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Almost I? matrix coefficients

By M. Cowling at Kensington, U. Haagerup at Odense and R. Howe at New Haven

The purpose of this note is to insert into the literature two long-but-not-well-
known facts about matrix coefficients of unitary representations. Our first theorem
concerns general locally compact groups G: a positive definite function belonging to
L[?*%(G) for every ¢ in R™ is in fact a matrix coefficient of a unitary representation
weakly contained in the regular representation. This generalises the familiar theory of
square integrable representations (see e.g. [Dix]) to give information “about almost
square integrable representations”. Our second theorem is about real and p-adic
semisimple algebraic groups: we obtain growth estimates for the K-finite matrix
coefficients of unitary representations weakly contained in the regular representation
which imply in particular that they belong to L>*¢(G) for every ¢ in R™*. This is related
to estimates of Harish-Chandra and other authors on the behaviour of matrix
coefficients at infinity. Both our results are simple to state and to prove. Together, they
characterise matrix coefficients of tempered representations of semisimple groups, and
spotlight the dramatic difference between abelian and semisimple harmonic analysis.

Let G be a locally compact group, with a left-invariant Haar measure denoted m
or dx. The left and right modular functions of G are denoted d; and A4 respectively:
thus

[ fxy)dx=66(y) | f(x)dx=46(y)"" if(X)dx VfeL'(G), VyeG.
G G

(In abstract harmonic analysis, 4 is usually used (see [Dix], [HR], [L]), while
semisimple harmonic analysts usually use ¢ (see [HC1-6]) (note however that [W] uses
0 for our 4 and [Kir] uses 4 for our 4). We shall continue this somewhat schizophrenic
tradition.) The group convolution algebra L'(G), equipped with the involution f— f*,
where

f*(X)=46x)7'f'(x) VxeG,
" denoting complex conjugation, and ¥ reflection (fV (x)=f(x"") for all x in G), is a

Banach *-algebra.
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Let ¢ be a unitary representation of G on a Hilbert space H,, with inner product
denoted (,). A matrix coefficient of ¢ is a function on G of the form

1) ¢:x — (e(x) & n),

where &, n e H,. If =7, then ¢ is called a diagonal matrix coefficient, and is a positive
definite function, in the sense of Bochner. Vice versa, any positive definite function can
be realised as a diagonal matrix coefficient by the Gelfand-Naimark-Segal construction
(see [Dix], [HR], or [L]). The representation g extends to a *-representation of L!(G): for
f in LY(G), o(f) is the operator on H for which

e(f) ¢ n)=(§;f(X) (ex)&n)dx V¢ neH,.

In particular, for the left regular representation A, A(f) is the operator of left
convolution by f on L*(G):A(f)g=f *g for any g in L*(G).

Let o be another unitary representation of G. Following Fell [F], we say that ¢ is
weakly contained in ¢ if any diagonal matrix coefficient of ¢ can be approximated,
uniformly on compacta, by convex combinations of diagonal matrix coefficients of g.
Eymard [Ey] developed equivalent formulations of this notion using the theory of C*-
algebras. For instance, o is weakly contained in ¢ if and only if

@ le(NI=leNIl VfeL(G),

or, by density, if the same inequality holds for all f in C,(G), the space of compactly
supported continuous functions on G, or equivalently, by duality, if and only if each
matrix coefficient x — (o(x) 6, {) of ¢ is the limit, uniformly on compacta, of sums of
matrix coefficients of ¢

x— ¥ (e(x) & m)

subject to the condition that

o) S &0 nd <100 11

Loosely speaking, an irreducible representation is wéakly contained in the regular
representation if it appears in the Plancherel formula.

Here is our first main result.

Theorem 1. Let o be a unitary representation of the locally compact group G on the
Hilbert space H,. Let £ be a cyclic vector in H, (i.e., the set of vectors {o(x) ¢:x € G}
spans a dense subspace of H,). Suppose that the diagonal matrix coefficient
¢:x — (0(x) & &) lies in L**4(G) for each ¢ in R*. Then ¢ is weakly contained in the
regular representation.

Remark. The assumption that ¢ is cyclic could be avoided by restricting o to the
closed subspace spanned by {a(x) ¢: x € G}.
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Our proof of Theorem 1 provides a formula for the norm of a convolution
operator on L?(G) which may be of independent interest. (Special cases were certainly
known [Lei]; see remark (d) following the proof.)

The statement of our second main result requires a few more preliminaries.

Let G be a semisimple algebraic group over a local field; denote by P and K a
minimal parabolic and a maximal compact subgroup of G, such that the Iwasawa
decomposition holds:

4) G=KP.

(For groups over [R, there is only one choice of K up to conjugacy: for p-adic groups,
one must choose a “good” K [BT].) Let 6 be the left modular function of P, so that if
dp is left-invariant Haar measure on P, 6(p)dp is a right-invariant Haar measure on P.
As G is unimodular, Haar measure on G is both left-K-invariant and right-P-invariant;

it follows that the Haar measures dx, dk and dp of G, K, and P can be normalized so
that

(%) cf;f(X)dx=If( If,f(kp)5(l?)dpdk Vfe C(G),
and
fdk=1

Extend J to a left-K-invariant function on G, still denoted J, by the formula
(6) o(kp)=06(p) VkeK, VpeP.

Let £ be the function defined by Harish-Chandra [HC1], [HCS5]:
(7) Ex)={ 5_%(xk)dk VxeG.
K

The K-bi-invariant function Z is the matrix coefficient x — (0(x) &, £), where £ is a unit
K-invariant vector for the representation o of G unitarily induced from the trivial
representation of P. As P is amenable, the trivial representation of P is weakly
contained in the regular representation of P; by continuity of induction [F], ¢ is weakly
contained in the regular representation of G. Harish-Chandra has shown that Z is
almost square integrable: Z € I*%(G) for all ¢ in R* ([HC2], [HCS]).

Theorem 2. Let ¢ be a unitary representation of the semi-simple algebraic group G,
weakly contained in the regular representation of G. Let & and n be vectors in the Hilbert
space H, of 6. Suppose that the decomposition of the closed subspaces H, and H, of H,
generated by o(K)¢ and o(K)n involves finitely many distinct irreducible representations
of K of arbitrary multiplicities, i.e. that, as K-representation spaces,

D
Hé = Z thr
€S

TESE
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and

n

D
H,= ) nH,
€S

T€Sn

where S and S, are finite subsets of K. Denote by D, and D, the sums Y d? and
teSs
Y. d} of the squares of the dimensions d, of the distinct K-irreducible constituents of 0lu,

TeSy,
and oly,, and by d. and d, the dimensions dimH, and dimH, of H, and H,. Then
d¢<D;,d,=D,, and

@) IKa(x) & )l é(dgd,,)% €N lnll E(x)  VxeG.

Related estimates have appeared in the work of Harish-Chandra and other
authors [A], [Co], [CM], [HC1-6], [Hw], [K], [M], [TV], [V1-3]. Our proof of
Theorem 2 utilises a simple analytic consequence of the Schur orthogonality relations
(see the proposition in the proof of Theorem 2). This fact has doubtless been observed by
others, but we would like to point it out to the reader as a group theoretic version of the
Sobolev inequality.

We shall now prove these theorems, and then give a few applications.
Proofs of Theorems 1 and 2

Before we prove our first main result, we recall that, if X is a compact subset of
the locally compact group G, with non-void interior, then the Haar measure m(X™") of
X" grows at most exponentially, i.e.

9) m(X")= [ 1dx<CM"™' VneN,

Xxn

for appropriate (X-dependent) constants C and M. Indeed, since X? is compact, we can
find finitely many points y;, 1<i< M, in G, so that

){2

N

M

U vX.
i=1
Inductively, it can be seen that

X"g inlyiz"'yin_l'X’

from which (9) follows immediately.

Proof of Theorem 1. By (2), it suffices to show that

(10) leN=IANI - Ve C(G).

For any unitary representation ¢ of G,

le(HI*=le(N)* e(NI=le(f** NI VfeC.(G),
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so it will suffice to calculate [o(f)| for self-adjoint (f* = f) elements of C.(G) in order
to calculate |o(f)|l in general. Further, if f is selfadjoint in C.(G), ¢(f) is self-adjoint.

For self-adjoint f, let yy o denote the measure on the spectrum of ¢(f) induced by 6 in
H, via spectral theory. By measure theory,

1 -1
.[tzd#e,e§ U tzndﬂo,o]n U d/‘G.O]l "

and .
,.li—»n:o [f tzndlle,o]F =sup {t? 1.t € supp(ip,)} -
Consequently \ )
00Nl =(e(/*)0, 6} < Tim (o(/°2")0, 0% 6]
whence

, 1
lle(f) =sup lle(£)O] 101! <sup lim (o(f**")6, 6)*",
0cH feH n—> ©

where H is a dense subspace of H,. The converse inequality being trivial, equality holds,
and so after rewriting in terms of matrix coefficients, we have that, for any f in C,(G),

(11) le(f)l =sup lim I(f**f"z"’(X)( (x)9, 9)dX)4"

f6eH n—o©
We shall use this expression to estimate o(f) and A(f) separately, and so prove (10).

We consider the represention o, and take {o(g)¢: g € C.(G)} as the dense subspace
H of H, in (11). We fix temporarily g in C,(G), and define 6, ¢, and y as follows:

0=0(g) ¢,
P(x)=(c(x)¢, &) VxegG,
p(x)=(0(x)0,0) VxegG.
Recalling that g" denotes the reflection of g, we see that
(12) p(x)=(o(x) o(g)¢, 0(g)?)
—i [ 8(2) 8(y) (0(x) 0(2)¢, a(y)¢)dydz

={ {2 g0 ¢(y 'xz)dydz
G G

=g*p*g’(x);

consequently vy also lies in L?*¢(G) for each ¢ in R*. Let X be the support of
h=f*xfx f*x f in G. Then, by Schwarz’ inequality, Holder’s inequality and (9),

(13) IJ (f** )2 ) @) dx> =] [ (f** f*f** () p(x)dx]?
G xn

S(JIR )1 dx) ([ lw(x)I* dx)

Xn

< 1K1 I\w(>€)|“e dx)? 5 ldx)“‘

< |3 19l24. (CM" 12,
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We extract roots and let n tend to infinity. From (11), it follows that
1 €
lo (NIl <lminf [|(f* * )23 MBC*+;
n— oo
since ¢ is arbitrary,

(14) lo ()]l <liminf J(f* * f)C2m||4m,

For the representation 4, we take C.(G) to be the dense subspace of H; in formula
(11). For g in C.(G), x — (A(x) g, g) lies in C,(G), so that, by the Schwartz inequality,

Ig (f** £)F27(x) (A(x) g, g) dxI < (S** )22 1(A(.) & 82

whence, from (11),

1
(15) IA()I < liminf [|(f* * £)©27)I5".
However, by definition,

(F*o )= (%0 f)027D (5 )
SO

I * % 2P, S NA* = HIP2 00 * = 1),

1

lim sup [[(/* » L5 < AN

and

Combining this inequality with (15), we conclude that
. o L
lim [|(f*x f) 205" = 14N

this inequality, together with (14), proves (10) and hence the theorem. |
Remarks. (a) In the proof of (13), we saw that

If (f** N)?P0) p(x) dxP < ([ I(f** )X dx) (| lp () dx).
G G Xn
If the Haar measure of X" grows slower than exponentially, i.e. if

(16) lim m(X")%=1

n— oo

for any compact subset X of G, then, since

an lp(x)1*> dx < llplZ m(X"),
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we obtain (14) without any hypotheses on ¢. This implies that if (16) holds, then every
unitary representation is weakly contained in the regular representation, i.e. that G is
amenable.

(b) It can be similarly shown that, if w: G — R* is continuous and satisfies the
conditions that

lim (sup w(x)%)=1

n—>00 yexn

for all compact subsets X of G, and that w is submultiplicative, i.e.
wxy)=wx)w(y) Vx yeg,

then, if the function x — w™!(x)¢(x) lies in L?*(G), the associated representation o
is weakly contained in the regular representation. Indeed, in (13), it suffices to estimate
as follows:

J lp()1? dx <( In W™ (x) p(x)I* dx) sup w(x),

Xxn xeXn

whence (14) follows as before. Examples of functions w with this property include the
functions [1+d1* k € N, where d(x) is the geodetic distance of x from the origin in a
connected Lie group G with a left-invariant Riemannian metric, or d(x) is the distance
of x-0 from o in a metric structure (a symmetric space or a building, for instance) on
which G acts by isometries. This is somewhat more directly related to Harish-Chandra’s
concept of tempered representations.

(c) If ¢ is a diagonal matrix coefficient of a unitary representation weakly
contained in the regular representation, then so is ¢'. Consequently, if G is not
unimodular, and ¢ is a unitary representation of G with a cyclic vector ¢ such that
d:x — (0(x)¢, &) does not belong to L**#(G) for all ¢ in R*, but such that ¢" does
have this property, then ¢ is still weakly contained in the regular representation.

(d) As part of the proof of Theorem 1, we showed that
1
AN = Iim I(F*+ 2705 Vf e C(G).

A little extra work shows that

1A = lim [|(f** £)*"[3" Vfe C.(G),

n— o

and

1
AN ="1£r§30 1Fe™15

for self-adjoint f in C,(G). This was known for special cases [Lei].

Proof of Theorem 2. There are three steps in our proof: reduction to consider-
ation of the regular representation, reduction to the consideration of K-fixed vectors,
and the K-fixed vector case.
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Given a function v on K, we identify it with the singular measure on G, also
denoted v, by the formula

v(u)=[u(k) v(k)dk Vue C/G).

K

Let £ be one of the vectors of Theorem 2, and let H, be the closed subspace of H,
generated by o(K)¢. It is a standard result in the representation theory of compact
groups that cyclic representations are equivalent to subrepresentations of the regular
representation 4. Consequently there is a unitary mapping which intertwines the action
of K by ¢ on H, with the left translation action on a left-invariant subspace (i.e. left-
ideal) J, of L*(K). The hypotheses of Theorem 2 tell us that, in the decomposition of J,
into irreducible components, only representations in the finite subset S, of K appear. It
follows immediately that

d;=dim(Hy)=dim(J)< Y d2.

teSz

However, the representation theory of compact groups gives us more information.
Consideration of the left ideal J; in L?(K) shows that there is a unique function e, in
C(K) with the properties that

e:=e;* e, =ef
and
C(K)*e:=J;.

It also follows readily from the theory that

(this is seen by breaking J; into irreducible components and treating these individually)
and (since e, =¢,)

o(@)t=0(ef)E=¢.
We note a consequence of this discussion. If ¢ denotes the matrix coefficient
k — <a(k)¢, (), then (cf. (12))

¢(k)=<a (k) a(ég)¢&, {>
=e; * P(k) VkeK;

from the Cauchy-Schwartz inequality, we conclude that

160w < leels 161 =d2 11

This discussion can be, for convenience, summarised in the following proposition.
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Proposition. Let o be a unitary representation of a compact group K, and let ¢ be
a K-finite vector in H, (i.e. the span H; of a(K)¢ is finite-dimensional). Then there exists

a unique function e, in C(K) so that
e;=e;*e;=ef,
U(ég)f =

and
d;=dimspan A(K)e; = |e, 3.

Consequently, for any { in H,, if ¢ denotes the matrix coefficient k — (o(k)&, (), then

1
¢l <ds ol

Remark. The last inequality is our group theoretic version of the Sobolev
inequality. In particular, if we take ¢ to be the regular representation, it follows that, if

the left translates of ¢ span a d-dimensional space, then |¢] ., gd% |oll,. It is easy to
show that this inequality is sharp — just consider the characters of irreducible
representations 7 of dimension d, which are matrix coefficients of the restriction of the
regular representation to the t-isotypic subspace of L?(K).

Proof of Theorem 2 (continued). We now consider our matrix coefficient
¢:x — (a(x)&, n). Then from the proposition, there are self-adjoint projections e, and e,
in C(K) so that

e:xpre,=¢.

By (3), we can approximate ¢, uniformly on compacta, by sums ) y; of matrix
i=1
coefficients y;: x — (A(x)g;, h;), satisfying the condition that

i lgill2 Al = NN Hinll.
i=1

Since e, and e, have compact support, and further A(g;) and A(e,) are projections, we

can approximate ¢ by sums of matrix coefficients ) e, * y; * e,, Where
i=1

€ *P; * e,,(x) =(/1(X) A(éé)gis l(én) hl)
and

i 1A () gill 2 14 €,) Pl = €1l il

Consequently, to prove the theorem, it will suffice to show, for any g and h in L*(G)
such that é;* g=g and &, * h=h, that

(18) [(A(x)g, h)l §(d§d:,)% Igll2 Ik, E(x) VxeG.
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Next, we define left-K-invariant functions § and h on G by the formulae

g(x)=sup [g(kx)] VxeOC,

keK

h(x)=sup |h(kx)] VxeG.

ke K

Clearly,

I(A(x)g, h) gx~'y) h(y)dyl
g0 1y) h(y)dy
(A(x)g h)

and A(k)§=¢ and A(k)h=h for all k in K. If g=¢, * g, then

IIA

=i
1

|

g(k'x)=é; * g(k'x)

whence
18001 < e (] leC™ k)P
=t ([ letk dig?,
e g9 5dd (] letkor any’
Also,

g B dx)?! <db(f [ lgtkx) dkdg)?
G K

3
=dg |Igll,-

Analogous considerations apply to h and h, so in order to prove (18), it will suffice to
show that, if g he [*(G) and A(k)g=g and A(k)h=h for all k in K, then

(19) I(2(x)& B < 181, IR, E(x) VxeG.

The last step of the proof is to show (19) holds. We recall (4) that G=K P and (5)
that

gf(X)dX=I§( if(kp)fs(p)dpdk Vf e Cc(G).

It follows that, for § and h as above, that

(A(x) g, T1)=II( i g(x"*kp) h(kp) 5(p)dpdk.
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By the Schwartz inequality,
(200 (A(x)g h) élf((lf) Ig(x'lkp)|25(P)dP)% ) |ﬁ(kp)l25(p)dp)%dk

Since % is left-K-invariant, for any k in K,

1) Il =({ ] itkp 2 8(p)dpdk)? = jm(kpnza(p)dp)%

From the Iwasawa decomposition (4), for fixed x in G and k in K, we may write x 'k
as kopo. By using the left-K-invariance of g, we see

22) ([ 1EG kp)26(p)dp) = (] 12(kopop) 6(p) dp)?
P P
=(J 1E(op)? 3(pop)dp) 6(po) 2

1 _

=({ 120 5(P)dp)* 6(po)

P

= 18,5(po)
Finally, recalling that 6 was extended to G so that &(kop,)=3J(p,), we see that
5(p0)_%=5(x“1k), and from (20), (21) and (22) we conclude that

~ _1
I(A) & R [ 118115 IRl, 6(x~ k) 2dk
K

=121, 1Rl E(x),

by definition (7) of Z. This proves (19) and thereby the theorem. ]

Remark. This theorem owes much to Herz [Hz], who showed that, if
¢ (x)=(A(x)g, h), with g and h in [*(G), then, by Minkowski’s integral inequality,

(f [ 16k xk2dkdk)} =([ [1] gk~ x1y) ik y)dyl? dkdk')?
K K K K

G

<fg*(x 'y h*(ndy
G
=(A(x)g*, h*),
where
g¥(x)= flg(kx)lzdk) VxeG
and

B )= ([ hkx)Pdk)?  ¥xeG

K

and then, using the fact that A(k)g* =g* and A(k)h* =h* for all k in K, deduced that

23) (A(x)g*, h*) < gl Ikl E(x) V¥x€G.
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Our third step is just Herz’ proof of (23). Dual to Herz’ result is the inequality

S]] \f (k' k)P dkdk') E(x) dx

for f for which the right hand side makes sense. This is closely related to work of the
second named author on harmonic analysis on free groups [Haa].

Applications

These two results imply that, for a semisimple algebraic group G, a unitary
representation is weakly contained in the regular representation if and only if (a dense
set of) its matrix coefficients lie in L?*¢(G) for each ¢ in R*. However, for a noncompact
abelian group G, the irreducible unitary representations are one-dimensional and their
matrix coefficients are just (multiples of) the group characters, which never lie in L?(G) if
q<oo. Theorem 2 provides a clear indication of the remarkable difference between
harmonic analysis on semisimple and on abelian groups. Further, Theorem 1 and 2
together provide an abstract rationale for the centrality of the notion of “temperedness”
in the theory of Harish-Chandra ([HC3], [HC4], [HC7]). Here is another application
of Theorem 1.

Corollary. Suppose that o is an irreducible unitary representation of the semisimple
group G, and that for some vector ¢ in H,, the diagonal matrix coefficient
¢: x — (06(x)¢&, &) lies in [***%(G) for all ¢ in R*, where k is a positive integer. Then

(@) all matrix coefficients of o lie in L****(G) for all ¢ in R™;

(b) if & neH, are K-finite, then

(24) l(e(x)¢, 11)|<(d1mH¢d1mH,,)% IEH linll 2 "(X) Vx e G;

(© if (G)p denotes the subset of the unitary dual G of G consisting of
representations which have a dense set of matrix coefficients in I*(G), then | (G is a
closed subset of G. p>2k

Proof. (a) By arguing as in (12), we see there is a dense subspace H of H, so that
if 0, { e H, then y: x — (6(x)6, {) lies in L?***(G). Consider the k-fold tensor product
H, ®H,® - ® H,=H®*. Let 6®* denote the action of G on H®* via the k-fold tensor
product of . If 6;,{;eH, and 0'=0,®0,® - ®0,,{'={; ® - ® {, then

k

Y (x)=(0®"(x)6", () H (0(x)6;, &)

where (,) indicates the inner product in H®*. Hence y’(x) lies in L?>**(G) for all ¢ in
R*. By Theorem 1, we see that ¢®* is weakly contained in the regular representation,
and by the Kunze-Stein phenomenon [Co], (the same proof works for p-adic groups) all
coefficients of o¢®* lie in I2**(G). In particular, the matrix coefficients
x— (a(x)0, 0, 0, { e H,, lie in I?*%(G), whence x — (a(x) 6, {) lies in L****(G).
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(b) If £ eH, is K-finite, then (®*=¢(® E® --- ® & in HE* is also K-finite. More
precisely, if Hex, is the subspace of H®* generated by ¢®*(K)£®* then

H(é@k) c (Hc)®k .

In particular dimH e, <(dimH,)*. Hence, applying estimate (8) to the coefficient
x — (o (x), & n)* of H®*, and taking k-th roots yields (24).

(c) This statement follows directly from (b) since (24) is a pointwise estimate and
therefore is valid on closed subsets of G. |

There are singular representations of semisimple groups, such as the oscillator
representation of Sp,,(/R), which have coefficients which belong to L?***(G) for some k
in NV and all ¢ in R*, but which do not belong to L?*(G) [Hw]. Thus part (a) of the
corollary is a substantial improvement of Lemma 7. 3 of [Co]. Similarly parts (b) and (c)
improve on Corollaries 7.2 and 7.3 of [Hw].
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