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SIMPLE LIE GROUPS

WITHOUT THE APPROXIMATION PROPERTY II

UFFE HAAGERUP AND TIM DE LAAT

Abstract. We prove that the universal covering group ˜Sp(2,R) of Sp(2,R)
does not have the Approximation Property (AP). Together with the fact that
SL(3,R) does not have the AP, which was proved by Lafforgue and de la Salle,
and the fact that Sp(2,R) does not have the AP, which was proved by the au-
thors of this article, this finishes the description of the AP for connected simple
Lie groups. Indeed, it follows that a connected simple Lie group has the AP if
and only if its real rank is zero or one. By an adaptation of the methods we use
to study the AP, we obtain results on approximation properties for noncom-

mutative Lp-spaces associated with lattices in ˜Sp(2,R). Combining this with
earlier results of Lafforgue and de la Salle and results of the second-named
author of this article, this gives rise to results on approximation properties of
noncommutative Lp-spaces associated with lattices in any connected simple
Lie group.

1. Introduction

This is the second article of the authors on the Approximation Property (AP) for
Lie groups. In the first article on this topic, the authors proved that Sp(2,R) does
not satisfy the AP [21]. Together with the earlier established fact that SL(3,R)
does not have the AP, which was proved by Lafforgue and de la Salle in [31], this
implied that if G is a connected simple Lie group with finite center and real rank
greater than or equal to two, then G does not satisfy the AP. In [21], it was pointed
out that in order to extend this result to the class of connected simple Lie groups
with real rank greater than or equal to two, i.e., not necessarily with finite center, it

would be sufficient to prove that the universal covering group S̃p(2,R) of Sp(2,R)
does not satisfy the AP. The main goal of this article is to prove this. This finishes
the description of the AP for connected simple Lie groups. Indeed, it follows that
a connected simple Lie group has the AP if and only if its real rank is zero or one.

In this article we are mainly interested in Lie groups, but many definitions are
given in the setting of locally compact groups. We always assume locally compact
groups to be second countable and Hausdorff. Before we state the main results of
this article, we give some background (see Section 1 of [21] for a more extensive
account of the background).
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Let G be a locally compact group. Denote by A(G) its Fourier algebra and by
M0A(G) the space of completely bounded Fourier multipliers on G. Recall that G
is said to have the Approximation Property for groups (AP) if there is a net (ϕα) in
the Fourier algebra A(G) such that ϕα → 1 in the σ(M0A(G),M0A(G)∗)-topology,
where M0A(G)∗ denotes the natural predual of M0A(G), as introduced in [4].

The AP was defined by the first-named author and Kraus in [20] as a version for
groups of the Banach space approximation property (BSAP) of Grothendieck. To
see the connection, recall first that Banach spaces have a natural noncommutative
analogue, namely, operator spaces. Recall that an operator space E is a closed
linear subspace of the bounded operators B(H) on a Hilbert space H. Operator
spaces have a remarkably rich structure (see [11], [35]). For the class of operator
spaces, which contains the class of C∗-algebras, a well-known version of the BSAP
is known, namely, the operator space approximation property (OAP). The first-
named author and Kraus proved that a discrete group Γ has the AP if and only if
its reduced C∗-algebra C∗

λ(Γ) has the OAP.
The AP also relates to other approximation properties for groups (see [3] for an

extensive text on approximation properties for groups and operator algebras). It is
known that weak amenability (which is strictly weaker than amenability) strictly
implies the AP. Amenability and weak amenability have been studied thoroughly
for Lie groups. Indeed, a connected simple Lie group with real rank zero is amenable
and a connected simple Lie group with real rank one is weakly amenable (see [7]
and [23]). Also, it has been known for some time that connected simple Lie groups
with real rank greater than or equal to two are not weakly amenable (see [19] and
[9]). In addition, weak amenability was studied for a larger class of connected Lie
groups in [6]. The AP has been less studied than weak amenability. In particular,
until the work of Lafforgue and de la Salle, no example of an exact group without
the AP was known.

The key theorem of this article is as follows.

Theorem 3.2. The universal covering group S̃p(2,R) of the symplectic group
Sp(2,R) does not have the Approximation Property.

Combining this with the fact that SL(3,R) does not have the AP, as established
by Lafforgue and de la Salle, and the fact that Sp(2,R) does not have the AP, as
proved by the authors, the following main result follows.

Theorem 5.1. Let G be a connected simple Lie group. Then G has the Approxi-
mation Property if and only if G has real rank zero or one.

There are important differences between the approach of Lafforgue and de la
Salle for the proof of the fact that SL(3,R) does not have the AP in [31] and the
approach of the authors for proving the failure of the AP for Sp(2,R) in [21] and
for its universal covering group in this article. Indeed, the method of Lafforgue and
de la Salle gives information about approximation properties for certain noncom-
mutative Lp-spaces associated with lattices in SL(3,R), which the method of the
authors does not. However, the latter is more direct, since it suffices to consider
completely bounded Fourier multipliers rather than completely bounded multipliers
on Schatten classes.

Noncommutative Lp-spaces are important examples of the earlier mentioned
operator spaces. Let M be a finite von Neumann algebra with normal faithful
trace τ . For 1 ≤ p < ∞, the noncommutative Lp-space Lp(M, τ ) is defined as the
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completion of M with respect to the norm ‖x‖p = τ ((x∗x)
p
2 )

1
p , and for p = ∞,

we put L∞(M, τ ) = M (with operator norm). Noncommutative Lp-spaces can be
realized by interpolating between M and L1(M, τ ) (see [28]). This leads to an
operator space structure on them (see [34], [25]).

An operator space E is said to have the completely bounded approximation prop-
erty (CBAP) if there exists a net Fα of finite-rank maps on E with supα ‖Fα‖cb < C
for some C > 0 such that limα ‖Fαx − x‖ = 0 for every x ∈ E. The infimum of
all possible C’s is denoted by Λ(E). If Λ(E) = 1, then E has the completely con-
tractive approximation property (CCAP). An operator space E is said to have the
operator space approximation property (OAP) if there exists a net Fα of finite-rank
maps on E such that limα ‖(idK(�2) ⊗Fα)x−x‖ = 0 for all x ∈ K(�2)⊗minE. Here,

K(�2) denotes the space of compact operators on �2. The CBAP goes back to [4],
and the OAP was defined in [10]. By definition, the CCAP implies the CBAP,
which in turn implies the OAP.

It was shown by Junge and Ruan [25] that if Γ is a weakly amenable countable
discrete group (resp. a countable discrete group with the AP), and if p ∈ (1,∞),
then Lp(L(Γ)) has the CBAP (resp. the OAP), where L(Γ) denotes the group von
Neumann algebra of Γ. The method of Lafforgue and de la Salle can be used to
prove the failure of the CBAP and OAP for noncommutative Lp-spaces. The key
ingredient of their method is the property of completely bounded approximation
by Schur multipliers on Sp, denoted APSchur

p,cb , which is weaker than the AP for
p ∈ (1,∞). Indeed, they prove that if p ∈ (1,∞) and Γ is a countable discrete
group with the AP, then ΛSchur

p,cb (Γ) = 1 (see [31, Corollary 3.12]). Also, they prove

that if p ∈ (1,∞) and Γ is a countable discrete group such that Lp(L(Γ)) has the
OAP, then ΛSchur

p,cb (Γ) = 1 (see [31, Corollary 3.13]). Using this, they prove that

for p ∈ [1, 4
3 ) ∪ (4,∞] and a lattice Γ in SL(3,R), the noncommutative Lp-space

Lp(L(Γ)) does not have the OAP or CBAP.
In [29], the second-named author generalized the results of Lafforgue and de la

Salle on approximation properties for noncommutative Lp-spaces associated with
lattices in SL(3,R) to noncommutative Lp-spaces associated with lattices in con-
nected simple Lie groups with finite center and real rank greater than or equal to
two. In this article, we will in turn generalize these results to connected simple Lie
groups with real rank greater than or equal to two that do not necessarily have
finite center, as is illustrated by our main result on noncommutative Lp-spaces.

Theorem 5.3. Let Γ be a lattice in a connected simple Lie group with real rank
greater than or equal to two. For p ∈ [1, 12

11 )∪(12,∞], the noncommutative Lp-space
Lp(L(Γ)) does not have the OAP or CBAP.

It may very well be possible that the range of p-values for which the CBAP and
OAP fail is larger than [1, 12

11 )∪ (12,∞]. We will comment on this in further detail
in Section 5.

This article is organized as follows. In Section 2, we recall some preliminaries.

In Section 3, we prove that S̃p(2,R) does not have the AP. We prove the results
on noncommutative Lp-spaces in Section 4. The results will be summarized and
combined to our general results in Section 5. Appendix A gives a connection be-
tween spherical functions for Gelfand pairs and their analogues for strong Gelfand
pairs that might give a deeper understanding of certain results that are proved in
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Section 3. The material in that appendix follows from discussions of the second-
named author with Thomas Danielsen. This material might be known to experts,
but we could not find an explicit reference.

2. Preliminaries

2.1. Universal covering groups. Let G be a connected Lie group. A covering

group of G is a Lie group G̃ with a surjective Lie group homomorphism σ : G̃ → G,

in such a way that (G̃, σ) is a covering space ofG (in the topological sense). A simply
connected covering space is called a universal covering space. Every connected Lie

group G has a universal covering space G̃. Let σ : G̃ → G be the corresponding
covering map, and let 1̃ ∈ σ−1(1). Then there exists a unique multiplication on

G̃ that makes G̃ into a Lie group in such a way that σ is a surjective Lie group

homomorphism. The group G̃ is called a universal covering group of the Lie group
G. Universal covering groups of connected Lie groups are unique up to isomorphism.

They also satisfy the exact sequence 1 → π1(G) → G̃ → G → 1, where π1(G)
denotes the fundamental group of G. For details on universal covering groups, see
[26, Section I.11].

2.2. Polar decomposition of Lie groups. Every connected semisimple Lie group
G has a polar decomposition G = KAK, where K arises from a Cartan decompo-
sition g = k + p (the group K has Lie algebra k), and A is an abelian Lie group
such that its Lie algebra a is a maximal abelian subspace of p. If G has finite
center, then K is a maximal compact subgroup. The dimension of the Lie algebra
a of A is called the real rank of G and is denoted by rankR(G). In general, given
a polar decomposition G = KAK, it is not the case that for g ∈ G there exist
unique k1, k2 ∈ K and a ∈ A such that g = k1ak2. However, after choosing a set of
positive roots and restricting to the closure A+ of the positive Weyl chamber A+,
we still have G = KA+K. Moreover, if g = k1ak2, where k1, k2 ∈ K and a ∈ A+,
then a is unique. Note that we can choose any Weyl chamber to be the positive one
by choosing the set of positive roots correspondingly. We also use the terminology
polar decomposition for such a KA+K decomposition. For details, see [24, Section
IX.1].

2.3. Gelfand pairs and spherical functions. Let G be a locally compact group
(with Haar measure dg) with a compact subgroupK (with normalized Haar measure
dk). A function ϕ : G → C is said to be K-bi-invariant if for all g ∈ G and k1, k2 ∈
K, we have ϕ(k1gk2) = ϕ(g). We denote the space of continuous K-bi-invariant
compactly supported functions by Cc(K\G/K). If the subalgebra Cc(K\G/K)
of the (convolution) algebra Cc(G) is commutative, then the pair (G,K) is called
a Gelfand pair. Equivalently, the pair (G,K) is a Gelfand pair if and only if
for every irreducible unitary representation π on a Hilbert space H, the space
He = {ξ ∈ H | ∀k ∈ K : π(k)ξ = ξ} consisting of K-invariant vectors is at most
one-dimensional. For a Gelfand pair (G,K), a function h ∈ C(K\G/K) is called
spherical if the functional χ on Cc(K\G/K) given by χ(ϕ) =

∫
G
ϕ(g)h(g−1)dg for

ϕ ∈ Cc(K\G/K) defines a nontrivial character. The theory of Gelfand pairs and
spherical functions is well established and goes back to Gelfand [16]. For more
recent accounts of the theory, we refer the reader to [8], [14], [38].
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Let G be a locally compact group with closed subgroupH. A function ϕ : G → C

is said to be Int(H)-invariant if ϕ(hgh−1) = ϕ(g) for all g ∈ G and h ∈ H. The
space of continuous Int(H)-invariant functions is denoted by C(G//H).

Now let G be a locally compact group with compact subgroup K. The pair
(G,K) is called a strong Gelfand pair if the subalgebra Cc(G//K) of Cc(G) is
commutative. In the setting of locally compact groups, the notion of strong Gelfand
pair goes back to Goldrich and Wigner [18]. It is well known that whenever G is a
locally compact group with a compact subgroup K, then (G,K) is a strong Gelfand
pair if and only if (G×K,ΔK) (where ΔK is the diagonal subgroup) is a Gelfand
pair.

It turns out that certain results of Section 3 can be understood on a deeper
level in the setting of strong Gelfand pairs, in particular when one considers the
analogue of spherical functions in this setting. This is discussed in Appendix A.
The analogues of spherical functions already occurred in [17].

2.4. The Fourier algebra. Let G be a locally compact group. The Fourier al-
gebra A(G) is defined as the space consisting of the coefficients of the left-regular
representation λ : G → B(L2(G)). It was introduced by Eymard [12] (see also [13]).
More precisely, ϕ ∈ A(G) if and only if there exist ξ, η ∈ L2(G) such that for all
g ∈ G, we have ϕ(g) = 〈λ(g)ξ, η〉. The Fourier algebra A(G) is a Banach space with
respect to the norm defined by ‖ϕ‖A(G) = min{‖ξ‖‖η‖ | ∀g ∈ G ϕ(g) = 〈λ(g)ξ, η〉}.
We have ‖ϕ‖∞ ≤ ‖ϕ‖A(G) for all ϕ ∈ A(G), and A(G) is ‖.‖∞-dense in C0(G).
Eymard showed that A(G) can be identified isometrically with the predual of the
group von Neumann algebra L(G) of G.

2.5. Completely bounded Fourier multipliers on compact Gelfand pairs.
A function ϕ : G → C is said to be a Fourier multiplier if and only if ϕψ ∈ A(G) for
all ψ ∈ A(G). LetMA(G) denote the Banach space of multipliers of A(G) equipped
with the norm given by ‖ϕ‖MA(G) = ‖mϕ‖, where mϕ : A(G) → A(G) denotes
the associated multiplication operator. A multiplier ϕ is said to be completely
bounded if the operator Mϕ : L(G) → L(G) induced by mϕ is completely bounded.
The space of completely bounded multipliers is denoted by M0A(G), and with the
norm ‖ϕ‖M0A(G) = ‖Mϕ‖cb, it forms a Banach space. It is known that A(G) ⊂
M0A(G) ⊂ MA(G).

It was proved by Bożejko and Fendler in [2] that ϕ ∈ M0A(G) if and only if
there exist bounded continuous maps P,Q : G → H, where H is a Hilbert space,
such that ϕ(g−1

2 g1) = 〈P (g1), Q(g2)〉 for all g1, g2 ∈ G. Here 〈., .〉 denotes the inner
product on H. In this characterization, ‖ϕ‖M0A(G) = min{‖P‖∞‖Q‖∞}, where the
minimum is taken over all possible pairs (P,Q) for which ϕ(g−1

2 g1) = 〈P (g1), Q(g2)〉
for all g1, g2 ∈ G.

Suppose now that (G,K) is a compact Gelfand pair, i.e., the group G is compact
and (G,K) is a Gelfand pair. Then for every irreducible representation π on H, the
space He as defined in Section 2.3 is at most one-dimensional. Let Pπ =

∫
K
π(k)dk

denote the projection onto He, and set ĜK = {π ∈ Ĝ | Pπ = 0}, where Ĝ denotes
the unitary dual of G. We proved the following result in [21, Proposition 2.3].

Proposition 2.1. Let (G,K) be a compact Gelfand pair, and let ϕ be a K-bi-
invariant completely bounded Fourier multiplier. Then ϕ has a unique decompo-
sition ϕ(g) =

∑
π∈ĜK

cπhπ(g) for all g ∈ G, where hπ(g) = 〈π(g)ξπ, ξπ〉 is the
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positive definite spherical function associated with the representation π with K-
invariant cyclic vector ξπ, and

∑
π∈ĜK

|cπ| = ‖ϕ‖M0A(G).

2.6. The Approximation Property. We recall the definition and basic proper-
ties of the Approximation Property for groups (AP), as introduced by the first-
named author and Kraus [20].

Definition 2.2. A locally compact group G is said to have the Approximation
Property for groups (AP) if there is a net (ϕα) in A(G) such that ϕα → 1 in the
σ(M0A(G),M0A(G)∗)-topology, where M0A(G)∗ denotes the natural predual of
M0A(G) as introduced in [4] (see also [20] and [21]).

It was proved by the first-named author and Kraus that if G is a locally compact
group and Γ is a lattice in G, then G has the AP if and only if Γ has the AP [20,
Theorem 2.4]. The AP passes to closed subgroups, as is proved in [20, Proposition
1.14]. Also, if H is a closed normal subgroup of a locally compact group G such that
both H and G/H have the AP, then G has the AP [20, Theorem 1.15]. Moreover,
if G1 and G2 are two locally isomorphic connected simple Lie groups with finite
center such that G1 has the AP, then G2 has the AP [21, Proposition 2.4].

2.7. Preliminaries for the results on noncommutative Lp-spaces. These
preliminaries are only relevant for Section 4. For a more extensive account, we
refer to [31], [29].

2.7.1. Schur multipliers on Schatten classes. For p ∈ [1,∞] and a Hilbert space H,
let Sp(H) denote the pth Schatten class on H. We identify S2(H) with H∗ ⊗ H,
and for a σ-finite measure space (X,μ), we identify L2(X,μ)∗ with L2(X,μ) by the
duality bracket 〈f, g〉 =

∫
X
fgdμ. It follows that S2(L2(X,μ)) can be identified

with L2(X ×X,μ⊗μ). Hence, every Schur multiplier on S2(L2(X,μ)) comes from
a function ψ ∈ L∞(X ×X,μ⊗ μ) acting by multiplication on L2(X ×X,μ⊗ μ).

Definition 2.3. Let p ∈ [1,∞], and let ψ ∈ L∞(X×X,μ⊗μ). The Schur multiplier
with symbol ψ is said to be bounded (resp. completely bounded) on Sp(L2(X,μ))
if it maps Sp(L2(X,μ)) ∩ S2(L2(X,μ)) into Sp(L2(X,μ)) by Tk �→ Tψk (where Tk

denotes the integral operator with kernel k), and if this map extends (necessarily
uniquely) to a bounded (resp. completely bounded) map Mψ on Sp(L2(X,μ)).

The norm of a bounded multiplier ψ is defined by ‖ψ‖MSp(L2(X,μ)) = ‖Mψ‖,
and its completely bounded norm by ‖ψ‖cbMSp(L2(X,μ)) = ‖Mψ‖cb. The spaces

of multipliers and completely bounded multipliers are denoted by MSp(L2(X,μ))
and cbMSp(L2(X,μ)), respectively. It follows that for every p ∈ [1,∞] and ψ ∈
L∞(X ×X,μ⊗ μ), we have ‖ψ‖∞ ≤ ‖ψ‖MSp(L2(X,μ)) ≤ ‖ψ‖cbMSp(L2(X,μ)).

2.7.2. Schur multipliers on compact Gelfand pairs. In this section, we recall results
from [29, Section 2] that are analogues in the setting of multipliers on Schatten
classes of the results of Section 2.5. For proofs, we refer to [29].

For a locally compact group G and a function ϕ ∈ L∞(G), we define the function
ϕ̌ ∈ L∞(G×G) by ϕ̌(g1, g2) = ϕ(g−1

1 g2).
In what follows, let G and K be Lie groups such that (G,K) is a compact

Gelfand pair. Let X = G/K denote the homogeneous space corresponding with
the canonical transitive action of G. The group K is the stabilizer subgroup of a
certain element e0 ∈ X. It follows that L2(X) =

⊕
π∈ĜK

Hπ. Let hπ denote the
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spherical function corresponding to the equivalence class π of representations. Then
for every ϕ ∈ L2(K\G/K) we have ϕ =

∑
π∈ĜK

cπ dimHπhπ, where cπ = 〈ϕ, hπ〉.
It also follows that for any ϕ ∈ C(K\G/K), there exists a continuous function
ψ : X ×X → C such that for all g1, g2 ∈ G, we have ϕ(g−1

1 g2) = ψ(g1e0, g2e0). Let
ϕ : G → C be a continuous K-bi-invariant function such that ϕ̌ ∈ cbMSp(L2(G))
for some p ∈ [1,∞]. Then ‖ψ‖cbMSp(L2(X)) = ‖ϕ̌‖cbMSp(L2(G)), where ψ : X×X →
C is as defined above. If K is an infinite group, then these norms are equal to
‖ϕ̌‖MSp(L2(G)).

Let (G,K) be a compact Gelfand pair, let p ∈ [1,∞), and let ϕ : G →
C be a continuous K-bi-invariant function such that ϕ̌ ∈ MSp(L2(G)). Then(∑

π∈ĜK
|cπ|p(dimHπ)

) 1
p ≤ ‖ϕ̌‖MSp(L2(G)), where cπ and Hπ are as before.

2.7.3. The APSchur
p,cb . The APSchur

p,cb was defined in [31]. Its relevance to us, including
certain important properties, was described in Section 1.

Definition 2.4 (see [31, Definition 2.2]). Let G be a locally compact group, and
let 1 ≤ p ≤ ∞. The group G is said to have the property of completely bounded
approximation by Schur multipliers on Sp, denoted APSchur

p,cb , if there exists a con-
stant C > 0 and a net ϕα ∈ A(G) such that ϕα → 1 uniformly on compacta and
supα ‖ϕ̌α‖cbMSp(L2(G)) ≤ C. The infimum of these C’s is denoted by ΛSchur

p,cb (G).

It was proved by Lafforgue and de la Salle that if G is a locally compact group
and Γ is a lattice in G, then for 1 ≤ p ≤ ∞, we have ΛSchur

p,cb (Γ) = ΛSchur
p,cb (G) (see

[31, Theorem 2.5]). More properties of the APSchur
p,cb are discussed in [31] and [29].

3. The group S̃p(2,R) does not have the AP

In this section, we prove that the universal covering group S̃p(2,R) of Sp(2,R)
does not have the AP. Hereto, let us first recall the definition of Sp(2,R) and

describe a realization of S̃p(2,R).
Let I2 denote the 2× 2 identity matrix, and let the matrix J be defined by

J =

(
0 I2

−I2 0

)
.

Recall that the symplectic group Sp(2,R) is defined as the Lie group

Sp(2,R) := {g ∈ GL(4,R) | gTJg = J}.
Here, gT denotes the transpose of g. Let K denote the maximal compact subgroup
of Sp(2,R) given by

K =

{(
A −B
B A

)
∈ M4(R)

∣∣∣∣ A+ iB ∈ U(2)

}
.

This group is isomorphic to U(2). A polar decomposition of Sp(2,R) is given by

Sp(2,R) = KA+K, where

A+ =

⎧⎪⎪⎨⎪⎪⎩D(β, γ) =

⎛⎜⎜⎝
eβ 0 0 0
0 eγ 0 0
0 0 e−β 0
0 0 0 e−γ

⎞⎟⎟⎠
∣∣∣∣∣ β ≥ γ ≥ 0

⎫⎪⎪⎬⎪⎪⎭ .
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Different explicit realizations of S̃p(2,R) can be found in the literature. An in-
complete list is given by [32], [36], [39]. We use the realization in terms of circle
functions, given recently by Rawnsley [36], and in what follows we use some of his
computations. In fact, he describes a method that gives a realization of the uni-
versal covering group of any connected Lie group G with fundamental group π1(G)
isomorphic to Z admitting a so-called (normalized) circle function. First, we briefly
describe Rawnsley’s general construction.

Let G be a connected Lie group with π1(G) ∼= Z. A circle function on G is a
smooth function c : G → T, where T denotes the circle (as a subspace of C), that
induces an isomorphism of the fundamental groups of G and T. Such a function is
said to be normalized if c(1) = 1 and c(g−1) = c(g)−1. If G admits a circle function,
it admits one and only one normalized circle function.

Let G be a connected Lie group with fundamental group isomorphic to Z that
admits a normalized circle function. Then there exists a unique smooth function
η : G×G → R such that

c(g1g2) = c(g1)c(g2)e
iη(g1,g2)

for all g1, g2 ∈ G and η(1, 1) = 0. Furthermore, it follows that η(g, 1) = η(1, g) =
η(g, g−1) = 0 and η(g1, g2) + η(g1g2, g3) = η(g1, g2g3) + η(g2, g3) for all g ∈ G and
g1, g2, g3 ∈ G.

Let G be a connected Lie group with normalized circle function c, and let

(1) G̃ = {(g, t) ∈ G× R | c(g) = eit}.
The space G̃ is a smooth manifold of the same dimension as G. A multiplication

on G̃ is given by

(g1, t1)(g2, t2) = (g1g2, t1 + t2 + η(g1, g2)).

With this multiplication, G̃ is a Lie group with identity 1̃ = (1, 0), where 1 denotes
the identity element of G, and inverse given by (g, t)−1 = (g−1,−t). The map

σ : G̃ → G, (g, t) �→ g (with kernel {(1, 2πk) ∈ G× R | k ∈ Z}) defines a universal

covering map from G̃ onto G.

In the rest of this section, let G = Sp(2,R) and G̃ = S̃p(2,R).

We now give the explicit functions c and η for S̃p(2,R). Let M4(R)0 denote the
subspace of M4(R) given by

M4(R)0 =

{(
A −B
B A

) ∣∣∣∣ A,B ∈ M2(R)

}
,

and let ι : M4(R)0 → M2(C) be given by

ι :

(
A −B
B A

)
�→ A+ iB.

The map ι is an algebra homomorphism. For an element g ∈ G, let Cg =
1
2 (g + (gT )−1) and Dg = 1

2 (g − (gT )−1). Note that g = Cg +Dg. As described by
Rawnsley, the connected Lie group G admits a normalized circle function; namely,
the function c : G → T given by

(2) c(g) =
det(ι(Cg))

| det(ι(Cg))|
.
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With this circle function, the manifold G̃ is given through (1). Let Zg = C−1
g Dg.

The function η (which is needed to define the multiplication on G̃) corresponding
to the circle function c is given by

η(g1, g2) = Im(Tr(ι(log(1− Zg1Zg−1
2

)))) = Im(Tr(ι(log(C−1
g1 Cg1g2C

−1
g2 )))).

The logarithm is well defined, since ‖Zg1Zg−1
2

‖ < 1 (see [36, Section 4]). It was also

proved by Rawnsley that |η(g1, g2)| < π for all g1, g2 ∈ G (see [36, Lemma 14]).

Remark 3.1. Everything that we described so far for G can be generalized to
Sp(n,R) for n ≥ 1 (see [36]).

The rest of this section is devoted to proving the following theorem.

Theorem 3.2. The group G̃ = S̃p(2,R) does not have the AP.

First, we elaborate on the structure of G̃. Let g denote the Lie algebra of G and

G̃, and denote by exp : g → G and ẽxp : g → G̃ the corresponding exponential
maps. These exponential maps have as their image a neighbourhood of the identity.

The group G̃ has a polar decomposition (see Section 2.2) G̃ = K̃Ã+K̃ that is
strongly related to the polar decomposition G = KAK of G. It is known that the
exponential map of a connected simple Lie group is a bijection from the a-summand
of the KAK-decomposition on the Lie algebra level to A. Therefore, it follows that

Ã ∼= A. This implies that the “infinite covering” part of G is intrinsic to the K-part
of the polar decomposition. It is known that exp : k → K is surjective, because K
is connected and compact. Also, since k = su(2)⊕R (see [36, Lemma 9]), it follows

that ẽxp : k → K̃ is surjective. We summarize these facts (based on [24, Section
IX.1]) in the following proposition.

Proposition 3.3. We have G = KAK and G̃ = K̃ÃK̃, where K and A are as
above, and

K = exp(k), A = exp(a),

K̃ = ẽxp(k), Ã = ẽxp(a).

Here, k and a denote the Lie algebras of K and A, respectively. The group Ã is
isomorphic to A. We can restrict to the positive Weyl chamber, and get

Ã+ = ẽxp({diag(eβ , eγ , e−β, e−γ) | β ≥ γ ≥ 0}),

which yields the decomposition G̃ = K̃Ã+K̃.

Note that the group SU(2) is a natural subgroup of U(2). Denote by H the

corresponding subgroup of K. We also get a corresponding group H̃, which is
isomorphic to H, since SU(2) is simply connected.

Definition 3.4. We define C to be the following class of functions:

C := {ϕ ∈ C(G̃) | ϕ is H̃-bi-invariant and Int(K̃)-invariant}.

We refer to Section 2.3 for the notions of H̃-bi-invariant and Int(K̃)-invariant

functions. In the notation used in that section, we have C = C(H̃\G̃/H̃)∩C(G̃//K̃).
Consider the generator ( i 0

0 i ) of the Lie algebra of the center of U(2). Let Z
denote the corresponding element of k. The elements vt = exp(tZ) and ṽt = ẽxp(tZ)
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for t ∈ R are elements of the centers of K and K̃, respectively. Also, the family vt
is periodic with period 2π. Explicitly, we have

vt =

⎛⎜⎜⎝
cos t 0 − sin t 0
0 cos t 0 − sin t

sin t 0 cos t 0
0 sin t 0 cos t

⎞⎟⎟⎠ .

Remark 3.5. Every k ∈ K can be written as the product k = vth for some t ∈ R

and h ∈ H, and, similarly, every k̃ ∈ K̃ can be written as the product k̃ = ṽth̃ for

some t ∈ R and h̃ ∈ H̃ . Hence, the class C can also be defined in the following way:

C := {ϕ ∈ C(G̃) | ϕ is H̃-bi-invariant and ϕ(ṽtgṽ
−1
t ) = ϕ(g) ∀g ∈ G̃∀t ∈ R}.

For β ≥ γ ≥ 0, let D(β, γ) = diag(eβ, eγ , e−β, e−γ) ∈ G, which is, as pointed

out before, an element of A+. Since Ã ∼= A, there is one and only one element

D̃(β, γ) in Ã+ that surjects onto D(β, γ) ∈ G. We now show that functions in C
are completely determined by their values at elements of the form ṽtD̃(β, γ). First,
let us prove the following lemma.

Lemma 3.6. In the realization of (1), we have ṽtD̃(β, γ) = (vtD(β, γ), 2t) for
β ≥ γ ≥ 0 and t ∈ R.

Proof. By the description of G̃ and the fact that the covering map is a homo-

morphism, it follows that ṽtD̃(β, γ) = (vtD(β, γ), s) for some s ∈ R. Using that
(vTt )

−1 = vt and that ι is an algebra homomorphism, it follows that ι(CvtD(β,γ)) =

ι( 12vt(D(β, γ) +D(−β,−γ))) = ι(vt) diag(cosh(β), cosh(γ)). Hence,

c(ṽtD̃(β, γ)) =
det(ι(vt))

| det(ι(vt))|
,

because det(diag(cosh(β), cosh(γ))) = | det(diag(cosh(β), cosh(γ)))| and the deter-

minant is multiplicative. Using the fact that {ṽσD̃(β, γ) | σ ∈ R} defines a contin-

uous path in G̃, the value of s is computed by

s = tan−1

(
2 sin t cos t

cos2 t− sin2 t

)
+ 2kπ = 2t+ 2kπ

for some k ∈ Z. Since we can connect every element ṽσD̃(β, γ) continuously to

ṽ0 = 1̃ = (1, 0) (by varying σ, β and γ), it follows that k = 0. Hence, s = 2t. �

Lemma 3.7. A function in C is determined by its values at the elements of the

form ṽtD̃(β, γ).

Proof. Let ϕ ∈ C, and let g ∈ G̃. By the polar decomposition of G̃, we can write

g = k̃1D̃(β, γ)k̃2 for some β ≥ γ ≥ 0 and k̃1, k̃2 ∈ K̃. For i = 1, 2, let ti ∈ R and

h̃i ∈ H̃ be so that k̃i = ṽti h̃i = h̃iṽti . Using both invariance properties of functions
in C, we obtain

ϕ(g) = ϕ(h̃1ṽt1D̃(β, γ)ṽt2 h̃2) = ϕ(ṽt1+t2D̃(β, γ)). �
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Notation 3.8. The value of ϕ ∈ C at g = (g0, t) ∈ G̃ does not change if we multiply

g from the left or the right with an element of H̃ or if we conjugate g with an

element of K̃. This induces an equivalence relation on G̃. Let Sβ,γ,t denote the

corresponding equivalence class of the element ṽ t
2
D̃(β, γ) (note that the t-parameter

of the equivalence class corresponds to the t-parameter coming from the equation

c(g0) = eit). Also, for ϕ ∈ C, we put ϕ̇(β, γ, t) = ϕ(ṽ t
2
D̃(β, γ)).

Lemma 3.9. The class C is invariant under the action of the one-parameter family

ṽt. More precisely, if ϕ ∈ C and t ∈ R, then ϕt : G̃ → C defined by ϕt(g) = ϕ(ṽtg)

is also in C. Clearly, for an element ϕ ∈ M0A(G̃) ∩ C, it follows that for all t ∈ R,
we have ‖ϕt‖M0A( ˜G) = ‖ϕ‖M0A( ˜G).

Proof. Let ϕ ∈ C. We have ϕt(h̃1gh̃2) = ϕ(ṽth̃1gh̃2) = ϕ(h̃1ṽtgh̃2) = ϕ(ṽtg) =

ϕt(g) for all g ∈ G̃, t ∈ R and h̃1, h̃2 ∈ H. Moreover, we have ϕt(ṽsgṽ
−1
s ) =

ϕ(ṽtṽsgṽ
−1
s ) = ϕ(ṽsṽtgṽ

−1
s ) = ϕ(ṽtg) = ϕt(g) for all g ∈ G̃ and s, t ∈ R. This

proves the invariance properties of C of Remark 3.5 for ϕt. �

Lemma 3.10. If G̃ has the AP, then the approximating net can be chosen in the

set A(G̃) ∩ C.

Proof. For f ∈ C(G̃) or f ∈ L1(G̃), we define

fC(g) =
1

π

∫
R/πZ

∫
˜H

∫
˜H

f(h̃1ṽtgṽ
−1
t h̃2)dh̃1dh̃2dt, g ∈ G̃,

where dh̃1 and dh̃2 both denote the normalized Haar measure on H̃ . The function
fC clearly satisfies the invariance properties of Remark 3.5.

The rest of the proof is similar to the proof of [21, Lemma 2.5]. �
Proposition 3.11. There exist constants C1, C2 > 0 such that for all functions ϕ

in M0A(G̃) ∩ C and t ∈ R, the limit cϕ(t) = lims→∞ ϕ̇(2s, s, t) exists, and for all
β ≥ γ ≥ 0, we have

|ϕ̇(β, γ, t)− cϕ(t)| ≤ C1e
−C2

√
β2+γ2‖ϕ‖M0A( ˜G).

The proof of this proposition will be postponed. Using the following lemma, we
will explain how the proposition implies Theorem 3.2.

Lemma 3.12. The space consisting of ϕ in M0A(G̃) ∩ C for which cϕ(t) ≡ 0 is

σ(M0A(G̃),M0A(G̃)∗)-closed.

Proof. Let (ϕα) be a net in M0A(G̃)∩C converging to ϕ ∈ M0A(G̃). It follows that

for all f ∈ L1(G̃), we have 〈ϕ, f〉 = limα〈ϕα, f〉 = limα〈ϕC
α, f〉 = limα〈ϕα, f

C〉 =

〈ϕ, fC〉 = 〈ϕC, f〉, i.e., the space M0A(G̃)∩C is σ(M0A(G̃),M0A(G̃)∗)-closed, since

L1(G̃) is dense in M0A(G̃)∗.
It was proved in [21, Lemma 2.6] that whenever (X,μ) is a σ-finite measure

space and v : X → R is a strictly positive measurable function on X, then the set
S := {f ∈ L∞(X) | |f(x)| ≤ v(x) a.e.} is σ(L∞(X), L1(X))-closed. We can apply

this fact to the unit ball of the space {ϕ ∈ M0A(G̃) ∩ C | cϕ(t) ≡ 0}. Indeed, the
conditions are satisfied with v given by Proposition 3.11 (putting ‖ϕ‖M0A( ˜G) ≤ 1).

Recall the Krein-Smulian Theorem, asserting that whenever X is a Banach space
and A is a convex subset of the dual space X∗ such that A∩{x∗ ∈ X∗ | ‖x∗‖ ≤ r} is
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weak-* closed for every r > 0, then A is weak-* closed [5, Theorem V.12.1]. In the
case where A is a vector space, which is the case here, it suffices to check the case
r = 1, i.e., the weak-* closedness of the unit ball. It follows that the space consisting

of ϕ in M0A(G̃) ∩ C for which cϕ(t) ≡ 0 is σ(M0A(G̃),M0A(G̃)∗)-closed. �

Proof of Theorem 3.2 using Proposition 3.11. By Lemma 3.10, it follows that if

there is no net in A(G̃) ∩ C that approximates the constant function 1 in the

σ(M0A(G̃),M0A(G̃)∗)-topology, then G̃ does not have the AP. However, since the

space {ϕ ∈ M0A(G̃) ∩ C | cϕ(t) ≡ 0} is σ(M0A(G̃),M0A(G̃)∗)-closed by Lemma
3.12, it follows immediately that the constant function 1 cannot be approximated
by such a net. �

The rest of this section will be devoted to proving Proposition 3.11. Hereto, we

identify certain pairs of groups in G̃, as was also done for G in [21]. However, since

K̃ is not compact (unlike K in G), one of the pairs we consider here is slightly
different.

First, note that U(1) is contained as a subgroup in SU(2) by the embedding

(3)

(
eiν 0
0 e−iν

)
↪→ SU(2),

where ν ∈ R. We point out that the quotient of SU(2) with respect to the equiva-
lence relation g ∼ kgk−1 for k ∈ U(1) is homeomorphic to the closed unit disc D in
the complex plane. This homeomorphism is given by

(4) z =

(
z11 z12
z21 z22

)
�→ z11.

Let H0 denote the corresponding subgroup of H. It can be proved that (H,H0)
is a strong Gelfand pair (see Section 2.3). However, because the theory on strong
Gelfand pairs is not as well developed as the theory of Gelfand pairs, we use a more
explicit approach, and prove the things we need in a more ad hoc manner.

For l,m ∈ Z≥0, consider the so-called disc polynomials (see [27]) h0
l,m : D → C

from the closed unit disc D to C, given by

h0
l,m(z) =

{
zl−mP

(0,l−m)
m (2|z|2 − 1), l ≥ m,

zm−lP
(0,m−l)
l (2|z|2 − 1), l < m,

where P
(α,β)
n denotes the nth Jacobi polynomial.

Recall that a function f : X → Y from a metric space X to a metric space Y
is Hölder continuous with exponent α > 0 if there exists a constant C > 0 such
that dY (f(x1), f(x2)) ≤ CdX(x1, x2)

α, for all x1, x2 ∈ X. The following result (see
[21, Corollary 3.5]) gives Hölder continuity with exponent 1

4 of the functions h0
l,m on

the circle in D centered at the origin with radius 1√
2
, with a constant independent

of l and m. It is a corollary of results of the first-named author and Schlichtkrull
[22].

Lemma 3.13. For all l,m ≥ 0, we have∣∣∣∣h0
l,m

(
eiθ1√
2

)
− h0

l,m

(
eiθ2√
2

)∣∣∣∣ ≤ C̃|θ1 − θ2|
1
4

for all θ1, θ2 ∈ [0, 2π), where C̃ is a constant independent of l and m.
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We now prove the following decomposition result.

Lemma 3.14. Let ϕ ∈ M0A(SU(2)//U(1)) (recall the embedding (3)). Let

z =

(
z11 z12
z21 z22

)
∈ SU(2).

Then ϕ(z) = ϕ0(z11) for a certain function ϕ0 : D → C, and

ϕ0 =
∑

l,m≥0

cl,mh0
l,m

such that
∑

l,m≥0 |cl,m| = ‖ϕ‖M0A(SU(2)). Moreover, ϕ0 satisfies∣∣∣∣ϕ0

(
eiθ1√
2

)
− ϕ0

(
eiθ2√
2

)∣∣∣∣ ≤ C̃|θ1 − θ2|
1
4 ‖ϕ‖M0A(SU(2))

for all θ1, θ2 ∈ [0, 2π).

Proof. Let L ∼= U(1) denote the subgroup of U(2) given by the elements of the form

lθ =

(
1 0
0 eiθ

)
, θ ∈ R.

Note that (U(2), L) is the Gelfand pair that played an important role in [21]. We
now prove that there is an isometric isomorphism between M0A(SU(2)//U(1)) and
M0A(L\U(2)/L).

Let Φ : M0A(L\U(2)/L) → M0A(SU(2)//U(1)) be the map given by ϕ �→ ϕ̃,
where ϕ̃ = ϕ|SU(2). It is clear that ϕ̃ ∈ M0A(SU(2)//U(1)) and that Φ is norm-
decreasing.

Write U(2) = SU(2) � L by the action given by multiplication from the right,
i.e., g = hl, where g ∈ U(2), h ∈ SU(2) and l ∈ L. Consider the map Ψ :
M0A(SU(2)//U(1)) → M0A(L\U(2)/L) given by ϕ �→ ψ, where ψ(g) = ϕ(h) if
g = hl according to the unique factorization that follows from U(2) = SU(2) � L.
It follows that ψ(l1hl2) = ϕ(h) for all h ∈ SU(2) and l1, l2 ∈ L. Indeed, ψ(l1hl2) =
ψ(l1hl

−1
1 l1l2) = ϕ(l1hl

−1
1 ) = ϕ(h), since lhl−1 ∈ SU(2) for all h ∈ SU(2) and

l ∈ L. From this, it follows that ψ((h2l2)
−1h1l1) = ψ(l−1

2 h−1
2 h1l1) = ϕ(h−1

2 h1).
Now let P,Q : SU(2) → H be bounded continuous maps such that ϕ(h−1

2 h1) =
〈P (h1), Q(h2)〉 for all h1, h2 ∈ SU(2) and ‖ϕ‖M0A(SU(2)) = ‖P‖∞‖Q‖∞. This is
possible by the result of Bożejko and Fendler mentioned in Section 2.5. It follows
from this that also the map Ψ is norm-decreasing, since the maps P̃ (hl) = P (h)

and Q̃(hl) = Q(h) give maps such that ψ((h2l2)
−1h1l1) = 〈P̃ (h1l1), Q̃(h2l2)〉 for all

h1, h2 ∈ SU(2) and l1, l2 ∈ L. Moreover, it is easy to check that Φ and Ψ are each
other’s inverses.

From Proposition 2.1 we get a decomposition of elements of M0A(L\U(2)/L)
in terms of the functions hl,m, as was also explained in [21, Section 3]. Indeed
(U(2), L) is a compact Gelfand pair. Applying the map Φ to this decomposition,
i.e., restricting to SU(2), and by using the homeomorphism of (4), it follows that for
ϕ ∈ M0A(SU(2)//U(1)) we have ϕ(h) = ϕ0(h11) for a certain function ϕ0 : D → C,
and ϕ0 =

∑
l,m≥0 cl,mh0

l,m such that
∑

l,m≥0 |cl,m| = ‖ϕ‖M0A(SU(2)). The last
assertion of the lemma follows directly from Lemma 3.13. �
Remark 3.15. This lemma shows that the disc polynomials act like analogues of
spherical functions for the strong Gelfand pair (SU(2),U(1)). The disc polynomials
also occur as the spherical functions of the Gelfand pair (U(2), L), where L is
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as above. It turns out that there is a general connection between the spherical
functions for certain Gelfand pairs and their analogues for certain strong Gelfand
pairs. A brief account on this connection is given in Appendix A.

Note that we can identify M0A(H//H0) with M0A(SU(2)//U(1)).

Proposition 3.16. Let ϕ ∈ M0A(G̃) ∩ C. For α ≥ 0, let ψα : H → C be given

by h �→ ϕ(D̃(α, 0)h̃D̃(α, 0)). This function is an element of M0A(H//H0), and
‖ψα‖M0A(H) ≤ ‖ϕ‖M0A( ˜G).

Proof. Let L be the subgroup of U(2) as in Lemma 3.14, and let K0 (resp. K̃0) be

the corresponding subgroup of K (resp. K̃). For h̃0 ∈ H̃0, we can write h̃0 = k̃0ṽt
for some k̃0 ∈ K̃0 and t ∈ R. Since k̃0 is the exponential of an element in the

Lie algebra (note that this does not hold for every element in G̃), and since this
element of the Lie algebra commutes with the Lie algebra element corresponding

to D̃(α, 0), the elements also commute on the Lie group level. Hence, for all h ∈ H
and h0 = k0vt ∈ H0,

ψα(h0hh
−1
0 ) = ϕ(D̃(α, 0)k̃0ṽth̃ṽ

−1
t k̃−1

0 D̃(α, 0))

= ϕ(k̃0D̃(α, 0)h̃D̃(α, 0)k̃−1
0 )

= ϕ(D̃(α, 0)h̃D̃(α, 0))

= ψα(h),

so ψα is an element of C(H//H0). The statement on the norms follows in the same
way as in [21, Lemma 3.7]. �

Suppose that β ≥ γ ≥ 0, and let D(β, γ) and D̃(β, γ) be as before. Let Sβ,γ,t be
as in Notation 3.8. In what follows, let ‖.‖HS denote the Hilbert-Schmidt norm of
an operator, and let h ∈ H be such that

(5) ι(h) =

(
a+ ib −c+ id
c+ id a− ib

)
,

with a2 + b2 + c2 + d2 = 1. The following is an easy adaptation of [21, Lemma 3.8].

Lemma 3.17. Let g = (g0, t) ∈ G̃. Then g ∈ Sβ,γ,t, where β, γ ∈ R are uniquely
determined by the condition β ≥ γ ≥ 0 together with the equations

sinh2 β + sinh2 γ =
1

8
‖g0 − (gT0 )

−1‖2HS ,

sinh2 β sinh2 γ =
1

16
det(g0 − (gT0 )

−1).

Lemma 3.18. Let α > 0 and β ≥ γ ≥ 0. If h̃ ∈ H̃ is such that the corresponding

h ∈ H satisfies (5), and c =
√
1− a2 − b2 = 1√

2
and d = 0, then D̃(α, 0)h̃D̃(α, 0) ∈

Sβ,γ,t if and only if

sinh β sinh γ =
1

2
sinh2 α(1− a2 − b2),

sinh β − sinh γ = sinh(2α)|a|,

t = − tan−1

(
2ab

coth2(α) + a2 − b2

)
.

(6)
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Proof. Let α > 0 and β ≥ γ ≥ 0. By Lemma 3.17, D̃(α, 0)h̃D̃(α, 0) ∈ Sβ,γ,t if and
only if

sinh2 β + sinh2 γ =
1

8
‖D(α, 0)hD(α, 0)−D(α, 0)−1hD(α, 0)−1‖2HS

= sinh2(2α)a2 + sinh2 α,
(7)

and

sinh2 β sinh2 γ =
1

16
det(D(α, 0)hD(α, 0)−D(α, 0)−1hD(α, 0)−1)

=
1

4
sinh4 α,

(8)

and, using the explicit expression of (2),

eit =
det(ι(CD(α,0)hD(α,0)))

| det(ι(CD(α,0)hD(α,0)))|
.(9)

The fact that the first two equations of (6) hold if and only if (7) and (8) hold was
proved in [21, Lemma 3.9]. The rest of the proof consists of computing t. From
(9), it follows that

(10) t = arg(det(ι(CD(α,0)hD(α,0)))) + 2kπ

for some k ∈ Z. It is elementary to check that

ι(CD(α,0)hD(α,0)) = ι(
1

2
(D(α, 0)hD(α, 0) +D(−α, 0)hD(−α, 0)))

=

(
cosh(2α)a+ ib − cosh(α)√

2
cosh(α)√

2
a− ib

)
.

Computing the determinant of this matrix yields

det(ι(CD(α,0)hD(α,0))) = cosh(2α)a2 + b2 + iab− iab cosh(2α) +
1

2
cosh2(α).

Determining the argument is done by taking the inverse tangent of the imaginary
part of this determinant divided by its real part, which yields

arg(det(ι(CD(α,0)hD(α,0)))) = tan−1

(
ab(1− cosh(2α))

cosh(2α)a2 + b2 + 1
2 cosh

2(α)

)

= − tan−1

(
2ab sinh2(α)

a2 + 2a2 sinh2(α) + b2 cosh2(α)− b2 sinh2(α) + 1
2 cosh

2(α)

)

= − tan−1

(
2ab sinh2(α)

(a2 − b2) sinh2(α) + ( 12 + a2 + b2) cosh2(α)

)

= − tan−1

(
2ab

coth2(α) + a2 − b2

)
.

Since coth2(α) ≥ 1 for all α > 0, the argument of the inverse tangent is clearly a
bounded function. Hence, the value of k in (10) is the same for the whole family

of elements of the form D̃(α, 0)h̃D̃(α, 0). Since there exists a continuous path from

any D̃(α, 0)h̃D̃(α, 0) to the identity element of G̃, it follows that k = 0. �
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We now consider a different pair of groups in G̃. The natural embedding of

SO(2) in SU(2) gives rise to a subgroup H1 of H and to a subgroup H̃1 of H̃ . The
pair (H,H1) is a compact Gelfand pair and was used in [21] as well. If h ∈ SU(2)
satisfies (5), then the double cosets of SO(2) in SU(2) are labeled by a2−b2+c2−d2.
Hence, every SO(2)-bi-invariant function χ : SU(2) → C is of the form χ(h) =
χ0(a2 − b2 + c2 − d2) for a certain function χ0 : [−1, 1] → C, since SO(2)\ SU(2)/
SO(2) ∼= [−1, 1]. The spherical functions for this Gelfand pair are indexed by n ≥ 0,
and given by Pn(a

2− b2+ c2−d2), where Pn denotes the nth Legendre polynomial.
For details, we refer to [21].

The following estimate was proved (in this explicit form) in [21, Lemma 3.11].
Similar estimates were already proved in [30], and, as was remarked in [21, Remark
3.12], they can also be obtained from Szegö’s book [37].

Lemma 3.19. For all nonnegative integers n,

|Pn(x)− Pn(y)| ≤ 4|x− y| 12
for x, y ∈ [− 1

2 ,
1
2 ], i.e., the Legendre polynomials are Hölder continuous on [− 1

2 ,
1
2 ]

with exponent 1
2 .

Lemma 3.20. Let ϕ ∈ M0A(SO(2)\ SU(2)/ SO(2)). Suppose that h ∈ SU(2) is of
the form

h =

(
a+ ib −c+ id
c+ id a− ib

)
,

where a, b, c, d ∈ R are such that a2 + b2 + c2 + d2 = 1. Then ϕ(h) = ϕ0(r), where
r = a2 − b2 + c2 − d2, for a certain function ϕ0 : [−1, 1] → C, and

ϕ0 =
∑
n≥0

cnPn

such that
∑

n≥0 |cn| = ‖ϕ‖M0A(SU(2)). Moreover, ϕ0 satisfies

|ϕ0(r1)− ϕ0(r2)| ≤ 4|r1 − r2|
1
2 ‖ϕ‖M0A( ˜G)

for all r1, r2 ∈ [− 1
2 ,

1
2 ].

The above lemma follows directly from Proposition 2.1 and Lemma 3.19. Note
that we can identify M0A(H1\H/H1) with M0A(SO(2)\ SU(2)/ SO(2)).

Notation 3.21. In what follows, we use the notation v = vπ
4
and ṽ = ṽπ

4
.

The proof of the following proposition is similar to the proof of Proposition 3.16.

Proposition 3.22. Let ϕ ∈ M0A(G̃) ∩ C. For α ≥ 0, let χ′
α : H → C be

given by h �→ ϕ(D̃(α, α)ṽh̃D̃(α, α)), and let χ′′
α : H → C be given by h �→

ϕ(D̃(α, α)ṽ−1h̃D̃(α, α)). These functions are elements of M0A(H1\H/H1), and
‖χ′

α‖M0A(H) ≤ ‖ϕ‖M0A( ˜G) and ‖χ′′
α‖M0A(H) ≤ ‖ϕ‖M0A( ˜G).

Suppose that β ≥ γ ≥ 0, and let D(β, γ) and D̃(β, γ) be as before.

Lemma 3.23. Let α > 0 and β ≥ γ ≥ 0. If h̃ is such that the corresponding h

satisfies (5), then D̃(α, α)ṽh̃D̃(α, α) ∈ Sβ,γ,t if and only if⎧⎪⎪⎨⎪⎪⎩
sinh2 β + sinh2 γ = sinh2(2α),

sinh β sinh γ = 1
2 sinh

2(2α)|r|,
t = π

2 − tan−1
(

sinh2(2α)
2 cosh(2α)r

)
,
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and D̃(α, α)ṽ−1h̃D̃(α, α) ∈ Sβ,γ,t if and only if

(11)

⎧⎪⎪⎨⎪⎪⎩
sinh2 β + sinh2 γ = sinh2(2α),

sinhβ sinh γ = 1
2 sinh

2(2α)|r|,
t = −π

2 + tan−1
(

sinh2(2α)
2 cosh(2α)r

)
,

where r = a2 − b2 + c2 − d2.

Proof. Let α > 0 and β ≥ γ ≥ 0. By Lemma 3.17, D̃(α, α)ṽh̃D̃(α, α) ∈ Sβ,γ,t if
and only if

sinh2 β + sinh2 γ =
1

8
‖D(α, α)vhD(α, α)−D(α, α)−1vhD(α, α)−1‖2HS

= sinh2(2α),
(12)

and

sinh2 β sinh2 γ =
1

16
det(D(α, α)vhD(α, 0)−D(α, α)−1vhD(α, α)−1)

=
1

4
sinh4(2α)r2,

(13)

and, using the explicit expression of (2),

eit =
det(ι(CD(α,α)vhD(α,α)))

| det(ι(CD(α,α)vhD(α,α)))|
.(14)

The first two equations of (11) are now obvious. The last part of the proof consists
of computing t. From (14), it follows that

t = arg(det(ι(CD(α,α)vhD(α,α)))) + 2kπ

for some k ∈ Z. It is elementary to check that

ι(CD(α,α)vhD(α,α)) = ι(
1

2
(D(α, α)vhD(α, α) +D(−α,−α)vhD(−α,−α)))

=
1√
2

(
cosh(2α)(a− b) + i(a+ b) − cosh(2α)(c+ d)− i(c− d)
cosh(2α)(c− d) + i(c+ d) cosh(2α)(a+ b) + i(a− b)

)
.

Computing the determinant of this matrix yields

det(ι(CD(α,α)vhD(α,α)))

=
1

2
(a2 − b2 + c2 − d2)(cosh2(2α)− 1) + i(a2 + b2 + c2 + d2) cosh(2α).

Determining the argument is done by taking the inverse tangent of the imaginary
part of this determinant divided by its real part. By arg(x + iy) = tan−1( yx ) =
π
2 − tan−1(xy ) for x = 0 and y > 0, we obtain

arg(det(ι(CD(α,α)vhD(α,α)))) =
π

2
− tan−1

(
(a2 − b2 + c2 − d2)(2 cosh2(2α)− 1)

(a2 + b2 + c2 + d2) cosh(2α)

)
=

π

2
− tan−1

(
sinh2(2α)

2 cosh(2α)
r

)
.

The second inclusion we have to consider, i.e., D̃(α, α)ṽ−1h̃D̃(α, α) ∈ Sβ,γ,t is very
similar. It is easy to check that this holds if and only if (12) and (13) hold. As for
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the value of t, it is very similar to the first case. Indeed, it is again elementary to
check that

ι(CD(α,α)v−1hD(α,α)) = ι(
1

2
(D(α, α)v−1hD(α, α) +D(−α,−α)v−1hD(−α,−α)))

=
1√
2

(
cosh(2α)(a+ b)− i(a− b) − cosh(2α)(c− d) + i(c+ d)
cosh(2α)(c+ d)− i(c− d) cosh(2α)(a− b)− i(a+ b)

)
.

It follows that

arg(det(ι(CD(α,α)v−1hD(α,α)))) = −π

2
+ tan−1

(
sinh2(2α)

2 cosh(2α)
r

)
.

By an argument similar to the one in the proof of Lemma 3.18, it follows that k = 0,
giving the correct values of t. �

We will now prove that multipliers in M0A(G̃)∩C are almost constant on certain
paths in the groups.

Proposition 3.24. Let ϕ ∈ M0A(G̃) ∩ C. If α > 0 and |τ1 − τ2| ≤ π
2 , then

|ϕ̇(2α, 0, τ1)− ϕ̇(2α, 0, τ2)| ≤ 24e−α‖ϕ‖M0A( ˜G).

In order to prove this result, we need the following lemma.

Lemma 3.25. Let ϕ ∈ M0A(G̃) ∩ C, let α ≥ 2 and τ ∈ [−π
4 ,

π
4 ]. Let r =

− 2 cosh(2α)
sinh2(2α)

tan(τ ), and let β ≥ γ ≥ 0 be the unique numbers for which

sinh β =
1

2
sinh(2α)(

√
1 + |r|+

√
1− |r|),

sinh γ =
1

2
sinh(2α)(

√
1 + |r| −

√
1− |r|).

Then
|ϕ̇(β, γ, τ )− ϕ̇(2α, 0, 0)| ≤ 12e−α‖ϕ‖M0A( ˜G).

Proof. One easily checks that sinh2 β + sinh2 γ = sinh2(2α) and 2 sinh β sinh γ =

sinh2(2α)|r|. Put
g(r) = D̃(α, α)ṽh̃(r)D̃(α, α) ∈ Sβ,γ,τ ′ ,

where

τ ′ =
π

2
− tan−1

(
sinh2(2α)

2 cosh(2α)
r

)
=

π

2
+ τ

and h̃(r) is any element in H̃ satisfying a2 − b2 + c2 − d2 = r. By Proposition 3.22,
we obtain

|ϕ(g(r))− ϕ(g(0))| ≤ 4|r| 12 ‖ϕ‖M0A( ˜G),

provided that |r| ≤ 1
2 . Since g(0) corresponds to r = 0, it follows that the corre-

sponding τ ′ = π
2 . Hence, g(0) ∈ S2α,0,π2

.
Hence, by the invariance property of C of Lemma 3.9,

|ϕ̇(β, γ, τ )− ϕ̇(2α, 0, 0)| ≤ 4|r| 12 ‖ϕ‖M0A( ˜G),

provided that |r| ≤ 1
2 . However, since |τ | ≤ π

4 , we have | tan τ | ≤ 1. It follows

that |r| ≤ 2 cosh(2α)
sinh2(2α)

≤ 4e2α(1+e−4α)
e4α(1−e−4α)2 ≤ 4e−2α

(
1+e−8

(1−e−8)2

)
≤ 5e−2α for α ≥ 2. Then

|r| ≤ 5e−4 < 1
2 . This implies that

|ϕ̇(β, γ, τ )− ϕ̇(2α, 0, 0)| ≤ 12e−α‖ϕ‖M0A( ˜G). �



SIMPLE LIE GROUPS WITHOUT THE APPROXIMATION PROPERTY II 3795

Proof of Proposition 3.24. Put τ = τ1−τ2
2 . It is sufficient to prove that

|ϕ̇(2α, 0, τ )− ϕ̇(2α, 0,−τ )| ≤ 24e−α‖ϕ‖M0A( ˜G).

Construct β ≥ γ ≥ 0 as in Lemma 3.25. Observe that this gives the same

for τ and −τ . Replacing g(r) = D̃(α, α)ṽh̃(r)D̃(α, α) in that lemma by g(r) =

D̃(α, α)ṽ−1h̃(r)D̃(α, α), we obtain

|ϕ̇(β, γ,−τ )− ϕ̇(2α, 0, 0)| ≤ 12e−α‖ϕ‖M0A( ˜G)

for α ≥ 2. Combining the results, we obtain

|ϕ̇(β, γ,±τ )− ϕ̇(2α, 0, 0)| ≤ 12e−α‖ϕ‖M0A( ˜G).

Then the invariance property of C (see Lemma 3.9) implies that

|ϕ̇(β, γ, 0)− ϕ̇(2α, 0,∓τ )| ≤ 12e−α‖ϕ‖M0A( ˜G)

for α ≥ 2. Since 2e2 ≤ 24, it follows that the desired estimate holds for every
α > 0. �

Lemma 3.26. Let β ≥ γ ≥ 0. Then the equations

sinh2(2s1) + sinh2 s1 = sinh2 β + sinh2 γ,

sinh(2s2) sinh s2 = sinhβ sinh γ

have unique solutions s1 = s1(β, γ), s2 = s2(β, γ) in the interval [0,∞). Moreover,

(15) s1 ≥ β

4
, s2 ≥ γ

2
.

For a proof, see [21, Lemma 3.16]. Note that we have changed notation here.

Lemma 3.27. There exists a constant B̃ > 0 such that for α > 0, t ∈ R, τ ∈
[−π

2 ,
π
2 ], s1 = s1(2α, 0) chosen as in Lemma 3.26, and ϕ ∈ M0A(G̃) ∩ C, we have

|ϕ̇(2s1, s1, t)− ϕ̇(2s1, s1, t+ τ )| ≤ B̃e−
α
4 ‖ϕ‖M0A( ˜G).

Proof. Let t ∈ R, and let τ ∈ [−π
2 ,

π
2 ]. Suppose first that α ≥ 4, and let h1 ∈ H be

such that

ι(h1) =
1√
2

(
1 + i 0
0 1− i

)
∈ SU(2),

i.e., in the parametrization of (5), we have a = b = 1√
2
, c = d = 0, and, hence,

r1 = 0. By Lemma 3.23, we have D̃(α, α)ṽh̃1D̃(α, α) ∈ S2α,0,t′′ for some t′′ ∈ R.

Let s1 = s1(2α, 0) be as in Lemma 3.26. Then s1 ≥ 0 and sinh2(2s1) + sinh2 s1 =
sinh2(2α). Put

r2 =
2 sinh(2s1) sinh s1

sinh2(2s1) + sinh2 s1
∈ [0, 1],

and let h2 ∈ H be such that

ι(h2) =

(
a2 + ib2 0

0 a2 − ib2

)
∈ SU(2),

where a2 =
(
1+r2
2

) 1
2 and b2 =

(
1−r2
2

) 1
2 . Since a22 − b22 = r2, it follows again by

Lemma 3.23 that D̃(α, α)ṽh̃2D̃(α, α) ∈ S2s1,s1,t′ for some t′ ∈ R.
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Let ϕ ∈ M0A(G̃) ∩ C, and let χ′
α(h) = ϕ(D̃(α, α)ṽh̃D̃(α, α)) for h ∈ H as in

Proposition 3.22. By the same proposition, given the fact that r1 = 0 and provided
that r2 ≤ 1

2 , it follows that

|ϕ̇(2s1, s1, t′)− ϕ̇(2α, 0, t′′)| ≤ |χ′
α(h1)− χ′

α(h2)|
= |χ′,0

α (r1)− χ′,0
α (r2)|

≤ 4r
1
2
2 ‖ϕ‖M0A( ˜G),

(16)

where χ′,0
α is the function on [−1, 1] induced by χ′

α. Note that r2 ≤ 2 sinh s1
sinh 2s1

=
1

cosh s1
≤ 2e−s1 . By Lemma 3.26, equation (15), we obtain that r2 ≤ 2e−

α
2 ≤

2e−2 ≤ 1
2 . In particular, (16) holds, and we have r2 ≤ 2e−

α
2 . The estimate above

is independent on the choice of ϕ ∈ M0A(G̃) ∩ C, so by the invariance property of
Lemma 3.9, it follows that

|ϕ̇(2s1, s1, t′)− ϕ̇(2s1, s1, t
′ + τ )|

≤ |ϕ̇(2s1, s1, t′)− ϕ̇(2α, 0, t′′)|+ |ϕ̇(2α, 0, t′′)− ϕ̇(2α, 0, t′′ + τ )|
+ |ϕ̇(2α, 0, t′′ + τ )− ϕ̇(2s1, s1, t

′ + τ )|
≤ (8

√
2e−

α
4 + 24e−α)‖ϕ‖M0A( ˜G).

By the invariance property of Lemma 3.9, the desired estimate follows with B̃ =
8
√
2 + 24. �

By the following two lemmas, we can estimate the difference between ϕ̇(β, γ, t)
and the value of ϕ at a certain point on the line {(2s, s, t) | s ∈ R+}. The method
is similar to the one used in [21, Lemma 3.17 and Lemma 3.18], but because of the
t-dependence, there is an extra parameter. Lemma 3.27 provides us with the tools
to deal with this extra parameter.

Lemma 3.28. There exists a constant B1 > 0 such that whenever β ≥ γ ≥ 0,

t ∈ R, and s1 = s1(β, γ) is chosen as in Lemma 3.26, then for all ϕ ∈ M0A(G̃)∩C,

|ϕ̇(β, γ, t)− ϕ̇(2s1, s1, t)| ≤ B1e
− β−γ

8 ‖ϕ‖M0A( ˜G).

Proof. Let β ≥ γ ≥ 0 and t ∈ R. Assume first that β − γ ≥ 8. Let α ∈ [0,∞) be
the unique solution to sinh2 β + sinh2 γ = sinh2(2α), and observe that 2α ≥ β ≥ 2,
so in particular α > 0. Define

r1 =
2 sinh β sinh γ

sinh2 β + sinh2 γ
∈ [0, 1],

and a1 =
(
1+r1
2

) 1
2 and b1 =

(
1−r1
2

) 1
2 . Furthermore, let h1 ∈ H be such that

ι(h1) =

(
a1 + ib1 0

0 a1 − ib1

)
∈ SU(2),

and let ṽ be as before. We now have 2 sinhβ sinh γ = sinh2(2α)r1, and a21−b21 = r1,

so by Lemma 3.23, we have D̃(α, α)ṽh̃1D̃(α, α) ∈ Sβ,γ,t′ for some t′ ∈ R.

Now let s1 = s1(β, γ) be as in Lemma 3.26. Then s1 ≥ 0 and sinh2(2s1) +
sinh2 s1 = sinh2 β + sinh2 γ = sinh2(2α). Similar to the proof of Lemma 3.27, put

r2 =
2 sinh(2s1) sinh s1

sinh2(2s1) + sinh2 s1
∈ [0, 1]
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and let h2 ∈ H be such that

ι(h2) =

(
a2 + ib2 0

0 a2 − ib2

)
∈ SU(2),

where a2 =
(
1+r2
2

) 1
2 and b2 =

(
1−r2
2

) 1
2 . Since a22 − b22 = r2, it follows again by

Lemma 3.23 that D̃(α, α)ṽh̃2D̃(α, α) ∈ S2s2,s2,t′′ for some t′′ ∈ R.

Now, let χ′
α(h) = ϕ(D̃(α, α)ṽh̃D̃(α, α)) for h ∈ H as in Proposition 3.22. By

the same proposition, it follows that

(17) |χ′
α(h1)− χ′

α(h2)| = |χ′,0
α (r1)− χ′,0

α (r2)| ≤ 4|r1 − r2|
1
2 ‖ϕ‖M0A( ˜G),

provided that r1, r2 ≤ 1
2 . Note that r1 ≤ 2 sinhβ sinh γ

sinh2 β
= 2 sinh γ

sinhβ . Hence, using

β ≥ γ + 8 ≥ γ, we get r1 ≤ 2 eγ(1−e2γ)
eβ(1−e2β)

≤ 2eγ−β . In particular, r1 ≤ 2e−8 ≤ 1
2 .

Similarly, r2 ≤ 2 sinh s1
sinh 2s1

= 1
cosh s1

≤ 2e−s1 . By Lemma 3.26, equation (15), we

obtain that r2 ≤ 2e−
β
4 ≤ 2e

γ−β
4 ≤ 2e−2 ≤ 1

2 . In particular, (17) holds. Moreover,

|r1 − r2| ≤ max{r1, r2} ≤ 2e
γ−β

4 .
Because of the explicit form of t′ and t′′, we have |t′ − t′′| ≤ π

2 . It follows that

|ϕ̇(β, γ, t′)− ϕ̇(2s2, s2, t
′)| ≤ |ϕ̇(β, γ, t′)− ϕ̇(2s1, s1, t

′′)|
+ |ϕ̇(2s1, s1, t′)− ϕ̇(2s1, s1, t

′′)|.

The first summand is estimated by 4
√
2e−

β−γ
8 ‖ϕ‖M0A( ˜G) by (17), and the second

summand is estimated by B̃e−
α
4 ‖ϕ‖M0A( ˜G) by Lemma 3.27. It follows that

|ϕ̇(β, γ, t′)− ϕ̇(2s2, s2, t
′)| ≤ 4

√
2e−

β−γ
8 ‖ϕ‖M0A( ˜G) + B̃e−

α
4 ‖ϕ‖M0A( ˜G)

≤ (4
√
2 + B̃)e−

β−γ
8 ‖ϕ‖M0A( ˜G)

under the assumption that β ≥ γ + 8. By shifting over t − t′ (cf. Lemma 3.9), we
obtain the estimate of the lemma for β ≥ γ + 8. In general, the assertion of the
lemma follows with B1 = max{4

√
2 + B̃, 2e2} = 4

√
2 + B̃. �

Lemma 3.29. There exists a constant B2 > 0 such that whenever β ≥ γ ≥ 0,

t ∈ R, and s2 = s2(β, γ) is chosen as in Lemma 3.26, then for all ϕ ∈ M0A(G̃)∩C,

|ϕ̇(β, γ, t)− ϕ̇(2s2, s2, t)| ≤ B2e
− γ

8 ‖ϕ‖M0A( ˜G).

Proof. Let β ≥ γ ≥ 0 and t ∈ R. Assume first that γ ≥ 2, and let α ∈ [0,∞) be

the unique solution in [0,∞) to the equation sinh β sinh γ = 1
2 sinh

2 α, and observe
that α > 0, because β ≥ γ ≥ 2. Put

a1 =
sinh β − sinh γ

sinh(2α)
≥ 0.

Since sinh(2α) = 2 sinhα coshα ≥ 2 sinh2 α, we have

a1 ≤ sinh β

sinh(2α)
≤ sinhβ

2 sinh2 α
=

1

4 sinh γ
.
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In particular, a1 ≤ 1
4γ ≤ 1

8 . Now put b1 =
√

1
2 − a21. Then 1− a21 − b21 = 1

2 . Hence,

we have sinh β − sinh γ = sinh(2α)a1. Let h1 ∈ H be such that

ι(h1) =

(
a1 + ib1 − 1√

2
1√
2

a1 − ib1

)
∈ SU(2).

By Lemma 3.18, we have D̃(α, 0)h̃1D̃(α, 0) ∈ Sβ,γ,t′ , where t′ is determined by the
equations in that lemma. By Lemma 3.26, we have sinh(2s2) sinh s2 = sinh β sinh γ
= 1

2 sinh
2 α. Moreover, by (15), we have s2 ≥ γ

2 ≥ 1. By replacing (β, γ) in the
above calculation with (2s2, s2), we get that the number

a2 =
sinh(2s2)− sinh s2

sinh(2α)
≥ 0

satisfies

a2 ≤ 1

4 sinh s2
≤ 1

4 sinh 1
≤ 1

4
.

Hence, we can put b2 =
√

1
2 − a22 and let h2 ∈ H be such that

ι(h2) =

(
a2 + ib2 − 1√

2
1√
2

a2 − ib2

)
.

Then

sinh(2s2) sinh s2 = sinh2 α(1− a22 − b22),

sinh(2s2)− sinh s2 = sinh(2α)a2,

and ι(h2) ∈ SU(2). Hence, by Lemma 3.18, D̃(α, 0)h̃2D̃(α, 0) ∈ S2s2,s2,t′′ , where t′′

is determined by the equations in that lemma. It follows from the explicit formula
for t, and from the fact that t′ and t′′ have the same sign, that |t′ − t′′| ≤ π

2 . Now

put θj = arg(aj + ibj) =
π
2 − sin−1

(
aj√
2

)
for j = 1, 2. Since 0 ≤ aj ≤ 1

2 for j = 1, 2,

and since d
dy sin−1 y = 1√

1−y2
≤

√
2 for y ∈ [0, 1√

2
], it follows that

|θ1 − θ2| ≤
∣∣∣∣ sin−1

(
a1√
2

)
− sin−1

(
a2√
2

) ∣∣∣∣
≤ |a1 − a2|
≤ max{a1, a2}

≤ max

{
1

4 sinh γ
,

1

4 sinh t

}
≤ 1

4 sinh γ
2

,

because y ≥ γ
2 . Since γ ≥ 2, we have sinh γ

2 = 1
2e

γ
2 (1 − e−γ) ≥ 1

4e
γ
2 . Hence,

|θ1 − θ2| ≤ e−
γ
2 . Note that aj = 1√

2
eiθj for j = 1, 2, so by Proposition 3.16, we

have

|ϕ̇(2s2, s2, t′′)− ϕ̇(β, γ, t′)| ≤ |ψα(h1)− ψα(h2)|

≤ C̃|θ1 − θ2|
1
4 ‖ψα‖M0A(H)

≤ C̃e−
γ
8 ‖ϕ‖M0A( ˜G).

(18)
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Since D̃(α, 0)h̃1D̃(α, 0) ∈ Sβ,γ,t′ and D̃(α, 0)h̃2D̃(α, 0) ∈ S2s2,s2,t′′ , it follows that

|ϕ̇(β, γ, t′)− ϕ̇(2s2, s2, t
′)| ≤ |ϕ̇(β, γ, t′)− ϕ̇(2s2, s2, t

′′)|
+ |ϕ̇(2s1, s1, t′)− ϕ̇(2s2, s2, t

′′)|.

The first summand is estimated by C̃e−
γ
8 ‖ϕ‖M0A( ˜G) by (18), and the second sum-

mand is estimated by B̃e−
α
4 ‖ϕ‖M0A( ˜G). It now follows that

|ϕ̇(β, γ, t′)− ϕ̇(2s1, s1, t
′)| ≤ C̃e−

γ
8 ‖ϕ‖M0A( ˜G) + B̃e−

α
4 ‖ϕ‖M0A( ˜G).

Using the fact that e−
α
4 ≤ e−

γ
8 and using the invariance property of Lemma 3.9,

the desired estimate follows with B2 = max{C̃ + B̃, 2e
1
4 }. �

We state the following lemma. For a proof, see [21, Lemma 3.19].

Lemma 3.30. Let s1 ≥ s2 ≥ 0. Then the equations

sinh2 β + sinh2 γ = sinh2(2s1) + sinh2 s1,

sinh β sinh γ = sinh(2s2) sinh s2,

have a unique solution (β, γ) ∈ R2 for which β ≥ γ ≥ 0. Moreover, if 1 ≤ s2 ≤
s1 ≤ 3

2s2, then

|β − 2s1| ≤ 1,

|γ + 2s1 − 3s2| ≤ 1.
(19)

Lemma 3.31. There exists a constant B3 > 0 such that whenever s1, s2 ≥ 0 satisfy

2 ≤ s2 ≤ s1 ≤ 6
5s2 and t ∈ R, then for all ϕ ∈ M0A(G̃) ∩ C,

|ϕ̇(2s1, s1, t)− ϕ̇(2s2, s2, t)| ≤ B3e
− s1

16 ‖ϕ‖M0A( ˜G).

Proof. Choose β ≥ γ ≥ 0 as in Lemma 3.30. Then by Lemma 3.28 and Lemma
3.29, we have

|ϕ̇(β, γ, t)− ϕ̇(2s1, s1, t)| ≤ B1e
− β−γ

8 ‖ϕ‖M0A( ˜G),

|ϕ̇(β, γ, t)− ϕ̇(2s2, s2, t)| ≤ B2e
− γ

8 ‖ϕ‖M0A( ˜G).

Moreover, by (19), we have

β − γ ≥ (2s1 − 1)− (3s2 − 2s1 + 1) = 4s1 − 3s2 − 2 ≥ s1 − 2,

γ ≥ 3s2 − 2s1 − 1 ≥ 5

2
s1 − 2s1 − 1 =

s1 − 2

2
.

Hence, since s1 ≥ 2, we have min{e−γ , e−(β−γ)} ≤ e−
s1−2

2 . Thus, the lemma follows

from Lemma 3.28 and Lemma 3.29 with B3 = e
1
8 (B1 +B2). �

Lemma 3.32. There exists a constant B4 > 0 such that for all ϕ ∈ M0A(G̃) ∩ C
and t ∈ R the limit cϕ(t) = lims1→∞ ϕ̇(2s1, s1, t) exists, and for all s2 ≥ 0,

|ϕ̇(2s2, s2, t)− cϕ(t)| ≤ B4e
− s2

16 ‖ϕ‖M0A( ˜G).

Proof. Let ϕ ∈ M0A(G̃)∩C, and let t ∈ R. By Lemma 3.31, we have for u ≥ 5 and
κ ∈ [0, 1], that

(20) |ϕ̇(2u, u, t)− ϕ̇(2(u+ κ), u+ κ, t)| ≤ B3e
− u

16 ‖ϕ‖M0A( ˜G).
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Let s1 ≥ s2 ≥ 5. Then s1 = s2 + n + δ, where n ≥ 0 is an integer and δ ∈ [0, 1).
Applying equation (20) to (u, κ) = (s2 + j, 1), j = 0, 1, . . . , n − 1 and (u, κ) =
(s2 + n, δ), we obtain

|ϕ̇(2s1, s1, t)− ϕ̇(2s2, s2, t)| ≤ B3

⎛⎝ n∑
j=0

e−
s2+j
16

⎞⎠ ‖ϕ‖M0A( ˜G) ≤ B′
3e

− s2
16 ‖ϕ‖M0A( ˜G),

where B′
3 = (1 − e−

1
16 )−1B3. Hence (ϕ̇(2s1, s1, t))s1≥5 is a Cauchy net for every

t ∈ R. Therefore, cϕ(t) = lims1→∞ ϕ̇(2s1, s1, t) exists, and

|ϕ̇(2s2, s2, t)− cϕ(t)| = lim
s1→∞

|ϕ̇(2s1, s1, t)− ϕ̇(2s2, s2, t)| ≤ B′
3e

− s2
16 ‖ϕ‖M0A( ˜G)

for all s2 ≥ 5. Since ‖ϕ‖∞ ≤ ‖ϕ‖M0A( ˜G), we have for all 0 ≤ s2 < 5,

|ϕ̇(2s2, s2, t)− cϕ(t)| ≤ 2‖ϕ‖M0A( ˜G).

Hence, the lemma follows with B4 = max{B′
3, 2e

5
16 }. �

Proof of Proposition 3.11. Let ϕ ∈ M0A(G̃) ∩ C and let t ∈ R. Let β ≥ γ ≥ 0.

Suppose first that β ≥ 2γ. Then β − γ ≥ β
2 , so by Lemma 3.26 and Lemma 3.28,

there exists an s1 ≥ β
4 such that

|ϕ̇(β, γ, t)− ϕ̇(2s1, s1, t)| ≤ B1e
− β

16 ‖ϕ‖M0A( ˜G).

Suppose now that β < 2γ. Then, by Lemma 3.26 and Lemma 3.29, we obtain that
there exists an s2 ≥ γ

2 > β
4 such that

|ϕ̇(β, γ, t)− ϕ̇(2s2, s2, t)| ≤ B2e
− β

16 ‖ϕ‖M0A( ˜G).

Combining these estimates with Lemma 3.32, and using again that s1 and s2 ma-
jorize β

4 , it follows that for all β ≥ γ ≥ 0, we have

|ϕ̇(β, γ, t)− cϕ(t)| ≤ C1e
− β

64 ‖ϕ‖M0A( ˜G),

where C1 = max{B1 +B4, B2 +B4}. This proves the proposition, for
√
β2 + γ2 ≤√

2β. �

Proposition 3.33. For every ϕ ∈ M0A(G̃) ∩ C, the limit function cϕ(t) is a con-
stant function.

Proof. From Proposition 3.11 and its proof, we know that for every ϕ ∈ M0A(G̃) the
limit cϕ(t) = limβ2+γ2→∞ ϕ̇(β, γ, t) exists and that ϕ satisfies a certain asymptotic
behaviour. It is clear from this expression that the limit may depend on t, but it
does not depend on how β2 + γ2 goes to infinity. In particular, we have cϕ(t) =
limα→∞ ϕ̇(2α, 0, t). Let τ1, τ2 be such that |τ1 − τ2| ≤ π

2 . By Proposition 3.24, we
have

|ϕ̇(2α, 0, τ1)− ϕ̇(2α, 0, τ2)| ≤ 24e−2α‖ϕ‖M0A( ˜G).

In the limit α → ∞, this expression gives cϕ(τ1) = cϕ(τ2). i.e., the function cϕ(t) is
constant on any interval of length smaller than or equal to π

2 . Hence, the function
cϕ is constant. �

Corollary 3.34. The space M0A(G̃)∩C0 of completely bounded Fourier multipliers

ϕ in C for which cϕ ≡ 0 is a subspace of M0A(G̃) ∩ C of codimension one.
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4. Noncommutative Lp
-spaces associated with lattices in S̃p(2,R)

Let again G = Sp(2,R) and G̃ = S̃p(2,R). We use the same realization of G̃ as in
Section 3, and we use the same notation as in that section (e.g., for the subgroups

K, A, A+, H, H0, H1 of G and the corresponding subgroups of G̃). The main

result of this section is a statement about the APSchur
p,cb for G̃. This gives rise to the

failure of the OAP for certain noncommutative Lp-spaces, which will be explained
in Section 5.

Theorem 4.1. For p ∈ [1, 12
11 ) ∪ (12,∞], the group G̃ does not have the APSchur

p,cb .

The proof follows by combining the method of proof of the failure of the AP for

S̃p(2,R) in Section 3 with the methods that were used in [31], [29] to prove the

failure of the APSchur
p,cb for SL(3,R) and Sp(2,R) for certain values of p ∈ (1,∞),

respectively.
Note that for p = 1 and ∞, the APSchur

p,cb is equivalent to weak amenability (see

[31, Proposition 2.3]), and the failure of weak amenability for G̃ was proved in [9],
so from now on, it suffices to consider p ∈ (1,∞). Using an averaging argument
similar to the one in Lemma 3.10 (see [29, Lemma 2.8] for more details on averaging

functions in the setting of the APSchur
p,cb ), it follows that if G̃ has the APSchur

p,cb for

some p ∈ (1,∞), then the approximating net can be chosen in A(G̃) ∩ C.
The following result, which is a direct analogue of Proposition 3.11, gives a

certain asymptotic behaviour of continuous functions ϕ in C for which the induced

function ϕ̌ is a Schur multiplier on Sp(L2(G̃)). From this, it follows that the
constant function 1 cannot be approximated pointwise (and hence not uniformly

on compacta) by a net inA(G̃)∩C in such a way that the net of associated multipliers

is uniformly bounded in the MSp(L2(G̃))-norm. This implies Theorem 4.1.

Proposition 4.2. Let p > 12. There exist constants C1(p), C2(p) (depending on p

only) such that for all ϕ ∈ C(G̃)∩C for which ϕ̌ ∈ MSp(L2(G̃)), and for all t ∈ R,
the limit c̃pϕ(t) = lims→∞ ϕ̇(2s, s, t) exists, and for all β ≥ γ ≥ 0,

|ϕ̇(β, γ, t)− c̃pϕ(t)| ≤ C1(p)e
−C2(p)

√
β2+γ2‖ϕ̌‖MSp(L2( ˜G)).

To prove this, we again use the strong Gelfand pair (SU(2),U(1)) and the Gelfand

pair (SU(2), SO(2)), which sit inside G̃. For the disc polynomials hl,m, we need
better estimates than in Lemma 3.13. These were already given in [21, Corollary
3.5].

Lemma 4.3. For all l,m ≥ 0, and for θ1, θ2 ∈ [0, 2π), we have∣∣∣∣h0
l,m

(
eiθ1√
2

)
− h0

l,m

(
eiθ2√
2

)∣∣∣∣ ≤ C(l +m+ 1)
3
4 |θ1 − θ2|,

∣∣∣∣h0
l,m

(
eiθ1√
2

)
− h0

l,m

(
eiθ2√
2

)∣∣∣∣ ≤ 2C(l +m+ 1)−
1
4 .

Here C > 0 is a uniform constant.

Combining the above two estimates, we get the estimate of Lemma 3.13. Com-
bining Lemma 3.14 and [29, Lemma 2.4], we obtain that for ϕ ∈ L2(SU(2)//U(1)),
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there is an induced function ϕ0 : D → C, and

ϕ0 =
∞∑

l,m=0

cl,m(l +m+ 1)h0
l,m

for certain cl,m ∈ C. Moreover, by [29, Proposition 2.7], we obtain that if p ∈ (1,∞),

then (
∑

l,m≥0 |cl,m|p(l +m+ 1))
1
p ≤ ‖ϕ̌‖MSp(L2(U(2))).

Lemma 4.4. Let p > 12, and let ϕ : SU(2) → C be a continuous Int(U(1))-
invariant function such that ϕ̌ is an element of MSp(L2(SU(2))). Then ϕ0 satisfies∣∣∣∣ϕ0

(
eiθ1√
2

)
− ϕ0

(
eiθ2√
2

)∣∣∣∣ ≤ C̃(p)‖ϕ̌‖MSp(L2(U(2)))|θ1 − θ2|
1
8−

3
2p

for θ1, θ2 ∈ [0, 2π). Here, C̃(p) is a constant depending only on p.

The proof of this lemma is exactly the same as the proof of [29, Lemma 3.5] after
identifying the spaces C(SU(2)//U(1)) and C(L\U(2)/L) and proving an isometric
isomorphism in the setting of multipliers on Schatten classes as was done in Lemma
3.14 in the setting of completely bounded Fourier multipliers.

Lemma 4.5. Let ϕ ∈ C(G̃) ∩ C such that ϕ̌ ∈ MSp(L2(G̃)) for some p ∈ (1,∞),

and for α ∈ R, let ψα : H → C be defined by ψα(h) = ϕ(D̃(α, 0)h̃D̃(α, 0)). Then
ψα is an element of C(H//H0) and satisfies

‖ψ̌α‖MSp(L2(H)) ≤ ‖ϕ̌‖MSp(L2( ˜G)).

Proof. The fact that ψα ∈ C(H//H0) follows as in Proposition 3.16. The second

part follows by the fact that D̃(α, 0)H̃D̃(α, 0) is a subset of G̃ and by applying
[29, Lemma 2.3]. �

We now turn to the second pair of groups (H,H1). We again need the Legendre
polynomials, which act as spherical functions. The following estimate was proved
in [29, Lemma 3.8].

Lemma 4.6. For all nonnegative integers n, and x, y ∈ [− 1
2 ,

1
2 ],

|Pn(x)− Pn(y)| ≤ |Pn(x)|+ |Pn(y)| ≤
4√
n
,

|Pn(x)− Pn(y)| ≤
∣∣∣∣∫ y

x

P ′
n(t)dt

∣∣∣∣ ≤ 4
√
n|x− y|.

Combining the two estimates above, yields the estimate of Lemma 3.19. Let
ϕ : SU(2) → C be an SO(2)-bi-invariant continuous function. Then ϕ(h) = ϕ0(r)
as in Section 3. It follows that ϕ0 =

∑∞
n=0 cn(2n + 1)Pn for certain cn ∈ C.

Moreover, as above, we obtain that if p ∈ (1,∞), then (
∑

n≥0 |cn|p(2n + 1))
1
p ≤

‖ϕ̌‖MSp(L2(SU(2))), where ϕ̌ is defined as above by ϕ̌(g, h) = ϕ(g−1h). The following
result can be found in [29, Lemma 3.9].

Lemma 4.7. Let p > 4, and let ϕ ∈ C(SO(2)\ SU(2)/ SO(2)) be such that ϕ̌ ∈
MSp(L2(SU(2))). Then ϕ0 satisfies

|ϕ0(δ1)− ϕ0(δ2)| ≤ Ĉ(p)‖ϕ‖MSp(L2(SU(2)))|δ1 − δ2|
1
4−

1
p

for δ1, δ2 ∈ [− 1
2 ,

1
2 ]. Here Ĉ(p) is a constant depending only on p.
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Lemma 4.8. Let ϕ ∈ C(G̃) ∩ C such that ϕ̌ ∈ MSp(L2(G̃)) for some p ∈ (1,∞).

For α ≥ 0, let χ′
α : H → C be defined by h �→ ϕ(D̃(α, α)ṽh̃D̃(α, α)), and let χ′′

α :

H → C be defined by h �→ ϕ(D̃(α, α)ṽ−1h̃D̃(α, α)). These maps are H1-bi-invariant
such that χ̌′

α, χ̌
′′
α ∈ MSp(L2(H)). Moreover, we obtain that ‖χ̌′

α‖MSp(L2(H)) ≤
‖ϕ̌‖MSp(L2( ˜G)) and ‖χ̌′′

α‖MSp(L2(H)) ≤ ‖ϕ̌‖MSp(L2( ˜G)).

The fact that the maps are H1-bi-invariant is similar to the case of completely
bounded Fourier multipliers. The second part follows by the fact that the sets

D̃(α, α)ṽH̃D̃(α, α) and D̃(α, α)ṽ−1H̃D̃(α, α) are subsets of G̃ and by applying [29,
Lemma 2.3].

Proposition 4.9. Let p > 4, and let ϕ ∈ C such that ϕ̌ ∈ MSp(L2(G̃)). If
|τ1 − τ2| ≤ π

2 and α ≥ 0, then

|ϕ̇(2α, 0, τ1)− ϕ̇(2α, 0, τ2)| ≤ D(p)e−2α( 1
4−

1
p )‖ϕ̌‖MSp(L2( ˜G)),

where D(p) > 0 is a constant depending only on p.

The proof of this proposition is similar to the proof of Proposition 3.24. One
uses the Hölder continuity coming from the Legendre polynomials in the p-setting
(see Lemma 4.7) rather than the Hölder continuity in the setting of completely
bounded Fourier multipliers. In the lemma yielding the above proposition, replace
the Hölder continuity accordingly.

Lemma 4.10. There exists a constant B̃(p) > 0 such that for α > 0, t ∈ R,
τ ∈ [−π

2 ,
π
2 ], and s1 = s1(2α, 0) is chosen as in Lemma 3.26, then for all ϕ ∈ C

such that ϕ̌ ∈ MSp(L2(G̃)),

|ϕ̇(2s1, s1, t)− ϕ̇(2s1, s1, t+ τ )| ≤ B̃(p)e−
α
2 ( 1

4−
1
p )‖ϕ̌‖MSp(L2( ˜G)).

The following two lemmas replace Lemmas 3.28 and 3.29.

Lemma 4.11. For p > 4, there exists a constant B1(p) > 0 (depending only on p)
such that whenever β ≥ γ ≥ 0 and s1 = s1(β, γ) is chosen as in Lemma 3.26, then

for all ϕ ∈ C for which ϕ̌ ∈ MSp(L2(G̃)),

|ϕ̇(β, γ, t)− ϕ̇(2s1, s1, t)| ≤ B1(p)e
−β−γ

4 ( 1
4−

1
p )‖ϕ̌‖MSp(L2( ˜G)).

Lemma 4.12. For p > 12, there exists a constant B2(p) > 0 (depending only on
p) such that whenever β ≥ γ ≥ 0 and s2 = s2(β, γ) is chosen as in Lemma 3.26,

then for all ϕ ∈ C for which ϕ̌ ∈ MSp(L2(G̃)),

|ϕ̇(β, γ, t)− ϕ̇(2s2, s2, t)| ≤ B2(p)e
− γ

4 (
1
4−

3
p )‖ϕ̌‖MSp(L2( ˜G)).

The following lemma follows in a similar way from the previous two lemmas as
Lemma 3.31 follows from Lemmas 3.28 and 3.29.

Lemma 4.13. For all p > 12, there exists a constant B3(p) > 0 such that whenever

s1, s2 ≥ 0 satisfy 2 ≤ s2 ≤ s1 ≤ 6
5s2, then for all ϕ ∈ C for which ϕ̌ ∈ MSp(L2(G̃))

and for all t ∈ R,

|ϕ̇(2s1, s1, t)− ϕ̇(2s2, s2, t)| ≤ B3(p)e
− s1

8 ( 1
4−

3
p )‖ϕ̌‖MSp(L2( ˜G)).

The following lemma replaces Lemma 3.32.
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Lemma 4.14. For p > 12, there exists a constant B4(p) > 0 such that for all ϕ ∈ C
for which ϕ̌ ∈ MSp(L2(G̃)) and for all t ∈ R, the limit c̃pϕ(t) = lims1→∞ ϕ̇(2s1, s1, t)
exists, and for all s2 ≥ 0,

|ϕ̇(2s2, s2, t)− c̃pϕ(t)| ≤ B4(p)e
− s2

8 ( 1
4−

3
p )‖ϕ̌‖MSp(L2( ˜G)).

Proof of Proposition 4.2. Let ϕ ∈ C be such that ϕ̌ ∈ MSp(L2(G̃)). The proof
of the proposition now follows in the same way as the proof of Proposition 3.11.
Indeed, assume first β ≥ 2γ. Then β − γ ≥ β

2 , and it follows for all t ∈ R that

|ϕ̇(β, γ, t)− c̃pϕ(t)| ≤ (B1(p) +B4(p))e
− β

32 (
1
4−

3
p )‖ϕ̌‖MSp(L2( ˜G)).

Assume now that β < 2γ. Then

|ϕ̇(β, γ, t)− c̃pϕ(t)| ≤ (B2(p) +B4(p))e
− β

32 (
1
4−

3
p )‖ϕ̌‖MSp(L2( ˜G)).

Combining these results, it follows that for all β ≥ γ ≥ 0,

|ϕ̇(β, γ, t)− c̃pϕ(t)| ≤ C1(p)e
−C2(p)

√
β2+γ2‖ϕ̌‖MSp(L2( ˜G)),

where C1(p) = max{B1(p)+B4(p), B2(p)+B4(p)} and C2(p) =
1

32
√
2
( 14 −

3
p ). This

proves the proposition. �

The values p ∈ [1, 1211 )∪(12,∞] give sufficient conditions for G̃ to fail the APSchur
p,cb .

We would like to point out that the set of these values might be larger, as already
mentioned in Section 1.

5. Main results

In this section, we state and prove the main results of this article.

Theorem 5.1. Let G be a connected simple Lie group. Then G has the Approxi-
mation Property if and only if it has real rank zero or one.

Proof. Since it is well known that if a connected simple Lie group G has real rank
zero or one, thenG has the AP (see Section 1), it suffices to prove that any connected
simple Lie group with real rank greater than or equal to two does not have the AP.

Let G be a connected simple Lie group with real rank greater than or equal to
two. Then G has a closed connected subgroup H locally isomorphic to SL(3,R) or
Sp(2,R) (see, e.g., [1],[9],[33]).

First, suppose that H is locally isomorphic to SL(3,R). Since the universal

covering S̃L(3,R) has finite center, it follows that H automatically has finite center.
Using the fact that the AP is preserved under local isomorphism of connected simple
Lie groups with finite center (see Section 2.6) and the fact that SL(3,R) does not
have the AP, it follows that G does not have the AP, since the AP passes from a
group to closed subgroups.

Second, suppose that H is locally isomorphic to Sp(2,R), i.e., H is isomorphic

to S̃p(2,R)/Γ, where Γ is a discrete subgroup of the center Z(S̃p(2,R)) of S̃p(2,R).
If H has finite center, then the result follows in the same way as the case SL(3,R).

If H has infinite center, then H ∼= S̃p(2,R), because all nontrivial subgroups of the

center of S̃p(2,R) are infinite subgroups of finite index (which make H have finite
center). This implies that H does not have the AP, which finishes the proof. �
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Note that the proof of this theorem follows from combining the failure of the AP
for SL(3,R), which was proved by Lafforgue and de la Salle and the failure of the

AP for Sp(2,R) and S̃p(2,R).

Corollary 5.2. Let G = S1 × . . . × Sn be a connected semisimple Lie group with
connected simple factors Si, i = 1, . . . , n. Then G has the AP if and only if for all
i = 1, . . . , n the real rank of Si is smaller than or equal to 1.

We now state our results on noncommutative Lp-spaces. Combining [31, The-
orem E] by Lafforgue and de la Salle, [29, Theorem 3.1] and Theorem 4.1 of this
article, it follows that whenever G is a connected simple Lie group with real rank
greater than or equal to two and whenever p ∈ [1, 12

11 ) ∪ (12,∞], then G does not

have the APSchur
p,cb . Combining this with the fact that the APSchur

p,cb passes from a
group to its lattices and vice versa and the earlier mentioned result of Lafforgue
and de la Salle that whenever Γ is a discrete group such that Lp(L(Γ)) has the

OAP for p ∈ (1,∞), then Γ has the APSchur
p,cb , we obtain the following result.

Theorem 5.3. Let Γ be a lattice in a connected simple Lie group with real rank
greater than or equal to two. For p ∈ [1, 12

11 )∪(12,∞], the noncommutative Lp-space
Lp(L(Γ)) does not have the OAP or CBAP.

Note that this result only gives sufficient conditions on the value of p for the
failure of the CBAP and OAP for noncommutative Lp-spaces associated with lat-
tices in connected higher rank simple Lie groups. The set of such p-values might
be larger than [1, 12

11 ) ∪ (12,∞]. In particular, if we consider Lp(L(Γ)), where Γ is
a lattice in a connected simple Lie group that contains a closed subgroup locally
isomorphic to SL(3,R), then we know by the results of Lafforgue and de la Salle
that the CBAP and OAP for Lp(L(Γ)) fail for p ∈ [1, 4

3 ) ∪ (4,∞].

Appendix A. Harmonic analysis on strong Gelfand pairs

This appendix discusses the analogues of spherical functions in the setting of
strong Gelfand pairs. In particular, we explain their relation to spherical func-
tions for Gelfand pairs and their meaning in representation theory. The material
discussed here is not needed for the rest of this article, but might give a deeper un-
derstanding of certain results proved in Sections 3 and 4 (see in particular Lemma
3.14). The main result of this section, Theorem A.2, might be known to experts,
and special cases of it were considered in [15], but we could not find a reference for
the general statement. The content of this appendix arose from discussions between
the second-named author and Thomas Danielsen.

The definitions of Gelfand pairs, spherical functions and strong Gelfand pairs
were given in Section 2.3. It was pointed out there (and it is elementary to prove)
that a pair (G,K) consisting of a locally compact group G and a compact subgroup
K is a strong Gelfand pair if and only if (G×K,ΔK) (where ΔK is the diagonal
subgroup) is a Gelfand pair. We refer to [8] and [14] for a thorough account of the
theory of Gelfand pairs.

Suppose that G is a locally compact group with compact subgroup K. An equiv-
alent definition of spherical functions (see [8],[14] for a proof of the equivalence) is
that for a Gelfand pair (G,K), a function h ∈ C(K\G/K) that is not identical to
zero is spherical if for all g1, g2 ∈ G we have

∫
K
h(g1kg2)dk = h(g1)h(g2). We de-

note the set of spherical functions by S(G,K). Spherical functions parametrize the
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nontrivial characters (multiplicative linear functionals) of the algebra Cc(K\G/K),
since any such character is of the form χ(ϕ) = χh(ϕ) =

∫
G
ϕ(g)h(g−1)dg. Further-

more, if h is a bounded spherical function, the expression above defines a continuous
multiplicative functional on the Banach algebra L1(K\G/K), and the set BS(G,K)
of bounded spherical functions parametrizes bijectively the set of continuous char-
acters of L1(K\G/K).

We can now define the analogues of spherical functions in the setting of strong
Gelfand pairs. For a strong Gelfand pair (G,K), we say that a function h ∈
C(G//K) that is not identical to zero is s-spherical if for all g1, g2 ∈ G we have∫
K
h(k−1g1kg2)dk = h(g1)h(g2). The set of s-spherical functions is denoted by

SS(G,K). Analogous to the case of spherical functions, the s-spherical func-
tions parametrize the space of nontrivial characters of the convolution algebra
Cc(G//K), since an s-spherical function h gives rise to a character by χh(ϕ) :=∫
G
ϕ(g)h(g−1)dg.
It is clear that S(G,K) ⊂ SS(G,K). We can now relate the spaces of s-spherical

functions for (G,K) and spherical functions for (G × K,ΔK). First, we state a
lemma, the proof of which is elementary and left to the reader.

Lemma A.1. The map Φ : ΔK\(G×K)/ΔK → G//K given by ΔK(g, k)ΔK �→
[k−1g] = [gk−1] is a homeomorphism with inverse Φ−1([g]) = ΔK(g, e)ΔK. Here,
[g] denotes the K-conjugation class of g.

The map Φ of Lemma A.1 induces a bijection Φ∗ : C(G//K) → C(K\G/K)
given by f �→ f ◦ Φ.

Theorem A.2. The map Φ∗ : C(G//K) → C(K\G/K) given by f �→ f ◦Φ defines
a bijection between SS(G,K) and S(G×K,ΔK).

Proof. For h ∈ SS(G,K), we have (h ◦Φ)((k1, k1)(g, k)(k2, k2)) = h(k−1
2 k−1gk2) =

h(k−1g) = (h◦Φ)((g, k)) for all g ∈ G and k, k1, k2 ∈ K, so h◦Φ is ΔK-bi-invariant
on G × K. Moreover, we check that for h ◦ Φ (which is not identical to the zero
function), we have∫

K

(h ◦ Φ)((g1, k1)(k, k)(g2, k2))dk =

∫
K

h(k−1
2 k−1k−1

1 g1kg2)dk

=

∫
K

h(k−1k−1
1 g1kg2k

−1
2 )dk = (h ◦ Φ)(g1, k1)(h ◦ Φ)(g2, k2)

for all g1, g2 ∈ G and k, k1, k2 ∈ K. Now let h ∈ S(G,K). It follows that
(h ◦ Φ−1)(kgk−1) = h(kg, k) = h(g, e) = (h ◦ Φ−1)(g) for all g ∈ G and k ∈ K, so
h ◦ Φ−1 is Int(K)-invariant on G. Moreover, we check that ϕ ◦ Φ−1 (which is not
identical to the zero function) satisfies∫

K

(ϕ ◦ Φ−1)(k−1g1kg2)dk =

∫
K

ϕ((g1, e)(k, k)(g2, e))dk

= ϕ((g1, e))ϕ((g2, e)) = (ϕ ◦ Φ−1)(g1)(ϕ ◦ Φ−1)(g2)

for all g1, g2 ∈ G. �

Remark A.3. For a compact group G with compact subgroup K such that (G,K) is
a strong Gelfand pair, the map Φ∗ extends to a bijective isometry from L2(G//K)
onto L2(ΔK\G ×K/ΔK). The fact that Φ∗ is isometric on C(G//K) follows by
elementary computation.
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Let (G,K) be a compact strong Gelfand pair, i.e., the group G is compact
and (G,K) is a strong Gelfand pair. In particular, (G,K) is a Gelfand pair. Let
X = G/K denote the corresponding homogeneous space. For an irreducible unitary

representation π of G, let Hπ, Hπe
, Pπ and ĜK be as in Section 2.3. Then L2(X) =⊕

π∈ĜK
Hπ (see Section 2.7). Let hπ denote the spherical function corresponding

to the equivalence class π of representations. Then for every ϕ ∈ L2(K\G/K) we
have ϕ =

∑
π∈ĜK

cπ dimHπhπ, where cπ = 〈ϕ, hπ〉.
Recall that any unitary irreducible representation of a product of compact Lie

groups arises as the tensor product of unitary irreducible representations of these
groups. Also, it was already known from [18] that a pair (G,K) consisting of
a locally compact group and a compact subgroup K of G is a strong Gelfand
pair if and only if for every unitary irreducible representation π of G, the space
HomK(π, τ ) is at most one-dimensional for all unitary irreducible representations
τ of K. Combining this with Theorem A.2 and Remark A.3, the following result
follows.

Theorem A.4. Let (G,K) be a compact strong Gelfand pair, and let f ∈L2(G//K).
Then

f =
∑

π∈Ĝ×KΔK

cπ dimHπ(hπ ◦ Φ−1) =
∑
π∈Ĝ

cπ dimHπh
s
π,

where hs
π denotes the s-spherical function associated with π.
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