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1 Introduction

In the paper [HT2], we gave new proofs based on random matrix methods of
the following two results:

(1) Any unital exact stably finite C*-algebra has a tracial state.
(2) If A is a unital exact C*-algebra, then any state on Ky(.A) comes from a
tracial state on A.

For each of the results (1) and (2), one may ask whether or not it holds
without the assumption that the C*-algebra be exact. These two problems are
still open, and both problems are equivalent to Kaplansky’s famous problem,
whether all AW*-factors of type II; are von Neumann algebras (cf. [Ha] and
[BR]).

In the present note, we provide examples which show that the method
used in [HT2] cannot be employed to show that (1) and (2) hold for all
C*-algebras.

As in [HT2], we let GRM(m,n,o?) denote the class of complex Gaussian
m X n random matrices of the form

B = (b(4,7))1<i<m
1Zj<n

for which the 2mn real random variables Re(b(z, 5)), Im(b(3, j)) are indepen-
dent and Gaussian distributed random variables with mean 0 and variance
02 /2, defined on a probability space ({2, F, P). Moreover, for any bounded
operator A on a Hilbert space, we denote by sp(A) the spectrum of A.

The proofs of (1) and (2) above given in [HT2] were both based on the
following theorem:
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Theorem 1.1 (cf. [HT2]). Let ay,az,... ,a, be elements of a unital ezact
C*-algebra A. Let further (£2,F,P) be a fized probability space, and let, for

each n in N, Yl("), ..., Y™ be independent Gaussian random matrices de-
fined on 2 and lying in the class GRM(n,n, %) defined below. Put

Sn=YaoY™, (neN),
=1

and let ¢ be a positive real number. We then have
) If | Y, atai]l < c and || Z:z a;al|| <1, then for almost all w in 12,
hmsupmax {sp(Sn W)} < (Ve+ 1)

(i) If Yi_; afai = clp), || Xieg aialll < 1, and ¢ > 1, then for almost all

w in §2,

llmmfmln {sp(Sn W)} > (Ve ) o

The upper and lower bounds (v/c+ 1)2 and (y/c—1)? in Theorem 1.1 are

best possible. This follows from

Theorem 1.2 (cf. [Th]). Let B be a unital ezact C*-algebra and let
b1,ba,...,bs be elements of B satisfying that

S s
Y bibi=clg and Y bb; =1z,
i=1 i=1

for some real number ¢ in [1,00[. Consider further, for each n in N, in-
dependent random matrices Yl("),}g("),. LY ™ in GRM(n,n, ), and put
T,=%i ,b® Y™, Then for almost all w in 02,

max {sp(T, w))} = (Ve+1)%, asn— oo,
and
min {sp(T, (w)*Tr(w))} = (Vc—1)?, asn—oc0. O

Let C*(F,) denote the full C*-algebra associated with the free group F,
on r generators, and let u;,... ,u, denote the unitary generators of C*(F;).
In [HT2, Proposition 4.9] it was proved, that with a; = 7='/2u;, i =1,...,r,
and S, =) ,a; ® Yi(") as in Theorem 1.1, one has:

lim inf max{sp(Sn ()" Sn(w))} > ()%

In particular, for ¢ > 1 and r > 6¢, the upper bound in Theorem 1.1 is violated
because 6¢ > (3F)24c > (3F)2(y/c + 1). The upper bound in Theorem 1.2 is
also violated in the general non-exact case provided that ¢ > 1 and r > 8¢ (see
Remark 4.5 at the end of this paper). The main result in this note concerns
the lower bound in Theorem 1.1 and Theorem 1.2:



