into account, this immediately implies (0.1)k and completes the proof
of Theorem O.k.

We now check (2.1). We will need the following elementary fact.

LEMMA 2.2. Let H, HI, H2, Ha, H4 be Hilbert spaces. Let e Hx, f e H4 be norm
one vectors. Let (tp)s and () be orthonormal finite sequences in H2 and H3
respectively. Let a0 be elements ofa C*-aloebra A embedded into B(H). Then we have

(2.2) (e (R) q) (R) (p (R) f) (R) a0
jeJ

sup {YicH
xjH

IIxll 2 < 1, Ily, 2 <

Here the norm on the left-hand side means the norm in the space of all bounded
operators from Ht (R)2 H2 (R)2 H into Ha (R)2 H4 (R)2 H.

Proof. We may clearly assume without loss ofgenerality that Ht e, Ha Cf
and that (q)(resp. (q)) is a basis ofH2 (resp. H3). Then the norm we want to compute
is clearly equal to the norm of the operator
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as an operator from H2 ()2 H to Ha ()2 H. But then the general form of an element
in the unit ball of H2 ()2 H (resp. Ha ()2 H) is given by qgj (R) xj (resp. ] @i (R) Y)
with xj H2 (resp. y H3) such that IIxll 2 < (resp. IlYll 2 < 1). Hence the
norm of T (or of T) is equal to the right-hand side of (2.2).

We need to introduce more notation. Recall that E, c M, M, and 6i
e el. We consider, of course, M. M, as a subset of the set of all operators
on lz @ 1 It will be convenient to denote e.. e 0 and e 0 ej in M, M,.q

Also e e 0 and e 0 e in l l. As usual, for e andf in H, we will identify
the tensor e (R) f with the operator x (e, x)f (defined on H). Hence in tensor
product notation we have (with the usual matricial conventions) e0 e (R) e and

6 e (R) e + e (R) e. Let us denote by Ho the span of {el li 1, n} in M, and
by Hx the span of {elili 1, n} in M,, so that E. c Ho Hx. Let Po: Ho
H1 Ho (resp. PI" Ho H Hx) denote the canonical projection. We have E,k c

(Ho @ H1)(R). For {0, } we denote

P,: (Ho Hx)k (Ho H1)k

the projection defined by

Let us denote by Ix the identity on X. Then we have

(2.3)

(Po + Pi)(R)k

Z P,(o, (R)"’(R) P,(,
{o,x}

Proof of Proposition 2.1.

where

Let T st.lk 6s (R) as. By (2.3) we have

T, P,(fs) (R) as.

We now claim that

(2.4) TII II(a)ll,
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To check this, we can assume for simplicity (up to a permutation of the factors in
the tensor product) that t is the indicator function of the set { 1, 2, p} for some
p with < p < k. Then if J (ix, "",JR), we have

(2.5) (R) o o
eljp+, () () e ljk"

(Recall the convention that the tensor e (R) f represents the operator x (e, x) f.)
Let et() e (R)’"(R) e (p times) and fo() e (R)...(R) e (k p times). Then
(2.5) yields

P(5) (e()(R) eJ)/, (R)... (R) eJ))(R) (e), (R),.’(R) e. (R) fo())

If we now write e instead of e. (R)... (R) e. for e 0 or 1, we can rewrite theJ,} h,
last identity as

(2.6) p(6s) (eX()(R) o o(en,o(1)e,,u)) (R) (R) f ())

where we recall that n,’ In]k In]" denotes the canonical projection. Then in the
present particular case, Lemma 2.2 above gives

e,u>) (R) (R) fo()) (R) II(a)ll=.IITII (e() (R) o

This proves our claim (2.4).

Now we can finish. Let us denote h 1. 0 and h 0 l in 1 l. Let K be
the support of T (i.e., the orthogonal of its kernel) and let R be the range of T.
Then the preceding formula (2.6) shows that K is equal to the tensor product
F (R) F2 ("" () Fk where

F Ce ifj e

and

F h ifj .
It follows that the subspaces (K) are mutually orthogonal. Similarly, the family
(R) is mutually orthogonal. By a well-known estimate it follows that

I1 TII max TII,

This completes the proof.
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3. Random series in noncommutative Ll-spaces. Let ,4 be a von Neumann
algebra with a predual denoted by A,. Let 1, n e A, and let (recall (0.2))

[(,)3’1-- sup {l (,, a,)l la, e A [(a,)], < 1},

For instance, if A B(H), A, C(H) (the space of trace class operators on H),
and we have clearly

[(i)]’) inf{tr(x.*, xi) x/2 + tr( y,y.*, /2}

where the infimum runs over all decompositions i xi + y in C (H).
Let Tr be the infinite-dimensional torus equipped with its normalized Haar

measure V. The following result is proved in [LPP].
For all 1, , in A,

(3.1) eitj dl(t) < [(,)].
j=l A*

(See Theorem 3.3 below and its proof.)
It is easy to deduce from (3.1) a necessary and sufficient condition for a series of

the form

S(t) e", (t)j r T

to converge in L2(T r, ; A,). The aim of this section is to prove a natural extension
of (3.1) to double series of the form

with jk e A,, t’, t" e T TM. More generally, we will consider for any k > 1, elements
CJ,J2...Jk in A, and will find an equivalent for the expression

E
Jl <n jk <n

eitJ eitykJJ2""J llA* dl’t(tl )" dl2(tk)"

See Theorem 3.6 below for an explicit statement.
Let A be a C*-algebra throughout this section. We will denote simply

and

c. Cr(F.)

c. c.(R)...(R)c. (k times).
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We always equip the tensor products such as En (R) A, Cn (R) A, C (R) A with the
spatial (or minimal) tensor product. More precisely, whenever S c B(K) is an
operator space and A c B(H) is a C*-algebra, we will denote by S (R) A the linear
tensor product equipped with the norm induced by B(K (R)2 H).

Let G be a discrete group. For G, let 2.(0 denote the element of C’(G)* given by

Clearly

Va e C(G) (2.(0, a) (a6e, 6,).

(2.(s), 2(t)) {10 ifs=t
otherwise.

Note that if C’(G)* is identified with Ba(G) in the usual way (see for instance [E]),
then 2.(0 simply corresponds to the function 6,.

For any J (Jl, ...,Jk) [nlk we denote by gr the element of (F) defined by

g (g, g).

Then with the obvious identification

cr((e,)

we have 2(gj) 2(g,) (R)... (R) 2(gk). We will also consider the dual E* of the space
E, considered in Section 1 and will denote by {5*} the basis of E* which is
biorthogonal to {6}. We will also consider E E, (R)... (R) E, (k times) and its dual
(E)*. We will denote for any J (Jl, J)in [nJ

and

We will denote by f the infinite-dimensional torus; i.e., we set

and we equip f with the normalized Haar measure/. (In most of what follows, it
would be more appropriate to replace f by fn T", but we try to simplify the
notation.) We will denote by
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the sequence of the coordinate functions on f. Moreover, we will consider the
product f2k equipped with the product measure/k. For any J (Jl,..., Jk) In]k,
let es" fk T be the function defined by

V(t t,) e f

Equivalently, es ej, (R)... (R) egk. We first record a simple consequence of Proposi-
tion 1.3.

LEMMA 3.1. For any {glj < n} in A* we have

Proof. Let v, w be as in Proposition 1.3. Since w6g 2(gg) and v(2(gg)) gig, we
have (w (R) Ia)*(2,(gg)(R) g)= 6j* (R) g and (v (R) Ia)*(6* (R) g) 2,(gg)(R) Cg. Hence,
recalling (0.5), Lemma 3.1 follows from Ilwllb < 2 and Ilvllb < 1. i

The next lemma is rather elementary.

LEMMA 3.2. (i) Consider {igli, j 1,..., n} in A*. For any orthonormal systems
go1,..., go, and Jl, J, in L2(#) (where # is a probability as above), we have

(3.2) ll q,(t)j(s)jlla, dt(t) d#(s) < II(j)IIM.A)’.

(ii) For any k > and any (s) in A* we have

(3.3)
Je[n] Lx(lg;A*) Je[n] (Ekn(R)A)

Proof. (i) To prove this, it clearly suffices to assume that A is avon Neumann
algebra and that ig e A,. Since M,(A) is a subspace of M,(B(H)) for some Hilbert
space H, by duality its predual M.(A), is a quotient of M,(B(H)),. This shows that
it suffices to prove (i) for A B(H) and ig eft(H),. Then we can identify M,(B(H)),
with the projective tensor product lz(H)* (R) l(H). Consider an element x (resp. y)
in the unit ball of l(H)(resp, lz(H)*). Let be the element of M,(B(H)), defined by

y (R) x or equivalently, (ig) with g yg (R) x. For such a we have

(f )1/2 (f fI1 0,(t)0j(s)jll. d#(t) dl(S) I1 go(t)xll 2 d#(t) I1 ,j(s)yll d#(s)

-Ilxll Ilyll < .
Since the unit ball of M,(B(H)), is the closed convex hull of elements of this form,
we obtain (3.2).
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(ii) Consider a subset c { 1, k}. We denote by t its complement. Recall that
for elements (as)set.i,, in A the norm II(as)llat defined in (0.3) can be viewed as the
norm of a matrix acting from/_([n]at, H) into lz([n]at", H). Therefore we deduce from
(3.2) that for any (s)st.]k in A* we have

g s In]’

Observe that by duality (2.1) has the following consequence. If IIs,t,a’ (R)

GII. (R)a), < 1, then there is a decomposition

a with I1()11 1.
ate{1 k} at

Therefore (3.3) follows from (3.4) and the triangle inequality.

We now reformulate the main result of [LPP,I in our framework.

TI4EOREM 3.3. For any {.ilj < n} in A* we have

(3.5)

Proof. The left side is (3.3) above for k 1. By our earlier analysis of E, (R) A,
the right side is clearly equivalent to the following fact.
Assume II ejllL,tu,A.) < 1. Then there is a decomposition j x + y in A* such

that

and

I <x, e>l < I1(

This is precisely what is proved in section II of [LPPI, except that the sequence (st)
on t3 is replaced by the sequence (e3) on the one-dimensional torus. By a routine
averaging argument, one can then obtain the preceding fact as stated above with

(e). (Note that the approach of [LPP] can actually be developed directly for the
functions (e); this is explicitly done in [P2].)
We now relate certain series on Z" (formed by iterating the expressions appearing

in Theorem 3.3) with the corresponding series on the free group F. Z ,..., Z. In
other words, our aim is to compare for these series the free group F. with n
generators with its commutative counterpart Z".

LEMMA 3.4. For any {GIJ e In]k} in A* we have (the summation being over all J
in in]k)
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Proof. By the preceding three statements, we know that this holds for k 1.
We now argue by induction. Assume that Lemma 3.4 is proved for an integer k > 1,
and let us prove it for k + 1. Consider elements {jl./ [n]k,j In]} in A*. We
have

J’ E In]k+ 2 E [n],

By the induction hypothesis, we have

(3.6)
(C+ (R)A)*

< 2k fta I1 j(t)rljIItc(R)), d#k(t)

where rD j2,(/j) (R) j. Now for each fixed in t’lk, we have by (3.5) and Lemma
3.1

I1 e(t)ll{c (R)}, 2 I1 e(t)( e(s)G)lh, d(s).

Integrating over e fP, this yields

(3.7) fll’(t)’’ll(c(R)"*dk(t)<2[]’’’]ld’(k+), t,]+, ,

and hence (3.6) and (3.7) yield the induction step for k + 1. This concludes the proof
for the right-side inequality in Lemma 3.4. The proof of the other inequality is
entirely similar, l

We now come to the main result of this section.

THEOREM 3.5. For any {jlJ e In]k} in A* we have

Proof. With v and w as in Proposition 1.1, we have IIw(R)ll 2k, hence by (0.5)

IIw(R) (R) IAIIE (R)A--,C (R)A < 2k"

Moreover, we have w(R)k(fj) 2(gj) hence (w(R)k (R) IA)*(2,(gj) (R) Cj) i’ (R) Cj. This
yields

Combined with Lemma 3.4, this gives the right side in Theorem 3.5. The left side
has already been proved in Lemma 3.2. I
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Remark. A slight modification ofour proofyields Theorem 3.5 with the constant
22k-1 instead of 22k.

Remark. Let k be a fixed integer. Consider the mapping

defined by

Vf C(’l) Q,(f) f(J)bj,
J e In]k

where f is the Fourier transform off, i.e,, f(J) f(t)r(t)dgk(t). Let Nk Ker(Qk).
Dualizing (3.3), we find that 11211, < 1. Hence, considering Qk modulo its kernel
and equipping C(f)/N with its quotient operator space structure (in the sense of
[BP, ER]), we find a map

u: C(n)/N --, e with Ukllb 1.

Then Theorem 3.5 admits the following dual reformulation: Uk" C(fk)/Nk Ek, is a
complete isomorphism and UF II,b < 22. In other words, the space c(k)/Nk is,
for each k, completely isomorphic (uniformly with respect to n) to Eke.
Assume now that A is avon Neumann algebra and let A, be its predual. We

define for any family (x)a et,lk in A, the norm which is dual to the norm I1 defined
in (0.3). We set

(3.8) II(x)ll* sup {1 J e [hik

Then we define

(3.9) I-(x,)]) inf ’, IIx311*
{o,I}

where the infimum runs over all x in A, such that xa o.x}xJ.
Assume that A (A,)* is avon Neumann subalgebra of B(H) and let q:

N(H) A, be the quotient mapping which is the preadjoint of the embedding
A B(H). We can also write

(3.10) II(x)ll* inf{

where the infimum runs over all the possibilities to write (xa) as a series
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where (h’)zt,l, and (k)t,l,o are elements of H such that zllh’ll2 1 and

k < for each m.
The identity of (3.8) and (3.10) is clear since the dual norms are the same by (0.3).

Similarly, it is clear that the dual space to (A,)"k equipped with the norm [ ]) can
be identified with (A)"k equipped with the norm I ]k). By Proposition 2.1, this means
that (A,)" equipped with the norm i" ] can be viewed as a predual (isometrically)
of Ek (R) A. Hence, we can now rewrite Theorem 3.5 a bit more explicitly. For all
(x) in A,, we have (as announced in the beginning of this section)

(3.11)

In particular, we can make the following statement for emphasis.

THEOREM 3.6. Let A c B(H) be a yon Neumann subaloebra with predual A, and
let q" H H A, be the correspondin9 quotient mappin9. Consider {xslJ In]k } in
A, such that

Then (xj) admits a decomposition as

with

x q( 2hta (R) kta))
where for each , {h’li l-n]at} and {k]’lj [nlate} are elements of H such that, IIh’ll < and j IIkll’- < and where ;t are scalars such that

I;tl < 22k.
m

Conversely, if (x) admits such a decomposition, we must have I1xll,,> <
22k.

Proof. The proof is nothing but (3.9), (3.10), and (3.11) spelled out explicitly.

Remark. The preceding theoremproves one of the conjectures formulated in
[P2] in the case A B(H), A, H (R) H.

4. Complements. The following result shows that, in Proposition 1.3, the alge-
bra (C(F,))=I cannot be substituted by any sequence of nuclear algebras,
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THEOREM 4.1. Let A be either a nuclear C*-algebra or an injective yon Neumann
aloebra and let I. vw be a factorization of I. throuoh A. Then

v w (1 + x/).
Z-

For the proof we need the following.

LEMMA 4.2. Consider the subspace S. of M. M. given by

xl

Sn X2
Yl Yn

x. 0
xx, x., Yl, Yn - C

and define R: S. - S. by

R(x y) yt x’, xys.

Then

(a) (1 + R) is a projection of S, onto E. and

(b) for any projection Q of Sn onto En (resp. Mn Mn onto En) one has

Q Ilcb (1 + x/)

Proof. (a) Obviously R2 Is. and En {a e SnlRa a}. Hence (1/2)(Is, + R)
is a projection of Sn onto En. Let A be a C*-algebra. Then

Sn(R) A= 0 +
a. 0

and

(R(R)h) 0 +
a. 0

(.

[ax "..an

L O
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Since

max(llb?b, x/2, IIa,a.*,ll x/2) / max{llalll, Ila, ll, Ilbxll, IIb, }

< x//- max{ I1 a.*,a, 1/2, I1 b,b’lll/2},

it follows that IIR @ 111 /-. Hence IIRIlb //, and thus

To prove the converse inequality, it suffices to consider n > 2. Let A be the Cuntz
algebra O, (cf. [C]), which is generated by n isometries sl,..., s, B(H) satisfying

(4.1) ssj 6ol,

(4.2) ss.*, 1.
i=1

By (4.2) the element

z= 0
t.,* 0

in S, (R) A has norm Ilzll 1, while

(Is. + R)(R) I, (z) - s, + s*
0

0

has norm

1/2

sup s.*,s, + s,s.*, + s + (s?}2 , 1/2

H, I111 1
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By (4.1) and (4.2),= s.*,s nl and ,in_.-1 SIS’* I. Set

/) S/2"
i=1

By (4.1), v*v I, and so v is an isometry. By (4.1) the range of v is orthogonal to the
range of the isometry st s2" Indeed, for , r/ H

1

Hence v is a nonunitary isometry. Therefore the point spectrum of v* contains the
open unit disk D (cf., e.g., [KP], p. 253). Hence also the "numerical range" of v

{(re, )1 I111- 1} {(, v*)l I111 1}

contains the open unit disk. In particular, the number 1 is in the closure of this set.
Therefore

I1,11"1 i=t

n + 1 + 2x/ sup (Re(re,

>n+ 1 + 2x//
(1 + N//)2

Hence ll((1/2)(Is. + R)(R) l)(z)ll (1/2)(1 + /)llzll, which proves (a).
(b) Let Q be a projection from S. onto E.. Set Q QR RQR. Then Q is also a

projection from S. to E.. Let m denote the identity on Mm and t the transposition
of Mm. Then

Q m (R tm)(Q ( im)(R ( tin).

Since t, (R) t= can be identified with transposition on M,m, lit, @ troll 1. Hence by
the definition of R,
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Therefore

IIQ (R) imll Q (R) imll, mN,

and so Q Ilcb Q I1; therefore also

But

1/2(Q + Q) Q((Is. + R)),

and since Q is the identity on E., which is the range of (1/2)(Is. + R), we have
(1/2)(Q + Q) (1/2)(Is. + R). Thus

IIQII 111/2(Is. + R)II 1/2(1 -+- ).

If " M. M. onto, E. is a projection of norm 1, then from the above

proving (b). m

Proof of Theorem 4.1. Let IE. vw be a factorization of IE. through an injective
von Neumann algebra A. By the injeetivity of A, w can be extended to a linear map
: M. Mn A such that Ilkllcb < Ilwllcb (cf. [Pa] Theorem 7.2). Clearly, Q v
is a projection of M. M. onto E.. Hence by (b) in the preceding lemma

This proves the announced result when A is an injective von Neumann algebra. If
A is a nuclear C*-algebra, and le. vw as above, we can extend v to a a(A**, A*)-
continuous linear map : A** E, such that I111= IIo11. Since A** is an injec-
tive von Neumann algebra (cf., e.g., ICE]), we are now reduced to the preceding
case. m
Remark 4.3. The constant (1/2)(1 + x/) is the best possible in Theorem 4.1’

Namely, let A M. M., let w: E. --. M. ) M. be the inclusion map, and define
a projection v: M. M. E, by

v(x y) 1/2(Is. + R)(xp py), xyeM.M.,
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0 0
0

where p ( Then clearly vw IE, and

0

v cb v cb w cb < x(ls. + S) llb 1/2(1 + x/)
which indeed shows that Theorem 4.1 is sharp.

In connection with Lemma 4.2(b), note that there is obviously a projection
P: M, M E with (ordinary) norm IIPll < 1. (Simply take P v with v as in
Remark 4.3.) However, we will show below that the projection constant ofE (R) Mn
in (Mn (R) M) M goes to infinity when n m. To see this, it is clearer to place
the discussion in a broader context.

Let S c B(H) be a closed subspace. We define 2(S) (resp. 2(S), 2(S)) to be the
infimum of the constants 2 such that there is a projection P: B(H)--. S satisfying
P < ; (resp. P cb < 2, resp. IM. (R) P M.ttm)-..ts) < ;0. Then by the extension

theorem of cb maps (cf. I,W, Pa’l), these constants are invariants of the "operator
space" structure of S. By this we mean that, if $1 c B(K) is another operator space
which is completely isometric to S (resp. such that for some constant 2 there is an
isomorphism u: S $1 with Ilullbllu-x Ilcb < 2), then 2(S) 2(S), 2cb(S1) ,cb(S),
2,(S) An(S) (resp. (1/2)2(S) < 2(Sx) < 22(S) and similarly for the other constants).
By a simple averaging argument, we can prove the following statement.

PROr’OSITION 4.4. Let S B(H) be a closed subspace. Consider Mn(S)= Mn (R)
s = B(I(H)). Then

(i) 2n(S)= 2(M,(S));
(ii) if S is a(B(H), B(H),)-closed in B(H), then

(4.3) 2c(S) sup An(S).
n>l

For any infinite-dimensional Hilbert space K we have

(4.4) 2cb(S) < 2(B(K)(R) S).

Moreover, let B(K) (R) S denote the weak-, closure of B(K) (R) S in B(K (R) H). Then

2c,(S) 2(B(K) (R) S).

Proof. (i) The inequality 2(M. (R) S) < 2.(S) is obvious, and so we turn to the
converse. Assume that there is a projection

P" M (R) B(H) M (R) S

with PII ,
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Let ’, be the group of all n x n unitary matrices. Consider then the group
G q/, x ’, equipped with its normalized Haar measure m. We will use the
representation

r: G B(Mn,

defined by

(u, v)x = uxv*.

We can define an operator P" Mn (R) B(H) --’, Mn (R) B(H) by the formula

(4.5) P f (n(u, v)(R) Is{n))P(r(u, v)(R) Inure)-1 dm(u, v).

Note that r(u, v) leaves Mn (R) S invariant so that the range ofP is included in Mn (R) S
and P restricted to Mn (R) S is the identity; hence P is a projection from Mn (R) B(H)
onto Mn (R) S. Moreover, by Jensen’s inequality (notice that r(u, v)(R) Inch)is an
isometry on Mn (R) B(H)) we have

Furthermore, using the translation invariance of m in (4.5) we find

(4.6) ’(Uo, Vo) G e(n(Uo, Vo) (R) Im) (n(Uo, Vo) (R) Inm)e,

so that P commutes with r(uo, Vo)(R) Inm. By well-known facts, this implies that P
is of the form

P=IM.(R)Q

for some operator Q which has to be a projection onto S. Indeed, since Mn is spanned
by q/n, the above formula (4.6) is equivalent to: For all a, b in Mn and for all x in
Mn (R) B(H),

(4.7) P((a (R) 1)x(b (R) 1)) (a (R) 1)P(x)(b (R) 1).

Let (eo),= denote the matrix units in Mn. Set x e (R) y, where y is in B(H)
and i, j are in { 1, n}. Applying. (4.7) to a 1- eu and b 1- e, one gets
(1 eu)P(eti (R) y)(1 e) 0; i.e., P(eo (R) y) eo (R) z for some z in B(H) depending
on y, i, and j. However applying (4.7) again, this time with a ek and b et, it
follows that z is independent of and j. Hence P " IM, (R) Q, for some operator Q
(which has to be a projection onto $). Finally, we conclude

and hence 2n(S) < 2(Mn (R) S). This proves (i).
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We now check (ii). Consider an arbitrary closed subspace S c B(H) and let S be
the a(B(H), B(H).)-closure of $. We claim that there is an operator Q" B(H) S
such that QIs ls and IIQII

Let e, > 0 be such that e. 0. For each n there is a projection P,: B(H) S such
that

(4.8)

Let q/ be a nontrivial ultrafilter on N. For any bounded sequence (.) of real
numbers (or for any relatively compact sequence in a topological space), we will
denote simply by lim. the limit of, when n along q/. For any x in B(H) let

Q(x) lim P,(x)

where the limit is in the a(B(H), B(H).)-sense. Observe that IIQII limu IIell
sup. 2,(S). More generally, for any integer m > 1 we clearly have

Vy M (R) B(H) (IM. (R) Q)(y) lim (It.. (R) P,)(y),

and hence Ill,t,. (R) Qll < lim, III (R) e.ll. But when n > m, we obviously have

and hence by (4.8) we obtain

IIIM, (R) 11 lim (1 + e.)2.(S) < sup 2.(S),

so that IlQllcb sup. 2.(s). Clearly, Q(B(H)) S and QIs Is. This proves our claim,
and in the case S S we obtain (4.3). (Note that 2cs(S) > sup, 2.(S) is trivial.) We
now turn to (4.4). We may clearly assume K Iz. Recall that there is obviously
a completely contractive projection .: B(lz) M. (here M. is considered as a
subspace of B(lz) in the usual way), and hence

.(s) (M= (R) S) I1.11 A(B(/z)(R) S) A(B(/z)( S)

which implies by (4.3)

2cb(S) < 2(B(/2))S).

This concludes the proof of (4.4).
To prove the last assertion, note that M.(S) is clearly contractively complemented

in B(/z)(R) S, and hence we have

2,b(S) < sup 2,(S) sup 2(M,(S)) < 2(B(/2)(R) S).
n>l n>l
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To prove the converse inequality, note that B(/2) (R) B(H) can be identified with the
space of matrices a (ao), which are bounded on/2(H), and B(/2) (R) S can be
identified with the subspace formed by all matrices with entries in S. Then if P is a
completely bounded projection from B(H) onto S, defining

P(a) (P(ao)), q

we obtain a projection from B(/2) @ B(H) to B(/2) @ S with IIPII IIPII,. To check
this last estimate, observe that the norm ofan element a (a), in B(/2) (R) B(H)
is the supremum over n of the norms in Mn(B(H)) of the matrices (ao), <. This
yields the last assertion.

COROLLARY 4.5. Let H, K be Hilbert spaces. Consider a completely isometric
embedding E. --) B(H). Then if dim K oo, for any projection P from B(K) (R) B(H)
to B(K) (R) E. we have

P 2x-( + 1).

A fortiori, the same holds for any projection P from B(K (R) H) onto B(K) (R) E..
Proof. By the preceding statement, this follows from Theorem 4.1.

COROLLARY 4.6. Let M c B(H) be a yon Neumann subalgebra such that M is
isomorphic (as a yon Neumann algebra) to Mn(M) for some integer n > 2. Then if
there is a bounded linear projection from B(H) onto M, there is also a completely
bounded one.

Proof. Note that if M is isomorphic to M.(M), then obviously it is isomorphic
to Mn(Mn(M)) M.,(M), and similarly to M.3(M), and so on. Hence this follows
clearly from the first two parts of Proposition 4.4 and the observation preceding
Proposition 4.4.

In particular, using [VI’I, we have the following.

COROLLARY 4.7. Let M B(H) be a yon Neumann subalgebra. IfM is isomorphic
to the yon Neumann algebra VN(F) (resp. VN(Foo)) associated to the free group with
n > 1 generators (resp. countably many generators), then there is no bounded linear
projection from B(H) onto M.

Proof. First note that VN(F) trivially embeds into VN(Foo) as a subalgebra
which is the range ofa completely contractive projection. Therefore, by Proposition
1.3 and Theorem 4.1 there is no completely bounded projection from B(H) onto M
if M is isomorphic to VN(Foo). By IV1] Mn(VN(Foo)) is isomorphic to VN(Foo) for
all n. Hence Corollary 4.7 for VN(Foo) follows from the preceding corollary. To
obtain the case of finitely many generators, recall the well-known fact that Foo can
be embedded in F, for all n > 2. (If a, b are two of the generators of F, then it is easy
to check, that b, aba-1,..., a"ba-,.., are free generators of a subgroup isomorphic
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to Foo.) Therefore if M VN(F.) for n > 1, then VN(Foo) is isomorphic to avon
Neumann subalgebra N c M, and since M is a finite von Neumann algebra, N is
the range of a conditional expectation; hence there is a bounded projection from
M onto N. Since there is no bounded projection from B(H) onto N by the first part
of the proof, afortiori there cannot exist a bounded projection from B(H) onto M.

For two operator spaces E and F of the same finite dimension n, one can define
the complete version of the Banach-Mazur distance between E and F by

dcb(E, F) inf{ u , u-all),

where the infimum is taken over all invertible linear maps u from E to F. By
Proposition 1.3 it follows that

d(E., span{2(#,)li 1, n}) < 2

for all n N. The next proposition shows that the same inequality holds if the
unitary operators 2(#t), 2(0.) are replaced by a semicircular or circular system
of operators in the sense of Voiculescu IV1].

PROPOSITION 4.8. Let n N and let xx x. be a semicircular or circular system
of operators on a Hilbert space; then the map u: E. span{xt, x.} iven by

k=l k=t

satisfies u I1 u-Xllb 2.

Proof. Assume first that x t,..., x. is a semicircular system of selfadjoint opera-
tors in the sense of IV1]. By IV2], we can exchange x, x. with the operators

Xk 1/2(Sk + S), k 1,..., n,

where st, s, are the "creation operators" --, e (R) on the full Fock space

based on a Hilbert space H with orthonormal basis (ex,..,, e.). In particular,
s, s. are n isometries with orthogonal ranges, and therefore

Hence, as in the proof of Proposition 1.1, we get that for any n-tuple at,..., a. of
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elements in a C*-algebra A,

1( $k ( ak
k

1( 1/2 1/2 1/2

1/2

k aka’
1/2 t

Hence Ilullb 1. To prove that Ilu-Xll 2, notice that by IV1], IV2], the C*-
algebra generated by xx, x, and 1 has a trace

z: C*(xx, Xn, 1) --, C

(namely the vector-state given by a unit vector in the C-part of the Fock space g’),
with the properties:

1
z(1) 1, (x) and "C(XkX) O, k v I.

Let ax, a. be n operators in a C*-algebra A and let S(A) denote the state space
of A. Then

sup ((R)o) x(R)a xt(R)at
S(A) k

_I k a’ak

and similarly IIkXk (R) akll 2 illkaka’ll. Hence
1/2 I/2

proving that Ilu-x Ilcb 2.
Assume finally that y,..., Yn is a circular system. Then

1
Yk ---_(X2k-1 "- iX2k), k 1,..., n,
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where (xl, x2.) is a semicircular system of selfadjoint operators. Therefore the
statement about circular systems in Proposition 4.8 follows from the one on semicir-
cular systems by observing that the map

c6 --, c(ee._a + e2k
k=l k=l

defines a cb-isometry of E. onto its range in E2n.
To conclude this paper we give a generalization ofProposition 1.1 to free products

of discrete groups, or more generally free products of C*-probability spaces in the
sense of IV1] and IV2]. We refer to IV1] and IV2] for the terminology.

PROPOSITION 4.9. Let (A, tp) be a C*-aloebra equipped with a faithful state qg. Let
(A)t be a free family of unital C*-subalgebras of A in the sense of IV1] or [V2].
Consider elements x A such that for some 6 > 0

Vi I IIxll < 1, p(x) 0, and min{tp(x’x), tp(xx’)} > 62.

Then for all finitely supported families (ai)i, in B(H) (H Hilbert), we have

(4.9)
6 max{llZ a.*,al[ x/2, [[Z aa’*,[[ x/2 } < IIZ x (R) a[I < 2 max{llY a.*,a,[[ m, IIZ aa’[[/2}
Proof. We may assume that I is finite. The lower bound in (4.9) is proved exactly

as in the semicircular case. To prove the upper bound we will prove that A can be
faithfully represented as a C*-algebra of operators on a Hilbert space H, such that
x admits a decomposition x u + v with u, vi in B(H) and

(4.10) IIuu, < 1 and IIv,vll < 1.

The upper bound in (4.9) then follows as in the semicircular case.
Following the notation of IV2, pp. 558-559!, we let (H, ) be the space of the

GNS-representation r zbl,,. In particular, is a unit vector in H and

q(x) (,(x),, when x

Then A can be realized as the C*-algebra of operators on the Hilbert space

(H, )= *ii(ni, i)

generated by , 2 o n(A), where 2i: B(H) --. B(H) is the .-representation defined
in IV2, sect. 1.2]. For simplicity of notation we will identify A with its range in
B(H); i.e., we set

2i o q(x) x when x Ai.
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Let x e As. Corresponding to the decomposition

we can write n(x) as a 2 x 2 matrix

where b B(H), r/, ( e H, and . (Here we identify r/, ( with the corresponding
linear maps from to H, and we also identify with i.) The action of
x 2t o n(x) on *(Ht, t) can now be explicitly computed from IV2, sect. 1.2].
One finds that

(4.11) x r/(R) + t,

(4.12) x(hl (R)"" (R) hn) bhl (R)"" (R) hn + (h, )h2 ("" t) hn when n > 1,

(4.13) x(h (R)"" (R) h.) l (R) h (R)"" (R) h. + th ( ( h, when n > 1,

where h2 () ( h for n 1.
Let et B(H) be the orthogonal projection of H onto the subspace

Hi ( ((H, (R)... (R)

where the second direct sum contains all n-tuples (i, in) for which i= i #
i2 "" in. From (4.11), (4.12), and (4.13), one gets for all x in At

(4.14) (1 e)x(1 et) o(x)(1

where we have used that

Let now xt e At, IIxll 1, tp(xt) 0. Then by (4.14)

(1 e)xt(1 e) O.
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Thus x, u, + v,, where

us=xiei and vi=eix(1-ei).

Since IIxll and since (ei)i is a set of pairwise orthogonal projections,

and

ViV < L ei < 1.
il il

This completes the proof of Proposition 4.9.
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