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Let X be a homogeneous tree of degree q + 1 (2 ≤ q ≤ ∞) and let ψ : X × X → C

be a function for which ψ(x, y) only depends on the distance between x, y ∈ X. Our
main result gives a necessary and sufficient condition for such a function to be a Schur
multiplier on X × X. Moreover, we find a closed expression for the Schur norm ‖ψ‖S

of ψ. As applications, we obtain a closed expression for the completely bounded Fourier
multiplier norm ‖ · ‖M0A(G) of the radial functions on the free (non-abelian) group FN

on N generators (2 ≤ N ≤ ∞) and of the spherical functions on the q-adic group
PGL2(Qq) for every prime number q.

Keywords: Homogeneous trees; free groups; p-adic groups; spherical functions; Schur
multipliers.
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1. Introduction

Let Y be a nonempty set. A function ψ : Y × Y → C is called a Schur multiplier
if for every operator A = (ax,y)x,y∈Y ∈ B(�2(Y )) the matrix (ψ(x, y)ax,y)x,y∈Y
again represents an operator from B(�2(Y )) (this operator is denoted by MψA). If
ψ is a Schur multiplier it follows easily from the closed graph theorem that Mψ ∈
B(B(�2(Y ))), and one refers to ‖Mψ‖ as the Schur norm of ψ and denotes it by
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‖ψ‖S . The following result, which gives a characterization of the Schur multipliers,
is essentially due to Grothendieck (cf. [20, Theorem 5.1] for a proof).

Proposition 1.1 (Grothendieck). Let Y be a nonempty set and assume that
ψ : Y × Y → C and k ≥ 0 are given, then the following are equivalent:

(i) ψ is a Schur multiplier with ‖ψ‖S ≤ k.
(ii) There exists a Hilbert space H and two bounded maps P,Q : Y → H such

that

ψ(x, y) = 〈P (x), Q(y)〉 (x, y ∈ Y )

and

‖P‖∞‖Q‖∞ ≤ k,

where

‖P‖∞ = sup
x∈Y

‖P (x)‖ and ‖Q‖∞ = sup
y∈Y

‖Q(y)‖.

It follows from (the proof of) the above theorem that Mψ is completely bounded
when ψ is a Schur multiplier and that ‖Mψ‖cb = ‖Mψ‖.

Let X be (the vertices of) a homogeneous tree of degree q+1 for 2 ≤ q ≤ ∞, i.e.
X consists of the vertices of a connected and cycle-free graph satisfying that each
vertex is connected to precisely q + 1 other vertices. Let d : X × X → N0 be the
graph distance on X , that is, d(x, y) = 1 if and only if there is an edge connecting
x and y. Let x0 be a fixed vertex in X and consider the pair (X,x0). If ϕ : X → C

is radial, i.e. of the form

ϕ(x) = ϕ̇(d(x, x0)) (x ∈ X) (1.1)

for some ϕ̇ : N0 → C, then we consider the function ϕ̃ : X ×X → C given by

ϕ̃(x, y) = ϕ̇(d(x, y)) (x, y ∈ X). (1.2)

The main results of Sec. 2 (Theorems 2.3 and 2.12) are stated in Theorem 1.2
below:

Theorem 1.2. Let (X,x0) be a homogeneous tree of degree q + 1 (2 ≤ q ≤ ∞)
with a distinguished vertex x0 ∈ X. Let ϕ : X → C be a radial function and let
ϕ̇ : N0 → C and ϕ̃ : X×X → C be defined as in (1.1) and (1.2). Then ϕ̃ is a Schur
multiplier if and only if the Hankel matrix H = (hi,j)i,j∈N0 given by

hi,j = ϕ̇(i+ j) − ϕ̇(i+ j + 2) (i, j ∈ N0)

is of trace class. In this case, the limits

lim
n→∞ ϕ̇(2n) and lim

n→∞ ϕ̇(2n+ 1)
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exists and the Schur norm of ϕ̃ is given by

‖ϕ̃‖S = |c+| + |c−| +



‖H‖1 if q = ∞(

1 − 1
q

)∥∥∥∥∥
(
I − τ

q

)−1

H

∥∥∥∥∥
1

if q <∞,

where

c± =
1
2

lim
n→∞ ϕ̇(2n) ± 1

2
lim
n→∞ ϕ̇(2n+ 1)

and τ is the operator on the space of trace class operators B1(�2(N0)) given by

τ(A) = SAS∗ (A ∈ B1(�2(N0))),

where S is the forward shift on �2(N0).

In Sec. 3 we consider spherical functions on a homogeneous tree X of degree
q + 1 (2 ≤ q ≤ ∞). For q < ∞ the spherical functions can be characterized as
the normalized radial eigenfunctions to the Laplace operator L (cf. Definition 3.1).
Spherical functions have been studied extensively in the literature (cf. [8]). Although
the Laplace operator is not well-defined for q = ∞ one can still define spherical
functions in this case (cf. Definition 3.4). The main result of Sec. 3 is the following
characterization of the spherical functions ϕ : X → C for which the corresponding
function ϕ̃ : X ×X → C is a Schur multiplier (cf. Theorems 3.3 and 3.5):

Theorem 1.3. Let (X,x0) be a homogeneous tree of degree q + 1 (2 ≤ q ≤ ∞)
with a distinguished vertex x0 ∈ X. Let ϕ : X → C be a spherical function and
let ϕ̃ : X × X → C be the corresponding function as in (1.2). Then ϕ̃ is a Schur
multiplier if and only if the eigenvalue s corresponding to ϕ is in the set{

s ∈ C : Re(s)2 +
(
q + 1
q − 1

)2

Im(s)2 < 1

}⋃
{±1}.

The corresponding Schur norm is given by

‖ϕ̃‖S =
|1 − s2|

1 − Re(s)2 − (
q+1
q−1

)2Im(s)2

(
Re(s)2 +

(
q + 1
q − 1

)2

Im(s)2 < 1

)

and

‖ϕ̃‖S = 1 (s = ±1),

where we set q+1
q−1 equal to 1 when q = ∞.

In Sec. 4 we use Theorem 1.2 together with a variant of Peller’s characteriza-
tion of Hankel operators of trace class (cf. [19, Theorem 1′]) to obtain an integral
representation of radial Schur multipliers on a homogeneous tree of degree q + 1
(2 ≤ q ≤ ∞) (cf. Theorem 4.2 and Remark 4.3).

Let G be a locally compact group. In [14], Herz introduced a class of functions
on G, which was later denoted the class of Herz–Schur multipliers on G. By the
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introduction to [5], a continuous function ϕ : G → C is a Herz–Schur multiplier if
and only if the function

ϕ̂(x, y) = ϕ(y−1x) (x, y ∈ G) (1.3)

is a Schur multiplier, and the Herz–Schur norm of ϕ is given by

‖ϕ‖HS = ‖ϕ̂‖S.
In [6] De Cannière and Haagerup introduced the Banach algebra MA(G) of

Fourier multipliers of G, consisting of functions ϕ : G→ C such that

ϕψ ∈ A(G) (ψ ∈ A(G)),

where A(G) is the Fourier algebra of G as introduced by Eymard in [7] (the Fourier–
Stieltjes algebra B(G) of G is also introduced in this paper). The norm of ϕ (denoted
‖ϕ‖MA(G)) is given by considering ϕ as an operator on A(G). According to [6,
Proposition 1.2] a Fourier multiplier of G can also be characterized as a continuous
function ϕ : G→ C such that

λ(g)
Mϕ	→ ϕ(g)λ(g) (g ∈ G)

extends to a σ-weakly continuous operator (still denoted Mϕ) on the group von
Neumann algebra (λ : G → B(L2(G)) is the left regular representation and the
group von Neumann algebra is the closure of the span of λ(G) in the weak operator
topology). Moreover, one has ‖ϕ‖MA(G) = ‖Mϕ‖. The Banach algebra M0A(G) of
completely bounded Fourier multipliers of G consists of the Fourier multipliers of G,
ϕ, for whichMϕ is completely bounded. In this case they put ‖ϕ‖M0A(G) = ‖Mϕ‖cb.

In [5] Bożejko and Fendler show that the completely bounded Fourier multipliers
coincide isometrically with the continuous Herz–Schur multipliers. In [15] Jolissaint
gives a short and self-contained proof of the result from [5] in the form stated below.

Proposition 1.4 ([5, 15]). Let G be a locally compact group and assume that
ϕ : G→ C and k ≥ 0 are given, then the following are equivalent:

(i) ϕ is a completely bounded Fourier multiplier of G with ‖ϕ‖M0A(G) ≤ k.
(ii) ϕ is a continuous Herz–Schur multiplier on G with ‖ϕ‖HS ≤ k.
(iii) There exists a Hilbert space H and two bounded, continuous maps P,Q : G→

H such that

ϕ(y−1x) = 〈P (x), Q(y)〉 (x, y ∈ G)

and

‖P‖∞‖Q‖∞ ≤ k,

where

‖P‖∞ = sup
x∈G

‖P (x)‖ and ‖Q‖∞ = sup
y∈G

‖Q(y)‖.
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Consider the (non-abelian) free groups FN (2 ≤ N ≤ ∞), or more generally,
groups of the form

Γ = (∗Mm=1Z/2Z) ∗ (∗Nn=1Z), (1.4)

where M,N ∈ N0

⋃{∞} and q = M + 2N − 1 ≥ 2. The Cayley graph of Γ is
a homogeneous tree of degree q + 1 (cf. [8, pp. 16–18]) with distinguished vertex
x0 = e, the identity in Γ. Spherical functions on finitely generated free groups were
introduced in [9, 10], and they were later generalized to groups Γ of the form (1.4)
with q < ∞ (cf. [8, Ch. 2]). The spherical functions on Γ are simply the spherical
functions on the homogeneous tree (Γ, e), where we have identified (the vertices
of) the Cayley graph with Γ. In Sec. 5 we use Theorems 1.2 and 1.3 to prove
similar results about Fourier multipliers and spherical functions on groups Γ of the
form (1.4) (cf. Theorems 5.2 and 5.4). In particular, we obtain from Theorem 1.2:

Theorem 1.5. Let Γ be a group of the form (1.4) with 2 ≤ q ≤ ∞. Let ϕ : Γ → C

be a radial function and let ϕ̇ : N0 → C be the function defined by (1.1). Then
ϕ ∈M0A(Γ) if and only if the Hankel matrix H = (hi,j)i,j∈N0 given by

hi,j = ϕ̇(i+ j) − ϕ̇(i+ j + 2) (i, j ∈ N0)

is of trace class. In this case

‖ϕ‖M0A(Γ) = |c+| + |c−| +



‖H‖1 if q = ∞,(

1 − 1
q

)∥∥∥∥∥
(
I − τ

q

)−1

H

∥∥∥∥∥
1

if q <∞,

where c± and τ are defined as in Theorem 1.2.

Moreover, we use Theorem 1.5 to construct radial functions in MA(Γ)\M0A(Γ)
for all groups Γ of the form (1.4) (cf. Proposition 5.8). Bożejko proved in [3] that
MA(Γ)\M0A(Γ) �= ∅ for the non-abelian free groups by constructing a nonradial
function in this set.

For a prime number q let Qq denote the q-adic numbers and let Q∗
q denote the

invertible q-adic numbers (the nonzero q-adic numbers). Similarly, let Zq denote the
q-adic integers and let Z∗

q denote the invertible q-adic integers (the q-adic units).
Let PGL2(Qq) denote the quotient of GL2(Qq) by its center Q∗

qI, where GL2(Qq)
denotes the 2× 2 invertible matrices with entries from Qq. Similarly, let PGL2(Zq)
denote the quotient of GL2(Zq) by its center Z∗

qI. One can, according to Serre
(cf. [22, Chapter II §1]), interpret the quotient PGL2(Qq)/PGL2(Zq) as a homo-
geneous tree X of degree q + 1 with the range of the units in PGL2(Qq) by the
quotient map as distinguished vertex x0. Moreover, (PGL2(Qq), PGL2(Zq)) form a
Gelfand pair in the sense of [11] and there is a one-to-one correspondence between
the spherical functions on PGL2(Qq) associated to this Gelfand pair and the spheri-
cal functions on the homogeneous tree (X,x0) (cf. Proposition 6.7). In Sec. 6 we use
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Theorems 1.2 and 1.3 to prove similar results for functions on PGL2(Qq) (cf. The-
orem 6.6 and Theorem 6.8). In particular, we obtain from Theorem 1.3:

Theorem 1.6. Let q be a prime number and consider the groups G = PGL2(Qq)
and K = PGL2(Zq) and their quotient X = G/K. Let ϕ be a spherical function on
the Gelfand pair (G,K), then ϕ is a completely bounded Fourier multiplier of G if
and only if the eigenvalue s of the corresponding spherical function on X, is in the
set {

s ∈ C : Re(s)2 +
(
q + 1
q − 1

)2

Im(s)2 < 1

}⋃
{±1}.

The corresponding norm is given by

‖ϕ‖M0A(G) =
|1 − s2|

1 − Re(s)2 − ( q+1
q−1 )2Im(s)2

(
Re(s)2 +

(
q + 1
q − 1

)2

Im(s)2 < 1

)

and

‖ϕ‖M0A(G) = 1 (s = ±1).

The present paper originates from an unpublished manuscript [13] from 1987
written by two of the authors of this paper. Thanks to the third author, the
manuscript has now been largely extended in order to cover radial functions on
homogeneous trees of arbitrary degree q+ 1 (2 ≤ q ≤ ∞) as well as applications to
the q-adic groups PGL2(Qq) for a prime number q. The original manuscript focused
on radial functions on the free groups FN = ∗Nn=1Z (2 ≤ N ≤ ∞). In particular,
Theorem 1.5 was proved in [13] for the case Γ = FN . A few months after [13] was
written, Bożejko included the proof of Theorem 1.5 in the case Γ = FN in a set of
(unpublished) lecture notes from Heidelberg University (cf. [4]). Later, Wysoczański
obtained in [23] a similar characterization of the radial Herz–Schur multipliers on
a free product Γ = Γ1 ∗ · · · ∗ ΓN (2 ≤ N <∞) of N groups of the same cardinality
k (2 ≤ k ≤ ∞). The length function used in [23] is the so-called block length of a
reduced word in Γ.

2. Radial Schur Multipliers on Homogeneous Trees

Let X be (the vertices of) a homogeneous tree of degree q + 1 for 2 ≤ q ≤ ∞, and
consider the pair (X,x0) where x0 is a distinguished vertex in X .

Proposition 2.1. There is a bijective correspondence between the following types
of functions:

(i) ϕ̇ : N0 → C.
(ii) ϕ : X → C of the form

ϕ(x) = ϕ̇(d(x, x0)) (x ∈ X)

for some ϕ̇ : N0 → C.
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(iii) ϕ̃ : X ×X → C of the form

ϕ̃(x, y) = ϕ̇(d(x, y)) (x, y ∈ X)

for some ϕ̇ : N0 → C.

Proof. This is obvious.

A function of the type (ii) from Proposition 2.1 is refered to as a radial function.
Let S be the forward shift on �2(N0), i.e.

Sen = en+1 (n ∈ N0),

where (en)n∈N0 is the canonical basis of �2(N0). Recall that S∗S is the identity
operator I on �2(N0) and SS∗ is the projection on {e0}⊥.

Denote by ‖ · ‖1 the norm on the trace class operators B1(�2(N0)), i.e.

‖T ‖1 = Tr(|T |) =
∞∑
n=0

〈|T |en, en〉

for any T ∈ B(�2(N0)) for which this is finite.
Let τ ∈ B(B(�2(N0))) be given by

τ(A) = SAS∗ (A ∈ B(�2(N0))). (2.1)

Obviously, τ is an isometry on the bounded operators. The following argument
shows that τ is also an isometry on the trace class operators. If T is a trace
class operator on �2(N0) and T = U |T | is the polar decomposition of T , then
τ(T ) = SUS∗S|T |S∗ is the polar decomposition of τ(T ), from which it follows that
‖τ(T )‖1 = Tr(S|T |S∗) = Tr(|T |) = ‖T ‖1. This leads us to defining

(
I − τ

α

)−1

A =
∞∑
n=0

τn(A)
αn

(α > 1, A ∈ B1(�2(N0))),

from which we see that (I− τ
α )−1 makes sense as an element of B(B1(�2(N0))), and

its norm is bounded by (1 − 1
α )−1.

Assume for now that 2 ≤ q <∞. For m,n ∈ N0 put

Sm,n =
(

1 − 1
q

)−1 (
Sm(S∗)n − 1

q
S∗Sm(S∗)nS

)

=



(

1 − 1
q

)−1 (
Sm(S∗)n − 1

q
Sm−1(S∗)n−1

)
if m,n ≥ 1,

Sm(S∗)n if min{m,n} = 0.

Note that

Sm(S∗)n = Sm,n (min{m,n} = 0)
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and

Sm(S∗)n =
(

1 − 1
q

)
Sm,n +

1
q
Sm−1(S∗)n−1 (m,n ≥ 1).

Hence it follows by induction in min{m,n} that Sm(S∗)n ∈ span {Sk,l : k, l ∈ N0}
for all m,n ∈ N0. Since C∗(S) is the closed linear span of {Sm(S∗)n :m,n ∈ N0}
we also have

C∗(S) = span {Sm,n :m,n ∈ N0} . (2.2)

Lemma 2.2. Let T, T ′ ∈ B(�2(N0)) be related by

T ′ =
(

1 − 1
q

)(
I − τ

q

)−1

T.

Assume that one, and hence both, matrices are of trace class, then

Tr(Si(S∗)jT ) = Tr(Si,jT ′) (i, j ∈ N0).

Proof. For i, j ∈ N0 we have that

Tr(Si(S∗)jT ) =
(

1 − 1
q

)−1

Tr
(
Si(S∗)jT ′ − 1

q
Si(S∗)jτ(T ′)

)

=
(

1 − 1
q

)−1

Tr
(
Si(S∗)jT ′ − 1

q
Si(S∗)jST ′S∗

)

=
(

1 − 1
q

)−1

Tr
(

(Si(S∗)j − 1
q
S∗Si(S∗)jS)T ′

)

= Tr(Si,jT ′),

which finishes the proof.

Theorem 2.3. Let (X,x0) be a homogeneous tree of degree q+1 (2 ≤ q <∞) with a
distinguished vertex x0 ∈ X. Let ϕ : X → C be a radial function and let ϕ̇ : N0 → C

and ϕ̃ : X ×X → C be the corresponding functions as in Proposition 2.1. Finally,
let H = (hi,j)i,j∈N0 be the Hankel matrix given by hi,j = ϕ̇(i+ j)− ϕ̇(i+ j + 2) for
i, j ∈ N0. Then the following are equivalent:

(i) ϕ̃ is a Schur multiplier.
(ii) H is of trace class.

If these two equivalent conditions are satisfied, then there exist unique constants
c± ∈ C and a unique ψ̇ : N0 → C such that

ϕ̇(n) = c+ + c−(−1)n + ψ̇(n) (n ∈ N0)

and

lim
n→∞ ψ̇(n) = 0.
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Moreover,

‖ϕ̃‖S = |c+| + |c−| +
(

1 − 1
q

)∥∥∥∥∥
(
I − τ

q

)−1

H

∥∥∥∥∥
1

,

where τ is the shift operator defined by (2.1).

In order to prove Theorem 2.3, choose (once and for all) an infinite chain ω in
X starting at x0, i.e. an infinite sequence x0, x1, x2, . . . such that xi and xi+1 are
connected by an edge and xi �= xi+2 for all i ∈ N0 (cf. [8, Chapter I §1]). Since X
is a tree we have xi �= xj whenever i �= j. Define a map c : X → X such that for
any x ∈ X the sequence x, c(x), c2(x), . . . becomes the infinite chain setting out at
x and eventually following ω (this chain is denoted by [x, ω) in [8]). To make this
more precise, define

c(x) =

{
xi+1 if x = xi for some i ∈ N0

x′ if x �= xi for every i ∈ N0

(x ∈ X),

where x′ is the unique vertex satisfying d(x, x′) = 1 and d(x′, ω) = d(x, ω)− 1, and
where d(y, ω) = min {d(y, xi) : i ∈ N0} for y ∈ X .

Remark 2.4. For x, y ∈ X there are smallest numbersm,n ∈ N0 such that cm(x) ∈
[y, ω) and cn(y) ∈ [x, ω). Moreover, these m,n ∈ N0 can be characterized as the
unique numbers satisfying

cm(x) = cn(y) and cm−1(x) �= cn−1(y) if m,n ≥ 1,

and

cm(x) = cn(y) if min{m,n} = 0.

Note that in both cases d(x, y) = m+ n.

Put

Uδx =
1√
q

∑
c(z)=x

δz (x ∈ X)

and observe that {z ∈ X : c(z) = x} consists of precisely q elements, because this set
contains all neighbor points to x except c(x). Since two such sets {z ∈ X : c(z) = x},
{z ∈ X : c(z) = x′} are disjoint if x �= x′, it follows that (Uδx)x∈X is an orthonormal
set in �2(X). This shows that U extends to an isometry of �2(X). Elementary
computations show that

U∗δx =
1√
q
δc(x) (x ∈ X)

and

UU∗δx =
1
q

∑
c(z)=c(x)

δz (x ∈ X).
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In particular, UU∗ �= I so U is a non-unitary isometry. For each x ∈ X we
define a vector δ′x ∈ �2(X) by

δ′x =
(

1 − 1
q

)− 1
2

(I − UU∗)δx =
(

1 − 1
q

)− 1
2


δx − 1

q

∑
c(z)=c(x)

δz


 (x ∈ X).

Using the fact that for all w ∈ X the set {z ∈ X : c(z) = w} has q elements, one
easily checks that

〈δ′y, δ′x〉 =




1 if x = y

− 1
q − 1

if x �= y, c(x) = c(y)

0 if c(x) �= c(y)

(x, y ∈ X). (2.3)

Lemma 2.5. For x, y ∈ X we have that

(Sm,n)i,j = 〈δ′cj(y), δ
′
ci(x)〉 (i, j ∈ N0),

when m,n ∈ N0 are chosen as in Remark 2.4.

Proof. For m,n, i, j ∈ N0 we have that

(Sm,n)i,j = 〈Sm,nej , ei〉

=
(

1 − 1
q

)−1 〈[
Sm(S∗)n − 1

q
S∗Sm(S∗)nS

]
ej, ei

〉

=
(

1 − 1
q

)−1 [
〈(S∗)nej , (S∗)mei〉 − 1

q
〈(S∗)nej+1, (S∗)mei+1〉

]

=




1 if i−m = j − n ≥ 0

− 1
q − 1

if i−m = j − n = −1

0 if i−m = j − n < −1 or i−m �= j − n.

On the other hand, if x, y ∈ X and m,n ∈ N0 are defined according to Remark 2.4,
then by (2.3),

〈δ′cj(y), δ
′
ci(x)〉 =




1 if cj(y) = ci(x)

− 1
q − 1

if cj(y) �= ci(x) and cj+1(y) = ci+1(x)

0 if cj+1(y) �= ci+1(x).

By the definition of m and n we have

cj(y) = ci(x) ⇔ i−m = j − n ≥ 0

and

cj+1(y) = ci+1(x) ⇔ i+ 1 −m = j + 1 − n ≥ 0.
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Therefore

〈δ′cj(y), δ
′
ci(x)〉 =




1 if i−m = j − n ≥ 0

− 1
q − 1

if i−m = j − n = −1

0 if i−m = j − n < −1 or i−m �= j − n.

This proves Lemma 2.5.

Similarly to how we defined Sm,n for m,n ∈ N0, put

Um,n =
(

1 − 1
q

)−1 (
Um(U∗)n − 1

q
U∗Um(U∗)nU

)

=



(

1 − 1
q

)−1 (
Um(U∗)n − 1

q
Um−1(U∗)n−1

)
if m,n ≥ 1,

Um(U∗)n if min{m,n} = 0.

(2.4)

According to Coburn’s theorem (cf. [17, Theorem 3.5.18]) there exists a
∗-isomorphism Φ of C∗(S) onto C∗(U) such that Φ(S) = U . Hence, by (2.2), C∗(U)
is equal to the closed linear span of {Um,n :m,n ∈ N0}.
Lemma 2.6. For x, y ∈ X we have that (Um,n)x,y is nonzero if and only if m,n ∈
N0 are chosen as in Remark 2.4. In particular, (Um,n)x,y �= 0 implies that d(x, y) =
m+ n.

Proof. Let m,n ∈ N0 and x, y ∈ X . By (2.4) we have for m,n ≥ 1

(Um,n)x,y =
(

1 − 1
q

)−1(
〈Um(U∗)nδy, δx〉 − 1

q
〈Um−1(U∗)n−1δy, δx〉

)

=
(

1 − 1
q

)−1

q−
m+n

2
(〈δcn(y), δcm(x)〉 − 〈δcn−1(y), δcm−1(x)〉

)
.

Since cn−1(y) = cm−1(x) ⇒ cn(y) = cm(x) and hence cn(y) �= cm(x) ⇒ cn−1(y) �=
cm−1(x) we find that

(Um,n)x,y =
(

1 − 1
q

)−1

q−
m+n

2 if cn(y) = cm(x) and cn−1(y) �= cm−1(x),

and

(Um,n)x,y = 0 if cn(y) �= cm(x) or cn−1(y) = cm−1(x).

If min{m,n} = 0, then by (2.4)

(Um,n)x,y = 〈Um(U∗)nδy, δx〉
= q−

m+n
2 〈δcn(y), δcm(x)〉

=

{
q−

m+n
2 if cn(y) = cm(x),

0 if cn(y) �= cm(x).
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In both cases we see that (Um,n)x,y �= 0 if and only if m,n ∈ N0 are defined from
x, y ∈ X as in Remark 2.4.

Corollary 2.7. Let ϕ : X → C be radial and ϕ̃ : X ×X → C the corresponding
function as in Proposition 2.1. If ϕ̃ is a Schur multiplier, then C∗(U) is invariant
under Mϕ̃ ∈ B(B(�2(X))). Moreover,

Mϕ̃(Um,n) = ϕ̇(m+ n)Um,n (m,n ∈ N0).

Proof. Since C∗(U) is equal to the closed linear span of (Um,n)m,n∈N0 we only
have to show that

Mϕ̃(Um,n) = ϕ̇(m+ n)Um,n (m,n ∈ N0).

But from the definition of a Schur multiplier it follows that

(Mϕ̃(Um,n))x,y = ϕ̃(x, y)(Um,n)x,y = ϕ̇(m+ n)(Um,n)x,y (m,n ∈ N0),

since, according to Lemma 2.6, (Um,n)x,y �= 0 implies that m+ n = d(x, y).

Following the notation of [18, 3.3.9] we let ξ � η denote the rank-one operator
given by

(ξ � η)(ζ) = 〈ζ, η〉ξ (ζ ∈ �2(N0))

for ξ, η ∈ �2(N0). It is elementary to check that the trace class norm of ξ � η is

‖ξ � η‖1 = ‖ξ‖2‖η‖2 (ξ, η ∈ �2(N0)). (2.5)

If ξ(k), η(k) ∈ �2(N0) for all k ∈ N0 and
∞∑
k=0

‖ξ(k)‖2
2 <∞ and

∞∑
k=0

‖η(k)‖2
2 <∞,

then

T =
∞∑
k=0

ξ(k) � η(k)

is a well-defined trace class operator, because

∞∑
k=0

‖ξ(k)‖2‖η(k)‖2 ≤
( ∞∑
k=0

‖ξ(k)‖2
2

) 1
2
( ∞∑
k=0

‖η(k)‖2
2

) 1
2

<∞. (2.6)

Conversely, if T ∈ B1(�2(N0)) there exist sequences (ξ(k))k∈N0 , (η(k))k∈N0 in �2(N0)
such that

∞∑
k=0

‖ξ(k)‖2
2 =

∞∑
k=0

‖η(k)‖2
2 = ‖T ‖1 <∞ (2.7)
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and

T =
∞∑
k=0

ξ(k) � η(k). (2.8)

Finally, note that (2.7) and (2.8) imply that

‖T ‖1 =
∞∑
k=0

‖ξ(k)‖2‖η(k)‖2. (2.9)

This is well-known, and it can be obtained from the polar decomposition T =
U |T | of T combined with the spectral theorem for compact normal operators (cf. [18,
Theorem 3.3.8]), which shows that

|T | =
∑
i∈I

λiei � ei,

where {ei}i∈I is an orthonormal basis of eigenvectors for |T | and (λi)i∈I are the
corresponding (non-negative) eigenvalues of |T |. Note that∑

i∈I
λi = Tr(|T |) = ‖T ‖1 <∞.

In particular, I0 = {i ∈ I :λi > 0} is countable (possibly finite). Moreover,

T =
∑
i∈I0

ξ(i) � η(i),

where ξ(i) = (λi)
1
2Uei and η(i) = (λi)

1
2 ei satisfy∑

i∈I0
‖ξ(i)‖2

2 =
∑
i∈I0

‖η(i)‖2
2 =

∑
i∈I0

λi = ‖T ‖1.

This proves (2.7) and (2.8) because I0 is countable.

Proof of Theorem 2.3 (ii)⇒ (i) and upper bound for ‖ϕ̃‖S. Assuming that
(ii) is true we have that the Hankel matrix H = (hi,j)i,j∈N0 is of trace class. If
A is a trace class operator, then A is a linear combination of positive trace class
operators and therefore

∞∑
n=0

|〈Aen, en〉| <∞,

and it follows that
∞∑
i=0

|hi,i| <∞ and
∞∑
i=0

|hi+1,i| <∞

by putting A = H and A = S∗H , respectively (note that S∗H is of trace class since
H is of trace class). Using that

hi,i = ϕ̇(2i) − ϕ̇(2i+ 2) and hi+1,i = ϕ̇(2i+ 1) − ϕ̇(2i+ 3) (i ∈ N0)
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we conclude that

lim
i→∞

ϕ̇(2i) = ϕ̇(0) −
∞∑
i=0

hi,i and lim
i→∞

ϕ̇(2i+ 1) = ϕ̇(1) −
∞∑
i=0

hi+1,i,

where the sums converge (absolutely). Put

c± =
1
2

lim
i→∞

ϕ̇(2i) ± 1
2

lim
i→∞

ϕ̇(2i+ 1)

and

ψ̇(n) = ϕ̇(n) − c+ − c−(−1)n (n ∈ N0).

Notice that

lim
n→∞ ψ̇(n) = 0.

We conclude the existence of c± and ψ̇ as claimed in the theorem, and note that
the uniqueness follows readily.

Put

H ′ =
(

1 − 1
q

)(
I − τ

q

)−1

H

and recall that

Tr(Si(S∗)jH) = Tr(Si,jH ′) (i, j ∈ N0)

according to Lemma 2.2. Since

Tr(Si(S∗)jH) =
∞∑
k=0

hk+j,k+i (i, j ∈ N0),

it follows using

hj,i = ϕ̇(i+ j) − ϕ̇(i+ j + 2) = ψ̇(i+ j) − ψ̇(i+ j + 2) (i, j ∈ N0)

and

lim
n→∞ ψ̇(n) = 0

that

ψ̇(i+ j) = Tr(Si,jH ′) (i, j ∈ N0). (2.10)

Since H ′ is of trace class, there exist (cf. (2.8) and (2.9)) sequences (ξ(k))k∈N0 and
(η(k))k∈N0 in �2(N0) such that

H ′ =
∞∑
k=0

ξ(k) � η(k) and ‖H ′‖1 =
∞∑
k=0

‖ξ(k)‖2‖η(k)‖2,

and therefore

h′i,j =
∞∑
k=0

ξ
(k)
i η̄

(k)
j (i, j ∈ N0). (2.11)
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For each k ∈ N0 we define Pk, Qk : X → �2(X) by

Pk(x) =
∞∑
i=0

ξ
(k)
i δ′ci(x) and Qk(y) =

∞∑
j=0

η
(k)
j δ′cj(y) (x, y ∈ X).

By (2.3), {δ′ci(x) : i ∈ N0} and {δ′cj(y) : j ∈ N0} are orthonormal sets in �2(X).
Hence,

‖Pk(x)‖2 = ‖ξ(k)‖2 and ‖Qk(y)‖2 = ‖η(k)‖2 (k ∈ N0, x, y ∈ X),

and therefore
∞∑
k=0

‖Pk‖∞‖Qk‖∞ =
∞∑
k=0

‖ξ(k)‖2‖η(k)‖2 = ‖H ′‖1.

By (2.11)
∞∑
k=0

〈Pk(x), Qk(y)〉 =
∞∑

k,i,j=0

〈δ′ci(x), δ
′
cj(y)〉ξ(k)i η̄

(k)
j =

∞∑
i,j=0

〈δ′ci(x), δ
′
cj(y)〉h′i,j

for all x, y ∈ X . Momentarily fix x, y ∈ X and choose m,n ∈ N0 according to
Remark 2.4. Then m+ n = d(x, y) and by Lemma 2.5

(Sn,m)j,i = 〈δ′ci(x), δ
′
cj(y)〉 (i, j ∈ N0).

Using (2.10) it follows that
∞∑
k=0

〈Pk(x), Qk(y)〉 =
∞∑

i,j=0

(Sn,m)j,ih′i,j = Tr(Sn,mH ′) = ψ̇(n+m) = ψ̃(x, y).

Since x, y ∈ X are arbitrary we have that

ϕ̃(x, y) = ϕ̇(d(x, y)) = c+ + c−(−1)d(x,y) +
∞∑
k=0

〈Pk(x), Qk(y)〉 (x, y ∈ X).

Put

P±(x) = c±(±1)d(x,x0) (x ∈ X)

and

Q±(y) = (±1)d(y,x0) (y ∈ X),

then

ϕ̃(x, y) = 〈P+(x), Q+(y)〉 + 〈P−(x), Q−(y)〉 +
∞∑
k=0

〈Pk(x), Qk(y)〉 (x, y ∈ X)

and we conclude that ϕ̃ is a Schur multiplier with

‖ϕ̃‖S ≤ ‖P+‖∞‖Q+‖∞ + ‖P−‖∞‖Q−‖∞ +
∞∑
k=0

‖Pk‖∞‖Qk‖∞

= |c+| + |c−| + ‖H ′‖1.

This finishes the first part of the proof of Theorem 2.3.
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Proposition 2.8. Let V be a non-unitary isometry on some Hilbert space H and
let f be a bounded linear functional on C∗(V ). Then there exist a complex Borel
measure µ on T = {z ∈ C : |z| = 1} and a trace class operator T on �2(N0) such
that

f(V m(V ∗)n) =
∫

T

zm−ndµ(z) + Tr(Sm(S∗)nT ) (m,n ∈ N0). (2.12)

Moreover,

‖f‖ = ‖µ‖ + ‖T ‖1.

Proof. Let (π,H ) be the universal representation of C∗(V ). Then there exist
ξ, η ∈ H such that

f(A) = 〈π(A)ξ, η〉 (A ∈ C∗(V ))

and ‖f‖ = ‖ξ‖‖η‖. By the Wold–von Neumann theorem (cf. [17, Theorem 3.5.17]),
H can be decomposed as an orthogonal direct sum

H = K ⊕ (⊕e∈ELe), (2.13)

where K and (Le)e∈E are V -invariant closed subspaces, V0 = V |K is a unitary
operator on K and for each e ∈ E, Ve = V |Le is a copy of the forward shift S on
�2(N0). We can decompose ξ and η according to (2.13):

ξ = ξ0 ⊕ (⊕e∈Eξe) and η = η0 ⊕ (⊕e∈Eηe),
where

‖ξ‖2 = ‖ξ0‖2 +
∑
e∈E

‖ξe‖2 and ‖η‖2 = ‖η0‖2 +
∑
e∈E

‖ηe‖2.

After identifying (Ve, Le) with (S, �2(N0)), we have

f(V m(V ∗)n) = 〈V m−n
0 ξ0, η0〉 +

∑
e∈E

〈Sm(S∗)nξe, ηe〉

= 〈V m−n
0 ξ0, η0〉 + Tr(Sm(S∗)nT )

for m,n ∈ N0, where T =
∑

e∈E ξe � ηe ∈ B1(�2(N0)).

Since V0 is a unitary operator we have a natural isomorphism C∗(V0) ∼=
C(σ(V0)), where σ(V0) ⊆ T. Hence by the Riesz representation theorem, there
exists a complex measure µ on T with supp(µ) ⊆ σ(V0) such that

〈V k0 ξ0, η0〉 =
∫

T

zkdµ(z) (k ∈ Z)

and ‖µ‖ ≤ ‖ξ0‖‖η0‖. Hence

f(V m(V ∗)n) =
∫

T

zm−ndµ(z) + Tr(Sm(S∗)nT ) (m,n ∈ N0) (2.14)
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and

‖f‖ =

(
‖ξ0‖2 +

∑
e∈E

‖ξe‖2

) 1
2
(
‖η0‖2 +

∑
e∈E

‖ηe‖2

) 1
2

≥ ‖ξ0‖‖η0‖ +
∑
e∈E

‖ξe‖‖ηe‖

≥ ‖µ‖ + ‖T ‖1.

The converse inequality ‖f‖ ≤ ‖µ‖ + ‖T ‖1 follows from (2.14).

Lemma 2.9. Let ϕ : X → C be radial and ϕ̃ : X ×X → C be the corresponding
function as in Proposition 2.1. If ϕ̃ is a Schur multiplier, then there exists a bounded
linear functional fϕ on C∗(U) satisfying

fϕ(Um,n) = ϕ̇(m+ n) (m,n ∈ N0) (2.15)

and

‖fϕ‖ ≤ ‖ϕ̃‖S. (2.16)

Proof. By Coburn’s theorem (cf. [17, Theorem 3.5.18]) and [17, Remark 3.5.1]
there exists a ∗-homomorphism ρ of C∗(U) onto C(T) such that ρ(U)(z) = z for
z ∈ T. Let γ0 : C(T) → C be the pure state given by

γ0(f) = f(1) (f ∈ C(T)).

Then γ = γ0 ◦ ρ is a state on C∗(U) and

γ(Um(U∗)n) = 1 (m,n ∈ N0).

Define fϕ : C∗(U) → C by

fϕ(W ) = γ(Mϕ̃(W )) (W ∈ C∗(U)).

Then fϕ ∈ C∗(U)∗, ‖fϕ‖ ≤ ‖Mϕ̃‖ = ‖ϕ̃‖S and by Corollary 2.7 and (2.4) we have

fϕ(Um,n) = ϕ̇(m+ n)γ(Um,n) = ϕ̇(m+ n).

Proof of Theorem 2.3 (i)⇒ (ii) and the lower bound for ‖ϕ̃‖S. If ϕ̃ is a
Schur multiplier on X then, according to Lemma 2.9, there exists a bounded linear
functional fϕ on C∗(U) satisfying (2.15) and (2.16). Now use Proposition 2.8 to
find a complex Borel measure µ on T and a trace class operator T ′ on �2(N0) such
that

fϕ(Um(U∗)n) =
∫

T

zm−ndµ(z) + Tr(Sm(S∗)nT ′) (m,n ∈ N0) (2.17)
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and

‖fϕ‖ = ‖µ‖ + ‖T ′‖1. (2.18)

Put T = (1 − 1
q )

−1(I − τ
q )T

′ and recall that

Tr(Si(S∗)jT ) = Tr(Si,jT ′) (i, j ∈ N0),

according to Lemma 2.2. Using this, (2.15) and (2.17) we find that

ϕ̇(m+ n) =
∫

T

zm−ndµ(z) + Tr(Sm(S∗)nT ) (m,n ∈ N0). (2.19)

Using (2.16) and (2.18) we find that

‖ϕ̃‖S ≥ ‖µ‖ + ‖T ′‖1. (2.20)

Fix an arbitrary k ∈ Z and use (2.19) to see that

ϕ̇(2n+ k) =
∫

T

zkdµ(z) + Tr(Sn+k(S∗)nT ) (n+ k, n ∈ N0).

For n+ k, n ∈ N0 put n0 = max{0,−k} and note that n0 ≤ n. Observe that

Tr(Sn+k(S∗)nT ) =
∞∑
l=n

tl,l+k (n+ k, n ∈ N0),

when T = (ti,j)i,j∈N0 . Also,

lim
n→∞

∞∑
l=n

tl,l+k = 0

since
∞∑
l=n0

|tl,l+k| <∞,

which follows from the fact that Sn0+k(S∗)n0T is of trace class. Hence

lim
n→∞Tr(Sn+k(S∗)nT ) = 0

so we conclude that

lim
n→∞ ϕ̇(2n+ k) =

∫
T

zkdµ(z),

and therefore ∫
T

zkdµ(z) =
∫

T

zk+2dµ(z) (k ∈ Z).

Hence, there exist a, b ∈ C such that∫
T

zkdµ(z) =
{
a if k is even,
b if k is odd.

Put c± = 1
2 (a± b) and let ν be the complex measure on T given by

ν = c+δ+1 + c−δ−1,
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where δ1 (respectively δ−1) is the Dirac measure at 1 (respectively −1). Then∫
T

zkdν(z) = c+ + (−1)kc− =
∫

T

zkdµ(z) (k ∈ Z).

Hence µ = ν and we have according to (2.19) and (2.20)

ϕ̇(m+ n) = c+ + c−(−1)m+n + Tr(Sm(S∗)nT ) (m,n ∈ N0) (2.21)

and

‖ϕ̃‖S ≥ |c+| + |c−| + ‖T ′‖1. (2.22)

This finishes the second part of the proof of Theorem 2.3, since

tm,n = Tr(Sn(S∗)mT )− Tr(Sn+1(S∗)m+1T ) = ϕ̇(m+ n) − ϕ̇(m+ n+ 2) = hm,n

for all m,n ∈ N0.

This concludes the final step of the proof of Theorem 2.3.
In the rest of this section we let X denote (the vertices of) a homogeneous

tree of infinite degree, and consider the pair (X,x0) where x0 is a distinguished
vertex in X . For 2 ≤ q < ∞ let Xq be a homogeneous subtree of degree q + 1
containing x0 (besides from x0, we do not care which vertices are removed, since
we will exclusively look at radial functions anyway). Obviously, there is a bijective
correspondence between radial functions onX and radial functions onXq, and given
ϕ̇ : N0 → C we will consider both ϕ : X → C and the restriction ϕ|Xq : Xq → C of
ϕ to Xq.

Lemma 2.10. Let T, T ′ ∈ B(�2(N0)) be related by

T ′ =
(

1 − 1
q

)(
I − τ

q

)−1

T.

Assume that one, and hence both, matrices are of trace class, then

q − 1
q + 1

‖T ‖1 ≤ ‖T ′‖1 ≤ ‖T ‖1.

Proof. This follows using ‖(I − τ
q )−1‖ ≤ (1 − 1

q )
−1 and ‖I − τ

q ‖ ≤ 1 + 1
q , where

both operators are considered as elements of B(B1(�2(N0))).

Lemma 2.11. For x, y ∈ X we have that

(Sm(S∗)n)i,j = 〈δcj(y), δci(x)〉 (i, j ∈ N0),

when m,n ∈ N0 are chosen as in Remark 2.4.

Proof. This is an easy verification.
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Theorem 2.12. Let (X,x0) be a homogeneous tree of infinite degree with a distin-
guished vertex x0 ∈ X. Let ϕ : X → C be a radial function and let ϕ̇ : N0 → C and
ϕ̃ : X ×X → C be the corresponding functions as in Proposition 2.1. Finally, let
H = (hi,j)i,j∈N0 be the Hankel matrix given by hi,j = ϕ̇(i + j) − ϕ̇(i + j + 2) for
i, j ∈ N0. Then the following are equivalent:

(i) ϕ̃ is a Schur multiplier.
(ii) H is of trace class.

If these two equivalent conditions are satisfied, then there exist unique constants
c± ∈ C and a unique ψ̇ : N0 → C such that

ϕ̇(n) = c+ + c−(−1)n + ψ̇(n) (n ∈ N0)

and

lim
n→∞ ψ̇(n) = 0.

Moreover,

‖ϕ̃‖S = |c+| + |c−| + ‖H‖1.

Proof. Let ϕ|Xq be the restriction of ϕ to Xq for 2 ≤ q < ∞, where Xq is a
homogeneous subtree of X of degree q + 1 containing x0. From Proposition 1.1 it
is easily seen that if ϕ̃ is a Schur multiplier, then the restriction ϕ̃|Xq×Xq (2 ≤
q < ∞) is also a Schur multiplier, and ‖ϕ̃|Xq×Xq‖S ≤ ‖ϕ̃‖S. Using this together
with Theorem 2.3 and Lemma 2.10 it is easy to see that we are left with the task
of proving (ii)⇒ (i) and the upper bound for ‖ϕ̃‖S . But this basically consists of
taking the corresponding part of the proof of Theorem 2.3 and deleting all the
primes, so we only provide a sketchy proof of this.

Assume that the Hankel matrix H = (hi,j)i,j∈N0 is of trace class, define c± and
ψ̇ as in the first part of the proof of Theorem 2.3 and note that

ψ̇(i+ j) = Tr(Si(S∗)jH) (i, j ∈ N0). (2.23)

Since H is of trace class there exist sequences (ξ(k))k∈N0 , (η(k))k∈N0 in �2(N0) such
that

H =
∞∑
k=0

ξ(k) � η(k) and ‖H‖1 =
∞∑
k=0

‖ξ(k)‖2‖η(k)‖2,

and therefore

hi,j =
∞∑
k=0

ξ
(k)
i η̄

(k)
j (i, j ∈ N0). (2.24)

For each k ∈ N0 we define Pk, Qk : X → �2(X) by

Pk(x) =
∞∑
i=0

ξ
(k)
i δci(x) and Qk(y) =

∞∑
j=0

η
(k)
j δcj(y) (x, y ∈ X),
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and note that
∞∑
k=0

‖Pk‖∞‖Qk‖∞ = ‖H‖1.

Now verify that
∞∑
k=0

〈Pk(x), Qk(y)〉 =
∞∑

k,i,j=0

〈δci(x), δcj(y)〉ξ(k)i η̄
(k)
j =

∞∑
i,j=0

〈δci(x), δcj(y)〉hi,j

for all x, y ∈ X . Momentarily fix x, y ∈ X and choose m,n ∈ N0 according to
Remark 2.4. Then m+ n = d(x, y) and by Lemma 2.11

(Sn(S∗)m)j,i = 〈δci(x), δcj(y)〉 (i, j ∈ N0).

Using (2.23) it follows that
∞∑
k=0

〈Pk(x), Qk(y)〉 =
∞∑

i,j=0

(Sn(S∗)m)j,ihi,j

= Tr(Sn(S∗)mH)

= ψ̇(n+m)

= ψ̃(x, y).

Since x, y ∈ X were arbitrary we have that

ϕ̃(x, y) = ϕ̇(d(x, y)) = c+ + c−(−1)d(x,y) +
∞∑
k=0

〈Pk(x), Qk(y)〉 (x, y ∈ X).

We conclude that ϕ̃ is a Schur multiplier with

‖ϕ̃‖S ≤ |c+| + |c−| +
∞∑
k=0

‖Pk‖∞‖Qk‖∞ = |c+| + |c−| + ‖H‖1.

Corollary 2.13. Let (X,x0) be a homogeneous tree of infinite degree with distin-
guished vertex x0. Choose as before for each integer 2 ≤ q < ∞ a homogeneous
subtree Xq ⊆ X of degree q with x0 ∈ Xq. Let ϕ̇ : N0 → C be given and define
ϕ̃ : X ×X → C as in Proposition 2.1. Then ϕ̃ is a Schur multiplier if and only if
ϕ̃|Xq×Xq is a Schur multiplier. Moreover,

q − 1
q + 1

‖ϕ̃‖S ≤ ‖ϕ̃|Xq×Xq‖S ≤ ‖ϕ̃‖S .

Proof. This follows from Theorem 2.3, Theorem 2.12 and Lemma 2.10.

3. Spherical Functions on Homogeneous Trees

As in Sec. 2, we begin by considering a pair (X,x0), where X is a homogeneous
tree of degree q + 1 for 2 ≤ q < ∞ and x0 is a distinguished vertex in X . Later
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on we will also consider the case when X has infinite degree. We give only a brief
introduction to spherical functions on homogeneous trees of finite degree — the
reader is referred to [8] for a more thorough exposition.

If ϕ is a (complex-valued) function on X we let (for any x ∈ X) Lϕ(x) denote
the average value of ϕ over the vertices which share an edge with x. The operator
L is called the Laplace operator on X . Following [8, Chapter II, Definition 2.2], we
have:

Definition 3.1. Let (X,x0) be a homogeneous tree of degree q + 1 (2 ≤ q < ∞)
with a distinguished vertex x0. A radial function ϕ : X → C is called a spherical
function (on (X,x0)) if it satisfies:

(i) ϕ(x0) = 1.
(ii) Lϕ = sϕ for some s ∈ C.

The number s is called the eigenvalue corresponding to the spherical function
ϕ. Since ϕ is radial it has the form

ϕ(x) = ϕ̇(d(x, x0))

for some ϕ̇ : N0 → C (cf. Proposition 2.1). One can rewrite (i) and (ii) as

ϕ̇(0) = 1, (3.1)

ϕ̇(1) = s, (3.2)

ϕ̇(n+ 1) = s

(
1 +

1
q

)
ϕ̇(n) − 1

q
ϕ̇(n− 1) (n ∈ N) (3.3)

(cf. [8, pp. 42–43]). In particular, a spherical function is uniquely determined by
its eigenvalue s. Despite of this, one does not label the spherical function by their
eigenvalue — this is due to tradition and the fact that calculations seem to work out
most easily using another indexation. For z ∈ C define the function ϕz : X → C bya

ϕz(x) = f(z)hz(x) + f(1 − z)h1−z(x) (x ∈ X), (3.4)

where

hz(x) = q−zd(x,x0) and f(z) = (q + 1)−1 q
1−z − qz−1

q−z − qz−1
(x ∈ X). (3.5)

According to [8], ϕz is a spherical function on (X,x0) with eigenvalue

sz =
(

1 +
1
q

)−1

(q−z + qz−1) (z ∈ C). (3.6)

aThe given expression (considered as a function of z for fixed x) has a removable singularity when
q−z = qz−1, or equivalently, when z = 1

2
+ i kπ

ln(q)
for k ∈ Z.
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The complex function

cosh(z) =
1
2
(ez + e−z) (z ∈ C)

maps C onto C and cosh(z) = cosh(z′) if and only if z′ ∈ z+2πiZ or z′ ∈ −z+2πiZ.
Since

sz =
2
√
q

q + 1
cosh

(
ln(q)

(
z − 1

2

))
(z ∈ C), (3.7)

it follows that every spherical function ϕ : X → C is of the form ϕz for a z ∈ C

and that ϕz = ϕz′ if and only if

z′ ∈ z + i
2π

ln(q)
Z or z′ ∈ 1 − z + i

2π
ln(q)

Z. (3.8)

From the definition of ϕz it is easily seen that ϕz is bounded if and only if
0 ≤ Re(z) ≤ 1. Since a Schur multiplier must be bounded, ϕ̃z is not a Schur
multiplier if Re(z) < 0 or Re(z) > 1. The following theorem states which of the
remaining z’s give rise to Schur multipliers and explicitly specifies the corresponding
Schur norm.

Theorem 3.2. Let (X,x0) be a homogeneous tree of degree q + 1 (2 ≤ q < ∞)
with a distinguished vertex x0 ∈ X. For z ∈ C let ϕz : X → C be the spherical
function given by (3.4) and let ϕ̃z : X ×X → C be the corresponding function as
in Proposition 2.1. Then ϕ̃z is a Schur multiplier if and only if z is in the set

{z ∈ C : 0 < Re(z) < 1}
⋃{

i
kπ

ln(q)
: k ∈ Z

}⋃{
1 − i

kπ

ln(q)
: k ∈ Z

}
.

The corresponding norm is given by

‖ϕ̃z‖S =
(1 − 1

q )
2|1 − q−2z||1 − q2z−2|

(1 − q−2Re(z))(1 − q2Re(z)−2)|1 − q2iIm(z)−1|2 (0 < Re(z) < 1)

and

‖ϕ̃z‖S = 1
(
z ∈

{
i
kπ

ln(q)
: k ∈ Z

}⋃{
1 − i

kπ

ln(q)
: k ∈ Z

})
.

Proof. Since sz = s1−z for all z ∈ C, it is enough to consider z ∈ C for which
Re(z) ≤ 1

2 . The case Re(z) < 0 has already been considered above, with the con-
clusion that ϕ̃z is not bounded and hence not a Schur multiplier. Next we treat
the case Re(z) = 0, so write z = it with t ∈ R. Theorem 2.3 tells us that if ϕ̃it is
a Schur multiplier, then limn→∞ ϕ̇it(2n) must exist (and equal c+ + c−). But it is
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easily seen from (3.4) that

lim
n→∞(ϕ̇it(2n) − f(it)q−2nit) = 0

and from (3.5) that f(it) �= 0. Hence, the only t ∈ R where limn→∞ ϕ̇it(2n) exists
is t = kπ

ln(q) for k ∈ Z. From (3.4) and (3.5) we get that for n ∈ N0,

ϕ̇i kπ
ln(q)

(n) =

{
1 if k is even,

(−1)n if k is odd.

Hence for x, y ∈ X ,

ϕ̃i kπ
ln(q)

(x, y) =

{
1 if k is even,

(−1)d(x,y) if k is odd.

Since (−1)d(x,y) = (−1)d(x,x0)(−1)d(y,x0) it follows that ϕ̃i kπ
ln(q)

is a Schur multiplier
with Schur norm 1 for all k ∈ Z.

We are left with the case 0 < Re(z) ≤ 1
2 . In order to show that ϕ̃z is a Schur

multiplier it is enough, according to Theorem 2.3 and Lemma 2.2, to verify that
H ′, given by H ′ = (I − τ

q )
−1H , is of trace class, where H is the Hankel matrix

H = (hi,j)i,j∈N0 with entries hi,j = ϕ̇z(i+j)−ϕ̇z(i+j+2). To find the corresponding
Schur norm we must compute the actual trace class norm of H ′ and also find c±
from Theorem 2.3. But since limn→∞ ϕ̇(n) = 0 when 0 < Re(z) ≤ 1

2 , we conclude
that c± = 0, so we are left with just calculating ‖H ′‖1.

Fix a z with 0 < Re(z) ≤ 1
2 , put a = q−z and b = qz−1 and note that |a|, |b| < 1.

From (3.4) we find, after some manipulations, thatb

hi,j =
(

1 +
1
q

)−1

(1 − a2)(1 − b2)
ai+j+1 − bi+j+1

a− b
(i, j ∈ N0).

From this it is quite easy to verify that

h′i,j =
(
1 − 1

q

)(
1 +

1
q

)−1

(1 − a2)(1 − b2)
ai+1 − bi+1

a− b

aj+1 − bj+1

a− b
(i, j ∈ N0),

where H ′ = (h′i,j)i,j∈N0 . Now observe that

H ′ = αξ � η,

where

α =
(

1 − 1
q

)(
1 +

1
q

)−1

(1 − a2)(1 − b2)

and ξ = (ξn)n∈N0 , η = (ηn)n∈N0 ∈ �2(N0) are given by

ξn =
an+1 − bn+1

a− b
= η̄n (n ∈ N0).

bHere we again run into the problem of a singularity whenever a = b, but all calculations can be

done by replacing an+1−bn+1

a−b
with (n+ 1)an (for n ∈ N0) when this happens.



October 14, 2010 16:38 WSPC/S0129-167X 133-IJM 00653

Schur Multipliers and Spherical Functions on Homogeneous Trees 1361

From (2.5) we conclude that

‖H ′‖1 = |α|‖ξ‖2‖η‖2 = |α|
∞∑
n=0

∣∣∣∣an+1 − bn+1

a− b

∣∣∣∣
2

.

Simple, but tedious, computations show thatc

∞∑
n=0

an+1 − bn+1

a− b

cn+1 − dn+1

c− d
=

1 − abcd

(1 − ac)(1 − bd)(1 − ad)(1 − bc)
,

when a, b, c, d ∈ C satisfy |a|, |b|, |c|, |d| < 1. Using this result with c = ā and d = b̄

we find that

‖H ′‖1 =
(1 − 1

q )
2|1 − a2||1 − b2|

(1 − aā)(1 − bb̄)(1 − ab̄)(1 − bā)
,

which is easily seen to finish the proof.

We now reformulate the above theorem in terms of eigenvalues.

Theorem 3.3. Let (X,x0) be a homogeneous tree of degree q + 1 (2 ≤ q < ∞)
with a distinguished vertex x0 ∈ X. Let ϕ : X → C be a spherical function and let
ϕ̃ : X ×X → C be the corresponding function as in Proposition 2.1. Then ϕ̃ is a
Schur multiplier if and only if the eigenvalue s corresponding to ϕ is in the set{

s ∈ C : Re(s)2 +
(
q + 1
q − 1

)2

Im(s)2 < 1

}⋃
{±1}.

The corresponding Schur norm is given by

‖ϕ̃‖S =
|1 − s2|

1 − Re(s)2 −
(
q+1
q−1

)2

Im(s)2

(
Re(s)2 +

(
q + 1
q − 1

)2

Im(s)2 < 1

)

and

‖ϕ̃‖S = 1 (s = ±1).

Proof. Observe that z 	→ sz maps {z ∈ C : 0 < Re(z) < 1} onto {s ∈ C :
Re(s)2 + ( q+1

q−1 )2Im(s)2 < 1} and maps {i kπ
ln(q) : k ∈ Z}⋃ {1 − i kπ

ln(q) : k ∈ Z} onto
{±1}. The corollary now follows readily from Theorem 3.2 once we have shown that

(1 − 1
q )

2|1 − q−2z||1 − q2z−2|
(1 − q−2Re(z))(1 − q2Re(z)−2)|1 − q2iIm(z)−1|2 (3.9)

=
|1 − s2z|

1 − Re(sz)2 −
(
q+1
q−1

)2

Im(sz)2
(3.10)

for z ∈ C with 0 < Re(z) < 1.

cThis formula also holds for a = b and c = d when an+1−bn+1

a−b
and cn+1−dn+1

c−d
are replaced by

(n+ 1)an and (n+ 1)cn, respectively.
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Fix a z with 0 < Re(z) < 1 and (as in the proof of Theorem 3.2) put a = q−z

and b = qz−1 and note that |a|, |b| < 1. In order to eliminate a and b (in exchange
for expressions involving the eigenvalue) we observe the following relations

ab =
1
q
, a+ b =

(
1 +

1
q

)
sz and a2 + b2 =

(
1 +

1
q

)2

s2z −
2
q
, (3.11)

where the first two relations are obvious, and the third one follows from the first
two through a2 + b2 = (a + b)2 − 2ab. First, look at the nominator in (3.9) and
use (3.11) (and a little work) to arrive at

|1 − q−2z||1 − q2z−2| = |1 − a2 − b2 + a2b2| =
(

1 +
1
q

)2

|1 − s2z|.

Now, look at the denominator in (3.9) and use (3.11) to find that

(1 − q−2Re(z))(1 − q2Re(z)−2)|1 − q2iIm(z)−1|2

= (1 − āa)(1 − b̄b)(1 − ab̄)(1 − āb)

=
(

1 +
1
q

)2 (
1 − 1

q

)2

+
2
q

(
1 +

1
q

)2

Re(s2z)

−
(

1 +
1
q2

)(
1 +

1
q

)2

s̄zsz.

Use

Re(s2z) = Re(sz)2 − Im(sz)2 and s̄zsz = Re(sz)2 + Im(sz)2

to continue the above calculation and arrive at

(1 − q−2Re(z))(1 − q2Re(z)−2)|1 − q2iIm(z)−1|2

=
(

1 +
1
q

)2 (
1 − 1

q

)2

(1 − Re(sz)2 −
(
q + 1
q − 1

)2

Im(sz)2).

Putting the calculations for the nominator together with the calculations for the
denominator we easily arrive at (3.10).

To define the spherical functions on (X,x0) when X has infinite degree, we
generalize the Laplace operator L to the case of infinite degree. However, this only
makes sense for radial functions. If ϕ is a radial function on X let Lϕ denote the
radial function on X for which

Lϕ(x) = ϕ̇(d(x, x0) + 1) (x ∈ X),

where ϕ̇ is connected to ϕ as in Proposition 2.1.

Definition 3.4. Let (X,x0) be a homogeneous tree of infinite degree with a dis-
tinguished vertex x0. A radial function ϕ : X → C is called a spherical function
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(on (X,x0)) if it satisfies:

(i) ϕ(x0) = 1.
(ii) Lϕ = sϕ for some s ∈ C.

The number s is again called the eigenvalue corresponding to the spherical
function ϕ. Using that

ϕ(x) = ϕ̇(d(x, x0))

for a function ϕ̇ : N0 → C one can now rewrite (i) and (ii) as

ϕ̇(0) = 1, (3.12)

ϕ̇(1) = s, (3.13)

ϕ̇(n+ 1) = sϕ̇(n) (n ∈ N). (3.14)

Note that (3.12)–(3.14) can be considered as the limits for q going to infinity
of (3.1)–(3.3). Obviously, the spherical function corresponding to the eigenvalue
s ∈ C is given by

ϕ̇(n) = sn (n ∈ N0). (3.15)

As a corollary to Theorem 2.12 we get the following theorem.

Theorem 3.5. Let (X,x0) be a homogeneous tree of infinite degree with a distin-
guished vertex x0 ∈ X. Let ϕ : X → C be a spherical function and let ϕ̃ : X×X → C

be the corresponding function as in Proposition 2.1. Then ϕ̃ is a Schur multiplier
if and only if the eigenvalue s corresponding to ϕ is in the set

{s ∈ C : |s| < 1}
⋃

{±1}.
The corresponding norm is given by

‖ϕ̃‖S =
|1 − s2|
1 − |s|2 (|s| < 1)

and

‖ϕ̃‖S = 1 (s = ±1).

Proof. If |s| > 1 then ϕ is unbounded, and therefore ϕ̃ is not a Schur multiplier. If
|s| = 1 then limn→∞ ϕ̇it(2n) only exits for s = ±1, so these are the only eigenvalues
with length one for which ϕ̃ can be a Schur multiplier. But it is easy to see that
if ϕ is the spherical function with eigenvalue s = ±1, then ϕ̃ is a Schur multiplier
with Schur norm 1.

Finally, we are left with the case |s| < 1. Fix s ∈ C with |s| < 1 and let
ϕ be the spherical function with eigenvalue s. In order to show that ϕ̃ is a Schur
multiplier, it is enough, according to Theorem 2.12, to verify that the Hankel matrix
H = (hi,j)i,j∈N0 given by hi,j = ϕ̇z(i+ j) − ϕ̇z(i+ j + 2) is of trace class. To find
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the corresponding Schur norm we must compute the actual trace class norm of H
and also find c± from Theorem 2.12. But since limn→∞ ϕ̇(n) = 0 we conclude that
c± = 0, so we are left with just calculating ‖H‖1. Start by noting that

hi,j = si+j − si+j+2 = (1 − s2)sisj (i, j ∈ N0).

Now observe that

H = αξ � η,

where

α = (1 − s2)

and ξ = (ξn)n∈N0 , η = (ηn)n∈N0 ∈ �2(N0) are given by

ξn = sn = η̄n (n ∈ N0).

From (2.5) we conclude that

‖H‖1 = |α|‖ξ‖2‖η‖2 = |1 − s2|
∞∑
n=0

|sn|2 =
|1 − s2|
1 − |s|2 .

4. Integral Representations of Radial Schur Multipliers

Let (cn)∞n=1 be a bounded sequence of complex numbers. Consider the Hankel
matrix H = (hi,j)i,j∈N0 given by

hi,j = ci+j (i, j ∈ N0)

and the analytic function f on the open unit disc D in C given by

f(z) =
∞∑
n=0

cnz
n (z ∈ D).

By a theorem of Peller [19, Theorem 1’], H is of trace class if and only if the second
derivative f ′′ of f is in L1(D), i.e.

‖f ′′‖1 =
1
π

∫
D

|f ′′(z)|dz1dz2 <∞,

where z1 = Re(z) and z2 = Im(z). The following theorem is a slight variation of
Peller’s result, which tells that H is of trace class if and only if the function

g(z) =
d2

dz2
(z2f(z)) =

∞∑
n=0

(n+ 1)(n+ 2)cnzn

is in L1(D). Moreover, we obtain upper and lower estimates for the L1(D)-norm of
g in terms of the trace class norm of H .

Theorem 4.1. Let D = {z ∈ C : |z| < 1} be the unit disc in the complex plane
and assume that (cn)∞n=0 is a bounded sequence in C. Consider the Hankel matrix
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H = (hi,j)i,j∈N0 with entries hi,j = ci+j for i, j ∈ N0 and the analytic function g

on D given by

g(z) =
∞∑
n=0

(n+ 2)(n+ 1)cnzn (z ∈ D).

Then the following are equivalent:

(i) H is of trace class.
(ii) g ∈ L1(D).

If these two equivalent conditions are satisfied, then

hi,j =
1
π

∫
D

g(z̄)zi+j(1 − |z|2)dz1dz2 (i, j ∈ N0), (4.1)

where z1 = Re(z) and z2 = Im(z), and

‖H‖1 ≤ ‖g‖1 ≤ 8
π
‖H‖1.

Proof. Assume first that g ∈ L1(D). Using polar coordinates in D one finds that

1
π

∫
D

g(z̄)zndz1dz2 =
(n+ 2)(n+ 1)

n+ 1
cn (n ∈ N0)

and
1
π

∫
D

g(z̄)zn+1z̄dz1dz2 =
(n+ 2)(n+ 1)

n+ 2
cn (n ∈ N0),

from which (4.1) easily follows. Since the matrix, whose (i, j)-th entries are given
by zi+j for some z ∈ D, has trace class norm given by 1

1−|z|2 (cf. the proof of
Theorem 3.5), it follows from (4.1) that H is of trace class and that

‖H‖1 ≤ ‖g‖1.

We now turn to the other implication of the theorem, and assume that H is
of trace class. By (2.7)–(2.9) we can find sequences (ξ(k))k∈N0 , (η(k))k∈N0 in �2(N0)
such that

H =
∞∑
k=0

ξ(k) � η(k)

and

‖H‖1 =
∞∑
k=0

‖ξ(k)‖2‖η(k)‖2,

from which it follows that

cn =
∞∑
k=0

ξ
(k)
i η̄

(k)
n−i (n ∈ N0), (4.2)

for any i ∈ {0, . . . , n}.
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The following two Taylor expansions are easily verified:

(1 − z)−3 =
∞∑
n=0

(n+ 1)(n+ 2)
2

zn (z ∈ D) (4.3)

and

(1 − z)−3/2 =
∞∑
n=0

γnz
n (z ∈ D), (4.4)

where

γn =
Γ(n+ 3

2 )
Γ(3

2 )Γ(n+ 1)
> 0.

Using that the Gamma function is logarithmically convex on R+ (cf. [1, Chap-
ter 5 (31)]) and therefore satisfy

Γ
(
z +

1
2

)
≤ Γ(z)

1
2 Γ(z + 1)

1
2 (z > 0),

we have that

γn ≤ Γ(n+ 1)
1
2 Γ(n+ 2)

1
2

Γ(3
2 )Γ(n+ 1)

=
2√
π

√
n+ 1 (n ∈ N0).

Using ((1 − z)−
3
2 )2 = (1 − z)−3 for z ∈ D together with (4.3) and (4.4) one finds

that
n∑
i=0

γiγn−i =
(n+ 1)(n+ 2)

2
(n ∈ N0).

It is easy to check that the functions (un)n∈N0 given by

un(z) = zn (z ∈ D, n ∈ N0)

form an orthogonal sequence in L2(D) with respect to the inner product

〈ϕ, ψ〉 =
1
π

∫
D

ϕ(z)ψ(z)dz1dz2 (ϕ, ψ ∈ L2(D)).

Moreover,

‖un‖2
2 = 〈un, un〉 =

1
n+ 1

(n ∈ N0).

For k ∈ N0 put

ϕk(z) =
∞∑
n=0

γnξ
(k)
n zn and ψk(z) =

∞∑
n=0

γnη̄
(k)
n zn (z ∈ D).

Since

γ2
n ≤ 4

π
(n+ 1) (n ∈ N0)

it follows that ϕk, ψk ∈ L2(D). Moreover,

‖ϕk‖2
2 ≤ 4

π
‖ξ(k)‖2

2 and ‖ψk‖2
2 ≤ 4

π
‖η(k)‖2

2
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for all k ∈ N0. Hence,
∑∞

k=0 ϕkψk ∈ L1(D) and∥∥∥∥∥
∞∑
k=0

ϕkψk

∥∥∥∥∥
1

≤ 4
π

∞∑
k=0

‖ξ(k)‖2‖η(k)‖2 =
4
π
‖H‖1.

For z ∈ D,
∞∑
k=0

ϕk(z)ψk(z) =
∞∑

i,j=0

γiγj

( ∞∑
k=0

ξ
(k)
i η̄

(k)
j

)
zi+j

=
∞∑

i,j=0

γiγjci+jz
i+j

=
∞∑
n=0

( ∞∑
i=0

γiγn−i

)
cnz

n

=
1
2

∞∑
n=0

(n+ 1)(n+ 2)cnzn

=
1
2
g(z).

Hence g ∈ L1(D) and

‖g‖1 = 2

∥∥∥∥∥
∞∑
k=0

ϕkψk

∥∥∥∥∥
1

≤ 8
π
‖H‖1.

Theorem 4.2. Let (X,x0) be a homogeneous tree of infinite degree with a distin-
guished vertex x0 ∈ X. Let ϕ : X → C be a radial function and let ϕ̇ : N0 → C and
ϕ̃ : X × X → C be the corresponding functions as in Proposition 2.1. Then ϕ̃ is
a Schur multiplier if and only if there exist constants c± ∈ C and a complex Borel
measure µ on D = {z ∈ C : |z| < 1} such that

ϕ̇(n) = c+ + c−(−1)n +
∫

D

zndµ(z) (n ∈ N0) (4.5)

and ∫
D

|1 − z2|
1 − |z|2 d|µ|(z) <∞.

Moreover,

‖ϕ̃‖S ≤ |c+| + |c−| +
∫

D

|1 − z2|
1 − |z|2 d|µ|(z)

and it is possible to choose µ such that

|c+| + |c−| +
∫

D

|1 − z2|
1 − |z|2 d|µ|(z) ≤ 8

π
‖ϕ̃‖S. (4.6)
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Proof. If ϕ has the form (4.5), then the Hankel matrix H = (hi,j)i,j∈N0 from
Theorem 2.12 is given by

hi,j = ϕ̇(i+ j) − ϕ̇(i+ j + 2) =
∫

D

zi+j(1 − z2)dµ(z) (i, j ∈ N0),

from which it follows that

‖H‖1 ≤
∫

D

|1 − z2|
1 − |z|2 d|µ|(z),

where we again used that the matrix whose (i, j)-th entries are given by zi+j for
some z ∈ D has trace class norm given by 1

1−|z|2 . By assumption this is finite, so it
follows from Theorem 2.12 that ϕ̃ is a Schur multiplier with

‖ϕ̃‖S ≤ |c+| + |c−| +
∫

D

|1 − z2|
1 − |z|2 d|µ|(z).

To prove the remaining part of the theorem, assume that ϕ̃ is a Schur multiplier
and let c±, ψ and H be defined as in Theorem 2.12. Then

ϕ̇(n) = c+ + c−(−1)n + ψ̇(n) (n ∈ N0),

where

lim
n→∞ ψ̇(n) = 0.

Moreover, H = (hi,j)i,j∈N0 is a Hankel matrix of trace class with entries

hi,j = ϕ̇(i+ j) − ϕ̇(i+ j + 2) = ψ̇(i+ j) − ψ̇(i+ j + 2) (i, j ∈ N0)

and

‖ϕ̃‖S = |c+| + |c−| + ‖H‖1. (4.7)

By Theorem 4.1, there exists a function g ∈ L1(D) such that ‖g‖1 ≤ 8
π‖H‖1 and

ψ̇(n) − ψ̇(n+ 2) =
1
π

∫
D

zn(1 − |z|2)g(z̄)dz1dz2 (n ∈ N0).

Hence, for n ∈ N0 and k ∈ N,

ψ̇(n) − ψ̇(n+ 2k) =
1
π

k−1∑
j=0

∫
D

zn+2j(1 − |z|2)g(z̄)dz1dz2

=
1
π

∫
D

zn(1 − z2k)
1 − z2

(1 − |z|2)g(z̄)dz1dz2.

In the limit k going to infinity we get, by Lebesgue’s dominated convergence
theorem, that

ψ̇(n) =
1
π

∫
D

zn
1 − |z|2
1 − z2

g(z̄)dz1dz2 (n ∈ N0).
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Therefore, (4.5) holds with respect to the complex measure

dµ(z) =
1
π

1 − |z|2
1 − z2

g(z̄)dz1dz2.

Moreover, ∫
D

|1 − z2|
1 − |z|2 d|µ|(z) = ‖g‖1 ≤ 8

π
‖H‖1.

Hence, by (4.7)

|c+| + |c−| +
∫

D

|1 − z2|
1 − |z|2 d|µ|(z) ≤ 8

π
‖ϕ̃‖S .

Remark 4.3. Theorem 4.2 also holds for homogeneous tress (X,x0) of finite degree
q + 1 (2 ≤ q < ∞) if one replaces the right-hand side of (4.6) by 8

π
q+1
q−1‖ϕ̃‖S . This

is an immediate consequence of Corollary 2.13.

5. Applications to Free Groups

Throughout this section Γ denotes a group of the form

Γ = (∗Mm=1Z/2Z) ∗ (∗Nn=1Z), (5.1)

where M,N ∈ N0

⋃{∞} and q = M + 2N − 1 ≥ 2. In particular, this includes the
groups

∗Mm=1Z/2Z (3 ≤M ≤ ∞)

and the (non-abelian) free groups

FN = ∗Nn=1Z (2 ≤ N ≤ ∞).

By [8, pp. 16–18] the Cayley graph of Γ is a homogeneous tree of degree q + 1.
There is a canonical distinguished vertex x0 in Γ, namely the identity element e.
The results of Secs. 2 and 3 can all be reformulated as results about radial or
spherical functions on (Γ, e), but the concept of a Schur multiplier is perhaps more
naturally replaced by the concept of a completely bounded Fourier multiplier.

Proposition 5.1. Consider a group Γ of the form (5.1) with 2 ≤ q ≤ ∞. Let ϕ
be a radial function on Γ, then ϕ is a completely bounded Fourier multiplier of Γ if
and only if the corresponding function ϕ̃ : Γ× Γ → C given by Proposition 2.1 is a
Schur multiplier. Moreover,

‖ϕ‖M0A(Γ) = ‖ϕ̃‖S .

Proof. By left-invariance of the metric d on Γ, we have

ϕ̃(x, y) = ϕ̇(d(x, y)) = ϕ̇(d(y−1x, e)) = ϕ(y−1x) = ϕ̂(x, y) (x, y ∈ Γ),
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where ϕ̂ : Γ × Γ → C is given by (1.3). Hence, Proposition 5.1 follows from Propo-
sition 1.4 and the equalities

‖ϕ‖M0A(Γ) = ‖ϕ‖HS = ‖ϕ̂‖S .

Since the spherical functions on Γ are simply the spherical functions on the
homogeneous tree (Γ, e), where we have identified (the vertices of) the Cayley graph
with Γ, we can use Proposition 5.1 to reformulate the main results from Secs. 2–4
(i.e. Theorems 2.3, 2.12, 3.3, 3.5 and 4.2 and Remark 4.3).

Theorem 5.2. Consider a group Γ of the form (5.1) with 2 ≤ q ≤ ∞. Let ϕ :
Γ → C be a radial function and let ϕ̇ : N0 → C be the corresponding function
as in Proposition 2.1. Finally, let H = (hi,j)i,j∈N0 be the Hankel matrix given by
hi,j = ϕ̇(i+ j) − ϕ̇(i+ j + 2) for i, j ∈ N0. Then the following are equivaler

(i) ϕ is a completely bounded Fourier multiplier of Γ.
(ii) H is of trace class.

If these two equivalent conditions are satisfied, then there exist unique constants
c± ∈ C and a unique ψ̇ : N0 → C such that

ϕ̇(n) = c+ + c−(−1)n + ψ̇(n) (n ∈ N0)

and

lim
n→∞ ψ̇(n) = 0.

Moreover,

‖ϕ‖M0A(Γ) = |c+| + |c−| +



‖H‖1 if q = ∞,(

1 − 1
q

)∥∥∥∥∥
(
I − τ

q

)−1

H

∥∥∥∥∥
1

if q <∞,

where τ is the shift operator defined by (2.1).

Theorem 5.3. Consider a group Γ of the form (5.1) with 2 ≤ q ≤ ∞. Let ϕ :
Γ → C be a radial function and let ϕ̇ : N0 → C be the corresponding function
as in Proposition 2.1. Then ϕ is a completely bounded Fourier multiplier of Γ
if and only if there exist constants c± ∈ C and a complex Borel measure µ on
D = {z ∈ C : |z| < 1} such that

ϕ̇(n) = c+ + c−(−1)n +
∫

D

zndµ(z) (n ∈ N0)

and ∫
D

|1 − z2|
1 − |z|2 d|µ|(z) <∞.

Moreover,

‖ϕ‖M0A(Γ) ≤ |c+| + |c−| +
∫

D

|1 − z2|
1 − |z|2 d|µ|(z)
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and it is possible to choose µ such that

|c+| + |c−| +
∫

D

|1 − z2|
1 − |z|2 d|µ|(z) ≤ 8

π

q + 1
q − 1

‖ϕ‖M0A(Γ),

where we set q+1
q−1 equal to 1 when q = ∞.

Theorem 5.4. Consider a group Γ of the form (5.1) with 2 ≤ q ≤ ∞. Let ϕ : Γ →
C be a spherical function, then ϕ is a completely bounded Fourier multiplier of Γ if
and only if the eigenvalue s corresponding to ϕ is in the set{

s ∈ C : Re(s)2 +
(
q + 1
q − 1

)2

Im(s)2 < 1

}⋃
{±1}.

The corresponding norm is given by

‖ϕ‖M0A(Γ) =
|1 − s2|

1 − Re(s)2 − ( q+1
q−1 )2Im(s)2

(
Re(s)2 +

(
q + 1
q − 1

)2

Im(s)2 < 1

)

and

‖ϕ‖M0A(Γ) = 1 (s = ±1),

where we set q+1
q−1 equal to 1 when q = ∞.

Remark 5.5. The case q = ∞ and M = 0 of Theorem 5.4 was proved by Pytlik
and Szwarc in [21, Corollary 4].

Corollary 5.6. Consider a group Γ of the form (5.1) with 2 ≤ q ≤ ∞. There is
no uniform bound on the M0A(Γ)-norm of the spherical functions on (Γ, e) which
are completely bounded Fourier multipliers.

Lemma 5.7. Let ϕ be a radial function on Γ. If
∞∑
n=0

(n+ 1)2|ϕ̇(n)|2 <∞,

then ϕ ∈MA(Γ). Moreover,

‖ϕ‖MA(Γ) ≤
( ∞∑
n=0

(n+ 1)2|ϕ̇(n)|2
) 1

2

.

Proof. According to [6, Proposition 1.2] we have to show that ϕ is bounded (which
is obvious from the assumption in the lemma) and that

‖λ(ϕf)‖ ≤
( ∞∑
n=0

(n+ 1)2|ϕ̇(n)|2
) 1

2

‖λ(f)‖ (f ∈ �1(Γ)),

where λ : �2(Γ) → B(�2(Γ)) is the left regular representation. Following [12] we let
1n denote the characteristic function of the set {x ∈ Γ : d(x, x0) = n} for n ∈ N0.



October 14, 2010 16:38 WSPC/S0129-167X 133-IJM 00653

1372 U. Haagerup, T. Steenstrup & R. Szwarc

If Γ is the free group FN on N generators (2 ≤ N <∞), then by [12, Lemma 1.4]

‖λ(ϕf)‖ ≤
∞∑
n=0

(n+ 1)|ϕ̇(n)|‖f1n‖2 (f ∈ Cc(Γ)). (5.2)

Using [2, Theorem 5.1], the same inequality holds for Γ of the form (5.1) when
q <∞, and by a simple inductive limit argument, (5.2) also holds when q = ∞. By
the Cauchy–Schwarz, inequality (5.2) implies that

‖λ(ϕf)‖ ≤
( ∞∑
n=0

(n+ 1)2|ϕ̇(n)|2
) 1

2
( ∞∑
n=0

‖f1n‖2
2

) 1
2

=

( ∞∑
n=0

(n+ 1)2|ϕ̇(n)|2
) 1

2

‖f‖2

≤
( ∞∑
n=0

(n+ 1)2|ϕ̇(n)|2
) 1

2

‖λ(f)‖ (5.3)

for f ∈ Cc(Γ), because ‖f‖2 = ‖λ(f)δx0‖2 ≤ ‖λ(f)‖. Since Cc(Γ) is dense in �1(Γ),
(5.3) holds for all f ∈ �1(Γ). This finishes the proof of the lemma.

Proposition 5.8. Consider a group Γ of the form (5.1) with 2 ≤ q ≤ ∞. There
exists a radial function ϕ : Γ → C such that ϕ is a Fourier multiplier of Γ, but not
a completely bounded Fourier multiplier, i.e. ϕ ∈MA(Γ)\M0A(Γ).

Proof. Let ϕ : Γ → C be the radial function given by

ϕ̇(n) =
{
αk if n = 2k for some k ∈ N,

0 if n = 2k for all k ∈ N,

where

αk =
1

k · 2k (k ∈ N).

To show that ϕ ∈MA(Γ), use Lemma 5.7 and verify that

∞∑
n=0

(n+ 1)2|ϕ̇(n)|2 =
∞∑
k=1

(
2k + 1
k · 2k

)2

≤ 9
4

∞∑
k=1

1
k2

=
3
8
π2 <∞.

In order to see that ϕ is not a completely bounded Fourier multiplier, we have to
show that the Hankel matrix H of Theorem 5.2 is not of trace class.

Assume that H is of trace class. Let {ei : i ∈ N0} be the standard basis of �2(N0)
and put

Ek = span
{
ei : 3 · 2k−3 ≤ i ≤ 5 · 2k−3

}
(k ≥ 3).
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Note that (Ek)∞k=3 is a sequence of mutually orthogonal subspaces of �2(N0). Let
Pk denote the orthogonal projection of �2(N0) onto Ek. Then

‖H‖1 ≥
∥∥∥∥∥

∞∑
k=3

PkHPk

∥∥∥∥∥
1

=
∞∑
k=3

‖PkHPk‖1.

However, ‖PkHPk‖1 is the trace class norm of the (2k−2 + 1) × (2k−2 + 1)
submatrix of H corresponding to row and column indices i, j satisfying

3 · 2k−3 ≤ i, j ≤ 5 · 2k−3 (i, j ∈ N0).

Note that all the entries hi,j of the non-main (or anti-) diagonal of this submatrix
are equal to

ϕ̇(2k) − ϕ̇(2k + 2) = αk − 0 =
1

k · 2k (k ≥ 3).

Hence,

‖PkHPk‖1 ≥ 2k−2 + 1
k · 2k ≥ 1

4k
(k ≥ 3)

and therefore
∞∑
k=3

‖PkHPk‖1 = ∞,

which contradicts the fact that H is of trace class. Therefore ϕ /∈M0A(Γ).

6. Applications to PGL2(Qq)

Let q be some prime number and let | · |q : Q → R+
0 be the q-adic norm given by

|0|q = 0 and
∣∣∣qn s

t

∣∣∣
q

= q−n (n ∈ Z),

when s, t ∈ Z are not divisible by q. The following relations are well-known:

(i) |xy|q = |x|q|y|q (x, y ∈ Q).
(ii) |x+ y|q ≤ max{|x|q, |y|q} (x, y ∈ Q).

Property (ii) is referred to as the ultrametric inequality since it implies the triangle
inequality. The q-adic metric dq : Q × Q → R+

0 is defined by

dq(x, y) = |x− y|q (x, y ∈ Q).

The completion of Q in this metric is written Qq and referred to as the q-adic
numbers. The q-adic norm and the q-adic metric have natural extensions to Qq,
and the properties (i) and (ii) hold for all x, y ∈ Qq.

We now list some standard properties of the q-adic numbers and the subsets
thereof (we refer to [8, Appendix §1 and §2] for the proofs). Let Q∗

q denote the group
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of invertible elements in Qq, that is, the nonzero q-adic numbers. Each a ∈ Q∗
q can

be written uniquely as the (formal) sum

a =
∞∑
i=k

aiq
i (k ∈ Z, ai ∈ {0, 1, . . . , q − 1}, ak �= 0),

where we note that |a|q = q−k.
By Zq we denote the subring of Qq consisting of q-adic integers, that is, elements

a ∈ Qq with |a|q ≤ 1. Let Z∗
q denote the invertible elements in Zq, i.e. a ∈ Z∗

q if
and only if a ∈ Zq\{0} and a−1 ∈ Zq. Hence, Z∗

q is the set of q-adic numbers
a ∈ Qq for which |a|q = 1. These elements are referred to as q-adic units, and they
obviously form a subgroup of Qq. We note that if a is a q-adic unit and n ∈ Z then
|qna|q = q−n. Therefore, Q∗

q is the disjoint union

Q∗
q =

∞⊔
n=−∞

qnZ∗
q . (6.1)

Denote by GL2(Qq) the set of 2× 2 matrices with entries from Qq and nonzero
determinant, and denote by GL2(Zq) the set of 2× 2 matrices with entries from Zq

and unit determinant. Given A ∈ GL2(Qq) it is a fact, which will be used frequently
without further mentioning, that AZ2

q = Z2
q if and only if A ∈ GL2(Zq), where Z2

q

is shorthand notation for Zq ⊕ Zq. Let PGL2(Qq) denote the quotient of GL2(Qq)
by its center Q∗

qI, where I denotes the (2 × 2) identity matrix. Similarly, we let
PGL2(Zq) denote the quotient of GL2(Zq) by its center Z∗

qI. Let π : GL2(Qq) →
PGL2(Qq) be the quotient map given by

π(A) = Q∗
qA (A ∈ GL2(Qq)).

We claim that the map

π(V ) 	→ Z∗
qV

is a well-defined bijection from π(GL2(Zq)) to PGL2(Zq), thereby showing that
these two sets are isomorphic. Henceforth, we consider PGL2(Zq) as a subset of
PGL2(Qq) and we note that it is both compact and open (cf. [16]). The only
non-trivial part is to show that the map is well-defined. To this end, assume that
V,W ∈ GL2(Zq) with π(V ) = π(W ), which implies the existence of some a ∈ Q∗

q

such that W = aV and therefore that det(W ) = a2 det(V ). But V and W both
have unit determinant, so we conclude that a2 is a q-adic unit, from which it follows
that a is also a q-adic unit. This finishes the argument.

A lattice (of Q2
q) is a set of the form

Zqe1 + Zqe2,

where e1, e2 ∈ Q2
q form a basis for Q2

q. This set can also be written (e1 e2)Z2
q , where

(e1 e2) denotes the matrix with column vectors e1 and e2. Two lattices L,L′ are
called equivalent (written L ∼ L′) if there exists an a ∈ Q∗

q such that L′ = aL.
Since obviously aL = L for any lattice L when a ∈ Z∗

q , one concludes from (6.1)
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that two lattices L,L′ are equivalent if and only if there exists n ∈ Z such that
L′ = qnL. Denote the set of lattices by L, and denote the set of equivalence classes
of lattices by L/∼.

Lemma 6.1. There are natural bijective maps between the following three setsd

(i) PGL2(Qq)/PGL2(Zq).
(ii) GL2(Qq)/

⊔∞
n=−∞ qnGL2(Zq).

(iii) L/ ∼.

More specifically, the following two maps give rise to bijections from (ii) to (i) and
(ii) to (iii), respectively:

A 	→ [Q∗
qA] and A 	→ [AZ2

q ] (A ∈ GL2(Qq)),

where the brackets denote the corresponding equivalence classes in the quotients
PGL2(Qq)/PGL2(Zq) and L/ ∼, respectively.

Proof. This is elementary, and the details of the proof will be left to the reader.
For the bijection between (i) and (ii), one just has to check that the kernel of the
composition of the two quotient maps:

GL2(Qq) → PGL2(Qq) → PGL2(Qq)/PGL2(Zq)

is equal to
⊔∞
n=−∞ qnGL2(Zq). And for the bijection between (ii) and (iii), one

shows first that the map A 	→ [Q∗
qA] gives rise to a bijection of the quotient

GL2(Qq)/GL2(Zq) onto L.

Let X denote the set from Lemma 6.1 and notice that X is discrete since
PGL2(Zq) is open. The characterization (i) is useful since spherical functions on
the Gelfand pair (PGL2(Qq), PGL2(Zq)) have been studied elsewhere (cf. [16]).
The characterization (iii) is used for introducing the tree structure to X (cf. [8,
Appendix §4 and §5; 22, Chapter II §1]). Finally, the characterization (ii) is useful
for doing actual calculations. We denote the elements ofX by Λ. Unless we explicitly
specify an element of X , by writing up its equivalence class, we let our choice of a
representative reveal which of the three pictures we are working in. For instance, we
let Λ0 be the element in X which has (canonical) representatives Q∗

qI ∈ PGL2(Qq),
I ∈ GL2(Qq) and IZ2

q ∈ L.
In the following we use the notation G = PGL2(Qq) and K = PGL2(Zq) (Λ0

is K in the characterization (i)). Obviously, G induces a left action on X which is
compatible with the different characterizations from Lemma 6.1, in fact, if Λ ∈ X

is represented by A ∈ GL2(Qq) and g ∈ G is represented by B ∈ GL2(Qq), then
BA ∈ GL2(Qq) represents gΛ. It is well-known (cf. [22, Chapter II §1]) that X
can be interpreted as a homogeneous tree of degree q + 1 by introducing a certain
metric d on X , which will be described below.

dThe sets in (i) and (ii) are the sets of left cosets.
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Let Λ,Λ′ ∈ X have representatives L,L′ ∈ L. According to [8, Appendix
Theorem 4.3 and §5] there exist linearly independent vectors e1, e2 ∈ Q2

q and
i, j ∈ Z such that

Zqe1 + Zqe2 = L and qiZqe1 + qjZqe2 = L′. (6.2)

Moreover, the number |i− j| only depend on Λ and Λ′. The metric d on X , which
turns X into a homogeneous tree of degree q + 1, is given by

d(Λ,Λ′) = |i− j|. (6.3)

In particular, Λ,Λ′ ∈ X are connected by an edge if an only if d(Λ,Λ′) = 1. Note
that in (6.2) one can always assume that i ≥ j (by replacing (e1, e2) with (e2, e1)
if i < j). In this case, (6.2) can be rewritten as

Zqe1 + Zqe2 = L and qnZqe1 + Zqe2 = qmL′, (6.4)

where n = i− j = d(Λ,Λ′) and m = −j. From this we get:

Lemma 6.2. Let Λ,Λ′ ∈ X with representatives A,A′ ∈ GL2(Qq). Then there
exist linearly independent vectors e1, e2 ∈ Q2

q and m ∈ Z such that

Zqe1 + Zqe2 = AZ2
q and qnZqe1 + Zqe2 = qmA′Z2

q , (6.5)

where n = d(Λ,Λ′).

Proof. Let e1, e2, i, j be as in (6.2) with i ≥ j, and put n = i− j = d(Λ,Λ′) and
m = −j. Since AZ2

q , A
′Z2
q are representatives of Λ,Λ′ in L, (6.5) follows immediately

from (6.4).

The action of G on X is an isometry, so we have that

d(Λ,Λ0) = d(kΛ,Λ0) (Λ ∈ X, k ∈ K)

because kΛ0 = Λ0 for all k ∈ K. We also have the converse:

Lemma 6.3. If Λ,Λ′ ∈ X satisfy

d(Λ,Λ0) = d(Λ′,Λ0),

then there exists k ∈ K satisfying kΛ = Λ′.

Proof. Put n = d(Λ,Λ0) = d(Λ′,Λ0), let A,A′ ∈ GL2(Qq) represent Λ,Λ′ and use
I ∈ GL2(Qq) to represent Λ0. Applying (6.5) to Λ0,Λ and Λ0,Λ′, respectively, we
find vectors e1, e2,f1,f2 ∈ Q2

q such that

Zqe1 + Zqe2 = IZ2
q = Z2

q and qnZqe1 + Zqe2 = qmAZ2
q ,

Zqf1 + Zqf2 = IZ2
q = Z2

q and qnZqf1 + Zqf2 = qm
′
A′Z2

q,

for some m,m′ ∈ Z. Let V denote the matrix representing the change of basis
sending ei to f i for i = 1, 2. From the above expressions we conclude that V Z2

q = Z2
q
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and therefore V ∈ GL2(Zq). Observe that

qm−m′
V AZ2

q = A′Z2
q,

and conclude that kΛ = Λ′ for

k = Q∗
qV ∈ K.

A function f on G is called K-bi-invariant if

f(kgk′) = f(g) (g ∈ G, k, k′ ∈ K).

Using the above lemma and that K is an open subgroup of G, we conclude that
there is a bijective correspondence between continuous K-bi-invariant functions ϕG
on G and radial functions ϕX on X given by

ϕG(g) = ϕX(gΛ0) (g ∈ G). (6.6)

Lemma 6.4. If ϕG and ϕX are related as in (6.6), then

ϕG(g−1g′) = ϕ̃X(g′Λ0, gΛ0) (g, g′ ∈ G).

Proof. For g, g′ ∈ G we find that

ϕG(g−1g′) = ϕX(g−1g′Λ0)

= ϕ̇X(d(g−1g′Λ0,Λ0))

= ϕ̇X(d(g′Λ0, gΛ0))

= ϕ̃X(g′Λ0, gΛ0).

Proposition 6.5. Let ϕG be a continuous K-bi-invariant function on G, then
ϕG is a completely bounded Fourier multiplier of G if and only if ϕ̃X is a Schur
multiplier. Moreover,

‖ϕG‖M0A(G) = ‖ϕ̃X‖S .

Proof. Assume that ϕ̃X is a Schur multiplier and use Proposition 1.1 to find a
Hilbert space H and bounded maps PX , QX : X → H such that

ϕ̃X(x′, x) = 〈PX(x′), QX(x)〉 (x, x′ ∈ X)

and

‖PX‖∞‖QX‖∞ = ‖ϕ̃X‖S.
Define bounded maps PG, QG : G→ H by

PG(g′) = PX(g′Λ0) and QG(g) = QX(gΛ0) (g, g′ ∈ G) (6.7)

and use Lemma 6.4 to show that

ϕG(g−1g′) = ϕ̃X(g′Λ0, gΛ0) = 〈PX(g′Λ0), QX(gΛ0)〉 = 〈PG(g′), QG(g)〉 (6.8)
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for all g, g′ ∈ G. Using Proposition 1.4 we conclude that ϕG is a completely bounded
Fourier multiplier of G, with

‖ϕG‖M0A(G) ≤ ‖PG‖∞‖QG‖∞ = ‖PX‖∞‖QX‖∞ = ‖ϕ̃X‖S.
Now assume that ϕG is a completely bounded Fourier multiplier of G and use

Proposition 1.4 to find a Hilbert space H and bounded maps PG, QG : G → H

such that

ϕG(g−1g′) = 〈PG(g′), QG(g)〉 (g, g′ ∈ G)

and

‖PG‖∞‖QG‖∞ = ‖ϕG‖M0A(G).

Let ψ : X → G be a cross-section of the map g 	→ gΛ0 of G onto X , i.e. ψ satisfies

ψ(x)Λ0 = x (x ∈ X).

Define bounded maps PX , QX : X → H by

PX(x′) = PG(ψ(x′)) and QX(x) = QG(ψ(x)) (x, x′ ∈ X)

and use Lemma 6.4 to show that

ϕ̃X(x′, x) = ϕ̃X(ψ(x′)Λ0, ψ(x)Λ0) = ϕG(ψ(x)−1ψ(x′)) = 〈PX(x′), QX(x)〉
for all x, x′ ∈ X . Using Proposition 1.1 we conclude that ϕ̃X is a Schur multiplier,
with

‖ϕ̃X‖S ≤ ‖PX‖∞‖QX‖∞ ≤ ‖PG‖∞‖QG‖∞ = ‖ϕG‖M0A(G).

Using Proposition 6.5 we obtain the following from Theorem 2.3.

Theorem 6.6. Let q be a prime number and consider the groups G = PGL2(Qq)
and K = PGL2(Zq), and their quotient X = G/K. Let ϕG : G→ C be a continuous
K-bi-invariant function and let ϕX : X → C be the corresponding function as
in (6.6) and ϕ̇X : N0 → C the corresponding function as in Proposition 2.1. Finally,
let H = (hi,j)i,j∈N0 be the Hankel matrix given by hi,j = ϕ̇(i+ j)− ϕ̇(i+ j + 2) for
i, j ∈ N0. Then the following are equivalent:

(i) ϕG is a completely bounded Fourier multiplier of G.
(ii) H is of trace class.

If these two equivalent conditions are satisfied, then there exist unique constants
c± ∈ C and a unique ψ̇ : N0 → C such that

ϕ̇X(n) = c+ + c−(−1)n + ψ̇(n) (n ∈ N0)

and

lim
n→∞ ψ̇(n) = 0.
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Moreover,

‖ϕG‖M0A(G) = |c+| + |c−| +
(

1 − 1
q

)∥∥∥∥∥
(
I − τ

q

)−1

H

∥∥∥∥∥
1

,

where τ is the shift operator defined by (2.1).

We now turn to the task of finding out which spherical functions on the Gelfand
pair (G,K) are completely bounded Fourier multipliers of G, and find the explicit
norms. According to [11] a continuous K-bi-invariant function ϕG on G (which is
not identically zero) is a spherical function on the Gelfand pair (G,K) if and only if

fG 	→
∫
G

fG(g)ϕG(g)dµ(g)

is multiplicative on the convolution algebra of compactly supported continuous
K-bi-invariant functions on G, where µ is the Haar measure on G normalized such
that µ(K) = 1.

Proposition 6.7. If ϕG and ϕX are related as in (6.6), then ϕG is a spherical
function on the Gelfand pair (G,K) if and only if ϕX is a spherical function on
(X,Λ0).

Proof. According to [16] the spherical functions on (G,K) can be described in the
following way:

Let τ ∈ Qq be an element of order 1, i.e. |τ |q = 1
q . Define y ∈ G by

y = π

((
τ 0
0 1

))
,

where π : GL2(Qq) → PGL2(Qq) is the quotient map. Then

G =
⊔
n∈N0

KynK

and every spherical function Φ on (G,K) is of the form Φz for a z ∈ C, where

Φz(k1y
nk2) =

qn(z− 1
2 )
(
q

3
2+z − q

3
2−z

)
− q−n(z− 1

2 )
(
q

5
2−z − q

1
2+z

)
(q + 1)q

n
2 +1

(
qz−

1
2 − q

1
2−z

) (6.9)

for k1, k2 ∈ K and n ∈ N0 (cf. [16, (1.1), (2.2), (2.5) and (8.2)]). Note that if
τ1, τ2 ∈ Qq satisfy |τ1|q = 1

q and |τ2|q = 1
q then τ2 = uτ1 for some u ∈ Z∗

q . Therefore
the definition of Φz does not depend on the choice of τ . Since |q|q = 1

q we can in
the following put τ = q.

Let (ϕz)z∈C be the spherical functions on the tree X = G/K (of degree q + 1)
given by (3.4) and (3.5). We claim that Φz and ϕz are related as in (6.6), i.e.

Φz = ϕz ◦ ρ (z ∈ C)
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where ρ : G → G/K is the quotient map. Since Φz is K-bi-invariant and ϕz is
radial, it is sufficient to check that

Φz(yn) = ϕz(ρ(yn)) (n ∈ N0)

for z ∈ C. Recall from Lemma 6.1 that we can identify X = G/K with L/ ∼, where
the distance on L/ ∼ is given by (6.3). Put Λn = ρ(yn) for n ∈ N0 considered as
elements in L/ ∼. Then Λ0 = ρ(e) is the distinguished element in L/ ∼ and
Λn = Ln/ ∼, where

Ln = qnZqe1 + Zqe2 (n ∈ N0)

and where

e1 =
(

1
0

)
and e2 =

(
0
1

)

are the standard basis elements in Q2
q. In particular, L0 = Zqe1 + Zqe2, so by (6.2)

and (6.3), d(Λn,Λ0) = n. Thus, by (3.4) and (3.5),

ϕz(ρ(yn)) = f(z)q−nz + f(1 − z)qn(z−1) (n ∈ N0), (6.10)

where

f(z) = (q + 1)−1 q
1−z − qz−1

q−z − qz−1
(z ∈ C).

A simple computation shows that the right-hand sides of (6.9) and (6.10) coincide.
Therefore,

Φz = ϕz ◦ ρ (z ∈ C),

which proves Proposition 6.7.

Using Propositions 6.5 and 6.7 and Theorem 3.3 we conclude the following.

Theorem 6.8. Let q be a prime number and consider the groups G = PGL2(Qq)
and K = PGL2(Zq) and their quotient X = G/K. Let ϕ be a spherical function
on the Gelfand pair (G,K), then ϕ is a completely bounded Fourier multiplier of G
if and only if the eigenvalue s of the corresponding spherical function on X is in
the set {

s ∈ C : Re(s)2 +
(
q + 1
q − 1

)2

Im(s)2 < 1

}⋃
{±1}.

The corresponding norm is given by

‖ϕ‖M0A(G) =
|1 − s2|

1 − Re(s)2 − ( q+1
q−1 )2Im(s)2

(
Re(s)2 +

(
q + 1
q − 1

)2

Im(s)2 < 1

)

and

‖ϕ‖M0A(G) = 1 (s = ±1).



October 14, 2010 16:38 WSPC/S0129-167X 133-IJM 00653

Schur Multipliers and Spherical Functions on Homogeneous Trees 1381

Remark 6.9. It follows from (3.6), and the proof of Proposition 6.7, that if ϕ = Φz
(according to Mautner’s parametrization (6.9)), then s in Theorem 6.8 is given by
sz = (1 + 1

q )
−1(q−z + qz−1).

Corollary 6.10. Let q be a prime number and consider the groups G = PGL2(Qq)
and K = PGL2(Zq). There is no uniform bound on the M0A(G)-norm of the
spherical functions on the Gelfand pair (G,K) which are completely bounded Fourier
multipliers.
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