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FUSION RULES ON A PARAMETRIZED SERIES OF GRAPHS

MARTA ASAEDA AND UFFE HAAGERUP

A series of pairs of graphs (I'y, I';), k=0, 1,2, ..., has been considered as
candidates for dual pairs of principal graphs of subfactors of small Jones
index above 4 and it has recently been proved that the pair (I';, I';) comes
from a subfactor if and only if k = 0 or £k = 1. We show that nevertheless
there exists a unique fusion system compatible with this pair of graphs for
all nonnegative integers k.

1. Introduction

A subfactor N C M with finite index and finite depth generates finitely many
isomorphism classes of bimodules with four different combinations of left and right
coefficients. They form a bigraded fusion category. Its Grothendieck ring forms a
fusion ring or a fusion hypergroup, namely a bigraded Z-algebra o satisfying:

e 9 has a basis given by finitely many irreducible bimodules of four different
kinds: X = y®y UnEp U &y U & (we call the labels N and M right or
left coefficients, depending on the position).

* An involution X € p¥p — Xe oX p is defined, where P, Q € {N, M}.

e A product is defined for a pair of bimodules with “matching” coefficients,
namely, for a pair (X, ¥) € & x & such that the right coefficient of X and the
left coefficient of ¥ match, XY is defined. It decomposes as

XY=>) Nf,Z.

where the sum is taken over those Z € & that have the same left (respectively,
right) coefficient as X (respectively, Y), and N f’y € Np. Moreover, Frobenius
reciprocity holds:

Z _NX _NY _NZ__pNT _pNE
NX»Y_NZ,Y_NX,Z_NY,X_NZ,X_NY,Z'

e There are identity objects 1y € &y, 1y € » &y that act as identity with
respect to the product, whenever it is defined.
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The involution extends linearly to define an involution on . For a fusion ring A,
there is a unique weight function u : § — Rx satisfying

udy) =puldy) =1,
u(XY) = puXyuy),
w(X +2) = pn(X) + n(2),

where X, Y, Z € ¥ are with suitable coefficients for each equality, so that XY and
X + Z are defined. The (dual) principal graph of the subfactor encodes partial
information of the fusion algebra: namely, the (dual) principal graph has the ver-
tices corresponding to y&y LI y& s (respectively, y Xy U & pr), with the number
of the edges between vertices y Xy and y Yy, (respectively, ps X3 and 3 Yy) given
by N ;N u,, (trespectively, N }?M My~

On the other hand, one may start with a pair of graphs and may consider if
there is a fusion algebra compatible with the fusion constraints determined by the
graphs. Such investigation may be used to exclude graphs as (dual) principal graphs
of subfactors. For example, type E7 and Dy, Dynkin diagrams are proved not
to be (dual) principal graphs of subfactors, by showing that the fusion constraints
given by the graphs give rise to inconsistency in fusion rules [Izumi 1991; Sunder
and Vijayarajan 1993]. Note that the existence of a fusion algebra compatible with
a given pair of graphs does not imply the existence of a subfactor with given graphs
as (dual) principal graphs.

In this paper, we deal with the series of pairs of graphs shown in Figure 1.

B3
B2
Bi

Figure 1. n =4k+3,k=0,1,...
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These graphs are a part of the list of the graphs that were candidates for (dual)
principal graphs of a subfactor with indices between 4 and 3 + +/3 given by
[Haagerup 1994]. The notation used here is somewhat different from the one used
in [Haagerup 1994]. It has been already proved that, for k = 0, 1, the graphs 'y
(respectively, I';) are (dual) principal graphs of a subfactors [Asaeda and Haagerup
1999; Bigelow et al. 2009], and for k > 1, they are not realized as (dual) princi-
pal graphs [Asaeda and Yasuda 2009]. In this paper, we prove that, despite that
the T'y (respectively, I';) are not principal graphs for k > 1, there are still fusion
algebras consistent with the graphs, and moreover such fusion algebras are unique
for each k.

Theorem 1.1. Let V| := {even vertices of I'}}, V12 :={odd vertices of T'y}, Vo1 :=
{odd vertices of T}, Vay := {even vertices of T'; }, and V := Vi1 U Vo U Vo U Voo
For each k, there is a unique fusion algebra A = ZX, where

X=NENUNEy U N U &y

is compatible with the graphs Ty, T';.. Namely,

NEN = Vi1,
NEm = V2,
mEn = Va,
mMEm =V

as sets, and

1 if X and Y are connected by an edge,

N;al (respectively, N}?’&I) = {0 olse

Y
Nx,=0dxy,

where X, Y € X, and 1 denotes identity objects 1 y =ag € NEn or 1y = oc(’) eEmuXy.

In Section 2 we show that if there is a fusion system compatible with the
graphs I'x, I';, it must be unique. In Section 3 we show the existence of such
a fusion system.

2. Uniqueness, positivity, and integrality of the fusion rules

In this section we prove that if there is a fusion algebra compatible with the graphs,
it is unique. Positivity and integrality of fusion coefficients is derived: we do not
impose them in showing uniqueness of the fusion rules.

2A. Fusion rules for the even vertices. In this subsection we show that there is
a unique fusion algebra structure on % = Zy¥y compatible with the graph I'.
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The main issue is to determine the fusion rule among 81, 83, v1, ¥3. The rest will
follow easily from this.

In the following we assume there is a fusion algebra compatible with (I'y, I'}).
The involution y € V — y € V extends linear to a map on RV. For simplicity, we
refer to the objects in & by corresponding vertices in V. For X :=) N }%Z e RV
and Y € V, denote

(X,Y)=(Y,X):=Ny.
Observe that (-, -) expends linearly to define a bilinear form on RV, and
(XY,Z)=(X,ZY)=(Y, XZ)

holds by Frobenius reciprocity. The graph I'y encodes the decomposition of X
for X in Vy; as a direct sum of vertices from Vi, and the decomposition of Y& as
a direct sum of vertices from V;;. Let G be the adjacency matrix for (Vi, V12),
that 1s,

G= (GX,Y)XEV]],YGV]Q’

where Gy y is the number of the edges connecting X and Y, namely
Gxy=(Xa1,Y)=(Yai, X).

G has dimensions (% + 4) X ("TH + 2) and can be written as

,32 Y2 Oy Oy - R 0 5

B (1 0 0 0 0 \

B 1 0 1 0 0

Vs 0 1 0 0 0

Vi 0 1 1 0 0
M G = 1 0 1 1 0 0

a 0 0 0 1 0

w \0 0 0 1)
Letting

0 G
=(09)

we have

GG' 0
A? = .
( 0 G G)
Put D := GG', which acts on s; := RV;;. We utilize certain eigenvectors of D to
determine the fusion structure of .
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Observe from the graph that

ABr=a,+ B2, Ayi=a,+ 2,
ABr=PB1+ B3, Ayp=yi+y,

ABs = B, Ays =ys.
Put
E=0B1—y)+(Bs—y3),
n=~@B1—y)—(Bz—y3).
Then

DE = A’ = AQ2Br —2y) = 28,

Dn = Azn =0.
Let E(D, c), c € R, be the eigenspace of the eigenvalue ¢ for D in R(Vyy).
Lemma 2.1. dim E(D, 2) = E(D, 0) = 2.

Proof. The matrix D is

Bz B vi v @1 e e e 2
B (1 1 0 0 0 0 0\
g1 2 o 1 1 o :
v o o 1 1 0o o
v o 1 1 2 1 o

D= On—1 0 1 0 1 2 1 0
o3| O 0 0 0 1 2 0
0 1 2 1 0

o) 0 1 2 1
aw \0 0o 1 1)

Recall that n = 4k + 3. Let pi(x) :=det(¢1 — D) be the characteristic polynomial
of D = GG'. It was proved in [Asaeda 2007] that the characteristic polynomial of
G'G is equal to (¢ — 2)2qx(t), where the polynomials g (t), k > 0, can be defined
recursively by

qo(t) = 1> — 5t + 3,
q1(0) =t — 1)@ — 82 + 17t — 5),
gr(t) = (12 =4t + 2)qi1(t) — qe—a(t), k >2.
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Since the matrix G has 2k +6 rows and 2k +4 columns, GG’ is a unitary conjugate
of G'G & 0,, where 0, is the zero 2 x 2 matrix. Hence

or(t) =t det(t] — G'G)
=11 =2 g ().
The recursion formula for gy (t) gives g (0) =2k +3 and g; (2) = (—1)*TD 2k +3)
In particular neither O nor 2 is a root of g;. Hence 0 and 2 are roots of multiplicity 2
in p;. Since D = GG’ is a symmetric matrix, the dimensions of the eigenspaces

for D for the eigenvalues 0 and 2 are both equal to 2.
Bases of E(D, 2), E(D, 0) may be taken as

E(D,2) := span{xy, x»},

E(D, 0) :=span{y, y»},
where

x1 1= 2(ap + ) — 2(0tg +ag) + - - - 4+ (— 1D 2(0uap + oaps2)

+ DB+ v+ B3+ 13),
x:=&=B1—y)+(B3—73),
V1 :=200 =20+ - -+ 204 — 20412+ (B1 +v1) — (B3 +¥3),
y2:=n=(B1—y1) — (B3 —¥3).

Assume that we have a fusion algebra compatible with the pair of the graphs
(I't, T';), and let w and 7" be the conjugate maps y — ¥ on Vi; and V. By
the argument used in [Haagerup 1994, pp 28-31], the map 7’ fixes every element
of V»;. For m, there are only two possibilities:

Case 1 [Haagerup 1994, Case (b), p 31].
Bi=B1. Vi=v. Bi=ys(&¥3=p).

Case 2 [Haagerup 1994, Case (a), p 31]. (This case will be eliminated.)
Bi=n(e7vi=p), Bi=pH, Vi=n.

In both cases, a>; = ap; for j =0, 1,...,2k + 1. Note that 7 extends linearly
to #; and o; = RVj,. Let E(D, ¢)s. := E(D, ¢)™. Observe that

X1+ exy =cix;+cex2, ¢, €R,
holds if and only if ¢, = 0 in both Cases 1 and 2, and similarly

cic1yr +cyr =ciy1 +cy2, c1, 2 €R,
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if and only if ¢, = 0 in both cases. Therefore
E(D, 2)sc = Rxy,
E(D, 0)sc = Ry1.

By the definition of principal graphs, the matrix D : RV}; — RV} corresponds to
the fusion rule of the right tensor product by oo, where o = «;. Therefore

D(EE) = ED(§) = 288,

D(n) =nD(n) = 0.
Hence
géj € E(D, 2)sc = Rxy,

nn € E(D, 0)sc = Ry;.
Thus

(€, a) = (€, Eag) = (£, 6) = 4.

Hence the coefficient of ££ at « is 4. Since £€ € Rx;, we have ££ = 2x,. Likewise
we obtain 71 = 2y;. Noting that

z n in Case 1,
§= {—n in Case 2,
we have
En=2y;, nEé=2x; inCasel,
{577 = —2y;, né=-—2x; in Case 2,
which completes the proof. U

Lemma 2.2. £2 =0 and n*> =0.

Proof. The equality D(£%) = £D(£) = 2£2 implies £2 = c1x| + coxp for some
c1, ¢2 € R. Moreover, since (&£, n) = 0, we have

(82, a0) = (5, Eao) = £(&. 1) = 0.
Together with (c1x1 4+ c2x2, o) = 2cy, c1, 2 € R, we obtain
£2 = coxp = 0o
We show that ¢, = 0, using that £ = 2x; and £& = 2y, in Cases 1 and 2:

4cy = {02k, 028) = (€7, &%) = (&, £8) = 4{x1, 1)
=2-2)—Q2-)4 -+ D=2+ (1 +1-1-1)=0.

Thus £2 = 0. Then &2 = n? = 0 for both cases. (]
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Since B3 — y3 = 3(§ — 1), we get
(Bs—y3)=1E—n)?
= 1(E +n* —&n—né)
=—1(¢En+nf)

_ —%(xl—l—yl) in Case 1,
%(xl—ky]) in Case 2.

Remark 2.3. For k even, that is, n = 3 (mod 8) and k = 2/,
TG+ 1) =2(ag — g+ s —ons+are— - +ag) — (B34 ¥3)
and for k£ odd, thatis,n =7 (mod 8) and k =2/ + 1,
214 y1) =2(cg — g + g — ot + o6 — - - - oy — asie) + (B + ¥1)-
Consider next the sequence of polynomials R, given recursively by
Ro(t) =1, Ri()=1t, Ryy(t) =tRp—1(t) = Rp—2(t), n=2,

as in [Haagerup 1994, pp 33-34]. Note that R,,(t) = Um(%), where U,, is the
m-th Chebyshev polynomial of second kind [Erdélyi et al. 1981, Section 10.11].

Moreover,
sin(m + 1)60

R, (2cosf) = 5o

, 0<6<m.
By the recursion formula for R,,,
Ri(Mag=a;, 0=<j=<n,
Ryt1(A)ag = 1+ y1,
Ry2(A)ag = 0ty + B2 + 12,

Ry3(A)ag=op—14+B1+y1+ B3+ vs.
Hence
Bz +y3 = (Ry43(A) — Ryp1(A) — Ry—1(A))ag

= (R4k+6(A) — Raj44(A) — Ry 2(A))p.

For m even, R, (¢) is an even polynomial in ¢, thus there is are unique polynomials
(Qj)j=0,1.2,.. with deg(Q;) = [, such that

Qi(tH=Ry;(1), teR, j=01,2,....

With this notation, we have

B3+ v3 = (Q2%+3(D) — Q212(D) — Qok1(D)) g

= (Q2u+3 — Q42 — Qouy1) ().
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Therefore

(B3 —v3)(B3+¥3) = (Qau+3 — Qot2 — Qu+1)(D)(B3 — ¥3)
= 3(Q243 — Q242 — Q1) (D)(E — ).
Since D& = 2& and
sin(2j + 1) /4
sin /4
_ { 1 j=0,1(mod4),
-1 j=2,3 (mod4),

0n(2) = Ryj(v/2) =

we have
| [ & j=0,1(mod4),
;D5 = {—g j=2,3 (mod 4).

Similarly, since Dy =0 and

sin(2j + 1)m /2
siny/2

Q;(0)=Ry;(0) = = (-1,

we have

Q;Mn=(-1'y, j=0,1,2....
Therefore,
(Q2%+43(D) — Q2 42(D) — Q2 41(D))§

{(Q4z+3([D) — Q4112(D) — Qu1(D)§ =—-§ fork=2I,1 €Ny,
(Q4145(D) — Q4 14(D) — Qg 3(D)E =& fork=2[+1,1€ Ny,

and in both cases

(Q2%+3(D) — Q2% 42(D) — Qo1 (D)) = —n.

Hence

(B3 — v3) (B3 + v3) = 3(Q2k+3 — Qaks2 — Q1) (D)E — 1)
:{%(—$+77)=V3—,33 k even,
Ye+m=pB—n  kodd.

Using the contragredient map we get in Case 1 that

B3+ v3)(Bs—y3) = (B3 —V3)(B3+73)
= (3 —B3)(y3+ B3)
=—(B3—y3)(B3+y3)
_ {—()f3 —B3)=—(Bs—y3) keven,
—(B1—=v1)=—(B1—y1) kodd,
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and in Case 2 (to be eliminated) that

B3+ v3)(Bs—v3) = (B3 —¥3) (B3 +73)
= (B3 —y3)(B3+¥3)

:{73—B3=V3—ﬂ3 k even,
B1—vi=y1—p1 kodd

Thus in both cases,

vs — B3 k even,

Bs+y3)(B3—y3) = {V1 B kodd.

So far, we have obtained the three formulae

| .
2 _ =31 =y) inCasel,
~ (=) _{ 1(x;—y1) inCase?2,
1
3(=§+n)=y3—ps keven,
B — + — ]2
" BBy =%(5 +m=p1—y1  kodd,
_|yva—Bs keven,
© ot r)lfa =y = {Vl —pB1 kodd.

Next we compute (83 + y3)?, in order to find ,832, y32, B3ys and y3 3.
Claim 2.4. We have

(D) (B3+¥3)” =2(coxo+cion+- - +cari@ui2) +eaupa(Bi+yD)+eu (B3 +y3),
where the c; are defined by

co=1,

ci1=c,=0,

ci=cj_1+cjo+cj_3 forj=>3.
Proof. Recall that

(B3 +v3) = (Q2au43 — Qaus2 — Qu+1)(D)ag

= (Raj46(A) — Rag14(A) — Rap12(A))ap;
thus

(1) (B34 13)? = (Rar46(A) — Ragya(A) — Rapy2(A) (B3 +13).

Our strategy of the proof is as follows: First we find a sequence of polynomials (S ;)
such that §;(A)(B3 + y3) is given by a simple formula. Next we rewrite the right-
hand side of (f) using the §;.
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From the graph, we obtain

Ro(A)(B3 +v3) = (B3 + ¥3),

Ri(A)(B3+y3) = (B2 + 12),

Ry(A) (B3 +y3) =ABr+y2) — (B3 +¥3) =i+ i,
R3(A)(Bs+y3) = AB1+ 1) — (Ba+72) =20y,
R4(A)(B3+v3) =200, — (1 +y1) =201+ f1 + 11

Define the polynomials (S;()) ;>3 by the recursive formula
S3(1) = Ra(1),

S4(t) = R4(t) — Ro(1),
Si®)=1tS;1(t) —S;20), Jj=5.

By definition S3(A)(B3 + y3) = 2, and S4(A)(B3 + ¥3) = 20,1 Since o1 =
Aoy —apyp forl=1,2,...,n—1, we easily obtain

Si(A)(Bs+y3) =20, 43
for j =3,4,...,n+ 3. Next we express the R; in terms of the S;.
Lemma 2.5. For j > 2,
Ryj_1=doS2j—1+d1S2j3+---+dj 255+ (dj—1 —dj2)Ry,
Ryj=dpSrj+d1S2j 2+ +dj284+dj 1Ry +dj 3R,
where the d; satisfy
d_1=0, dy=di=1, dj=dj_1+djr+d;_3.

Proof. For j = 2 this is obvious by the definition of the S;. We proceed with
induction. Assume the statement is true for j > 2. Using the recursion formulae
for the R; and §;, we have

Ryjy1(t) =1tRyj(t) — Ryj—1(¢)
= 1(doSaj +diS2j 2+ +dj 2S4+d;_1Ry+d;_3)
—(doS2j—1+d1S2j3+---+dj 2853+ (dj—1 —dj—2)Ry)
=doS2j+1+d1S2j—14 - +dj 2S5+t (dj—_1 Ry+dj_3)—(dj_1—d;_2)R;
= doSaj 1 +d1Saj_1+ -+ +dj_2Ss+d;_1(tRy— Ry) +td;_3—dj_»R,
=doS2j41+d1S2j 1+ +dj2S5+dj 1S3+ (dj—3—dj2)R;.
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The last equality was obtained using S3=R3, Ry =t,andd; >+d; 3=d;—d;_;.
Likewise we have

Ryji2(t) =tRyj11(t) — Roj (1)
=doS2j+2+d1S2j+ - +dj-2S6
+1t(dj1S3+(d; —dj—1)Ry) —(dj— 1R, +d;_3Rp)
=dySjro+d1S2j+---+dj_2Se+d;j_1R4
+(d; —dj—1)(R2+ Ro) —d;_3Ry
=doSrj4o+d 1S+ -+dj_2S6+dj_154
+djRy+(d; —dj—1 —dj_3)Ro
=doSrjt2+d1Syj+- - +dj2Se+dj—1Sa+d;Ry+d; 2Ry,

which completes the proof of Lemma 2.5. U

We return to (). Using Lemma 2.5,

Raj16 — Ragy4 — Ragy
= doSak+6 + (di — do) Sakt4 + d_1Sak2 + doSax + di Sar—2
+ -+ dok—28S4+ dok—1 Ry + dok—3Ro
= Supr6+doSax +diSag—2 + - - - + dox—2S4 + dop—1 R> + dog—3 Ro.

Recall
Si(A)(B3+v3) =205 j43,
Ry(B3 +y3) = B+ 1.
Letting co := 1, c; = ¢, =0 and ¢; :=d;_3 for j > 3, we obtain Equation (D),

which concludes the proof of Claim 2.4. 0]

Thus far we have obtained the formulae for (83 — 13)%, (83 — ¥3)(B3 + 13),
(83 +v3)(B3 —¥3) and (B3 + ¥3)? in Equations (A), (B), (C) and (D). This enables
us to understand the fusion rules among B3, y3 and their conjugates.

Proposition 2.6. Case 2 does not occur. Namely, B1 and y, are self conjugate and
B3 = 3 if there is a fusion algebra compatible with the graphs Ty and I,.

Proof. First observe that, by the definition of ¢, j > 0, in Claim 2.4, it follows
that ¢; (mod 4) is periodic in j with period 8. The values are:

j(mod8) |0|1|2|3[4|5(6]7
cj (mod4)[1]|0|0[1]|1[2]0]/0
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In particular,

=1 (mod4) forj
*) {czj (mod 4) for j even,

c2j =0 (mod 4) forj odd.

In the following we assume Case 2 and derive a contradiction.
First consider the case when k is even. By (B) and (C), we have

Bz —v3) (B3 +y3) = (B3 +y3)(Bz — v3),

hence
B3vs =y3Bs = 3(B3v3 + ¥3B3)
= 31((B3+73)* = (B — 1)),
From (A) for Case 2, (D) and Remark 2.3, the coefficient of B3 in the expansion
of B33 in irreducible objects is equal to
o +1
YRR
Since k is even, cox = 1 mod 4 by (%), so (¢ +1)/4 1s not an integer. This implies

that Case 2 does not occur if k is even.
Next consider the case when k is odd. From (B) and (C), we get

Bs—y3)(B3+y3) =—(B3+¥3)(B3— v3).
Hence
Bi=vi =3B +73)
= 1((Bs+ )"+ (Bs —v3)7).

From (A) for Case 2, (D) and Remark 2.3, it follows that the coefficient of f; in
the expansion of ,832 in irreducible objects is equal to

Coky2+1

—
Since k is odd, cyr+2 = 1 mod 4 by (%), so (¢ + 1)/4 is not an integer. This
excludes Case 2 for k£ odd as well. U]

In the following we determine all the irreducible decompositions for the products
of any two objects in V and show that the coefficients are nonnegative integers.
Since we excluded Case 2, we rewrite (A) as

—2(ap—agt+ag—op+ajg—---+oag) —(B3+y3)
k=2,1=0,1,2,...,

—2(ap—og+ag—oa+aie—- - - +oag —agrre) +(B1+ 1)
k=2l+1,1=0,1,2,....

(A) (B3—y3)* =
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Put
A= (B — 1), B := (B3 —y3) (B3t ¥3),
C:=Bs+y)Bs—y3). D= B+

Then
ﬁw@=(D‘AﬁTB‘CX ﬁ§:<D+Aﬁ{B+cy
VaBs = (D_A)Z(B_C)’ )/32 _ (D+A)Z(B+C)'

We introduce new constants ( f;) >0, (g;)j=0 by

fi=3C;j+1,g;=12(c;—1) forj=0 (mod4),
fi=3(c;—1),8;=1%(c;j+1) forj=3 (mod4),
Note that f; + g; = ¢; for all j. Further, from the table on page 268, observe that
fj» g; 1s an nonnegative integer for all j > 0. Here are some values of f; and g;:

J1011[2|3({4[|5|6[7(8]9 101112
fFi{1]0]0|0 1| 1|2|3(7|12|22]40|75
gi10(0{011]{0|1{2/4]6|12]|22]41 74

For k even, using (A'), (B), (C), (D), we have
D—A

= fooo+ fioao+ -+ fors10ata+ 3cut2(Br+11) + e — D (B3 +13),
D+A 1 1

— =800t g1aat F Qo1+ gCa2(Br 1) + g+ D(Bs+y3),
B-C

= =0,

B+C

S =10k B).

Since k is even, cor12 =2 for+2 =282k+2, Cok + 1 =2 for and co — 1 =2g7;. Hence
we obtain the following theorem:

Theorem 2.7. For k even,
B3ys =y3B3 = foo+ firea+ - - -+ fort10ak42
+ 1 P2 (Bi +v1) + 3 (o — D(B3 + 13),
B3 = gooto+ 8102+ -+ Qa4 10ak42+ 5 82k2(B1 + V1) + 582 B3 + 5 (82k +2) v3,
yi=gooto+g100+" -+ gour10k42+ 582%+2(B1 + ¥1) + 5 (2 +2) B3 + 382k V3

All the coefficients of irreducible elements are nonnegative integers.
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Proof. The only remaining thing to prove is that fy;y> is even, fy is odd and g;;
is even for any j. Since k is even, cor4+2 =0 (mod 4). Thus for42 = %C2k+2 1s even.
Likewise cpr = 1 (mod 4), thus fy; = %(CZk + 1) is odd. Now,

%(czj — 1) for j even,
82i =111 .
3€2j for j odd.

Since ¢2; — 1 =0 (mod 4) for j even and ¢;; =0 (mod 4) for j odd, we have that
g2 1s even for any j. 0

In the same way, we get for k odd,

D—A
— = Joot+ fraa ot farrroarsa + 12+ D(B1+7) + e (B3 +13),
D+A 1 1
I = 8o+ g1o2 + - + gok+102k+2 + 7 (C2k2 — D(B1 +v1) + ¢k (B3 +¥3),
B-C
4 - %(,31 =7,
B+C _
1 =0.

Since k is 0odd, coxi2 + 1 = 2 fors2, copy2 — 1 = 28242 and ¢ = 2 for = 2.
Hence we get:

Theorem 2.8. For k odd,

B3ys = foao+ froo+ -+ forr104k+2
+ 3 (P2 + D1+ 3Pz = D1+ 5. /(B3 +13),

V3Bs = fooo + frao + -+ -+ fokt10ak42
+ 3 (farr2 = DBt + 3Pz + Dyi + 5. (B3 +13),
BI =5 =gooto + 102+ - + - + o4 10k42 + 582k+2(B1 + ¥1) + 382%(B3 + 13).

All the coefficients of irreducible elements are nonnegative integers.

Proof. It remains to show that f>;4, is odd and f; is even. In the proof of
Theorem 2.7, it has been already proved that g>; is even for any ;.

Since k is odd, cyr+2 = 1 (mod 4). Thus fyiro — 1= %(c2k+2 — 1) is even, that
is, far+2 1s odd. Likewise ¢y = 0 (mod 4), thus fy; = %czk is even. U]

Thus far we determined that 81 and y; are self-conjugate and computed the full
irreducible decompositions of B3 and y3, in particular, 83 = y3. This determines the
rest of the fusion rule. Note that the conjugate map = on ZV;; is now determined.

First, for azj, j =0, 1,...,2k + 1, the right and left multiplication of «5; on
any other object from V is represented by the matrices Q;(D) and Q (7w D)
respectively.
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Claim 2.9. The entries of the matrices R;(A) fori =0, 1, ..., 4k + 3 are nonneg-
ative integers. In particular, the entries of the matrices Q;(D) for j =0,1, ...,
2k 4 1 are nonnegative integers.

Proof. This immediate from the result in [de la Harpe and Wenzl 1987], which
states that when A is an adjacency matrix of a graph with norm greater than 2, the
matrix R;(A) has nonnegative integer entries for any i. U

It remains to determine the decomposition of tensor product of 8; and y; with
themselves and B3 and ys.

Since by the graph f; = B3a, and y; = y3a2, the fusion among B3 and y3
together with the fusion of o, with all the objects determine 8381, y3v1, B3Vi,
y3B1 by imposing associativity. Taking the conjugate, we obtain 8183, 173, B1V3,
183 as well. Thus BT = Biysea, v = y1yaaa, Bivi = Biysaa, viBi = v1Bsaz are
all determined. Since there is no division, subtraction of objects are involved in the
process of determining each desired fusion rule, the coefficients are all nonnegative
integers.

2B. Fusion rules on yX N x N® . We identify y&y with Vi1 and y &y with Vi;.
Claim 2.9 implies that «; Y for i even and any Y € V), are determined, and so are
Xa; for X € V1 and i odd. Thus it remains to obtain 8;Y and y;Y, where i =1, 3,
Y = B, or y». They are easily determined, since B, = B3|, 2 = Y31, and the
fusion among B;, v;, i, j =1, 3 are already determined. (Here we used associativity
again.) Since the fusion coefficients among the B; and the y; are nonnegative
integers and the product of «; from the right gives fusion with nonnegative integers,
the fusion coefficients of ;Y and y;Y are nonnegative integers as well.

2C. Fusion rules on NXp X y&n. Let X € y& . Then for j odd,
Xaj=R;(A)X.

Claim 2.9 implies that R;(A)X is a linear combination of the objects in y&y
with nonnegative integer coefficients. It remains to show that B2, B2y, yQBZ
and y»y, also have this property. It is immediate, since B2 = @13, Yo =0a1¥3,
Boa = B1+ B3, 2 = y1+y3, and all the fusion rules involved have decompositions
into simple objects with Z--coefficients.

2D. Fusion rules on yXy X &y and py Xy x X n. Recall that we have iden-
tification %y = Vo and y %y = V1. Let A’ be the adjacency matrix for I'.

Then the fusion rules of the tensor products of the oe;. for j =0,2,...,n—1, as
well as the oy for k = 1,3, ..., n — 1 with any objects in V,; U V), are given by
the matrices R;(A’), where [ =0, 1, ..., n. Similarly to Claim 2.9, the entries of

R;(A’) are all nonnegative integers. Furthermore, using Frobenius reciprocity, this
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also takes care of the coefficients of the a;. and o in the tensor product of two
bimodules.

2E. Fusionrules on %y x & p. The remaining issue is to determine the fusion
rule among f and g. Observing the Perron—Frobenius weights shows that f = f,
g = g. Since for j even, each a; is self-conjugate as well, fg = gf.

Theorem 2.10. We have
(f% ) =du-1, (g f)=dux,
(f8.8) =dur1, (g, 8) = dusa,
where the d; are defined as in the proof of Claim 2.4 by
di=dj_1+dj2+d;j3, d1=0, dy=d =1
Lemma 2.11. We have
(f2. F)—(fg. 8) =du—1 — dur1,

(fg, f)— (8%, &) = do — doy42,
(fg.8) — (&%, &) = das1 — doiya.

Proof of Lemma 2.11. We use a similar strategy to the proof of Claim 2.4. Let G’ be
the adjacency matrix for (V,, V»1) corresponding to the graph I'; (see Figure 1),

and let
0 G
A= (G” 0 ) .

Ro(A) (g = f)=(g— ),
Ri(AN(g— f)=¥2+ B2,
Ry(AYg—fH=g+ .
R3(A" (g — f)=2d,,
Ry(A)(g— f) =20, |+ f+g,

where o, = @ for j odd. Then we have

Observe that

Si (A (g — f) =20

for j=3,4, ..., n+3, where the polynomial S; is defined in the proof of Claim 2.4.
On the other hand,

g+ f=Rutr1(D)y = Rax4(D)ag = Qoo (@r11).
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Using Lemma 2.5,

&+ Hg—1)
= (doS22k+2) + d1 S22k +1) + - - - + dox Sa + doy1 Ry + dog—1 Ro) (A') (g — f)
= (linear combination of the &) + do+1(g + f) + dox—1(g — f)
= (linear combination of the ) + (dag+1 + dok—1)g + (dok+1 — dok—1) f-

Therefore we have

((g— g+ 1) g =(g% 8 — (f* g) = duy1 +dap—1 = doy2 — dax,
((g— g+ 1) [)=1(g% )= ([ f) = doy1 — dai1.

We obtain further information by investigating R>(A")(g + f)(g — f). Note that
Ry(A)(g+ f)=2a,_, + f +3g. Therefore

#1) Ra(A)(g+ f)g—f)

= Qa,_; + f+32)(g— )

=2, (g— ) +3¢>— f*—2fg

= (,’s) +2(da (g + f) +du2(g — [N +38" — f7—2f¢g

= (}’8) +2(dok + dak—2)g +2(dox — du—2) f +38> — > —2fg.
On the other hand,

(b1)

(#12) Ra(A)(g+ f)g—f)
= Ro(A)2(dooy +diay + - - - + dogty ) + (dog+1 + dok—1) R2(A) g
+ (dok 1 — dok—1) R (A) f
= (at’s) + 2doi (f + &) + (doky1 + dor—1) (e, + [ +28)
+ (dok+1 — dok—1)(ty_; + &)
= (at,’s) + Qdok + dok 1 + do—1) f + Qday + 3dogs1 +dok—1)g.

Comparing (#1) and (#2) we obtain
3(g% g) — (f* g) —2(fg, g) = 3da+1 + dap—1 — 2da_2,
3(g%, ) — (f% f) —2(fg, f) = dags1 +dok—1 +2doi .

Combining Equations (b1) and (b2), we obtain the statement of the lemma. Note
that we use Frobenius reciprocity such as (fg, f) = (f2, g), etc. 0]

(b2)

The next lemma, together with Lemma 2.11, implies Theorem 2.10.

Lemma 2.12. (g2, g) = dox4o.
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Proof. Since g = Boai = Yoy,
28 = (Ba+ 7)1 = (B3 + ya)arar =1 (B3 + y3)ai.
Also, Yy, = Y301 = @1 B3. Therefore
4(g%, g) = (@1 (B3 + y3)on @1 (B3 + y3)a, &1 B3ary)

= (1a1(B3 + y3)a1a1(B3 + y3)dy, B3)

= (B3 +y) @@, B3) = (B3 +y»)°, Bs(@i@n)’),
where we used

aa1(Bz+y3) =p1+ B3+ v+
=B+ B+r+yi=(Bs+ e = (B3 +y3)aidr.

A computation using the graph I'y gives

B3(a1@1)’ = 5p3 + 1081 + 6au_1 + 61 + a3 + 3.
Using the formula for (83 + y3)? given in Claim 2.4, we obtain
(B3 +13)%, B3(01@1)*) = 8car + 12¢a141 + 16¢o 42 = 4copy1 + 8cansa + 8canss
= 4cokt2 +4cok43 + 4coua = 4conts = ddoko.

Therefore (g2, g) = dojss. 0

2F. Fusion rules on yXpy x py¥n. The remaining problem is to determine the
fusion rule on { f, g} x {B2, 2}

(f B2, Ba) = (f, Bapo) = (f, @1 B3e1) = (1 f@1, B3) = (a1, B3)
= (B3, B1) + (B3, v1) + (B3, ).
Theorems 2.7 and 2.8 imply that
(f B2, B2) = gokr2 + g2kt
Both values are nonnegative integers. Similarly we obtain
(fB2,V2) = (f7V2, B2) = far2 + fokt1,
(fV2,72) = &2k+2 + Gak+1,
(B2, B2) = (Baa1 B2, B2) = (@1 B301@1 B3, &1 B3) = (a1 @1 y301@1, V33)
= ((y1 + »3)aia1, y3B3).
(1 +y)en@; = (1 + B)ei@ = (au—1 + B1 + 271 + ¥3) + i + B3
=an-1+2(B1+y)+y3+B3=an_1+2(B1 + 1) + 3+ B3.
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Thus, using Theorems 2.7 and 2.8 we obtain

= 3 {fzk+1 + 2 fokso+ fox — 1 for k even,

(gB2, B2) =
k1 +2 forg2 + fok for k odd.
Similarly,

(gB2. V2) = (8¥2. B2)
2 2 forkeven, _ _ _
- {Zi: Lﬁiﬁiﬁ ; o " ek odd, \§72 V2= (8P Fa
3. Existence of the fusion algebra
Let k € Np, and put n =4k 43 as before. In this section we will reserve the symbols
(@j)o<k<n, (Bji<j<z» ¥Vji<j<3

for elements in a certain bigraded Z-algebra s{ which we define later. Therefore
we relabel the vertices of the graph I'y as in Figure 2.
As in Section 2A, let G be the adjacency matrix for (I';"", F,?dd), where

even
Fk :{00,02,-‘-,an—1, bl, Cl’b3a C3}a

dd
F](g) :{a19a3,"'1al’l’b2’ CZ}

0 G
se (89,

Let (gx)g2, be the sequence of polynomials defined by

Set D = GG' and

qo(t) = 1> — 5t + 3,
g1 () =t — 1) =8>+ 17t — 5),
qr(t) = (1> — 4t + g1 (t) — (), k=2,

(&)

Figure 2



FUSION RULES ON A PARAMETRIZED SERIES OF GRAPHS 277

as in Section 2A. Then the characteristic polynomial for D is
X () = 121 = 2)*qe (1)
(see Section 2A). Moreover g (¢) is a polynomial of degree 2k + 2 with 2k + 2
distinct roots, because by [Asaeda and Yasuda 2009], either g (¢) or gx(¢)/(t — 1)
1s an irreducible polynomial. The recursion formula for the g;-polynomials implies
qr(0) = 2k + 3,
qe(2) = (=D 12k +3).

In particular, 0 and 2 are not roots of gx. Let k € Ny be fixed. Then y;(¢) has
2k+4

exactly 2k +4 distinct roots (7;);_|", where 1y =0, =2 and 13, . . ., Io; 44 are the
roots of gx(¢). Since D = GG’ is a positive operator, t; >=0 for | < j <2k +4.
Lemma 3.1. Let E; be the orthogonal projection on the eigenspace of D corre-
sponding to the eigenvalue tj, 1 < j <2k +4, and put
i =(Ejap, ap),
where (-, -) is the inner product in lz(F,fven). Then
@ X =1,
(b) wj>0forl < j<2k+4,
(©) p1=p2=1/(2k+3).
Proof. (a) Since D is a symmetric matrix, Z?kzﬁ“ E; =1, thus 23]:]4 wi=1.
(b) From Section 2A, we have
Q;i(Mag=Ryj(A)ap=azj, 0=<j=<2k+1,
Qok+2(D)ag = Ragya(A)ag = by + ¢y,
Qox+3(D)ap = Ragy6(A)ao = by +c1 + b3 +c3.

Since {ag, ay, . .., asx+2, b1 +c1, b1 +c1 + b3 +c3} is a set of 2k +4 linearly inde-
pendent vectors in [ 2(I‘]‘:’Ven), and since (Q j)o<j<2k+3 spans the set of polynomials
of degree less or equal to 2k + 3, we have

P(D)ag #0

for every nonzero polynomial P € R[x] with deg(P) < 2k + 3. On the other hand,

D is diagonalizable with eigenvalues (¢ j)?‘;{“, SO

E; = P;(D),

where

t
Pj(t):l_[t._t., reR,
iz




278 MARTA ASAEDA AND UFFE HAAGERUP

is a polynomial of degree 2k + 3. Hence
ij = (Exao, ao) = || Ejaoll> > 0, 1<) <2k+4.
(c) From Section 2A, we have

1g(E1) = E(D, 0) = span{yi, y2},
1g(Er) = E(D, 2) = span{xy, x2},
where
x1 = 2(ag + a2) — 2(ag +ag) + - - - + (= 1)*2(aax + as12),
+(=D* By +c1 + b3 +c3),

xp:= (b1 —c1) + (b3 — ¢3),
y1:=2a0—2a; + -+ -+ 2a4; — 2a4512 + (b1 +c1) — (b3 + ¢3),
y2:= (b1 —c1) — (b3 — ¢3).

Since y; L y> and y> L ag, we get

[(y1, ao)|? 1
w1 = (Eyag, ao) = = :
Iy 1I? 2k+3
and similarly,
|(x1, a0)|? 1
= E , = == . |:|
w2 = (Ezao, ao) TE %13

Corollary 3.2. Let (e; J-)%.j be the matrix units of Moy1+4(R). Put

B = spangfer1, €12, €21, €22, €33, €44, - . - , €2k+42k+4}
= M(R)®I®({3,4,...,2k+4}, R).
Then B is a finite dimensional real C*-algebra and the map 1 : B — R given by

2k+4
pb) =" pbj. b=lin?* e,
j=1

is a faithful trace state on R.

Proof. It is clear from Lemma 3.1(a), (b) that w is a faithful state on 9. The trace

property
wu(bc) = u(cb), b,ce®B,

follows from Lemma 3.1(c). (]

Lemma 3.3. Fix k € Ny, let i : B — R be the trace in Corollary 3.2, and put

A :=diag(0, V2, V13, . .. \/Toeza)),
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where t3, . . ., tyg+4 are the roots of qy.

(a) For every even polynomial P € R[x],

n(P(A)) = (P(A)ao, ap).

(b) Let P, Q € R[x] be two polynomials, which are either both even or both odd.
Then

n(P(A)Q(A)) = (P(A)ag, Q(A)ag).
(c) Let n =4k + 3 (as usual). Then
Ry14(A) — Ry12(A) — Ry(A) — Ry—2(A) =0.
Proof. (a) Choose Q € R[x] so that P(¢) = Q(z?). Then

(P(A)ao, ag) = (Q(D)ao, ao).
Let E; denote the spectral projection of [ corresponding to the eigenvalue ¢;,
1 < j <2k +4, as before, where t; =0 and #, = 2. Then

2k+4

QD) =Y QU)E;.
j=1

Hence
2k+4 2k+4
(Q(D)ag, ao) = ) QU)(E jao, a0) = ) 1; Q1)) = n(Q(A%) = u(P(A)).
j=1 j=1

(b) Under the assumption on P and @, the product P Q is an even polynomial.
Hence by (a) we have

(P (A)Q(A)) = (P(A)Q(A)ay, ao)
= (P(A)ag, Q(A)ao).
(c)Put P=Q =R,+4— Ry,+2— R, — R,,_>, which is an odd polynomial. By (b),
W(P(A)?) = [P(D)aoll3.
From the recursive formula for the polynomials R;,
Ry—2(A)ag = an—2,
Ry (A)ag = an,
Ry+2(A)ag = an + by + 2,
Ry14(A)ag = a2 +2a, + by +c2
= (Ry12(A) + Ry (A) + Ry—2(A))ao.
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Hence (P(A)?) = ||P(A)a0||% =0, and since yu is a faithful trace on 9B, we have
P(A)=0. O

Remark 3.4. Since P = R,+4 — Ry,42 — R, — R,—> is an odd polynomial and
P(A) =0, we know that P(t) has at least n +4 = 4k + 7 roots

0, £v/2, £/53, . . ., /Tokrds

which are exactly the distinct roots of t(t? — 2)qk (¢%). Since P and ¢ (1% — 2)qk (%)
are both monic polynomial of degree 4k 4 7, it follows that

(Ruta — Ruya — Ry — Ry2) (1) = t(t* — 2)qi(1%).

It is not hard to prove this identity directly by using the recursion formulas for the
polynomials {g,} and {R;}.

Definition 3.5. Let k € Ny, n =4k + 3, and let & and u be as in Corollary 3.2 and

A = diag(\/t1, +/12, - . ., /T2k+a) € B be as in Lemma 3.3. Let (ﬁj)%jzl be the
matrix units in M»>(R), and put

Vi=ViuVipuVoruVyy,
where V;; CB® fij, i, j =1, 2, are as follows:
(@) Vi1 = {ao, 02, a4, ..., dar2, B1, v1, B3, y3}, where
a2j = Ryj(A)® f11, 0=<j=<2k+1,
B1 = %(Rn—i-l(A) + 2k +3(e12+e21)) ® fir,
Y1 =3 (Rus1(A) — V2k +3(er2 + €21) ® fi1,
B3 = 5((Rut3 = Ryt = Ra—1)(A) +V2k +3(e12 — 21) ® fi1,
3= 3((Ru43 — Rut1 — Ry—1)(A) — 2k +3(e12 — €21)) ® fi1.-
(®) Via ={a1, a3, s, . . ., ak43, B2, 2}, Where
i1 =Rj1(A)® fro, 0=<j=<2k+1,
Br =3 ((Rut2 — Ry)(A) + 22k +3)e12) ® fia,
y2 = 3((Rusa — R)(A) = v/2(2k +3)e12) ® fia.
(©) Va1 ={@y, @3, s, ..., Gaks3, B2, ¥2}, where
a2j+1 = Ryj11(A)® f1, 0=<j=<2k+]1,
B2 = 3((Rug2 — Rp)(A) + 22k +3)e21) ® far,
72 = 3((Rut2 — R)(A) =22k +3)e21) ® for.
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(d) Voo = {ag, o), ..., a4 5, f, g}, where

o) =Ryj(A)® fr2, 0<j<2k+1,
f=3(Ruc1 +2Rui1 — Ruy3)(A) ® foo,
g =1(Rus3— Ruis1)(A) ® foo.

(e) The conjugation map Vi, — V;; and Vo1 — V)5 is already defined earlier. For
Vi1 and V»y, all the elements are defined to be self-conjugate except B3 and y3
which are defined to be conjugate of each other. Note that for every X € V;;, the
conjugate X is equal to X* (or X, since all the matrices here are real).

(f) Equip RV;; C B ® f;; with inner products given by

(b® fij, ¢ ® fij)u = pu(c'b) = u(bc')
for every b,c e RV;;, i, j=1,2.
Lemma 3.6. Leri, j € {1,2}. For X,Y € V;;,

1 iftX=Y,

X 1) = {o if X £7Y.

Proof. Let (b, ¢),, := u(c'b) = u(bc"), b, c € B, be the inner product on & given
by s, and put ||b]|,.(b, b),/*, b € B.

(a) Case (i, j) = (1, 1). It suffices to show that
S1:={Ro(A), R2(A), ..., Ry+1(A), (Ry13—Rpyt1—Ry—1)(A), ennte1, ern—ean}

is an orthogonal set in % and that

. —1
IR (AL =1, 0<j=<"5=,
IR 1 (A}, =2,
|(Rn+3 — Rny1 — Rn—l)(A)”i =2,
2 _ _ 2 2
leiz +ea1lly, = llerz —eally, = T

By the definition of x in Corollary 3.2, it is clear that e1; + €1 and ej» — ey are
w-orthogonal to the remaining matrices in Sy, because R;(A) is a diagonal matrix
for all j € Ny. Moreover, by Lemma 3.1,

(e12+e21, €12 —e1)y = (e —exn) = uy — up =0,

2 _ 2 _ _ _
lerz +eanlly, = llera —eanlly, = nlerr +exn) = u1 + p2 = %3
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By Lemma 3.3(b), the remaining part of the proof in the Vi case reduces to show-
ing that

T :=={Ro(A)ag, Ra(A)ay, ..., Rur1(A)ag, (Ry43(A) — Rpy1(A) — Ry—1(A))ao}
is an orthogonal set in />(I"y) with
IR2j(Magl> =1, 0<j<n~—1,
I Rn1(A)ag > =2,
I (Rut3 = Ryt = Ru—) (Dag > = 2.
This follows from the fact that
v ={ag, a2, ..., an—1, b1+ 1, b3+ c3}.
(b) Cases (i, j) = (1,2) and (i, j) = (2, 1). It suffices to show that
$2:={Ri(A), R3(A), ... Ry(A), (Rut2 — Rn)(A), €12}

is an orthonormal set in % and that

: —1
IR (DI =1, 0=j <75~
I(Rut2 — R)(AIIZ, =2,
2 1
lenlly, = 5

It is easy to check that ey, is orthogonal to the remaining elements of $> and that
lle1n ||i = (2k+3)"! by Lemma 3.3(b). The remaining statement about the set >
follow from the fact that

T> = {R1(A)ag, R3(A)a, ..., Ry(A)ag, (Ry+2 — Ry)(A)ap}
= {ala a3a o ’an7b2+C2}
is an orthonormal set in /2(I'y), and from the equalities

. —1
Ibr+cll> =2, llagjnl>=1 for 0<j<?Z

(c) Case (i, j) = (2, 2). The statement follows in this case if we can show that
S3:={Ro(A), Ra(A), ..., R,_1(A),
3(Ry—1 4 2Rug1 — Ruy3)(A), 5(Rugs — Ru—)(A)}
is a p-orthogonal set in 8. By Lemma 3.3(b) this reduces to showing that
15 := {ao, az,...,0p—1, %(bl +c1+b3+c3), %(bl +c1—b3 — C3)}

is an orthogonal set in /?(I"y), which is obvious. (]
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Theorem 3.7. Let V =V UV ,u Va1 U Vs as in Definition 3.5. Then 2V C M»(%B)
forms a fusion ring, with coefficients given by

N{y = (XY, Z),,

where X € Vi;, Y € Viy, Z € Vi, (i, j, k) € (1,23, and with units oy € Vy; and
05(’) € Vpo. Moreover the graph with vertices Vi1 U V1, obtained by right multipli-
cation by a = «q is 'y and the graph with vertices V1 U Vy, obtained by right
multiplication by o is T'}..

Proof. By Lemma 3.6, for all i, j € {1, 2}, the set V;; is linearly independent in
B ® fij. Hence

dim(RVyy) = [V11]| = 2k + 6,
dim(RV},) = dim(RVa;) = dim(RVay) = 2k + 4.

This implies that

RVii =B ® fi1,

RV]Z = Spal’l{e]z, €22,€33, ..., 62k+4,2k+4} ® f]2,
RV, = span{ez, €22, €33, . . ., €2x142k+4} @ f21,
RV, = span{ey, e22, €33, . . ., €2k14,2k44) @ f22,

because the four inclusions C are obvious, and the right-hand sides have dimen-
sions 2k + 6 (respectively, 2k +4, 2k + 4, 2k 4+ 4). Therefore

RV =RV @RV @ RV @ RV

forms a bigraded R-algebra, and the conjugation X — X extends by linearity to all
of RV and it is given by transposition of matrices. Moreover, for X € V;;, Y € Vi,
i, j,k e€{l,2}, we have a unique decomposition

XY= ) N{,Z
ZeVi
where by Lemma 3.6,

z
The identities
Z _nX _nY Ay X
Nyy= NZ,Y = N)?’Z = N—, =N z
are now a simple consequence of the fact that p is a trace state on the real C*-
algebra 9B, so in particular

u(b) =pu®d", beB,
w(bc) = u(chb), b,ceRB.
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It remains to prove that N f’y € Np and that multiplication from the right by
o = o (respectively, &) on Vi (respectively, V»;) generates the graph 'y (re-
spectively, I'}).

Lemma 3.8. Letr a = «;.
(a) For X € V11, Y e V12,
<X(x’ Y>/L = <X’ Ya),bb € NO’

and ((Xo, Y) ) xev,,, yev,, is the adjacency matrix Gy for T'y.

(b) For X € Vy,Y € Vyy,
(Xa,Y), =(X,Ya), €Ny,
and ((XA, Y) ) Xxevs,vew, is the adjacency matrix G|, for T';.

Proof. This follows from simple computations using Definition 3.5, Lemma 3.6,
the recursion formula

(*) IRy (1) = Ry1 (1) + Rp1 (1), n=1,

and the identity from Lemma 3.3(c)

(%) Ru+4(A) = Ryp2(A) — Ry(A) — Ry_2(A) =0.

(a) It follows immediately from (%) that for 1 < j <2k +1,
Qj0 = 0j41 +Q2j—1,

which shows that a; € Vi is connected to anj 41 and a;_1 in Vi (with simple
edges) and not connected to any other Y € Vi,. To prove that we recover the
graph I'y this way we just have to check that ¢gor = o1, which is obvious, and that
Bia = a, + B2 and B3 = B,. The last equality follows from

B3t = 2 ((Rus+3 — Ryt1 — Rum1)(A) + V2k +3(e1n +€21)A) ® fi2
= 2(Ryt4 — 2Ry — Ry2)(A) + 22k + 3)e12) ® fio
= 2((Rug2 — R (A) + 22k + 3)e1n) ® fiz
= P2,

where we used (x) and (»x) and the fact that ejpA = V2e15, e21A = 0. The proof
of Bia = a, + B is similar.
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(b) To recover the graph I'y from V5, U V4, it suffices to prove that

o0 =0ojp1 +02j—1, 1 <j<2k+1,

8o =ay +BZ+)72-
The first two are obvious. A computation proves fa = &y:
[ =3((Ri—1(A) +2Ry11(A) — Ry3(ANA® fa
= 3(Ry—2+ 3Ry + Ryy2 — Ruya)(A) ® far
7 2Ry (A) ® for

|
Rl ©

n»
where we again used (%) and (*%). The formula for g« is obtained similarly.  [J

Lemma 3.9. Put

§:=(B1—y1)+(Bs—v3).
Then

E=Bi—r)—Bs—n),
and
1EE =200 — 200+ - - - + 2004x — 2042 + (B1 + 1) — (B3 + ¥3),
18E = 2(ap+ ) — 2(as +atg) + - + (= D*2(oap + ataps2)
+ (=D B+ v+ B3+ 1)

Proof. Clearly £ = (81 — y1) — (B3 — y3). By Lemma 3.8, the linear maps

Ra . RVH —> RVlz,
Ra : RV, — RV
obtained by right multiplication by « (respectively, by @) have the matrices G’

(respectively, G) expressed with respect to bases V1 for RVy; and Vi for RVy,.
Hence

Ryz := RaR, : RV — RV,

has the matrix D = GG’ with respect to the basis V;; for RVj;. We can now argue
exactly as in Case 1 of Section 2A to get

ég € E(D, 0)sc = Ryl,
gé € E(D, 2)5c = Rxy,
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where

yi =200 — 202 + - - - + 204 — 20ax+2 + (B1 +v1) — (B3 + 13),
x1 = 2(a 4 0n) — (04 + ag) + - - - + (= 1DF2(0x + aar2),
+ (=DM B+ + B3+ 13).

Since (£, Qo) = (EE, o) =(§,8)=4and (y;, ap), = (x1, o), =2, it follows
that £ =2y, and £ = 2x;. O

End of proof of Theorem 3.7. It remains to prove that N )%,Y € Np for all X € V;;,
Y € Vi and Z € Vi, (i, j € {1, 2, 3}).Having established the formulas for EE
and ££ in Lemma 3.8, the proof that N )%Y € Np can be obtained from Section 2:
Using

Z _ a X _ arY
Nxy=Nz3=Nxz

if X, Y or Z is one of the elements («;)o<j<n, (a;)osjfn (where &y | = Q2k11),
then N f’y is an entry of the matrix R;(A) or R;(A’), which is a nonnegative
integer by [de la Harpe and Wenzl 1987]. In the remaining cases, X, Y and Z are
compatible and come from the list

Bi, vi, B3 V3, B2y v2, Bas V2. f, 8-

For X,Y,Z € {1, y1, B3, y3}, we have N)?Y € No by Theorems 2.7 and 2.8,
and the remark at the end of Section 2A. The case X, Y, Z € {f, g} 1s treated
in Theorem 2.10 and the remaining cases can easily be reduced to these two cases
by using B> = B3a and y» = y3a (see Sections 2B and 2F). 0

Remark 3.10. From Definition 3.5, we have

§=P1—v)+ (B3 —v3) =2v2k +3e12 ® fi1,

E=(Bi—v1)— (B3—3) =2vV2k+3ex ® fi1.
Thus _
£ =42k +3)en ® fi1,

£ =42k +3)exn ® fi1.
Since A = diag(O0, V2, V13, ..., /Dita), Where 13, . . ., o4 are the distinct roots

of gk (t), and since 0, 2 ¢ {t3, . . ., tox+4}, the maps e and ey, are the projections on
the eigenspaces for A with eigenvalues 0 and 2, respectively. Using gx(0) =2k 43
and ¢ (2) = (—D**T1(2k + 3) gives
(2 — A?)qi(A?) =22k + 3)eyy,
A%qr(A%) = (=) 2k 4 3)en,
because the polynomial (2 —1)g(7) vanishes atr =2 and r =1¢;,3 < j <2k +4,
and has the value 2(2k + 3) at t = 0. Similarly 7g;(¢) vanishes at + = 0 and
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t=1;,3 < j <2k+4, and has the value (—D*12(2k +3) at r = 2. Hence the two
identities

EE =202 - AH@(AY) ® fi1 =2(1y — ad)qi (@),

£ = (—D*24%41(AY) ® fi1 = (=D 2adgy (ad)

hold, where 1y = and o = ;. Let Q; denote as usual the polynomial for which
R2;(t) = Q;(t?), t € R. Then by Definition 3.5,

ar; = Qj(aa),
B1+v1 = Qau2(a),
B3+ v3 = (Q2u+3 — Q2t2 — Qot1) ().

Hence a more direct proof of Lemma 3.8 can be obtained if the two polynomial
identities hold:

re=Q2Q0—201+ - +202% —202%+1) + (Qok+1 +202%+2 — Q2x+3),
sk =2(Qo+ 02) —2(Q2+ Q1) + - - -+ (= 1D*2(Qak + Q2 +41)

+ (=D Qi3 — Ons1),
where

() = Q2—0gr(t), sit) = (=D g ().

These two polynomials identities are actually true, and they can be proved using
the recursion formulas for (gx)72, and (R j)§°=0. ]
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