Random Matrices and Non-Exact C^* -Algebras

U. Haagerup* and S. Thorbjørnsen*

Department of Mathematics and Computer Science SDU, Odense University Campusvej 55, 5230 Odense M Denmark E-mail: haagerup@imada.sdu.dk E-mail: steenth@imada.sdu.dk

1 Introduction

In the paper [HT2], we gave new proofs based on random matrix methods of the following two results:

- (1) Any unital exact stably finite C^* -algebra has a tracial state.
- (2) If \mathcal{A} is a unital exact C^* -algebra, then any state on $K_0(\mathcal{A})$ comes from a tracial state on \mathcal{A} .

For each of the results (1) and (2), one may ask whether or not it holds without the assumption that the C^* -algebra be exact. These two problems are still open, and both problems are equivalent to Kaplansky's famous problem, whether all AW^* -factors of type II₁ are von Neumann algebras (cf. [Ha] and [BR]).

In the present note, we provide examples which show that the method used in [HT2] cannot be employed to show that (1) and (2) hold for all C^* -algebras.

As in [HT2], we let $\text{GRM}(m, n, \sigma^2)$ denote the class of complex Gaussian $m \times n$ random matrices of the form

$$B = (b(i,j))_{\substack{1 \le i \le m \\ 1 \le j \le n}}$$

for which the 2mn real random variables $\operatorname{Re}(b(i, j))$, $\operatorname{Im}(b(i, j))$ are independent and Gaussian distributed random variables with mean 0 and variance $\sigma^2/2$, defined on a probability space (Ω, \mathcal{F}, P) . Moreover, for any bounded operator A on a Hilbert space, we denote by $\operatorname{sp}(A)$ the spectrum of A.

The proofs of (1) and (2) above given in [HT2] were both based on the following theorem:

^{*} MaPhySto - Centre for Mathematical Physics and Stochastics, funded by a grant from The Danish National Research Foundation.

[©] Springer-Verlag Berlin Heidelberg 2000

Theorem 1.1 (cf. [HT2]). Let a_1, a_2, \ldots, a_r be elements of a unital exact C^* -algebra \mathcal{A} . Let further (Ω, \mathcal{F}, P) be a fixed probability space, and let, for each n in $\mathbb{N}, Y_1^{(n)}, \ldots, Y_r^{(n)}$ be independent Gaussian random matrices defined on Ω and lying in the class $\operatorname{GRM}(n, n, \frac{1}{n})$ defined below. Put

$$S_n = \sum_{i=1}^r a_i \otimes Y_i^{(n)}, \qquad (n \in \mathbb{N}),$$

and let c be a positive real number. We then have

(i) If $\|\sum_{i=1}^{r} a_i^* a_i\| \le c$ and $\|\sum_{i=1}^{r} a_i a_i^*\| \le 1$, then for almost all ω in Ω ,

$$\limsup_{n \to \infty} \max \left\{ \sup \left(S_n(\omega)^* S_n(\omega) \right) \right\} \le \left(\sqrt{c} + 1 \right)^2$$

(ii) If $\sum_{i=1}^{r} a_i^* a_i = c \mathbf{1}_{\mathcal{B}(\mathcal{H})}$, $\|\sum_{i=1}^{r} a_i a_i^*\| \leq 1$, and $c \geq 1$, then for almost all ω in Ω ,

$$\liminf_{n \to \infty} \min \left\{ \sup \left(S_n(\omega)^* S_n(\omega) \right) \right\} \ge \left(\sqrt{c} - 1 \right)^2. \qquad \Box$$

The upper and lower bounds $(\sqrt{c}+1)^2$ and $(\sqrt{c}-1)^2$ in Theorem 1.1 are best possible. This follows from

Theorem 1.2 (cf. [Th]). Let \mathcal{B} be a unital exact C^* -algebra and let b_1, b_2, \ldots, b_s be elements of \mathcal{B} satisfying that

$$\sum_{i=1}^{s} b_i^* b_i = c \mathbf{1}_{\mathcal{B}} \quad and \quad \sum_{i=1}^{s} b_i b_i^* = \mathbf{1}_{\mathcal{B}},$$

for some real number c in $[1, \infty[$. Consider further, for each n in N, independent random matrices $Y_1^{(n)}, Y_2^{(n)}, \ldots, Y_s^{(n)}$ in $\text{GRM}(n, n, \frac{1}{n})$, and put $T_n = \sum_{i=1}^s b_i \otimes Y_i^{(n)}$. Then for almost all ω in Ω ,

$$\max\left\{\operatorname{sp}(T_n(\omega)^*T_n(\omega))\right\} \to (\sqrt{c}+1)^2, \quad as \ n \to \infty,$$

and

$$\min\left\{ \operatorname{sp}(T_n(\omega)^*T_n(\omega)) \right\} \to (\sqrt{c}-1)^2, \quad as \ n \to \infty.$$

Let $C^*(\mathbb{F}_r)$ denote the full C^* -algebra associated with the free group \mathbb{F}_r on r generators, and let u_1, \ldots, u_r denote the unitary generators of $C^*(\mathbb{F}_r)$. In [HT2, Proposition 4.9] it was proved, that with $a_i = r^{-1/2}u_i$, $i = 1, \ldots, r$, and $S_n = \sum_{i=1}^r a_i \otimes Y_i^{(n)}$ as in Theorem 1.1, one has:

$$\liminf_{n \to \infty} \max\{ \operatorname{sp}(S_n(\omega)^* S_n(\omega)) \} \ge \left(\frac{8}{3\pi} \right)^2 r.$$

In particular, for $c \ge 1$ and $r \ge 6c$, the upper bound in Theorem 1.1 is violated because $6c > (\frac{3\pi}{8})^2 4c > (\frac{3\pi}{8})^2 (\sqrt{c}+1)^2$. The upper bound in Theorem 1.2 is also violated in the general non-exact case provided that $c \ge 1$ and $r \ge 8c$ (see Remark 4.5 at the end of this paper). The main result in this note concerns the lower bound in Theorem 1.1 and Theorem 1.2: